201
|
Sha R, Zhang J, Meng F, Zhaori G. Gastric cancer metastasis-related NT5DC2 indicates unfavorable prognosis of patients. Medicine (Baltimore) 2023; 102:e35030. [PMID: 37800836 PMCID: PMC10553061 DOI: 10.1097/md.0000000000035030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Approximately 80 to 90% of patients with gastric cancer (GC) eventually develop into metastatic GC nowadays,because GC is difficult to be diagnosed at an early stage. GC patients with metastases typically have a poor prognosis. It is necessary to explore a potential prognostic marker in metastatic GC. METHODS All GC data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The metastasis-related candidate gene and its role in GC were analyzed by comprehensive analysis. RESULTS Totally 1049 metastasis-related genes were identified in GC. Univariate Cox regression analysis screened the top 10 genes (PDHX, SLC43A1, CSAG2, NT5DC2, CSAG1, FMN1, MED1, HIVEP2, FNDC3A, and PPP1R2) that were closely correlated with prognosis of GC patients. Among which, NT5DC2 was screened as the target gene for subsequent study. The NT5DC2 expression were increased in primary GC and metastatic GC samples. Moreover, GC patients with high NT5DC2 expression exhibited shorter overall survival and post progression survival, and the NT5DC2 was metastatic GC patients' independent prognostic factor. Totally 29 pathways were activated in metastatic GC samples with high NT5DC2 expression. Four immune cells' infiltration were significantly different between NT5DC2 high and low expressed metastatic GC patients. NT5DC2 showed significantly negative correlations with 6 types of immune cells' critical marker genes and 5 types of immune cell infiltration. The 10 immune checkpoint expressions were decreased in high NTDC2 expression metastatic GC patients. CONCLUSIONS NT5DC2 plays a prognostic role in metastatic GC. GC patients with high NT5DC2 expression indicates unfavorable prognosis.
Collapse
Affiliation(s)
- Rula Sha
- Department of Internal Medicine-Oncology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Jiaming Zhang
- Department of Internal Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| | - Fanjie Meng
- Department of Internal Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| | - Getu Zhaori
- Department of Abdominal Surgery, The Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| |
Collapse
|
202
|
da Silva HEC, Santos GNM, Leite AF, Mesquita CRM, Figueiredo PTDS, Stefani CM, de Melo NS. The use of artificial intelligence tools in cancer detection compared to the traditional diagnostic imaging methods: An overview of the systematic reviews. PLoS One 2023; 18:e0292063. [PMID: 37796946 PMCID: PMC10553229 DOI: 10.1371/journal.pone.0292063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND AND PURPOSE In comparison to conventional medical imaging diagnostic modalities, the aim of this overview article is to analyze the accuracy of the application of Artificial Intelligence (AI) techniques in the identification and diagnosis of malignant tumors in adult patients. DATA SOURCES The acronym PIRDs was used and a comprehensive literature search was conducted on PubMed, Cochrane, Scopus, Web of Science, LILACS, Embase, Scielo, EBSCOhost, and grey literature through Proquest, Google Scholar, and JSTOR for systematic reviews of AI as a diagnostic model and/or detection tool for any cancer type in adult patients, compared to the traditional diagnostic radiographic imaging model. There were no limits on publishing status, publication time, or language. For study selection and risk of bias evaluation, pairs of reviewers worked separately. RESULTS In total, 382 records were retrieved in the databases, 364 after removing duplicates, 32 satisfied the full-text reading criterion, and 09 papers were considered for qualitative synthesis. Although there was heterogeneity in terms of methodological aspects, patient differences, and techniques used, the studies found that several AI approaches are promising in terms of specificity, sensitivity, and diagnostic accuracy in the detection and diagnosis of malignant tumors. When compared to other machine learning algorithms, the Super Vector Machine method performed better in cancer detection and diagnosis. Computer-assisted detection (CAD) has shown promising in terms of aiding cancer detection, when compared to the traditional method of diagnosis. CONCLUSIONS The detection and diagnosis of malignant tumors with the help of AI seems to be feasible and accurate with the use of different technologies, such as CAD systems, deep and machine learning algorithms and radiomic analysis when compared with the traditional model, although these technologies are not capable of to replace the professional radiologist in the analysis of medical images. Although there are limitations regarding the generalization for all types of cancer, these AI tools might aid professionals, serving as an auxiliary and teaching tool, especially for less trained professionals. Therefore, further longitudinal studies with a longer follow-up duration are required for a better understanding of the clinical application of these artificial intelligence systems. TRIAL REGISTRATION Systematic review registration. Prospero registration number: CRD42022307403.
Collapse
Affiliation(s)
| | | | - André Ferreira Leite
- Faculty of Health Science, Dentistry of Department, Brasilia University, Brasilia, Brazil
| | | | | | - Cristine Miron Stefani
- Faculty of Health Science, Dentistry of Department, Brasilia University, Brasilia, Brazil
| | - Nilce Santos de Melo
- Faculty of Health Science, Dentistry of Department, Brasilia University, Brasilia, Brazil
| |
Collapse
|
203
|
Shafi S, Parwani AV. Artificial intelligence in diagnostic pathology. Diagn Pathol 2023; 18:109. [PMID: 37784122 PMCID: PMC10546747 DOI: 10.1186/s13000-023-01375-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 10/04/2023] Open
Abstract
Digital pathology (DP) is being increasingly employed in cancer diagnostics, providing additional tools for faster, higher-quality, accurate diagnosis. The practice of diagnostic pathology has gone through a staggering transformation wherein new tools such as digital imaging, advanced artificial intelligence (AI) algorithms, and computer-aided diagnostic techniques are being used for assisting, augmenting and empowering the computational histopathology and AI-enabled diagnostics. This is paving the way for advancement in precision medicine in cancer. Automated whole slide imaging (WSI) scanners are now rendering diagnostic quality, high-resolution images of entire glass slides and combining these images with innovative digital pathology tools is making it possible to integrate imaging into all aspects of pathology reporting including anatomical, clinical, and molecular pathology. The recent approvals of WSI scanners for primary diagnosis by the FDA as well as the approval of prostate AI algorithm has paved the way for starting to incorporate this exciting technology for use in primary diagnosis. AI tools can provide a unique platform for innovations and advances in anatomical and clinical pathology workflows. In this review, we describe the milestones and landmark trials in the use of AI in clinical pathology with emphasis on future directions.
