201
|
Deng Y, Jiang S, Duan H, Shao H, Duan Y. Bacteriophages and their potential for treatment of metabolic diseases. J Diabetes 2024; 16:e70024. [PMID: 39582431 PMCID: PMC11586638 DOI: 10.1111/1753-0407.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advances highlight the role of gut virome, particularly phageome, in metabolic disorders such as obesity, type 2 diabetes mellitus, metabolic dysfunction-associated fatty liver disease, and cardiovascular diseases, including hypertension, stroke, coronary heart disease, and hyperlipidemia. While alterations in gut bacteria are well-documented, emerging evidence suggests that changes in gut viruses also contribute to these disorders. Bacteriophages, the most abundant gut viruses, influence bacterial populations through their lytic and lysogenic cycles, potentially modulating the gut ecosystem and metabolic pathways. Phage therapy, previously overshadowed by antibiotics, is experiencing renewed interest due to rising antibiotic resistance. It offers a novel approach to precisely edit the gut microbiota, with promising applications in metabolic diseases. In this review, we summarize recent discoveries about gut virome in metabolic disease patients, review preclinical and clinical studies of phage therapy on metabolic diseases as well as the breakthroughs and currently faced problems and concerns.
Collapse
Affiliation(s)
- Youpeng Deng
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Shouwei Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Hanyu Duan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Haonan Shao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
202
|
Bohm MS, Ramesh AV, Pierre JF, Cook KL, Murphy EA, Makowski L. Fecal microbial transplants as investigative tools in cancer. Am J Physiol Gastrointest Liver Physiol 2024; 327:G711-G726. [PMID: 39301964 PMCID: PMC11559651 DOI: 10.1152/ajpgi.00171.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
The gut microbiome plays a critical role in the development, progression, and treatment of cancer. As interest in microbiome-immune-cancer interactions expands, the prevalence of fecal microbial transplant (FMT) models has increased proportionally. However, current literature does not provide adequate details or consistent approaches to allow for necessary rigor and experimental reproducibility. In this review, we evaluate key studies using FMT to investigate the relationship between the gut microbiome and various types of cancer. In addition, we will discuss the common pitfalls of these experiments and methods for improved standardization and validation as the field uses FMT with greater frequency. Finally, this review focuses on the impacts of the gut and extraintestinal microbes, prebiotics, probiotics, and postbiotics in cancer risk and response to therapy across a variety of tumor types.NEW & NOTEWORTHY The microbiome impacts the onset, progression, and therapy response of certain types of cancer. Fecal microbial transplants (FMTs) are an increasingly prevalent tool to test these mechanisms that require standardization by the field.
Collapse
Affiliation(s)
- Margaret S Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Arvind V Ramesh
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, The University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Liza Makowski
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
203
|
Chang Y, Zhou X, Nie K, Liu J, Zhang S. Insights into the historical trajectory and research trends of immune checkpoint blockade in colorectal cancer: visualization and bibliometric analysis. Front Immunol 2024; 15:1478773. [PMID: 39544944 PMCID: PMC11560439 DOI: 10.3389/fimmu.2024.1478773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Background Colorectal cancer (CRC) is a malignant tumor that poses a significant threat to human health due to rising incidence and mortality rates. In recent years, immune checkpoint blockade (ICB) therapy, represented by Programmed death receptor 1 (PD-1), T-lymphocyte-associated protein 4 (CTLA-4), and others, has been widely applied in CRC and has achieved encouraging results in some patients and has become a hot topic in both clinical and basic research. Objective This study undertakes a comprehensive bibliometric analysis of ICB research in CRC, aiming to evaluate the current status, identify future trends, and provide scientific insights for researchers and decision-makers. Methods Utilizing the Web of Science Core Collection (WoSCC), articles focusing on ICB in CRC from 2000 to 2022 were retrieved. Knowledge mapping and bibliometric analysis were conducted using tools such as CiteSpace, VOSviewer, SCImago Graphicay, and the R package bibliometrix. Results 6,718 publications were analyzed from 24,846 institutions across 639 regions. Temporally, ICB research in CRC is rapidly advancing, led by the USA and China with extensive global collaborations. Sun Yat-sen University from China stands out as the institution with the highest number of publications. Professor Thierry Andre from Sorbonne University in France is identified as a prolific author in this field, engaging in extensive collaboration for clinical trials on a global scale. Publications related to this research topic were published in 1,142 academic journals, demonstrating a positive co-citation relationship. Key clustering and burst terms analysis indicate that current research on ICB in CRC has shifted from basic experiments to clinical trials and from universal healthcare to precision medicine. Conclusion ICB therapies have shown substantial progress in CRC, highlighting their therapeutic potential. Research trends emphasize deeper drug mechanisms, treatment efficacy prediction, managing immune-related adverse events, and exploring novel drug delivery methods. Collaboration across borders remains crucial for further advancements.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases The Second Xiangya Hospital, Central South University Changsha China, Changsha, Hunan, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province, Changsha, Hunan, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases The Second Xiangya Hospital, Central South University Changsha China, Changsha, Hunan, China
| |
Collapse
|
204
|
Dong S, Wu S, Li L, Hao F, Wu J, Liao Z, Wang J, Zhong R, Wei H, Fang X. Alleviation of lipid metabolic dysfunction through regulation of intestinal bacteriophages and bacteria by green tea polyphenols in Ob/Ob mice. Food Chem 2024; 456:139988. [PMID: 38852447 DOI: 10.1016/j.foodchem.2024.139988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Green tea polyphenols (GTP) have been shown to ameliorate lipid metabolic disorders by regulating intestinal bacteria. Given the significant role of intestinal bacteriophages in shaping the gut microbiota, this study investigates GTP's influence on gut bacteriophage-bacteria interactions and lipid metabolism using metagenomics and metabonomics. The research results indicated that GTP significantly reduced body weight, serum triglycerides, leptin, insulin resistance, interleukin-6, and TNF-α levels while increasing adiponectin in ob/ob mice fed high-fat diet, aiding intestinal repair. GTP improved gut health by decreasing Enterobacter, Siphoviridae and Enterobacteria_phage_sfv, increasing Bifidobacterium and intestinal metabolites SCFA and hippuric acid. Correlation analysis showed negative correlations between Enterobacter sp. 50,588,862 and Enterobacteria_phages, Shigella_phages with 4-hydroxyphenylpyruvate and hippuric acid. Bifidobacterium choerinum and Bifidobacterium sp. AGR2158 were positively correlated with fatty acids and bile acids. In conclusion, GTP reduced fat accumulation and inflammation, enhanced gut barrier function in obese mice, closely associated with changes in the gut bacteriophage community.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Sitong Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Jinsong Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Hong Wei
- Yu- Yue Pathology Scientific Research Center, Chongqing 401329, P. R. China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
205
|
Caron B, Honap S, Peyrin-Biroulet L. Epidemiology of Inflammatory Bowel Disease across the Ages in the Era of Advanced Therapies. J Crohns Colitis 2024; 18:ii3-ii15. [PMID: 39475082 PMCID: PMC11522978 DOI: 10.1093/ecco-jcc/jjae082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND AND AIMS The incidence of inflammatory bowel diseases [IBD] has risen over the past decade to become a global issue. The objectives of this review were to describe the incidence and/or prevalence of IBD in the era of advanced therapies, and to describe the association between environmental risk factors and both pathogenesis and disease course across the ages. METHODS We performed a search of English language publications listed in PubMed regarding the epidemiology of IBD and key environmental factors implicated in IBD from January 2000 to December 2023. RESULTS Annual incidence rates varied by geographical region with IBD estimates ranging from 10.5 to 46.14 per 100 000 in Europe, 1.37 to 1.5 per 100 000 in Asia and the Middle East, 23.67 to 39.8 per 100 000 in Oceania, 0.21 to 3.67 per 100 000 in South America, and 7.3 to 30.2 per 100 000 in North America. The burden of IBD among children and adolescents, and older people is rising globally. Key environmental factors implicated in IBD pathogenesis include exposure to tobacco smoking, antibiotics, non-steroidal anti-inflammatory drugs, oral contraceptives, infections, and ultra-high processed foods. Breastfeeding and a high-quality diet rich in fruit, vegetables, fish, and other fibre sources are important protective factors. Smoking has consistently been shown to negatively impact disease outcomes for Crohn's disease. CONCLUSION The epidemiology of IBD has undergone considerable change in recent decades, with an increase in the burden of disease worldwide. Optimally studying and targeting environmental triggers in IBD may offer future opportunities for disease modification.
Collapse
Affiliation(s)
- Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- FHU-CURE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
| | - Sailish Honap
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- FHU-CURE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
206
|
Xu Z, Yeoh YK, Tun HM, Fei N, Zhang J, Morrison M, Kamm MA, Yu J, Chan FKL, Ng SC. Variation in the metagenomic analysis of fecal microbiome composition calls for a standardized operating approach. Microbiol Spectr 2024; 12:e0151624. [PMID: 39475247 PMCID: PMC11619352 DOI: 10.1128/spectrum.01516-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 12/08/2024] Open
Abstract
The reproducibility in microbiome studies is limited due to the lack of one gold-standard operating procedure. The aim of this study was to examine the impact of protocol variations on microbiome composition using metagenomic data sets from a single center. We assessed the variation in a data set consisted of 2,722 subjects, including 9 subcohorts harboring healthy subjects and patients with various disorders, such as inflammatory bowel disease, colorectal cancer, and type 2 diabetes. Two different DNA extraction kits, with or without lyticase, and two sample storage methods were compared. Our results indicated that DNA extraction had the largest impact on gut microbiota diversity among all host factors and sample operating procedures. Healthy subjects matched by age, body mass index, and sample operating methods exhibited reduced, yet significant differences (PERMANOVA, P < 0.05) in gut microbiota composition across studies. The variations contributed by DNA extraction were primarily driven by different recovery efficiency of gram-positive bacteria, e.g., phyla Firmicutes and Actinobacteria. This was further confirmed by a parallel comparison of fecal samples from five healthy subjects and a standard mock community. In addition, the DNA extraction method influenced DNA biomass, quality, and the detection of specific lineage-associated diseases. Sample operating approach and batch effects should be considered for cohorts with large sample size or longitudinal cohorts to ensure that source data were appropriately generated and analyzed. Comparison between samples processed with inconsistent methods should be dealt with caution. This study will promote the establishment of a sample operating standard to enhance our understanding of microbiome and translating in clinical practice.IMPORTANCEThe reproducibility of human gut microbiome studies has been suboptimal across cohorts and study design choices. One possible reason for the disagreement is the introduction of systemic biases due to differences in methodologies. In our study, we utilized microbial metagenomic data sets from 2,722 fecal samples generated from a single research center to examine the extent to which sample storage and DNA extraction influence the quantification of microbial composition and compared this variable with other sources of technical and biological variation. Our research highlights the impact of DNA extraction methods when analyzing microbiome data and suggests that the microbiome profile may be influenced by differences in the extraction efficiency of bacterial species. With metagenomics sequencing being increasingly used in clinical biology, our findings provide insight into the challenges using metagenomics sequencing in clinical diagnostics, where the detection of certain species and its abundance relative to a "healthy reference" is key.