Collapse
Affiliation(s)
- Saba Shafi
- Department of Pathology, The Ohio State University Wexner Medical Center, E409 Doan Hall, 410 West 10th Ave, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, E409 Doan Hall, 410 West 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
204
|
Sohn A, Miller D, Ribeiro E, Shankar N, Ali S, Hruban R, Baras A. A deep learning model to triage and predict adenocarcinoma on pancreas cytology whole slide imaging. Sci Rep 2023; 13:16517. [PMID: 37783684 PMCID: PMC10545767 DOI: 10.1038/s41598-023-42045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
Pancreatic fine-needle aspirations are the gold-standard diagnostic procedure for the evaluation of pancreatic ductal adenocarcinoma. A suspicion for malignancy can escalate towards chemotherapy followed by a major surgery and therefore is a high-stakes task for the pathologist. In this paper, we propose a deep learning framework, MIPCL, that can serve as a helpful screening tool, predicting the presence or absence of cancer. We also reproduce two deep learning models that have found success in surgical pathology for our cytopathology study. Our MIPCL significantly improves over both models across all evaluated metrics (F1-Score: 87.97% vs 88.70% vs 91.07%; AUROC: 0.9159 vs. 0.9051 vs 0.9435). Additionally, our model is able to recover the most contributing regions on the slide for the final prediction. We also present a dataset curation strategy that increases the number of training examples from an existing dataset, thereby reducing the resource burden tied to collecting and scanning additional cases.
Collapse
Affiliation(s)
- Andrew Sohn
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Miller
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - Efrain Ribeiro
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nakul Shankar
- Department of Pathology, University of Colorado, Boulder, USA
| | - Syed Ali
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Baras
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
205
|
Ahn JS, Shin S, Yang SA, Park EK, Kim KH, Cho SI, Ock CY, Kim S. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. J Breast Cancer 2023; 26:405-435. [PMID: 37926067 PMCID: PMC10625863 DOI: 10.4048/jbc.2023.26.e45] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Breast cancer is a significant cause of cancer-related mortality in women worldwide. Early and precise diagnosis is crucial, and clinical outcomes can be markedly enhanced. The rise of artificial intelligence (AI) has ushered in a new era, notably in image analysis, paving the way for major advancements in breast cancer diagnosis and individualized treatment regimens. In the diagnostic workflow for patients with breast cancer, the role of AI encompasses screening, diagnosis, staging, biomarker evaluation, prognostication, and therapeutic response prediction. Although its potential is immense, its complete integration into clinical practice is challenging. Particularly, these challenges include the imperatives for extensive clinical validation, model generalizability, navigating the "black-box" conundrum, and pragmatic considerations of embedding AI into everyday clinical environments. In this review, we comprehensively explored the diverse applications of AI in breast cancer care, underlining its transformative promise and existing impediments. In radiology, we specifically address AI in mammography, tomosynthesis, risk prediction models, and supplementary imaging methods, including magnetic resonance imaging and ultrasound. In pathology, our focus is on AI applications for pathologic diagnosis, evaluation of biomarkers, and predictions related to genetic alterations, treatment response, and prognosis in the context of breast cancer diagnosis and treatment. Our discussion underscores the transformative potential of AI in breast cancer management and emphasizes the importance of focused research to realize the full spectrum of benefits of AI in patient care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.
| |
Collapse
|
206
|
Neary-Zajiczek L, Beresna L, Razavi B, Pawar V, Shaw M, Stoyanov D. Minimum resolution requirements of digital pathology images for accurate classification. Med Image Anal 2023; 89:102891. [PMID: 37536022 DOI: 10.1016/j.media.2023.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/22/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Digitization of pathology has been proposed as an essential mitigation strategy for the severe staffing crisis facing most pathology departments. Despite its benefits, several barriers have prevented widespread adoption of digital workflows, including cost and pathologist reluctance due to subjective image quality concerns. In this work, we quantitatively determine the minimum image quality requirements for binary classification of histopathology images of breast tissue in terms of spatial and sampling resolution. We train an ensemble of deep learning classifier models on publicly available datasets to obtain a baseline accuracy and computationally degrade these images according to our derived theoretical model to identify the minimum resolution necessary for acceptable diagnostic accuracy. Our results show that images can be degraded significantly below the resolution of most commercial whole-slide imaging systems while maintaining reasonable accuracy, demonstrating that macroscopic features are sufficient for binary classification of stained breast tissue. A rapid low-cost imaging system capable of identifying healthy tissue not requiring human assessment could serve as a triage system for reducing caseloads and alleviating the significant strain on the current workforce.
Collapse
Affiliation(s)
- Lydia Neary-Zajiczek
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TS, United Kingdom; Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Linas Beresna
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Benjamin Razavi
- University College London Medical School, 74 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Vijay Pawar
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Michael Shaw
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TS, United Kingdom; Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TS, United Kingdom; Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
207
|
Lin T, Yu Z, Xu Z, Hu H, Xu Y, Chen CW. SGCL: Spatial guided contrastive learning on whole-slide pathological images. Med Image Anal 2023; 89:102845. [PMID: 37597317 DOI: 10.1016/j.media.2023.102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 08/21/2023]
Abstract
Self-supervised representation learning (SSL) has achieved remarkable success in its application to natural images while falling behind in performance when applied to whole-slide pathological images (WSIs). This is because the inherent characteristics of WSIs in terms of gigapixel resolution and multiple objects in training patches are fundamentally different from natural images. Directly transferring the state-of-the-art (SOTA) SSL methods designed for natural images to WSIs will inevitably compromise their performance. We present a novel scheme SGCL: Spatial Guided Contrastive Learning, to fully explore the inherent properties of WSIs, leveraging the spatial proximity and multi-object priors for stable self-supervision. Beyond the self-invariance of instance discrimination, we expand and propagate the spatial proximity for the intra-invariance from the same WSI and inter-invariance from different WSIs, as well as propose the spatial-guided multi-cropping for inner-invariance within patches. To adaptively explore such spatial information without supervision, we propose a new loss function and conduct a theoretical analysis to validate it. This novel scheme of SGCL is able to achieve additional improvements over the SOTA pre-training methods on diverse downstream tasks across multiple datasets. Extensive ablation studies have been carried out and visualizations of these results have been presented to aid understanding of the proposed SGCL scheme. As open science, all codes and pre-trained models are available at https://github.com/HHHedo/SGCL.
Collapse
Affiliation(s)
- Tiancheng Lin
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Zhimiao Yu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Zengchao Xu
- Department of Mathematics and Lab for Educational Big Data and Policymaking, Shanghai Normal University, China
| | - Hongyu Hu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China
| | - Yi Xu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China.
| | | |
Collapse
|
208
|
Wei Z, Zhao X, Chen J, Sun Q, Wang Z, Wang Y, Ye Z, Yuan Y, Sun L, Jing J. Deep Learning-Based Stratification of Gastric Cancer Patients from Hematoxylin and Eosin-Stained Whole Slide Images by Predicting Molecular Features for Immunotherapy Response. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1517-1527. [PMID: 37356573 DOI: 10.1016/j.ajpath.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Determining the molecular characteristics of cancer patients is crucial for optimal immunotherapy decisions. The aim of this study was to screen immunotherapy beneficiaries by predicting key molecular features from hematoxylin and eosin-stained images based on deep learning models. An independent data set from Asian gastric cancer patients was included for external validation. In addition, a segmentation model (Horizontal-Vertical Network) was used to quantify the cellular composition of tumor stroma. The model performance was evaluated by measuring the area under the curve (AUC). The tumor extraction model achieved an AUC of 0.9386 and 0.9062 in the internal and external test sets, respectively. The stratification model could predict the immunotherapy-sensitive subtypes (AUC range, 0.8685 to 0.9461), the genetic mutations (AUC range, 0.8283 to 0.9225), and the pathway activity (AUC range, 0.7568 to 0.8612) fairly accurately. In external validation, the prediction performance of Epstein-Barr virus and programmed cell death ligand 1 expression status achieved AUCs of 0.7906 and 0.6384, respectively. The segmentation model identified a relatively high proportion of inflammatory cells and connective cells in some immunotherapy-sensitive subtypes. The deep learning-based models potentially may serve as a valuable tool to screen for the beneficiaries of immunotherapy in gastric cancer patients.
Collapse
Affiliation(s)
- Zheng Wei
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyan Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zeyang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yanli Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zhiyi Ye
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention, Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention, Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
209
|
Post CS, Cheng J, Pantanowitz L, Westerhoff M. Utility of Machine Learning to Detect Cytomegalovirus in Digital Hematoxylin and Eosin-Stained Slides. J Transl Med 2023; 103:100225. [PMID: 37527779 DOI: 10.1016/j.labinv.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Rapid and accurate cytomegalovirus (CMV) identification in immunosuppressed or immunocompromised patients presenting with diarrhea is essential for therapeutic management. Due to viral latency, however, the gold standard for CMV diagnosis remains to identify viral cytopathic inclusions on routine hematoxylin and eosin (H&E)-stained tissue sections. Therefore, biopsies may be taken and "rushed" for pathology evaluation. Here, we propose the use of artificial intelligence to detect CMV inclusions on routine H&E-stained whole-slide images to aid pathologists in evaluating these cases. Fifty-eight representative H&E slides from 30 cases with CMV inclusions were identified and scanned. The resulting whole-slide images were manually annotated for CMV inclusions and tiled into 300 × 300 pixel patches. Patches containing annotations were labeled "positive," and these tiles were oversampled with image augmentation to account for class imbalance. The remaining patches were labeled "negative." Data were then divided into training, validation, and holdout sets. Multiple deep learning models were provided with training data, and their performance was analyzed. All tested models showed excellent performance. The highest performance was seen using the EfficientNetV2BO model, which had a test (holdout) accuracy of 99.93%, precision of 100.0%, recall (sensitivity) of 99.85%, and area under the curve of 0.9998. Of 518,941 images in the holdout set, there were only 346 false negatives and 2 false positives. This shows proof of concept for the use of digital tools to assist pathologists in screening "rush" biopsies for CMV infection. Given the high precision, cases screened as "positive" can be quickly confirmed by a pathologist, reducing missed CMV inclusions and improving the confidence of preliminary results. Additionally, this may reduce the need for immunohistochemistry in limited tissue samples, reducing associated costs and turnaround time.