Collapse
Affiliation(s)
- Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, AIMS@JCU, Townsville, Queensland, Australia
| | - Hein M. Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Na Fei
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jingwan Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mark Morrison
- The University of Queensland, Diamantina Institute, Faculty of Medicine, Brisbane, Australia
| | - Michael A. Kamm
- Department of Gastroenterology, St Vincent’s Hospital, Melbourne, Australia
| | - Jun Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis Ka Leung Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C. Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
207
|
Fabbrini M, D’Amico F, van der Gun BTF, Barone M, Conti G, Roggiani S, Wold KI, Vincenti-Gonzalez MF, de Boer GC, Veloo ACM, van der Meer M, Righi E, Gentilotti E, Górska A, Mazzaferri F, Lambertenghi L, Mirandola M, Mongardi M, Tacconelli E, Turroni S, Brigidi P, Tami A. The gut microbiota as an early predictor of COVID-19 severity. mSphere 2024; 9:e0018124. [PMID: 39297639 PMCID: PMC11540175 DOI: 10.1128/msphere.00181-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/04/2024] [Indexed: 10/30/2024] Open
Abstract
Several studies reported alterations of the human gut microbiota (GM) during COVID-19. To evaluate the potential role of the GM as an early predictor of COVID-19 at disease onset, we analyzed gut microbial samples of 315 COVID-19 patients that differed in disease severity. We observed significant variations in microbial diversity and composition associated with increasing disease severity, as the reduction of short-chain fatty acid producers such as Faecalibacterium and Ruminococcus, and the growth of pathobionts as Anaerococcus and Campylobacter. Notably, we developed a multi-class machine-learning classifier, specifically a convolutional neural network, which achieved an 81.5% accuracy rate in predicting COVID-19 severity based on GM composition at disease onset. This achievement highlights its potential as a valuable early biomarker during the first week of infection. These findings offer promising insights into the intricate relationship between GM and COVID-19, providing a potential tool for optimizing patient triage and streamlining healthcare during the pandemic.IMPORTANCEEfficient patient triage for COVID-19 is vital to manage healthcare resources effectively. This study underscores the potential of gut microbiota (GM) composition as an early biomarker for COVID-19 severity. By analyzing GM samples from 315 patients, significant correlations between microbial diversity and disease severity were observed. Notably, a convolutional neural network classifier was developed, achieving an 81.5% accuracy in predicting disease severity based on GM composition at disease onset. These findings suggest that GM profiling could enhance early triage processes, offering a novel approach to optimizing patient management during the pandemic.
Collapse
Affiliation(s)
- Marco Fabbrini
- Unit of Microbiome
Science and Biotechnology, Department of Pharmacy and Biotechnology,
University of Bologna,
Bologna, Italy
- Human Microbiomics
Unit, Department of Medical and Surgical Sciences, University of
Bologna, Bologna,
Italy
| | - Federica D’Amico
- Human Microbiomics
Unit, Department of Medical and Surgical Sciences, University of
Bologna, Bologna,
Italy
| | - Bernardina T. F. van der Gun
- Department of Medical
Microbiology and Infection Prevention, University of Groningen,
University Medical Center Groningen,
Groningen, the Netherlands
| | - Monica Barone
- Human Microbiomics
Unit, Department of Medical and Surgical Sciences, University of
Bologna, Bologna,
Italy
| | - Gabriele Conti
- Unit of Microbiome
Science and Biotechnology, Department of Pharmacy and Biotechnology,
University of Bologna,
Bologna, Italy
- Human Microbiomics
Unit, Department of Medical and Surgical Sciences, University of
Bologna, Bologna,
Italy
| | - Sara Roggiani
- Unit of Microbiome
Science and Biotechnology, Department of Pharmacy and Biotechnology,
University of Bologna,
Bologna, Italy
- Human Microbiomics
Unit, Department of Medical and Surgical Sciences, University of
Bologna, Bologna,
Italy
| | - Karin I. Wold
- Department of Medical
Microbiology and Infection Prevention, University of Groningen,
University Medical Center Groningen,
Groningen, the Netherlands
| | - María F. Vincenti-Gonzalez
- Department of Medical
Microbiology and Infection Prevention, University of Groningen,
University Medical Center Groningen,
Groningen, the Netherlands
- Spatial Epidemiology
Lab (SpELL), Université Libre de Bruxelles
(ULB), Brussels,
Belgium
| | - Gerolf C. de Boer
- Department of Medical
Microbiology and Infection Prevention, University of Groningen,
University Medical Center Groningen,
Groningen, the Netherlands
| | - Alida C. M. Veloo
- Department of Medical
Microbiology and Infection Prevention, University of Groningen,
University Medical Center Groningen,
Groningen, the Netherlands
| | - Margriet van der Meer
- Department of Medical
Microbiology and Infection Prevention, University of Groningen,
University Medical Center Groningen,
Groningen, the Netherlands
| | - Elda Righi
- Department of
Diagnostics and Public Health, Infectious Diseases Department,
University of Verona,
Verona, Italy
| | - Elisa Gentilotti
- Department of
Diagnostics and Public Health, Infectious Diseases Department,
University of Verona,
Verona, Italy
| | - Anna Górska
- Department of
Diagnostics and Public Health, Infectious Diseases Department,
University of Verona,
Verona, Italy
| | - Fulvia Mazzaferri
- Department of
Diagnostics and Public Health, Infectious Diseases Department,
University of Verona,
Verona, Italy
| | - Lorenza Lambertenghi
- Department of
Diagnostics and Public Health, Infectious Diseases Department,
University of Verona,
Verona, Italy
| | - Massimo Mirandola
- Department of
Diagnostics and Public Health, Infectious Diseases Department,
University of Verona,
Verona, Italy
| | - Maria Mongardi
- Department of
Diagnostics and Public Health, Infectious Diseases Department,
University of Verona,
Verona, Italy
| | - Evelina Tacconelli
- Department of
Diagnostics and Public Health, Infectious Diseases Department,
University of Verona,
Verona, Italy
| | - Silvia Turroni
- Unit of Microbiome
Science and Biotechnology, Department of Pharmacy and Biotechnology,
University of Bologna,
Bologna, Italy
| | - Patrizia Brigidi
- Human Microbiomics
Unit, Department of Medical and Surgical Sciences, University of
Bologna, Bologna,
Italy
| | - Adriana Tami
- Department of Medical
Microbiology and Infection Prevention, University of Groningen,
University Medical Center Groningen,
Groningen, the Netherlands
| |
Collapse
|
208
|
Zhang G, Cheng C, Wang X, Wang S. N6-Methyladenosine methylation modification in breast cancer: current insights. J Transl Med 2024; 22:971. [PMID: 39468547 PMCID: PMC11514918 DOI: 10.1186/s12967-024-05771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer is the most common cancer type among women. Despite advanced treatment strategies, some patients still face challenges in disease control, prompting the exploration of new therapeutic approaches. N6-Methyladenosine (m6A) methylation modification regulates RNA and plays a crucial role in various tumor biological processes, closely linked to breast cancer occurrence, development, prognosis, and treatment. M6A regulators impact breast cancer progression, development, and drug resistance by modulating RNA metabolism and tumor-related pathways. Researchers have begun to understand the regulatory mechanisms of m6A methylation in breast cancer. This paper discusses the roles of m6A regulators in breast cancer progression, prognosis, and treatment, offering new perspectives for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Guangwen Zhang
- First Clinical Medical College of Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| | - Chen Cheng
- Department of General Surgery, Jincheng General Hospital, Shanxi Medical University, Financial Street, Jincheng, 048006, Shanxi, China
| | - Xinle Wang
- First Clinical Medical College of Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Shiming Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
209
|
Wright EK, Kamm MA. Letter Response to: Hernandez-Rocha C et al, Clin Gastroenterol Hepatol 2024. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00967-4. [PMID: 39454981 DOI: 10.1016/j.cgh.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024]
Affiliation(s)
- Emily K Wright
- Department of Gastroenterology, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
210
|
Peng YL, Wang SH, Zhang YL, Chen MY, He K, Li Q, Huang WH, Zhang W. Effects of bile acids on the growth, composition and metabolism of gut bacteria. NPJ Biofilms Microbiomes 2024; 10:112. [PMID: 39438471 PMCID: PMC11496524 DOI: 10.1038/s41522-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Bile acids (BAs) exert a profound influence on the body's pathophysiology by intricately shaping the composition of gut bacteria. However, the complex interplay between BAs and gut microbiota has impeded a systematic exploration of their impact on intestinal bacteria. Initially, we investigated the effects of 21 BAs on the growth of 65 gut bacterial strains in vitro. Subsequently, we examined the impact of BAs on the overall composition of intestinal bacteria, both in vivo and in vitro. The results unveiled distinct effects of various BAs on different intestinal strains and their diverse impacts on the composition of gut bacteria. Mechanistically, the inhibition of intestinal strains by BAs occurs through the accumulation of these acids within the strains. The intracellular accumulation of deoxycholic acid (DCA) significantly influenced the growth of intestinal bacteria by impacting ribosome transcription and amino-acid metabolism. The metabolomic analysis underscores the pronounced impact of DCA on amino-acid profiles in both in vivo and in vitro settings. This study not only elucidates the effects of BAs on a diverse range of bacterial strains and their role in shaping the gut microbiota but also reveals underlying mechanisms essential for understanding and maintaining a healthy gut microbiota.
Collapse
Affiliation(s)
- Yi-Lei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Si-Han Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yu-Long Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Kang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
211
|
Singh S, Gupta S, Abhishek R, Sachan M. Regulation of m 6A (N 6-Methyladenosine) methylation modifiers in solid cancers. Funct Integr Genomics 2024; 24:193. [PMID: 39438339 DOI: 10.1007/s10142-024-01467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Solid cancers constitute a tremendous burden on global healthcare, requiring a deeper understanding of the molecular mechanisms underlying cancer development and progression. Epigenetic changes, notably N6-methyladenosine (m6A) RNA methylation, have emerged as important contributors to the biology of solid tumors in recent years. This epigenetic mark dynamically affects gene expression at the post-transcriptional level and modulates a variety of cellular processes, making it a focus of research in the context of solid tumors. m6A modification patterns are dysregulated in a variety of solid cancers, including ovarian, breast, lung, colorectal, pancreatic, and others. This dysregulated m6A landscape has been shown to induce significant changes in the expression of oncogenes, tumor suppressors, and genes involved in cancer stem cells, metastasis, and treatment resistance. In solid tumors, the interaction of m6A "writers" (e.g., METTL3, METTL14, and others), "erasers" (e.g., ALKBH5, FTO), and "readers" (e.g., members of YTHDF proteins and others) delicately changes the m6A methylome. Targeting m6A regulators as a potential therapeutic method to control gene expression and prevent tumor development seems a novel strategy. To enhance treatment results, advances in this area of research have led to the development of targeted treatments aiming at restoring or altering m6A alteration patterns in solid tumors.