Collapse
Affiliation(s)
- Corey S Post
- Department of Pathology, Michigan Medicine, Ann Arbor, Michigan.
| | - Jerome Cheng
- Department of Pathology, Michigan Medicine, Ann Arbor, Michigan
| | | | | |
Collapse
|
210
|
Salvi M, Manini C, López JI, Fenoglio D, Molinari F. Deep learning approach for accurate prostate cancer identification and stratification using combined immunostaining of cytokeratin, p63, and racemase. Comput Med Imaging Graph 2023; 109:102288. [PMID: 37633031 DOI: 10.1016/j.compmedimag.2023.102288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most frequently diagnosed cancer in men worldwide, affecting around 1.4 million individuals. Current PCa diagnosis relies on histological analysis of prostate biopsy samples, an activity that is both time-consuming and prone to observer bias. Previous studies have demonstrated that immunostaining of cytokeratin, p63, and racemase can significantly improve the sensitivity and the specificity of PCa detection compared to traditional H&E staining. METHODS This study introduces a novel approach that combines diagnosis-specific immunohistochemical (IHC) staining and deep learning techniques to provide reliable stratification of prostate glands. Our approach leverages a customized segmentation network, called K-PPM, that incorporates adaptive kernels and multiscale feature integration to enhance the functional information of IHC. To address the high class-imbalance problem in the dataset, we propose a weighted adaptive patch-extraction and specific-class kernel update. RESULTS Our system achieved noteworthy results, with a mean Dice Score Coefficient of 90.36% and a mean absolute error of 1.64 % in specific-class gland quantification on whole slides. These findings demonstrate the potential of our system as a valuable support tool for pathologists, reducing workload and decreasing diagnostic inter-observer variability. CONCLUSIONS Our study presents innovative approaches that have broad applicability to other digital pathology areas beyond PCa diagnosis. As a fully automated system, this model can serve as a framework for improving the histological and IHC diagnosis of other types of cancer.
Collapse
Affiliation(s)
- Massimo Salvi
- Biolab, PoliToBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy; Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Jose I López
- Biomarkers in Cancer Group, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Dario Fenoglio
- Biolab, PoliToBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Filippo Molinari
- Biolab, PoliToBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
211
|
Zhang A, Wu Z, Wu E, Wu M, Snyder MP, Zou J, Wu JC. Leveraging physiology and artificial intelligence to deliver advancements in health care. Physiol Rev 2023; 103:2423-2450. [PMID: 37104717 PMCID: PMC10390055 DOI: 10.1152/physrev.00033.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
Artificial intelligence in health care has experienced remarkable innovation and progress in the last decade. Significant advancements can be attributed to the utilization of artificial intelligence to transform physiology data to advance health care. In this review, we explore how past work has shaped the field and defined future challenges and directions. In particular, we focus on three areas of development. First, we give an overview of artificial intelligence, with special attention to the most relevant artificial intelligence models. We then detail how physiology data have been harnessed by artificial intelligence to advance the main areas of health care: automating existing health care tasks, increasing access to care, and augmenting health care capabilities. Finally, we discuss emerging concerns surrounding the use of individual physiology data and detail an increasingly important consideration for the field, namely the challenges of deploying artificial intelligence models to achieve meaningful clinical impact.
Collapse
Affiliation(s)
- Angela Zhang
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, United States
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States
- Greenstone Biosciences, Palo Alto, California, United States
| | - Zhenqin Wu
- Department of Chemistry, Stanford University, Stanford, California, United States
| | - Eric Wu
- Department of Electrical Engineering, Stanford University, Stanford, California, United States
| | - Matthew Wu
- Greenstone Biosciences, Palo Alto, California, United States
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States
| | - James Zou
- Department of Biomedical Informatics, School of Medicine, Stanford University, Stanford, California, United States
- Department of Computer Science, Stanford University, Stanford, California, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, United States
- Greenstone Biosciences, Palo Alto, California, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, United States
| |
Collapse
|
212
|
Bond A, Mccay K, Lal S. Artificial intelligence & clinical nutrition: What the future might have in store. Clin Nutr ESPEN 2023; 57:542-549. [PMID: 37739704 DOI: 10.1016/j.clnesp.2023.07.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 09/24/2023]
Abstract
Artificial Intelligence (AI) is a rapidly emerging technology in healthcare that has the potential to revolutionise clinical nutrition. AI can assist in analysing complex data, interpreting medical images, and providing personalised nutrition interventions for patients. Clinical nutrition is a critical aspect of patient care, and AI can help clinicians make more informed decisions regarding patients' nutritional requirements, disease prevention, and management. AI algorithms can analyse large datasets to identify novel associations between diet and disease outcomes, enabling clinicians to make evidence-based nutritional recommendations. AI-powered devices and applications can also assist in tracking dietary intake, providing feedback, and motivating patients towards healthier food choices. However, the adoption of AI in clinical nutrition raises several ethical and regulatory concerns, such as data privacy and bias. Further research is needed to assess the clinical effectiveness and safety of AI-powered nutrition interventions. In conclusion, AI has the potential to transform clinical nutrition, but its integration into clinical practice should be carefully monitored to ensure patient safety and benefit. This article discusses the current and future applications of AI in clinical nutrition and highlights its potential benefits.
Collapse
Affiliation(s)
- Ashley Bond
- Intestinal Failure Unit, Salford Royal Foundation Trust, UK; University of Manchester, Manchester, UK.
| | - Kevin Mccay
- Manchester Metropolitan University, Manchester, UK; Northern Care Alliance NHS Foundation Trust, Salford Royal Hospital, Salford, UK
| | - Simon Lal
- Intestinal Failure Unit, Salford Royal Foundation Trust, UK; University of Manchester, Manchester, UK
| |
Collapse
|
213
|
Wang J, Quan H, Wang C, Yang G. Pyramid-based self-supervised learning for histopathological image classification. Comput Biol Med 2023; 165:107336. [PMID: 37708715 DOI: 10.1016/j.compbiomed.2023.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Large-scale labeled datasets are crucial for the success of supervised learning in medical imaging. However, annotating histopathological images is a time-consuming and labor-intensive task that requires highly trained professionals. To address this challenge, self-supervised learning (SSL) can be utilized to pre-train models on large amounts of unsupervised data and transfer the learned representations to various downstream tasks. In this study, we propose a self-supervised Pyramid-based Local Wavelet Transformer (PLWT) model for effectively extracting rich image representations. The PLWT model extracts both local and global features to pre-train a large number of unlabeled histopathology images in a self-supervised manner. Wavelet is used to replace average pooling in the downsampling of the multi-head attention, achieving a significant reduction in information loss during the transmission of image features. Additionally, we introduce a Local Squeeze-and-Excitation (Local SE) module in the feedforward network in combination with the inverse residual to capture local image information. We evaluate PLWT's performance on three histopathological images and demonstrate the impact of pre-training. Our experiment results indicate that PLWT with self-supervised learning performs highly competitive when compared with other SSL methods, and the transferability of visual representations generated by SSL on domain-relevant histopathological images exceeds that of the supervised baseline trained on ImageNet.
Collapse
Affiliation(s)
- Junjie Wang
- Ningbo Artificial Intelligence Institute of Shanghai Jiao Tong University, Zhejiang 315000, PR China; Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Hao Quan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110016, PR China.
| | - Chengguang Wang
- Ningbo Industrial Internet Institute, Zhejiang 315000, PR China.
| | - Genke Yang
- Ningbo Artificial Intelligence Institute of Shanghai Jiao Tong University, Zhejiang 315000, PR China; Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
214
|
Yang Y, Guo X, Ye C, Xiang Y, Ma T. CReg-KD: Model refinement via confidence regularized knowledge distillation for brain imaging. Med Image Anal 2023; 89:102916. [PMID: 37549611 DOI: 10.1016/j.media.2023.102916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
One of the core challenges of deep learning in medical image analysis is data insufficiency, especially for 3D brain imaging, which may lead to model over-fitting and poor generalization. Regularization strategies such as knowledge distillation are powerful tools to mitigate the issue by penalizing predictive distributions and introducing additional knowledge to reinforce the training process. In this paper, we revisit knowledge distillation as a regularization paradigm by penalizing attentive output distributions and intermediate representations. In particular, we propose a Confidence Regularized Knowledge Distillation (CReg-KD) framework, which adaptively transfers knowledge for distillation in light of knowledge confidence. Two strategies are advocated to regularize the global and local dependencies between teacher and student knowledge. In detail, a gated distillation mechanism is proposed to soften the transferred knowledge globally by utilizing the teacher loss as a confidence score. Moreover, the intermediate representations are attentively and locally refined with key semantic context to mimic meaningful features. To demonstrate the superiority of our proposed framework, we evaluated the framework on two brain imaging analysis tasks (i.e. Alzheimer's Disease classification and brain age estimation based on T1-weighted MRI) on the Alzheimer's Disease Neuroimaging Initiative dataset including 902 subjects and a cohort of 3655 subjects from 4 public datasets. Extensive experimental results show that CReg-KD achieves consistent improvements over the baseline teacher model and outperforms other state-of-the-art knowledge distillation approaches, manifesting that CReg-KD as a powerful medical image analysis tool in terms of both promising prediction performance and generalizability.
Collapse
Affiliation(s)
- Yanwu Yang
- Electronic & Information Engineering School, Harbin Institute of Technology (Shenzhen), Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Xutao Guo
- Electronic & Information Engineering School, Harbin Institute of Technology (Shenzhen), Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Chenfei Ye
- Peng Cheng Laboratory, Shenzhen, China; International Research Institute for Artificial Intelligence, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | | | - Ting Ma
- Electronic & Information Engineering School, Harbin Institute of Technology (Shenzhen), Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China; Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China; International Research Institute for Artificial Intelligence, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
215
|
Patton MJ, Liu VX. Predictive Modeling Using Artificial Intelligence and Machine Learning Algorithms on Electronic Health Record Data: Advantages and Challenges. Crit Care Clin 2023; 39:647-673. [PMID: 37704332 DOI: 10.1016/j.ccc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rapid adoption of electronic health record (EHR) systems in US hospitals from 2008 to 2014 produced novel data elements for analysis. Concurrent innovations in computing architecture and machine learning (ML) algorithms have made rapid consumption of health data feasible and a powerful engine for clinical innovation. In critical care research, the net convergence of these trends has resulted in an exponential increase in outcome prediction research. In the following article, we explore the history of outcome prediction in the intensive care unit (ICU), the growing use of EHR data, and the rise of artificial intelligence and ML (AI) in critical care.
Collapse
Affiliation(s)
- Michael J Patton
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Hugh Kaul Precision Medicine Institute at the University of Alabama at Birmingham, 720 20th Street South, Suite 202, Birmingham, Alabama, 35233, USA.
| | - Vincent X Liu
- Kaiser Permanente Division of Research, Oakland, CA, USA.