Collapse
Affiliation(s)
- Sakshi Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India
| | - Sudha Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India
| | - Rajul Abhishek
- Deparment of Surgical Oncology, Motilal Nehru Medical College, Uttar Pradesh, Prayagraj, 211002, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India.
| |
Collapse
|
212
|
Luo J, Ding L, Pan S, Luo J, Zhao H, Yin J, Su R, Zhang J, Liu L. SPAG6 overexpression decreases the pro-apoptotic effect of daunorubicin in acute myeloid leukemia cells through the ROS/JNK MAPK axis in a GSTP1-dependent manner. Front Pharmacol 2024; 15:1390456. [PMID: 39508041 PMCID: PMC11537985 DOI: 10.3389/fphar.2024.1390456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction As a malignant hematological disease, the incidence of acute myeloid leukemia (AML) has exhibited an upward trend in recent years. Nevertheless, certain limitations persist in the treatment of AML. Sperm-associated antigen 6 (SPAG6) has been implicated in the onset and progression of various human cancers, with its expression levels significantly elevated in AML. Consequently, we undertook a series of experiments to investigate the role and underlying mechanisms of SPAG6 in AML cell lines. Methods In the in vitro experiments of this study, DEPs and GO and KEGG enrichment analysis subsequent to SPAG6 down-regulation were detected by TMT. CCK8 was employed to determine cell viability. The levels of apoptosis and ROS were measured by flow cytometry. In the in vivo experiments, a xenografted tumor model was constructed, and the expression of SPAG6 and GSTP1 in tumor tissues was detected by IHC. Results Ultimately, our findings indicated that over-expression of SPAG6 promoted cell growth and decreased reactive oxygen species (ROS) and malondialdehyde levels. Furthermore, SPAG6 knockdown was found to diminish mitochondrial membrane potential and facilitate cell apoptosis. In vivo, SPAG6 could also promote tumor growth, suggesting that SPAG6 may serve as a pro-tumor factor. In addition, daunorubicin (DNR) may cause oxidative stress and initiate apoptosis, resulting in oxidative damage to AML cells. However, the overexpression of SPAG6 may attenuate the efficacy of DNR. This was due to SPAG6 promoted GSTP1 expression, thereby reducing ROS levels. Simultaneously, the elevation of GSTP1 and JNK complex may reduce the expression of p-JNK and inhibit the activation of JNK pathway, which might inhibit cell apoptosis. Discussion In conclusion, our experiments suggested that upregulated SPAG6 might mitigate the pro-apoptotic effects of DNR through ROS/JNK MAPK axis in a GSTP1-dependent manner.
Collapse
Affiliation(s)
- Jie Luo
- Department of Hematology of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ding
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shirui Pan
- Department of Hematology of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Luo
- Department of Hematology of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiqiu Zhao
- Department of Hematology of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxiu Yin
- Department of Hematology of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Su
- Department of Hematology of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiamin Zhang
- Department of Hematology of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Liu
- Department of Hematology of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
213
|
Li L, Sun Y, Li L, Zheng W, Zha W, Zhao T, Zhu G, Li H. The deficiency of ALKBH5 contributes to hepatic lipid deposition by impairing VPS11-dependent autophagic flux. FEBS J 2024. [PMID: 39434426 DOI: 10.1111/febs.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Hepatic lipid deposition is a key factor in the development of NAFLD. N6-methyladenosine (m6A) modification, the most prevalent mRNA modification in eukaryotic cells, plays an important role in regulating hepatic lipid metabolism. However, its potential role in hepatic lipid deposition remains poorly understood. Histological and immunohistochemistry studies were used to investigate lipid deposition in free fatty acids (FFAs)-incubated LO2 cells, high-fat diet-fed mice models and clinical samples. Stable overexpression and knockdown of AlkB homolog 5 (ALKBH5) was manipulated to investigate the effects of ALKBH5 on m6A methylation and lipid metabolism in hepatocytes. RNA-sequencing transcriptome analysis and methylated RNA immunoprecipitation-quantitative-PCR analysis were used to reveal the potential downstream molecular targets of ALKBH5. ALKBH5 was down-regulated in fatty liver compared to normal liver in both humans and mice. Overexpression of ALKBH5 significantly improved FFA-induced lipid accumulation and promoted autophagosome-lysosome fusion in hepatocytes. Meanwhile, knockdown of ALKBH5 significantly increased the expression of microtubule-associated protein 1A/1B-light chain 3B and Sequestosome 1, leading to impaired autophagic flux and further lipid deposition in hepatocytes under FFA incubation. Overexpression of vacuolar protein sorting 11 (VPS11) reversed FFA-induced lipid accumulation in ALKBH5-silenced hepatocytes. Mechanistically, ALKBH5 alleviated hepatic lipid deposition and impaired autophagic flux by removing the m6A modification on VPS11 mRNA to promote its translation. Collectively, our findings revealed an epigenetic mechanism by which ALKBH5 alleviates hepatic lipid deposition by restoring VPS11-dependent autophagic flux, providing a potential target to counteract NAFLD.
Collapse
Affiliation(s)
- Linghuan Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, China
| | - Yuanhai Sun
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Lingqin Li
- Taizhou Municipal Hospital, Taizhou University, Taizhou, China
| | - Wanfang Zheng
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Weiwei Zha
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Tengjiao Zhao
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Guangyao Zhu
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Hanbing Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
214
|
Zhang P, Xiong C, Yang D, Li K, Wang Z, Ma F, Liao X, Xie M, Zeng X. Prognostic model based on centrosome-related genes constructed in head and neck squamous cell carcinoma. J Cancer 2024; 15:6531-6544. [PMID: 39668833 PMCID: PMC11632974 DOI: 10.7150/jca.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/13/2024] [Indexed: 12/14/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor in the epithelium of the head and neck. The role of the centrosome in malignant tumors is crucial. However, research on the centrosome in HNSCC remains largely unexplored. In this study, bioinformatics tools were utilized to analyze the expression and prognostic significance of centrosome-related genes (CRGs). CRGs exhibited a relatively high mutation frequency in HNSCC. Consensus unsupervised clustering analysis based on the expression profiles of CRGs revealed significant associations with clinical features, prognosis and immune microenvironment in HNSCC. Prognostic features were constructed using univariate and LASSO Cox regression, resulting in a centrosome-related model with eleven features. Patients were classified into high-risk and low-risk groups based on median risk scores. External validation using the GSE41613 dataset from the GEO database confirmed the reliability of the centrosome-related model. The model was associated with the prognosis of HNSCC patients, and centrosome-related features could impact tumor prognosis by influencing the tumor immune microenvironment. Finally, qPCR showed that CRGs were highly expressed in tumor tissues. This study developed a novel centrosome-related prognostic model, applicable for predicting the prognosis and immune landscape of HNSCC patients, offering potential targets for future HNSCC treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Chunrong Xiong
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China
| | - Dunhui Yang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University, Zunyi, 563000, China
| | - Kang Li
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University, Zunyi, 563000, China
| | - Zhen Wang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Fang Ma
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xianqin Liao
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Miao Xie
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
215
|
Zhang J, Gan H, Duan X, Li G. Targeting the Intestinal Microbiota: A Novel Direction in the Treatment of Inflammatory Bowel Disease. Biomedicines 2024; 12:2340. [PMID: 39457652 PMCID: PMC11504502 DOI: 10.3390/biomedicines12102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past decade, there has been a rapid increase in the incidence of inflammatory bowel disease. It has been suggested that multifactorial interactions of environmental factors, genetic factors, immune response and intestinal microbiota are involved in the pathogenesis of inflammatory bowel disease. It is widely recognized that the intestinal microbiota are essential for human metabolism, the immune system and pathogen resistance, and are integral to human health. Therefore, the dysbiosis of the microbiota is a critical step leading to intestinal mucosal damage and a key factor in the pathogenesis of inflammatory bowel disease. Regulating the microbiota through interventions such as enteral nutrition, fecal microbiota transplantation, and probiotic supplementation has the potential to prevent or even reverse intestinal dysbiosis, opening up new perspectives for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | - Xiaoyan Duan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Yangpu District, Shanghai 200092, China; (J.Z.); (H.G.)
| | - Guangming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Yangpu District, Shanghai 200092, China; (J.Z.); (H.G.)
| |
Collapse
|
216
|
Muñiz Pedrogo DA, Sears CL, Melia JMP. Colorectal Cancer in Inflammatory Bowel Disease: A Review of the Role of Gut Microbiota and Bacterial Biofilms in Disease Pathogenesis. J Crohns Colitis 2024; 18:1713-1725. [PMID: 38703073 DOI: 10.1093/ecco-jcc/jjae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
The risk of colorectal cancer [CRC] is increased in patients with inflammatory bowel disease [IBD], particularly in extensive ulcerative colitis [UC] and Crohn's colitis. Gut microbiota have been implicated in the pathogenesis of CRC via multiple mechanisms, including the release of reactive oxygen species and genotoxins, and induction of inflammation, as well as activation of the immune response. Gut microbiota can enhance their carcinogenic and proinflammatory properties by organising into biofilms, potentially making them more resistant to the host's immune system and to antibiotics. Colonic biofilms have the capacity to invade colonic tissue and accelerate tumorigenesis in tumour-prone models of mice. In the context of IBD, the prevalence of biofilms has been estimated to be up to 95%. Although the relationship between chronic inflammation and molecular mediators that contribute to IBD-associated CRC is well established, the role of gut microbiota and biofilms in this sequence is not fully understood. Because CRC can still arise in the absence of histological inflammation, there is a growing interest in identifying chemopreventive agents against IBD-associated CRC. Commonly used in the treatment of UC, 5-aminosalicylates have antimicrobial and anticarcinogenic properties that might have a role in the chemoprevention of CRC via the inhibition or modulation of carcinogenic gut microbiota and potentially of biofilm formation. Whether biologics and other IBD-targeted therapies can decrease the progression towards dysplasia and CRC, via mechanisms independent of inflammation, is still unknown. Further research is warranted to identify potential new microbial targets in therapy for chemoprevention of dysplasia and CRC in IBD.