| |
Collapse
|
216
|
Gupta P, Khare V, Srivastava A, Agarwal J, Mittal V, Sonkar V, Saxena S, Agarwal A, Jain A. A prospective observational multicentric clinical trial to evaluate microscopic examination of acid-fast bacilli in sputum by artificial intelligence-based microscopy system. J Investig Med 2023; 71:716-721. [PMID: 37158073 DOI: 10.1177/10815589231171402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microscopy-based tuberculosis (TB) diagnosis i.e., Ziehl-Neelsen (ZN) stained smear screening still remains the primary diagnostic method in resource poor and high TB burden countries, however itrequires considerable experience and is bound to human errors. In remote areas, wherever expert microscopist is not available, timely diagnosis at initial level is not possible. Artificial intelligence (AI)-based microscopy may be a solution to this problem. A prospective observational multi-centric clinical trial to evaluate microscopic examination of acid-fast bacilli (AFB) in sputum by the AI based system was done in three hospitals in Northern India. Sputum samples from 400 clinically suspected cases of pulmonary tuberculosis were collected from three centres. Ziehl-Neelsen staining of smears was done. All the smears were observed by 3 microscopist and the AI based microscopy system. AI based microscopy was found to have a sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of 89.25%, 92.15%, 75.45%, 96.94%, 91.53% respectively. AI based sputum microscopy has an acceptable degree of accuracy, PPV, NPV, specificity and sensitivity and thus may be used as a screening tool for the diagnosis of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Prashant Gupta
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vineeta Khare
- Department of Microbiology, Era's Lucknow Medical College & hospitals, Era University, Lucknow, Uttar Pradesh, India
| | - Anand Srivastava
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Jyotsna Agarwal
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vineeta Mittal
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vijay Sonkar
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shelly Saxena
- Sevamob Ventures Limited, Lucknow, Uttar Pradesh, India
| | - Ankit Agarwal
- Sevamob Ventures Limited, Lucknow, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
217
|
Yeung AWK, Torkamani A, Butte AJ, Glicksberg BS, Schuller B, Rodriguez B, Ting DSW, Bates D, Schaden E, Peng H, Willschke H, van der Laak J, Car J, Rahimi K, Celi LA, Banach M, Kletecka-Pulker M, Kimberger O, Eils R, Islam SMS, Wong ST, Wong TY, Gao W, Brunak S, Atanasov AG. The promise of digital healthcare technologies. Front Public Health 2023; 11:1196596. [PMID: 37822534 PMCID: PMC10562722 DOI: 10.3389/fpubh.2023.1196596] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Digital health technologies have been in use for many years in a wide spectrum of healthcare scenarios. This narrative review outlines the current use and the future strategies and significance of digital health technologies in modern healthcare applications. It covers the current state of the scientific field (delineating major strengths, limitations, and applications) and envisions the future impact of relevant emerging key technologies. Furthermore, we attempt to provide recommendations for innovative approaches that would accelerate and benefit the research, translation and utilization of digital health technologies.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Research Translational Institute, La Jolla, CA, United States
| | - Atul J. Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Benjamin S. Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Björn Schuller
- Department of Computing, Imperial College London, London, United Kingdom
- Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Daniel S. W. Ting
- Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - David Bates
- Department of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Eva Schaden
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Harald Willschke
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Jeroen van der Laak
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Josip Car
- Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
- Centre for Population Health Sciences, LKC Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kazem Rahimi
- Deep Medicine Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Leo Anthony Celi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Maria Kletecka-Pulker
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute for Ethics and Law in Medicine, University of Vienna, Vienna, Austria
| | - Oliver Kimberger
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Roland Eils
- Digital Health Center, Berlin Institute of Health (BIH), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Stephen T. Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, T. T. and W. F. Chao Center for BRAIN, Houston Methodist Academic Institute, Houston Methodist Hospital, Houston, TX, United States
- Departments of Radiology, Pathology and Laboratory Medicine and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Tien Yin Wong
- Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| |
Collapse
|
218
|
Höhn J, Krieghoff-Henning E, Wies C, Kiehl L, Hetz MJ, Bucher TC, Jonnagaddala J, Zatloukal K, Müller H, Plass M, Jungwirth E, Gaiser T, Steeg M, Holland-Letz T, Brenner H, Hoffmeister M, Brinker TJ. Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning. NPJ Precis Oncol 2023; 7:98. [PMID: 37752266 PMCID: PMC10522577 DOI: 10.1038/s41698-023-00451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Studies have shown that colorectal cancer prognosis can be predicted by deep learning-based analysis of histological tissue sections of the primary tumor. So far, this has been achieved using a binary prediction. Survival curves might contain more detailed information and thus enable a more fine-grained risk prediction. Therefore, we established survival curve-based CRC survival predictors and benchmarked them against standard binary survival predictors, comparing their performance extensively on the clinical high and low risk subsets of one internal and three external cohorts. Survival curve-based risk prediction achieved a very similar risk stratification to binary risk prediction for this task. Exchanging other components of the pipeline, namely input tissue and feature extractor, had largely identical effects on model performance independently of the type of risk prediction. An ensemble of all survival curve-based models exhibited a more robust performance, as did a similar ensemble based on binary risk prediction. Patients could be further stratified within clinical risk groups. However, performance still varied across cohorts, indicating limited generalization of all investigated image analysis pipelines, whereas models using clinical data performed robustly on all cohorts.