Collapse
Affiliation(s)
- David A Muñiz Pedrogo
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joanna M P Melia
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
217
|
Jiang TQ, Wang H, Cheng WX, Xie C. Modulation of host N6-methyladenosine modification by gut microbiota in colorectal cancer. World J Gastroenterol 2024; 30:4175-4193. [PMID: 39493326 PMCID: PMC11525875 DOI: 10.3748/wjg.v30.i38.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
As a research hotspot in the field of molecular biology, N6-methyladenosine (m6A) modification has made progress in the treatment of colorectal cancer (CRC), leukemia and other cancers. Numerous studies have demonstrated that the tumour microenvironment (TME) regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells, thus affecting the progression and prognosis of CRC. However, with the diversity in the composition of TME factors, this action is reciprocal and complex. Encouragingly, some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation. This review summarizes the data, supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC. We also review the role of m6A modification in the diagnosis, treatment, and prognostic assessment of CRC and discuss the current status, limitations, and potential clinical value of m6A modification in this field. We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
Collapse
Affiliation(s)
- Tian-Qi Jiang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hao Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wang-XinJun Cheng
- Queen Mary College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
218
|
Kim HS, Oh SJ, Kim BK, Kim JE, Kim BH, Park YK, Yang BG, Lee JY, Bae JW, Lee CK. Dysbiotic signatures and diagnostic potential of gut microbial markers for inflammatory bowel disease in Korean population. Sci Rep 2024; 14:23701. [PMID: 39390011 PMCID: PMC11467411 DOI: 10.1038/s41598-024-74002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Fecal samples were collected from 640 individuals in Korea, including 523 patients with IBD (223 with Crohn's disease [CD] and 300 with ulcerative colitis [UC]) and 117 healthy controls. The samples were subjected to cross-sectional gut metagenomic analysis using 16 S rRNA sequencing and bioinformatics analysis. Patients with IBD, particularly those with CD, exhibited significantly lower alpha diversities than the healthy subjects. Differential abundance analysis revealed dysbiotic signatures, characterized by an expansion of the genus Escherichia-Shigella in patients with CD. Functional annotations showed that functional pathways related to bacterial pathogenesis and production of hydrogen sulfide (H2S) were strongly upregulated in patients with CD. A dysbiosis score, calculated based on functional characteristics, highly correlated with disease severity. Markers distinguishing between healthy subjects and patients with IBD showed accurate classification based on a small number of microbial taxa, which may be used to diagnose ambiguous cases. These findings confirm the taxonomic and functional dysbiosis of the gut microbiota in patients with IBD, especially those with CD. Taxa indicative of dysbiosis may have significant implications for future clinical research on the management and diagnosis of IBD.
Collapse
Affiliation(s)
- Hyun Sik Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Shin Ju Oh
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Byung Kwon Kim
- Research Institute, GI Biome Inc., Seongnam, Republic of Korea
| | - Ji Eun Kim
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Hospital, Seoul, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Kyu Park
- Research Institute, GI Biome Inc., Seongnam, Republic of Korea
| | - Bo-Gie Yang
- Research Institute, GI Biome Inc., Seongnam, Republic of Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| | - Chang Kyun Lee
- Department of Gastroenterology, Center for Crohn's and Colitis, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
219
|
Gong Q, Hu L, Liu G, Yin X, Zhao X, Li Q, Li Y, Sun Y, Zhou Y, Guo C, Du Z. WTAP-mediated N6-methyladenosine mRNA methylation regulates laser-induced macular neovascularization. Mol Vis 2024; 30:336-347. [PMID: 40330498 PMCID: PMC12055036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/05/2024] [Indexed: 05/08/2025] Open
Abstract
Purpose Neovascular age-related macular degeneration (nAMD) is now a major cause of central vision loss in older adults worldwide. The primary characteristic of nAMD is the formation of macular neovascularization (MNV), which is a pathologic form of angiogenesis. Epigenetics plays a role in multiple pathological physiologic processes. N6-methyladenosine (m6A) modification is the most common, abundant, and reversible modification in eukaryotic mRNAs, and it plays a role in various pathological angiogenesis processes. This study intends to reveal the expression and functions of m6A during the macular neovascularization (MNV) process. Methods A laser-induced MNV mouse model was used in this study. m6A quantitative analysis was performed to detect the expression of m6A. Subsequently, the expression of various m6A writers and erasers was detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Immunohistochemistry was used to detect Wilms' tumor 1-associating protein (WTAP) expression in the MNV lesions. Intravitreal injection of WTAP siRNA in MNV mice to silence the WTAP gene. Hematoxylin and eosin (H&E) were used to determine the thickness and length of the MNV. Fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA) were examined to measure the leakage area of the MNV. Proliferating cell nuclear antigen (PCNA) expression was detected with a western blot. The mRNA and protein levels of β-catenin were tested with qRT-PCR and western blot. Results We found increased m6A modification levels after laser induction compared with the normal control group. Subsequently, the expression of various m6A writers and erasers was detected. The results showed that WTAP increased in the MNV model in mice. After the injection of WTAP siRNA into the vitreous body, the expression of WTAP significantly decreased, subsequently decreasing the m6A modification levels. The width, breadth, and leakage area of MNV damage markedly decreased, and endothelial cell proliferation was inhibited. After laser-induced MNV, the expression of β-catenin increased, and that of β-catenin significantly decreased after WTAP knockout. Conclusions In conclusion, this study suggests that WTAP-mediated m6A methylation can regulate pathological angiogenesis during MNV and that WTAP may participate in the formation of MNV through the wingless-related integration site (Wnt) pathway. WTAP may be a potential target for MNV treatment.
Collapse
Affiliation(s)
- Qingyun Gong
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guibo Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoni Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoran Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qinghua Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Li
- Department of Ophthalmology, Linyi People's Hospital, Shandong, China
| | - Yibin Sun
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuzheng Zhou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunyan Guo
- Department of Ophthalmology, Gansu Province, China
| | - Zhaodong Du
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
220
|
Huang Y, Wang S, Hu D, Zhang L, Shi S. ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the m 6A modification of VDAC3. Sci Rep 2024; 14:23461. [PMID: 39379688 PMCID: PMC11461877 DOI: 10.1038/s41598-024-75033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Osteoporosis, a common bone disease in older individuals, involves the progression influenced by N6-methyladenosine (m6A) modification. This study aimed to elucidate the effects of VDAC3 m6A modification on human bone mesenchymal stromal cell (BMSC) senescence and osteogenic differentiation. BMSCs were treated with etoposide to induce senescence. Senescence was assessed by β-galactosidase staining and quantitative real-time PCR (qPCR), and osteogenic differentiation was evaluated using Western blot, alkaline phosphatase, and alizarin red S staining. VDAC3 and ALKBH5 expression were quantified by qPCR, and their interaction was assessed by RNA immunoprecipitation (RIP) and luciferase reporter assay. m6A methylation was analyzed using the Me-RIP assay. VDAC3 expression was significantly decreased in etoposide-treated BMSCs (1.00 ± 0.13 vs. 0.26 ± 0.06). VDAC3 overexpression reduced etoposide-induced senescence and promoted osteogenic differentiation. ALKBH5 overexpression inhibited VDAC3 m6A modification (1.00 ± 0.095 vs. 0.233 ± 0.177) and its stability. ALKBH5 knockdown decreased etoposide-induced senescence and promoted osteogenic differentiation, effects that were reversed by VDAC3 knockdown. YTHDF1 was identified as the m6A methylation reader, and its overexpression inhibited VDAC3 stability. We demonstrated that ALKBH5 inhibited osteogenic differentiation of etoposide-induced senescent cells through the inhibition of VDAC3 m6A modification, and YTHDF1 acted as the m6A methylation reader. These findings provide a novel theoretical basis for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Dong Hu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
221
|
Xu L, Zou J, Sun C, Chen G, Gao S. Worldwide research trends in Crohn's disease treatment over the past 2 decades: a bibliometric analysis. Front Pharmacol 2024; 15:1441785. [PMID: 39439890 PMCID: PMC11493645 DOI: 10.3389/fphar.2024.1441785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The treatment of Crohn's disease (CD) has received widespread attention in clinical practice, but there is currently a lack of quantitative evaluation of the literature published in this field. This study aimed to describe the development trends and research hotspots of CD treatment through bibliometric analysis. Methods Publications related to CD treatment published from 2004 to 2023 were searched in the WoSCC. Microsoft Office Excel 2021 was used for the analysis and visualization of the annual number of publications. CiteSpace was used to visualize the collaboration networks of authors, institutions, and countries, as well as to construct a reference timeline visualization map and identify keywords with the strongest citation bursts. Results The bibliometric analysis included 25,608 publications between 2004 and 2023. The most productive year was 2021. The United States of America (n = 7,891) and the University of California System (n = 939) are the country and institution with the most published papers, respectively. Among the 97,564 authors, Peyrin-Biroulet, Laurent (n = 424) published the most articles. The core journals were Inflammatory Bowel Diseases, Journal of Crohns and Colitis, Alimentary Pharmacology and Therapeutics, etc. The timeline view showed that "#5 JAK Inhibitor" was the most recent topic. The keywords that burst and persist from 2020 to 2023 include "ustekinumab" and "vedolizumab". Conclusion An increasing number of researchers are dedicating their efforts to exploring the treatment of CD, with the United States making the largest contribution to this field. Currently, the research hotspots predominantly involve drug therapy including ustekinumab, vedolizumab, and JAK inhibitors. Our study provides valuable information for scholars studying CD treatment.
Collapse
Affiliation(s)
- Likang Xu
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jinzhao Zou
- Department of Medical Imaging, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Chao Sun
- Digestive Department of Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Gong Chen
- Digestive Department of Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Sujun Gao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, China
- Digestive Department of Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
222
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
223
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
224
|
Liu GXH, Day AS. Plant-based Diets for Inflammatory Bowel Disease: What Is the Evidence? Inflamm Bowel Dis 2024; 30:1865-1876. [PMID: 37748206 DOI: 10.1093/ibd/izad213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Inflammatory bowel disease is a chronic incurable condition that carries a high morbidity burden for patients. Plant-based diets have emerged as a potentially safe and effective treatment strategy for this condition. However, no attempt has been made to summarize the literature in this field. In this review, we aim to define variants of plant-based diets that have been studied, evaluate their findings, and identify knowledge gaps that warrant further investigation. METHODS A literature search was conducted on MEDLINE and Embase. RESULTS Twenty-three studies with 2304 participants were included in this review. Eleven studies (48%) were case reports and 8 (35%) were single-arm trials. Semivegetarian diets were the most commonly studied plant-based diet (n = 14, 61%). Most studies reported that plant-based diets were safe and effective in managing inflammatory bowel disease. However, significant limitations restrict the quality and interpretability of these findings, including a paucity of controlled data, small sample sizes, and inconsistent reporting of dietary adherence. CONCLUSIONS Although initial findings appear promising, it remains unclear whether plant-based diets are an effective adjunct or sole therapy for managing inflammatory bowel disease. Future investigators should aim to conduct methodologically rigorous interventional trials with appropriate control data and consistent and meaningful outcome reporting.
Collapse
Affiliation(s)
- Gordon X H Liu
- School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew S Day
- Department of Paediatrics, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
225
|
Dicks LMT. Cardiovascular Disease May Be Triggered by Gut Microbiota, Microbial Metabolites, Gut Wall Reactions, and Inflammation. Int J Mol Sci 2024; 25:10634. [PMID: 39408963 PMCID: PMC11476619 DOI: 10.3390/ijms251910634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease (CVD) may be inherited, as recently shown with the identification of single nucleotide polymorphisms (SNPs or "snips") on a 250 kb DNA fragment that encodes 92 proteins associated with CVD. CVD is also triggered by microbial dysbiosis, microbial metabolites, metabolic disorders, and inflammatory intestinal epithelial cells (IECs). The epithelial cellular adhesion molecule (Ep-CAM) and trefoil factor 3 (TFF3) peptide keeps the gut wall intact and healthy. Variations in Ep-CAM levels are directly linked to changes in the gut microbiome. Leptin, plasminogen activator inhibitor 1 (PAI1), and alpha-1 acid glycoprotein 1 (AGP1) are associated with obesity and may be used as biomarkers. Although contactin 1 (CNTN1) is also associated with obesity and adiposity, it regulates the bacterial metabolism of tryptophan (Trp) and thus appetite. A decrease in CNTN1 may serve as an early warning of CVD. Short-chain fatty acids (SCFAs) produced by gut microbiota inhibit pro-inflammatory cytokines and damage vascular integrity. Trimethylamine N-oxide (TMAO), produced by gut microbiota, activates inflammatory Nod-like receptors (NLRs) such as Nod-like receptor protein 3 (NLRP3), which increase platelet formation. Mutations in the elastin gene (ELN) cause supra valvular aortic stenosis (SVAS), defined as the thickening of the arterial wall. Many of the genes expressed by human cells are regulated by gut microbiota. The identification of new molecular markers is crucial for the prevention of CVD and the development of new therapeutic strategies. This review summarizes the causes of CVD and identifies possible CVD markers.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
226
|
Sun W, Zhang Y, Guo R, Sha S, Chen C, Ullah H, Zhang Y, Ma J, You W, Meng J, Lv Q, Cheng L, Fan S, Li R, Mu X, Li S, Yan Q. A population-scale analysis of 36 gut microbiome studies reveals universal species signatures for common diseases. NPJ Biofilms Microbiomes 2024; 10:96. [PMID: 39349486 PMCID: PMC11442664 DOI: 10.1038/s41522-024-00567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
The gut microbiome has been implicated in various human diseases, though findings across studies have shown considerable variability. In this study, we reanalyzed 6314 publicly available fecal metagenomes from 36 case-control studies on different diseases to investigate microbial diversity and disease-shared signatures. Using a unified analysis pipeline, we observed reduced microbial diversity in many diseases, while some exhibited increased diversity. Significant alterations in microbial communities were detected across most diseases. A meta-analysis identified 277 disease-associated gut species, including numerous opportunistic pathogens enriched in patients and a depletion of beneficial microbes. A random forest classifier based on these signatures achieved high accuracy in distinguishing diseased individuals from controls (AUC = 0.776) and high-risk patients from controls (AUC = 0.825), and it also performed well in external cohorts. These results offer insights into the gut microbiome's role in common diseases in the Chinese population and will guide personalized disease management strategies.
Collapse
Affiliation(s)
- Wen Sun
- Centre for Translational Medicine, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Shanshan Sha
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Hayan Ullah
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wei You
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jinxin Meng
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Lin Cheng
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shao Fan
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Rui Li
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiaohong Mu
- Department Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China.
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qiulong Yan
- Department of Microbiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
227
|
Flory M, Bravo P, Alam A. Impact of gut microbiota and its metabolites on immunometabolism in colorectal cancer. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00050. [PMID: 39624362 PMCID: PMC11608621 DOI: 10.1097/in9.0000000000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) is highly prevalent, accounting for approximately one-tenth of cancer cases and deaths globally. It stands as the second most deadly and third most common cancer type. Although the gut microbiota has been implicated in CRC carcinogenesis for the last several decades, it remains one of the least understood risk factors for CRC development, as the gut microbiota is highly diverse and variable. Many studies have uncovered unique microbial signatures in CRC patients compared with healthy matched controls, with variations dependent on patient age, disease stage, and location. In addition, mechanistic studies revealed that tumor-associated bacteria produce diverse metabolites, proteins, and macromolecules during tumor development and progression in the colon, which impact both cancer cells and immune cells. Here, we summarize microbiota's role in tumor development and progression, then we discuss how the metabolic alterations in CRC tumor cells, immune cells, and the tumor microenvironment result in the reprogramming of activation, differentiation, functions, and phenotypes of immune cells within the tumor. Tumor-associated microbiota also undergoes metabolic adaptation to survive within the tumor environment, leading to immune evasion, accumulation of mutations, and impairment of immune cells. Finally, we conclude with a discussion on the interplay between gut microbiota, immunometabolism, and CRC, highlighting a complex interaction that influences cancer development, progression, and cancer therapy efficacy.
Collapse
Affiliation(s)
- Madison Flory
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Paloma Bravo
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Ashfaqul Alam
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
228
|
Zhao F, Wang J. Another piece of puzzle for the human microbiome: the gut virome under dietary modulation. J Genet Genomics 2024; 51:983-996. [PMID: 38710286 DOI: 10.1016/j.jgg.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community and preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Fengxiang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
229
|
Jin J, Yim HCH, Chang HME, Wang Y, Choy KHK, Chan SY, Alqawasmeh OAM, Liao J, Jiang XT, Chan DYL, Fok EKL. DEFB119 stratifies dysbiosis with distorted networks in the seminal microbiome associated with male infertility. PNAS NEXUS 2024; 3:pgae419. [PMID: 39359400 PMCID: PMC11443970 DOI: 10.1093/pnasnexus/pgae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Infertility is associated with the alteration of the seminal microbiome. However, the onset of dysbiosis remains controversial and the involvement of host factors remains elusive. This study investigates the alterations of the seminal microbiome in male infertility and examines the association and function of DEFB119, a reproductive-tract-specific host antimicrobial peptide, on the seminal microbiome and male fertility. While we observed comparable genera, diversity and evenness of bacterial communities, a marked decrease in the modularity of the metacommunities was observed in patients with abnormal spermiogram (n = 57) as compared to the control (n = 30). A marked elevation of DEFB119 was observed in a subpopulation of male infertile patients (n = 5). Elevated seminal DEFB119 was associated with a decrease in the observed genera, diversity and evenness of bacterial communities, and further distortion of the metacommunities. Mediation analysis suggests the involvement of elevated DEFB119 and dysbiosis of the seminal microbiome in mediating the abnormalities in the spermiogram. Functional experiments showed that recombinant DEFB119 significantly decrease the progressive motility of sperm in patients with abnormal spermiogram. Moreover, DEFB119 demonstrated species-specific antimicrobial activity against common seminal and nonseminal species. Our work identifies an important host factor that mediates the host-microbiome interaction and stratifies the seminal microbiome associated with male infertility. These results may lead to a new diagnostic method for male infertility and regimens for formulating the microbiome in the reproductive tract and other organ systems.
Collapse
Affiliation(s)
- Jing Jin
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Howard Chi Ho Yim
- Faculty of Medicine and Health, Microbiome Research Centre, St George and Sutherland Campus, School of Clinical Medicine, The University of New South Wales, Sydney 2217, Australia
| | - Hsiao Mei Ellie Chang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yiwei Wang
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kathleen Hoi Kei Choy
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Sze Yan Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Odai A M Alqawasmeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jinyue Liao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xiao-Tao Jiang
- Faculty of Medicine and Health, Microbiome Research Centre, St George and Sutherland Campus, School of Clinical Medicine, The University of New South Wales, Sydney 2217, Australia
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ellis Kin Lam Fok
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, PR China
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, PR China
| |
Collapse
|
230
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
231
|
Liu C, Gao F, Yang J, Liu C, Tian Z. Wilms' Tumor 1-Associating Protein Promotes Nonsmall-Cell Lung Cancer Through the Expression of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5. Am J Clin Oncol 2024; 47:465-474. [PMID: 38898559 DOI: 10.1097/coc.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This study aimed to analyze the functional roles and molecular mechanism of Wilms' tumor 1-associating protein (WTAP) in the tumorigenesis of nonsmall-cell lung cancer (NSCLC). METHODS Retrospective analysis was used. Tumor tissues and surrounding nontumor tissues of 150 patients with NSCLS who were surgically resected in the Fourth Hospital of Hebei Medical University from January 2016 to January 2018 were selected. The expression of WTAP in NSCLC tissues was detected by immunohistochemistry. Clinicopathologic parameters were then subjected to univariate and multivariate Cox regression analysis in purpose of uncovering the independent risk factors for overall survival time. MTS (3-[4,5-dimethylthiazol-zyl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazoliuzolium, inner salt) assay, colony formation assay, and transwell assays were performed to estimate cell proliferation, migration, and invasion. Meanwhile, the relationship between WTAP and the cell migration and invasion marker-related proteins were evaluated by Western blot analysis and RT-qPCR. WTAP expression was knocked-down in cell lines by shRNA, and RNA-Seq was performed to investigate the pathways regulated by WTAP. RESULTS In NSCLC patients, WTAP was highly expressed in tumor tissues and the higher expression was significantly associated with poor overall survival (OS) ( P <0.01). Compared with the control group in vitro, the overexpression of WTAP could significantly promote cell proliferation, migration, and invasion ( P <0.01), while knock-down WTAP significantly reduces the above effects ( P <0.01). In a mouse orthotopic implantation model, higher WTAP abundance could significantly promote tumor enlargement compared with the control group ( P <0.01). Compared with the control group, the knock-down of WTAP significantly inhibit the expression of carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in cell lines ( P <0.01). Besides, in NSCLC, knocked-down CEACAM5 significantly reduced the impact of WTAP on cell proliferation, migration, and invasion compared with the control group ( P <0.05). CONCLUSIONS This study suggests that high expression of WTAP was associated with poor clinical outcomes. CEACAM5 may play a synergistic role with WTAP to jointly promote NSCLC progression by enhancing cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Changjiang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Feng Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chengang Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