Collapse
Affiliation(s)
- Julia Höhn
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Krieghoff-Henning
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Wies
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University Heidelberg, Heidelberg, Germany
| | - Lennard Kiehl
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin J Hetz
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tabea-Clara Bucher
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jitendra Jonnagaddala
- School of Population Health, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Heimo Müller
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Markus Plass
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Emilian Jungwirth
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Applied Pathology, Speyer, Germany
| | - Matthias Steeg
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tim Holland-Letz
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
219
|
Wang Y, Lin H, Yao N, Chen X, Qiu B, Cui Y, Liu Y, Li B, Han C, Li Z, Zhao W, Wang Z, Pan X, Lu C, Liu J, Liu Z, Liu Z. Computerized tertiary lymphoid structures density on H&E-images is a prognostic biomarker in resectable lung adenocarcinoma. iScience 2023; 26:107635. [PMID: 37664636 PMCID: PMC10474456 DOI: 10.1016/j.isci.2023.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
The increased amount of tertiary lymphoid structures (TLSs) is associated with a favorable prognosis in patients with lung adenocarcinoma (LUAD). However, evaluating TLSs manually is an experience-dependent and time-consuming process, which limits its clinical application. In this multi-center study, we developed an automated computational workflow for quantifying the TLS density in the tumor region of routine hematoxylin and eosin (H&E)-stained whole-slide images (WSIs). The association between the computerized TLS density and disease-free survival (DFS) was further explored in 802 patients with resectable LUAD of three cohorts. Additionally, a Cox proportional hazard regression model, incorporating clinicopathological variables and the TLS density, was established to assess its prognostic ability. The computerized TLS density was an independent prognostic biomarker in patients with resectable LUAD. The integration of the TLS density with clinicopathological variables could support individualized clinical decision-making by improving prognostic stratification.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Huan Lin
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Ningning Yao
- Department of Radiobiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University; Taiyuan 030013, China
| | - Xiaobo Chen
- First Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming 650118, China
| | - Bingjiang Qiu
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yanfen Cui
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
- Department of Radiobiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University; Taiyuan 030013, China
- Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| | - Bingbing Li
- Department of Pathology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, 49 Dagong Road, Ganzhou 341000, China
| | - Chu Han
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhenhui Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming 650118, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zimin Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xipeng Pan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Cheng Lu
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhenbing Liu
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zaiyi Liu
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
| |
Collapse
|
220
|
Garcia Valencia OA, Thongprayoon C, Jadlowiec CC, Mao SA, Miao J, Cheungpasitporn W. Enhancing Kidney Transplant Care through the Integration of Chatbot. Healthcare (Basel) 2023; 11:2518. [PMID: 37761715 PMCID: PMC10530762 DOI: 10.3390/healthcare11182518] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney transplantation is a critical treatment option for end-stage kidney disease patients, offering improved quality of life and increased survival rates. However, the complexities of kidney transplant care necessitate continuous advancements in decision making, patient communication, and operational efficiency. This article explores the potential integration of a sophisticated chatbot, an AI-powered conversational agent, to enhance kidney transplant practice and potentially improve patient outcomes. Chatbots and generative AI have shown promising applications in various domains, including healthcare, by simulating human-like interactions and generating contextually appropriate responses. Noteworthy AI models like ChatGPT by OpenAI, BingChat by Microsoft, and Bard AI by Google exhibit significant potential in supporting evidence-based research and healthcare decision making. The integration of chatbots in kidney transplant care may offer transformative possibilities. As a clinical decision support tool, it could provide healthcare professionals with real-time access to medical literature and guidelines, potentially enabling informed decision making and improved knowledge dissemination. Additionally, the chatbot has the potential to facilitate patient education by offering personalized and understandable information, addressing queries, and providing guidance on post-transplant care. Furthermore, under clinician or transplant pharmacist supervision, it has the potential to support post-transplant care and medication management by analyzing patient data, which may lead to tailored recommendations on dosages, monitoring schedules, and potential drug interactions. However, to fully ascertain its effectiveness and safety in these roles, further studies and validation are required. Its integration with existing clinical decision support systems may enhance risk stratification and treatment planning, contributing to more informed and efficient decision making in kidney transplant care. Given the importance of ethical considerations and bias mitigation in AI integration, future studies may evaluate long-term patient outcomes, cost-effectiveness, user experience, and the generalizability of chatbot recommendations. By addressing these factors and potentially leveraging AI capabilities, the integration of chatbots in kidney transplant care holds promise for potentially improving patient outcomes, enhancing decision making, and fostering the equitable and responsible use of AI in healthcare.
Collapse
Affiliation(s)
- Oscar A. Garcia Valencia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (O.A.G.V.); (C.T.)
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (O.A.G.V.); (C.T.)
| | - Caroline C. Jadlowiec
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Shennen A. Mao
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jing Miao
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (O.A.G.V.); (C.T.)
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (O.A.G.V.); (C.T.)
| |
Collapse
|
221
|
Ruusuvuori P, Valkonen M, Latonen L. Deep learning transforms colorectal cancer biomarker prediction from histopathology images. Cancer Cell 2023; 41:1543-1545. [PMID: 37652005 DOI: 10.1016/j.ccell.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Artificial intelligence (AI) is rapidly gaining interest in medicine, including pathological assessments for personalized medicine. In this issue of Cancer Cell, Wagner et al. demonstrate superior accuracy of transformer-based deep learning in predicting biomarker status in CRC. The work has implications for increased efficiency and accuracy in clinical diagnostics guiding treatment decisions in precision oncology.
Collapse
Affiliation(s)
- Pekka Ruusuvuori
- Institute of Biomedicine, University of Turku, Turku, Finland; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Mira Valkonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
222
|
Meng X, Zou T. Clinical applications of graph neural networks in computational histopathology: A review. Comput Biol Med 2023; 164:107201. [PMID: 37517325 DOI: 10.1016/j.compbiomed.2023.107201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Pathological examination is the optimal approach for diagnosing cancer, and with the advancement of digital imaging technologies, it has spurred the emergence of computational histopathology. The objective of computational histopathology is to assist in clinical tasks through image processing and analysis techniques. In the early stages, the technique involved analyzing histopathology images by extracting mathematical features, but the performance of these models was unsatisfactory. With the development of artificial intelligence (AI) technologies, traditional machine learning methods were applied in this field. Although the performance of the models improved, there were issues such as poor model generalization and tedious manual feature extraction. Subsequently, the introduction of deep learning techniques effectively addressed these problems. However, models based on traditional convolutional architectures could not adequately capture the contextual information and deep biological features in histopathology images. Due to the special structure of graphs, they are highly suitable for feature extraction in tissue histopathology images and have achieved promising performance in numerous studies. In this article, we review existing graph-based methods in computational histopathology and propose a novel and more comprehensive graph construction approach. Additionally, we categorize the methods and techniques in computational histopathology according to different learning paradigms. We summarize the common clinical applications of graph-based methods in computational histopathology. Furthermore, we discuss the core concepts in this field and highlight the current challenges and future research directions.