232
|
Wu YJ, Xiong JF, Zhan CN, Xu H. Gut microbiota alterations in colorectal adenoma-carcinoma sequence based on 16S rRNA gene sequencing: A systematic review and meta-analysis. Microb Pathog 2024; 195:106889. [PMID: 39197689 DOI: 10.1016/j.micpath.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Most sporadic colorectal cancers (CRC) develop through the adenoma-carcinoma sequence. While dysbiosis of the intestinal flora contributes to CRC's pathogenesis, precise microbial taxa closely associated with the colorectal adenoma-carcinoma sequence remain elusive. This meta-analysis aimed to summarize the features of intestinal flora in patients with AD and CRC. METHODS PubMed, Embase, Cochrane Library, and Web of Science were searched for case-control studies comparing the relative abundance of gut microbiota in the feces of patients with AD, CRC, and healthy controls (HC) from inception to January 2024. The weighted mean difference (WMD) with a 95 % confidence interval (CI) was used to display the results. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the entailed literature. Publication bias was evaluated with the Egger's and Begg's tests. RESULTS Eleven studies were included, involving 477 CRC patients, 628 AD patients, and 864 healthy controls. Compared with HC, the patients with AD had a significantly lower Chao 1 index (WMD = -30.17, 95 % CI [-41.10, -19.23], P < 0.001) and Shannon index (WMD = -0.11 95 % CI [-0.18, -0.04], P = 0.002). Compared with AD, the CRC patients had a significantly higher Chao1 index (WMD = 22.09, 95 % CI [7.59, 36.00], P = 0.003) and Shannon index (WMD = 0.08, 95 % CI [0.00, 0.15], P = 0.037). Enterobacteriaceae (WMD = 0.03 95 % CI [0.00,0.05], P = 0.047; WMD = 0.02 95 % CI [0.00,0.04], P = 0.027) significantly increased in the order of Control-AD-CRC, while that of Blautia (WMD = -0.00 95 % CI [-0.01, -0.00], P = 0.001; WMD = -0.00 95 % CI [-0.00, -0.00], P = 0.002) was reduced. Compared with HC, the relative abundance of Proteobacteria (WMD = 0.05 95 % CI [0.03,0.07], P < 0.001), Fusobacteria (WMD = 0.02 95 % CI [0.00,0.03], P = 0.042), Streptococcaceae (WMD = 0.03 95 % CI [0.01,0.05], P = 0.017), Prevotellaceae (WMD = 0.02 95 % CI [0.00,0.04], P = 0.040), and Escherichia-Shigella (WMD = 0.06 95 % CI [0.01, 0.11], P = 0.021) was enriched in the CRC group. The relative abundance of Alistipes (WMD = 0.00 95 % CI [0.00,0.01], P = 0.032) and Streptococcus (WMD = 0.00 95 % CI [0.00,0.00], P = 0.001) was increased in the AD vs HC. The relative abundance of Firmicutes (WMD = -0.07 95 % CI [-0.12, -0.03], P = 0.003), Bifidobacteria (WMD = -0.03 95 % CI [-0.05, -0.01], P = 0.016), and Klebsiella (WMD = -0.01 95 % CI [-0.01, -0.00], P = 0.001) was decreased in the CRC vs HC. Compared with AD, the relative abundance of Firmicutes (WMD = -0.04 95 % CI [-0.07, -0.02], P = 0.002), Peptostreptococcaceae (WMD = -0.03 95 % CI [-0.05, -0.00], P = 0.021), Lachnospiraceae (WMD = -0.04 95 % CI [-0.08,-0.00], P = 0.037), Ruminococcaceae (WMD = -0.06 95 % CI [-0.09,-0.03], P < 0.001), Faecalibacterium (WMD = -0.01 95 % CI [-0.02, -0.01], P = 0.001), and Lachnoclostridium (WMD = -0.02 95 % CI [-0.03, -0.00], P = 0.040) was decreased in the CRC group, while Proteobacteria (WMD = 0.04 95 % CI [0.02,0.05], P < 0.001) was increased. CONCLUSIONS The dysbiosis characterized by reduced levels of short-chain fatty acid (SCFA)-producing bacteria, decreased anti-inflammatory bacteria, increased pro-inflammatory bacteria, and an elevation of bacteria with cytotoxic effects damaging to DNA may represent the specific microbial signature of colorectal adenoma/carcinoma. Further research is required to elucidate the mechanisms by which gut dysbiosis leads to the progression from AD to CRC and to explore the potential of specific microbiota markers in clinical treatment and non-invasive screening.
Collapse
Affiliation(s)
- Yi-Jun Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Fang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Cheng-Nan Zhan
- Medical Service Community, Hangzhou Xiaoshan Hospital of TCM, Hangzhou, China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China.
| |
Collapse
|
233
|
Zhao F, Li M, Luo M, Zhang M, Yuan Y, Niu H, Yue T. The dose-dependent mechanism behind the protective effect of lentinan against acute alcoholic liver injury via proliferating intestinal probiotics. Food Funct 2024; 15:10067-10087. [PMID: 39291630 DOI: 10.1039/d4fo02256d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Acute alcoholic liver injury (AALI) is a widespread disease that can develop into hepatitis, liver fibrosis, and cirrhosis. In severe cases, it can be life-threatening, while drug treatment presents various side effects. This study characterized the structure of natural lentinan (LNT) from the Qinba Mountain area and investigated the protective mechanism of different LNT doses (100 mg kg-1, 200 mg kg-1, and 400 mg kg-1) on AALI. The results showed that LNT was a glucose-dominated pyran polysaccharide with a triple-helical structure and a molecular weight (Mw) of 7.56 × 106 Da. An AALI mouse model showed that all the LNT doses protected liver function, reduced hepatic steatosis, alleviated oxidative stress and inflammatory response, and stimulated probiotic proliferation. Low-dose LNT increased anti-oxidant-associated beneficial bacteria, medium-dose LNT improved liver swelling and promoted anti-oxidant-associated probiotics, and high-dose LNT increased the probiotics that helped protect liver function and anti-oxidant and anti-inflammatory properties. All the LNT doses inhibited pathogenic growth, including Oscillospiraceae, Weeksellaceae, Streptococcaceae, Akkermansiaceae, Morganellaceae, and Proteus. These results indicated that the protective effect of LNT against AALI was mediated by the proliferation of various intestinal probiotics and was related to the consumption doses. These findings offer new strategies for comprehensively utilizing Lentinula edodes from the Qinba Mountain area and preventing AALI using natural food-based substances.
Collapse
Affiliation(s)
- Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Min Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Mingyue Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Meng Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
234
|
Chen B, Hong S, Wang Y, Hu Q, Ma D. Efficacy of Meal Replacement Products on Weight and Glycolipid Metabolism Management: A 90-Day Randomized Controlled Trial in Adults with Obesity. Nutrients 2024; 16:3284. [PMID: 39408251 PMCID: PMC11479124 DOI: 10.3390/nu16193284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The global obesity issue is growing increasingly serious, impacting personal health, economic development, and the sustainability of medical systems. There is an urgent need for effective weight loss strategies that can be widely implemented. This study conducted a 90-day randomized controlled trial to assess the impact of meal replacement products on weight management and glycolipid metabolism in adults with obesity. Methods: Adults with obesity meeting the inclusion and exclusion criteria were divided into three groups: the meal replacement group (n = 19), the diet control group (n = 19), and the normal diet group (n = 22). The meal replacement group used specially formulated meal replacement products for dinner, and the diet control group reduced the intake of staple food at lunch, both controlling daily energy intake between 1200 kcal and 1300 kcal, while the normal diet group maintained their regular dietary habits. Relevant indicators were measured at baseline and after 45 and 90 days of intervention. Results: The results showed that both the meal replacement group and the diet control group experienced significant decreases in weight, BMI, and body fat percentage, with the meal replacement group showing a more pronounced weight loss effect. The weight loss of the meal replacement group at 45 and 90 days was 4.44 ± 1.84 kg and 7.38 ± 3.24 kg, the diet control group was 2.62 ± 2.28 kg and 4.08 ± 2.94 kg, and the normal diet group was 0.66 ± 1.73 kg and 0.97 ± 2.02 kg. The decrease in BMI at 45 and 90 days for the meal replacement group was 1.08 ± 0.78 kg/m2 and 2.17 ± 1.57 kg/m2, for the diet control group was 0.82 ± 0.80 kg/m2 and 1.39 ± 1.16 kg/m2, and for the normal diet group was 0.19 ± 0.71 kg/m2 and 0.21 ± 0.96 kg/m2. The decrease in body fat percentage at 45 and 90 days for the meal replacement group was 1.76 ± 0.68% and 3.67 ± 2.62%, for the diet control group was 1.02 ± 1.11% and 1.52 ± 1.79%, and for the normal diet group was 0.81 ± 1.09% and 0.53 ± 0.93%. In addition, the decrease in BMI and body fat percentage in the meal replacement group was also significantly higher than in the other two groups. In terms of metabolic indicators, there were no significant differences in the changes of blood pressure, blood lipids, blood sugar, and ALT levels among the three groups during the intervention period. Conclusions: In summary, the results indicate that meal replacement products can significantly reduce weight and body fat percentage without affecting metabolic health.
Collapse
Affiliation(s)
| | | | | | | | - Defu Ma
- School of Public Health, Peking University Health Science Center, Beijing 100191, China; (B.C.); (S.H.); (Y.W.); (Q.H.)
| |
Collapse
|
235
|
Xu W, Zhang Y, Chen D, Huang D, Zhao Y, Hu W, Lin L, Liu Y, Wang S, Zeng J, Xie C, Chan H, Li Q, Chen H, Liu X, Wong SH, Yu J, Chan FKL, Chan MTV, Ng SC, Wu WKK, Zhang L. Elucidating the genotoxicity of Fusobacterium nucleatum-secreted mutagens in colorectal cancer carcinogenesis. Gut Pathog 2024; 16:50. [PMID: 39334474 PMCID: PMC11438217 DOI: 10.1186/s13099-024-00640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is one of the key tumorigenic bacteria in colorectal cancer (CRC), yet how F. nucleatum is involved in colorectal cancer carcinogenesis remains unknown. RESULTS In the present study, we carried out PathSeq analysis on RNA sequencing data from the 430 primary colon adenocarcinomas in TCGA database to assess the relationship between patients' survival and F. nucleatum abundance. Among patients with cecum and ascending colon tumors, we found that F. nucleatum transcriptome abundance is positively correlated with mutation load. We further demonstrated that patients with both high tumoral abundance of F. nucleatum and high mutation load exhibited poorer survival and DNA damage. We furthermore determined that F. nucleatum-conditioned medium (Fn. CM) induces DNA damage in both in vitro and in vivo studies. In addition, two F. nucleatum-secreted mutagens, namely DL-homocystine and allantoic acid, were identified to lead to DNA damage. CONCLUSIONS Our finding delineates the genotoxicity of F.nucleatum-secreted mutagens, which provides a basis for further work to investigate the role of F. nucleatum in the pathogenicity of CRC.
Collapse
Affiliation(s)
- Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yuchen Zhang
- Obstetrics Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongjiao Chen
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dan Huang
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yang Zhao
- Department of Pharmacology, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Ling Lin
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Judeng Zeng
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Chuan Xie
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hung Chan
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Qing Li
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Huarong Chen
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, SAR, China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China.
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, SAR, China.
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
236
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
237
|
Fellows RC, Chun SK, Larson N, Fortin BM, Mahieu AL, Song WA, Seldin MM, Pannunzio NR, Masri S. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1458. [PMID: 39331712 PMCID: PMC11430476 DOI: 10.1126/sciadv.ado1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Diet is a robust entrainment cue that regulates diurnal rhythms of the gut microbiome. We and others have shown that disruption of the circadian clock drives the progression of colorectal cancer (CRC). While certain bacterial species have been suggested to play driver roles in CRC, it is unknown whether the intestinal clock impinges on the microbiome to accelerate CRC pathogenesis. To address this, genetic disruption of the circadian clock, in an Apc-driven mouse model of CRC, was used to define the impact on the gut microbiome. When clock disruption is combined with CRC, metagenomic sequencing identified dysregulation of many bacterial genera including Bacteroides, Helicobacter, and Megasphaera. We identify functional changes to microbial pathways including dysregulated nucleic acid, amino acid, and carbohydrate metabolism, as well as disruption of intestinal barrier function. Our findings suggest that clock disruption impinges on microbiota composition and intestinal permeability that may contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Rachel C. Fellows
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Natalie Larson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
238
|
Tao YL, Wang JR, Liu M, Liu YN, Zhang JQ, Zhou YJ, Li SW, Zhu SF. Progress in the study of the correlation between sepsis and intestinal microecology. Front Cell Infect Microbiol 2024; 14:1357178. [PMID: 39391883 PMCID: PMC11464487 DOI: 10.3389/fcimb.2024.1357178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Sepsis, a disease with high incidence, mortality, and treatment costs, has a complex interaction with the gut microbiota. With advances in high-throughput sequencing technology, the relationship between sepsis and intestinal dysbiosis has become a new research focus. However, owing to the intricate interplay between critical illness and clinical interventions, it is challenging to establish a causal relationship between sepsis and intestinal microbiota imbalance. In this review, the correlation between intestinal microecology and sepsis was summarized, and new therapies for sepsis intervention based on microecological target therapy were proposed, and the shortcomings of bacterial selection and application timing in clinical practice were addressed. In conclusion, current studies on metabolomics, genomics and other aspects aimed at continuously discovering potential probiotics are all providing theoretical basis for restoring intestinal flora homeostasis for subsequent treatment of sepsis.
Collapse
Affiliation(s)
- Yan-Lin Tao
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing-Ran Wang
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Miao Liu
- Department of Respiratory Medicine, Dingzhou People’s Hospital, Dingzhou, Heibei, China
| | - Ya-Nan Liu
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi-Jing Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shu-Fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
239
|
Stolfi C, Laudisi F. Editorial for the Special Issue "Gut Dysbiosis: Molecular Mechanisms and Therapies 2.0". Biomedicines 2024; 12:2186. [PMID: 39457499 PMCID: PMC11504651 DOI: 10.3390/biomedicines12102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Gut homeostasis depends on maintaining a fine equilibrium between the intestinal epithelial barrier, the microbiota, and the host's immune system [...].
Collapse
Affiliation(s)
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
240
|
Long J, Wang J, Xiao C, You F, Jiang Y, Li X. Intratumoral microbiota in colorectal cancer: focus on specific distribution and potential mechanisms. Cell Commun Signal 2024; 22:455. [PMID: 39327582 PMCID: PMC11426098 DOI: 10.1186/s12964-024-01831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal malignant tumors globally, posing significant health risks and societal burdens. Recently, advancements in next-generation sequencing technology have identified CRC intratumoral microbiota, thereby opening up novel avenues for further research. This review synthesizes the current advancements in CRC intratumoral microbiota and their impact on CRC progression and discusses the disparities in the relative abundance and community composition of CRC intratumoral microbiota across various colorectal tumors based on their anatomical location and molecular subtypes, as well as the tumor stages, and spatial tumor distribution. Intratumoral microbiota predominantly influence CRC development by modulating colonic epithelial cells, tumor cells, and the tumor microenvironment. Mechanistically, they can cause DNA damage, apoptosis and epithelial-mesenchymal transition. The effects of different intratumoral microbiota on CRC have been shown to be two-fold. In the future, to address the limitations of existing studies, it is important to develop comprehensive experimental protocols and suitable in vitro models for elucidating more mechanisms of intratumoral microbiota on CRC, which will facilitate the clinical application of microbe-related therapeutic strategies in CRC and potentially other tumors.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Jiamei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Chong Xiao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| | - Xueke Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| |
Collapse
|
241
|
Farnetano M, Carucci L, Coppola S, Oglio F, Masino A, Cozzolino M, Nocerino R, Berni Canani R. Gut microbiome features in pediatric food allergy: a scoping review. FRONTIERS IN ALLERGY 2024; 5:1438252. [PMID: 39386092 PMCID: PMC11461474 DOI: 10.3389/falgy.2024.1438252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Increasing evidence suggests that alterations in the gut microbiome (GM) play a pivotal role in the pathogenesis of pediatric food allergy (FA). This scoping review analyzes the current evidence on GM features associated with pediatric FAs and highlights the importance of the GM as a potential target of intervention for preventing and treating this common condition in the pediatric age. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we searched PubMed and Embase using the keywords (gut microbiome OR dysbiosis OR gut microbiota OR microbiome signatures) AND (food allergy OR IgE-mediated food allergy OR food protein-induced allergic proctocolitis OR food protein-induced enterocolitis OR non-IgE food allergy OR cow milk allergy OR hen egg allergy OR peanut allergy OR fish allergy OR shellfish allergy OR tree nut allergy OR soy allergy OR wheat allergy OR rice allergy OR food sensitization). We included 34 studies reporting alterations in the GM in children affected by FA compared with healthy controls. The GM in pediatric FAs is characterized by a higher abundance of harmful microorganisms (e.g., Enterobacteriaceae, Clostridium sensu stricto, Ruminococcus gnavus, and Blautia spp.) and lower abundance of beneficial bacteria (e.g., Bifidobacteriaceae, Lactobacillaceae, some Bacteroides species). Moreover, we provide an overview of the mechanisms of action elicited by these bacterial species in regulating immune tolerance and of the main environmental factors that can modulate the composition and function of the GM in early life. Altogether, these data improve our knowledge of the pathogenesis of FA and can open the way to innovative diagnostic, preventive, and therapeutic strategies for managing these conditions.
Collapse
Affiliation(s)
- Margherita Farnetano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Marica Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
242
|
Zhang C, Ma M, Zhao Z, Feng Z, Chu T, Wang Y, Liu J, Wan X. Gut mucosal microbiota profiles linked to development of positional-specific human colorectal cancer. AIMS Microbiol 2024; 10:812-832. [PMID: 39628718 PMCID: PMC11609426 DOI: 10.3934/microbiol.2024035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 12/06/2024] Open
Abstract
Colorectal cancer (CRC) continuously ranks as the third most common cause of cancer-related deaths worldwide. Based on anatomical classifications and clinical diagnoses, CRC is classified into right-sided, left-sided, and rectal CRC. Importantly, the three types of positional-specific CRC affect the prognosis outcomes, thus indicating that positional-specific treatments for CRC are required. Emerging evidence suggests that besides host genetic and epigenetic alterations, gut mucosal microbiota is linked to gut inflammation, CRC occurrence, and prognoses. However, gut mucosal microbiota associated with positional-specific CRC are poorly investigated. Here, we report the gut mucosal microbiota profiles associated with these three types of CRC. Our analysis showed that the unique composition and biodiversity of bacterial taxa are linked to positional-specific CRC. We found that a combination of bacterial taxa can serve as potential biomarkers to distinguish the three types of CRC. Further investigations of the physiological roles of bacteria associated with positional-specific CRC may help understand the mechanism of CRC progression in different anatomical locations under the impact of gut mucosal microbiota.
Collapse
Affiliation(s)
- Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Mingqian Ma
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenying Zhao
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijia Wang
- Tianjin institute of spinal surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
243
|
Qin X, Liu H, Zhang Q, Che Y, Lei T, Tang F, Hu Q. RNA modifications in cancer immune therapy: regulators of immune cells and immune checkpoints. Front Immunol 2024; 15:1463847. [PMID: 39372415 PMCID: PMC11449722 DOI: 10.3389/fimmu.2024.1463847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
RNA modifications are epigenetic changes that alter the structure and function of RNA molecules, playing a crucial role in the onset, progression, and treatment of cancer. Immune checkpoint inhibitor (ICI) therapies, particularly PD-1 blockade and anti-CTLA-4 treatments, have changed the treatment landscape of virous cancers, showing great potential in the treatment of different cancer patients, but sensitivity to these therapies is limited to certain individuals. This review offers a comprehensive survey of the functions and therapeutic implications of the four principal RNA modifications, particularly highlighting the significance of m6A in the realms of immune cells in tumor and immunotherapy. This review starts by providing a foundational summary of the roles RNA modifications assume within the immune cell community, focusing on T cells, NK cells, macrophages, and dendritic cells. We then discuss how RNA modifications influence the intricate regulatory mechanisms governing immune checkpoint expression, modulation of ICI efficacy, and prediction of ICI treatment outcomes, and review drug therapies targeting genes regulated by RNA modifications. Finally, we explore the role of RNA modifications in gene editing, cancer vaccines, and adoptive T cell therapies, offering valuable insights into the use of RNA modifications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Qin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Huali Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qixuan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Che
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| |
Collapse
|
244
|
Wang H, Bai J, Miao P, Wei Y, Chen X, Lan H, Qing Y, Zhao M, Li Y, Tang R, Yang X. The key to intestinal health: a review and perspective on food additives. Front Nutr 2024; 11:1420358. [PMID: 39360286 PMCID: PMC11444971 DOI: 10.3389/fnut.2024.1420358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
In this review, we explore the effects of food additives on intestinal health. Food additives, such as preservatives, antioxidants and colorants, are widely used to improve food quality and extend shelf life. However, their effects on intestinal microecology May pose health risks. Starting from the basic functions of food additives and the importance of intestinal microecology, we analyze in detail how additives affect the diversity of intestinal flora, oxidative stress and immune responses. Additionally, we examine the association between food additives and intestinal disorders, including inflammatory bowel disease and irritable bowel syndrome, and how the timing, dosage, and individual differences affect the body's response to additives. We also assess the safety and regulatory policies of food additives and explore the potential of natural additives. Finally, we propose future research directions, emphasizing the refinement of risk assessment methods and the creation of safer, innovative additives.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Junyi Bai
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Pengyu Miao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Wei
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | | - Haibo Lan
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yong Qing
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Meizhu Zhao
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yanyu Li
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Rui Tang
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | |
Collapse
|
245
|
Zhou J, Guo L, Wang Y, Li L, Guo Y, Duan L, Jiao M, Xi P, Wang P. Development and validation of a risk prognostic model based on the H. pylori infection phenotype for stomach adenocarcinoma. Heliyon 2024; 10:e36882. [PMID: 39281596 PMCID: PMC11401198 DOI: 10.1016/j.heliyon.2024.e36882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Stomach adenocarcinoma (STAD) is one of the most common malignancies. Infection of helicobacter pylori (H. pylori) is a major risk factor that leads to the development of STAD. This study constructed a risk model based on the H. pylori-related macrophages for predicting STAD prognosis. Methods The single-cell RNA sequencing (scRNA-seq) dataset and the clinic information and RNA-seq datasets of STAD patients were collected for establishing a prognostic model and for validation. The "Seurat" and "harmony" packages were used to process the scRNA-seq data. Key gene modules were sectioned using the "limma" package and the "WGCNA" package. Kaplan-Meier (KM) and Receiver Operating Characteristic Curve (ROC) analyses were performed with "survminer" package. The "GSVA" package was employed for single sample gene set enrichment analysis (ssGSEA). Cell migration and invasion were measured by carrying out wound healing and trans-well assays. Results A total of 17397 were screened and classified into 8 cell type clusters, among which the macrophage cluster was closely associated with the H. pylori infection. Macrophages were further categorized into four subtypes (including C1, C2, C3, and C4), and highly variable genes of macrophage subtype C4 could serve as an indicator of the prognosis of STAD. Subsequently, we developed a RiskScore model based on six H. pylori -associated genes (TNFRSF1B, CTLA4, ABCA1, IKBIP, AKAP5, and NPC2) and observed that the high-risk patients exhibited poor prognosis, higher suppressive immune infiltration, and were closely associated with cancer activation-related pathways. Furthermore, a nomogram combining the RiskScore was developed to accurately predict the survival of STAD patients. AB CA 1 in the RiskScore model significantly affected the migration and invasion of tumor cells. Conclusion The gene expression profile served as an indicator of the survival for patients with STAD and addressed the clinical significance of using H. pylori-associated genes to treat STAD. The current findings provided novel understandings for the clinical evaluation and management of STAD.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Li Guo
- Department of Geriatrics, South District, 986th Hospital of the People's Liberation Army Air Force, Xi'an, 710054, China
| | - Yuzhen Wang
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Lina Li
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Yahuan Guo
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Lian Duan
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Mi Jiao
- Department of Oncology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Pan Xi
- Department of Radiotherapy, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| | - Pei Wang
- Department of Anesthesiology, Shaanxi Province Tumor Hospital, Xi'an, 710061, China
| |
Collapse
|
246
|
Lu H, Xu Z, Shao L, Li P, Xia Y. High infiltration of immune cells with lower immune activity mediated the heterogeneity of gastric adenocarcinoma and promoted metastasis. Heliyon 2024; 10:e37092. [PMID: 39319155 PMCID: PMC11419928 DOI: 10.1016/j.heliyon.2024.e37092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Background Gastric adenocarcinoma (GA) is a heterogeneous malignancy with high invasion and metastasis. We aimed to explore the metastatic characteristics of GA using single-cell RNA-sequencing (scRNA-seq) analysis. Methods The scRNA-seq dataset was downloaded from the GEO database and the "Seurat" package was used to perform the scRNA-seq analysis. The CellMarker2.0 database provided gene markers. Subsequently, differentially expressed genes (DEGs) were identified using the FindMarkers function and subjected to enrichment analysis with the "ClusterProlifer". "GseaVis" package was used for visualizing the gene levels. Finally, the SCENIC analysis was performed for identifying key regulons. The expression level and functionality of the key genes were verified by quantitative real-time PCR (qRT-PCR), wound healing and transwell assays. Results A total of 7697 cells were divided into 8 cell subsets, in which the Cytotoxic NK/T cells, Myeloid cells and Myofibroblasts had higher proportion in the metastatic tissues. Further screening of DEGs and enrichment analysis revealed that in the metastatic tissues, NK cells, monocytes and inflammatory fibroblasts with low immune levels contributed to GA metastasis. In addition, this study identified a series of key immune-related regulons that mediated the lower immune activity of immune cells. Further in vitro experiment verified that CXCL8 was a key factor mediating the proliferation and migration of GA cells. Conclusion The scRNA-seq analysis showed that high infiltration of immune cells with lower immune activity mediated heterogeneity to contribute to GA metastasis.
Collapse
Affiliation(s)
- Hongpeng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Zhihui Xu
- Department of Gastroenterology, Ninghai County Second Hospital, Ningbo, 315600, China
| | - Lihong Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Peifei Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yonghong Xia
- Department of Gastroenterology, Ninghai County Second Hospital, Ningbo, 315600, China
| |
Collapse
|
247
|
Yao J, Xu L, Zhao Z, Dai D, Zhan S, Cao J, Guo J, Zhong T, Wang L, Li L, Zhang H. Fat Mass- and Obesity-Associated Protein (FTO) Promotes the Proliferation of Goat Skeletal Muscle Satellite Cells by Stabilizing DAG1 mRNA in an IGF2BP1-Related m 6A Manner. Int J Mol Sci 2024; 25:9804. [PMID: 39337293 PMCID: PMC11432635 DOI: 10.3390/ijms25189804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Skeletal muscle development is spotlighted in mammals since it closely relates to animal health and economic benefits to the breeding industry. Researchers have successfully unveiled many regulatory factors and mechanisms involving myogenesis. However, the effect of N6-methyladenosine (m6A) modification, especially demethylase and its regulated genes, on muscle development remains to be further explored. Here, we found that the typical demethylase FTO (fat mass- and obesity-associated protein) was highly enriched in goats' longissimus dorsi (LD) muscles. In addition, the level of m6A modification on transcripts was negatively regulated by FTO during the proliferation of goat skeletal muscle satellite cells (MuSCs). Moreover, a deficiency of FTO in MuSCs significantly retarded their proliferation and promoted the expression of dystrophin-associated protein 1 (DAG1). m6A modifications of DAG1 mRNA were efficiently altered by FTO. Intriguingly, the results of DAG1 levels and its m6A enrichment from FB23-2 (FTO demethylase inhibitor)-treated cells were consistent with those of the FTO knockdown, indicating that the regulation of FTO on DAG1 depended on m6A modification. Further experiments showed that interfering FTO improved m6A modification at site DAG1-122, recognized by Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and consequently stabilized DAG1 transcripts. Our study suggests that FTO promotes the proliferation of MuSCs by regulating the expression of DAG1 through m6A modification. This will extend our knowledge of the m6A-related mechanism of skeletal muscle development in animals.
Collapse
Affiliation(s)
- Jiangzhen Yao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Liang Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Zihao Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (L.X.); (Z.Z.); (D.D.); (S.Z.); (J.C.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
248
|
Shi Y, Wu Z, Liu S, Zuo D, Niu Y, Qiu Y, Qiao L, He W, Qiu J, Yuan Y, Wang G, Li B. Targeting PRMT3 impairs methylation and oligomerization of HSP60 to boost anti-tumor immunity by activating cGAS/STING signaling. Nat Commun 2024; 15:7930. [PMID: 39256398 PMCID: PMC11387718 DOI: 10.1038/s41467-024-52170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising therapeutic option for hepatocellular carcinoma (HCC), but resistance to ICB occurs and patient responses vary. Here, we uncover protein arginine methyltransferase 3 (PRMT3) as a driver for immunotherapy resistance in HCC. We show that PRMT3 expression is induced by ICB-activated T cells via an interferon-gamma (IFNγ)-STAT1 signaling pathway, and higher PRMT3 expression levels correlate with reduced numbers of tumor-infiltrating CD8+ T cells and poorer response to ICB. Genetic depletion or pharmacological inhibition of PRMT3 elicits an influx of T cells into tumors and reduces tumor size in HCC mouse models. Mechanistically, PRMT3 methylates HSP60 at R446 to induce HSP60 oligomerization and maintain mitochondrial homeostasis. Targeting PRMT3-dependent HSP60 methylation disrupts mitochondrial integrity and increases mitochondrial DNA (mtDNA) leakage, which results in cGAS/STING-mediated anti-tumor immunity. Lastly, blocking PRMT3 functions synergize with PD-1 blockade in HCC mouse models. Our study thus identifies PRMT3 as a potential biomarker and therapeutic target to overcome immunotherapy resistance in HCC.
Collapse
Affiliation(s)
- Yunxing Shi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongfeng Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaoru Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuxiong Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liang Qiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
249
|
Bonaz B, Sinniger V, Pellissier S. Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 2024; 18:1458918. [PMID: 39319312 PMCID: PMC11420137 DOI: 10.3389/fnins.2024.1458918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Numerous preclinical and clinical studies have shown that stress is one of the main environmental factor playing a significant role in the pathogeny and life-course of bowel diseases. However, stressful events that occur early in life, even during the fetal life, leave different traces within the central nervous system, in area involved in stress response and autonomic network but also in emotion, cognition and memory regulation. Early-life stress can disrupt the prefrontal-amygdala circuit thus favoring an imbalance of the autonomic nervous system and the hypothalamic-pituitary adrenal axis, resulting in anxiety-like behaviors. The down regulation of vagus nerve and cholinergic anti-inflammatory pathway favors pro-inflammatory conditions. Recent data suggest that emotional abuse at early life are aggravating risk factors in inflammatory bowel disease. This review aims to unravel the mechanisms that explain the consequences of early life events and stress in the pathophysiology of inflammatory bowel disease and their mental co-morbidities. A review of therapeutic potential will also be covered.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Sonia Pellissier
- Université Savoie Mont Blanc, Université Grenoble Alpes, LIP/PC2S, Chambéry, France
| |
Collapse
|
250
|
Chi J, Xue Y, Zhou Y, Han T, Ning B, Cheng L, Xie H, Wang H, Wang W, Meng Q, Fan K, Gong F, Fan J, Jiang N, Liu Z, Pan K, Sun H, Zhang J, Zheng Q, Wang J, Su M, Song Y. Perovskite Probe-Based Machine Learning Imaging Model for Rapid Pathologic Diagnosis of Cancers. ACS NANO 2024; 18:24295-24305. [PMID: 39164203 DOI: 10.1021/acsnano.4c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.
Collapse
Affiliation(s)
- Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yonggan Xue
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yinying Zhou
- School of Software, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Teng Han
- Institute of Software, Chinese Academy of Sciences, Beijing, 100191, China
| | - Bobin Ning
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lijun Cheng
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenchen Wang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingyu Meng
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kaijie Fan
- Department of Thoracic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fangming Gong
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junzhen Fan
- Department of Pathology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Nan Jiang
- Faculty of Hepatopancreatobiliary Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zheng Liu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Ke Pan
- Institute of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyu Sun
- Department of Gastroenterology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiajin Zhang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Zheng
- Department of Thoracic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiandong Wang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|