Collapse
Affiliation(s)
- Xiangyan Meng
- Xi'an Technological University, Xi'an, Shaanxi, 710021, China.
| | - Tonghui Zou
- Xi'an Technological University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
223
|
Graham S, Minhas F, Bilal M, Ali M, Tsang YW, Eastwood M, Wahab N, Jahanifar M, Hero E, Dodd K, Sahota H, Wu S, Lu W, Azam A, Benes K, Nimir M, Hewitt K, Bhalerao A, Robinson A, Eldaly H, Raza SEA, Gopalakrishnan K, Snead D, Rajpoot N. Screening of normal endoscopic large bowel biopsies with interpretable graph learning: a retrospective study. Gut 2023; 72:1709-1721. [PMID: 37173125 PMCID: PMC10423541 DOI: 10.1136/gutjnl-2023-329512] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE To develop an interpretable artificial intelligence algorithm to rule out normal large bowel endoscopic biopsies, saving pathologist resources and helping with early diagnosis. DESIGN A graph neural network was developed incorporating pathologist domain knowledge to classify 6591 whole-slides images (WSIs) of endoscopic large bowel biopsies from 3291 patients (approximately 54% female, 46% male) as normal or abnormal (non-neoplastic and neoplastic) using clinically driven interpretable features. One UK National Health Service (NHS) site was used for model training and internal validation. External validation was conducted on data from two other NHS sites and one Portuguese site. RESULTS Model training and internal validation were performed on 5054 WSIs of 2080 patients resulting in an area under the curve-receiver operating characteristic (AUC-ROC) of 0.98 (SD=0.004) and AUC-precision-recall (PR) of 0.98 (SD=0.003). The performance of the model, named Interpretable Gland-Graphs using a Neural Aggregator (IGUANA), was consistent in testing over 1537 WSIs of 1211 patients from three independent external datasets with mean AUC-ROC=0.97 (SD=0.007) and AUC-PR=0.97 (SD=0.005). At a high sensitivity threshold of 99%, the proposed model can reduce the number of normal slides to be reviewed by a pathologist by approximately 55%. IGUANA also provides an explainable output highlighting potential abnormalities in a WSI in the form of a heatmap as well as numerical values associating the model prediction with various histological features. CONCLUSION The model achieved consistently high accuracy showing its potential in optimising increasingly scarce pathologist resources. Explainable predictions can guide pathologists in their diagnostic decision-making and help boost their confidence in the algorithm, paving the way for its future clinical adoption.
Collapse
Affiliation(s)
- Simon Graham
- Department of Computer Science, University of Warwick, Coventry, UK
- Histofy Ltd, Birmingham, UK
| | - Fayyaz Minhas
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Mohsin Bilal
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Mahmoud Ali
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Yee Wah Tsang
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Mark Eastwood
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Noorul Wahab
- Department of Computer Science, University of Warwick, Coventry, UK
| | | | - Emily Hero
- Department of Pathology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Katherine Dodd
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Harvir Sahota
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Shaobin Wu
- Department of Pathology, East Suffolk and North Essex NHS Foundation Trust, Colchester, UK
| | - Wenqi Lu
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Ayesha Azam
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Ksenija Benes
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Department of Pathology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | - Mohammed Nimir
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Katherine Hewitt
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Abhir Bhalerao
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Andrew Robinson
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Hesham Eldaly
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Kishore Gopalakrishnan
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - David Snead
- Histofy Ltd, Birmingham, UK
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Division of Biomedical Sciences, University of Warwick Warwick Medical School, Coventry, UK
| | - Nasir Rajpoot
- Department of Computer Science, University of Warwick, Coventry, UK
- Histofy Ltd, Birmingham, UK
- Department of Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
224
|
Swillens JEM, Nagtegaal ID, Engels S, Lugli A, Hermens RPMG, van der Laak JAWM. Pathologists' first opinions on barriers and facilitators of computational pathology adoption in oncological pathology: an international study. Oncogene 2023; 42:2816-2827. [PMID: 37587332 PMCID: PMC10504072 DOI: 10.1038/s41388-023-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Computational pathology (CPath) algorithms detect, segment or classify cancer in whole slide images, approaching or even exceeding the accuracy of pathologists. Challenges have to be overcome before these algorithms can be used in practice. We therefore aim to explore international perspectives on the future role of CPath in oncological pathology by focusing on opinions and first experiences regarding barriers and facilitators. We conducted an international explorative eSurvey and semi-structured interviews with pathologists utilizing an implementation framework to classify potential influencing factors. The eSurvey results showed remarkable variation in opinions regarding attitude, understandability and validation of CPath. Interview results showed that barriers focused on the quality of available evidence, while most facilitators concerned strengths of CPath. A lack of consensus was present for multiple factors, such as the determination of sufficient validation using CPath, the preferred function of CPath within the digital workflow and the timing of CPath introduction in pathology education. The diversity in opinions illustrates variety in influencing factors in CPath adoption. A next step would be to quantitatively determine important factors for adoption and initiate validation studies. Both should include clear case descriptions and be conducted among a more homogenous panel of pathologists based on sub specialization.
Collapse
Affiliation(s)
- Julie E M Swillens
- Scientific Center for Quality of Healthcare (IQ Healthcare), Radboud Institute for Health Sciences (RIHS), Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Iris D Nagtegaal
- Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sam Engels
- Scientific Center for Quality of Healthcare (IQ Healthcare), Radboud Institute for Health Sciences (RIHS), Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Rosella P M G Hermens
- Scientific Center for Quality of Healthcare (IQ Healthcare), Radboud Institute for Health Sciences (RIHS), Radboud University Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
225
|
Li Z, Jiang Y, Lu M, Li R, Xia Y. Survival Prediction via Hierarchical Multimodal Co-Attention Transformer: A Computational Histology-Radiology Solution. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2678-2689. [PMID: 37030860 DOI: 10.1109/tmi.2023.3263010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The rapid advances in deep learning-based computational pathology and radiology have demonstrated the promise of using whole slide images (WSIs) and radiology images for survival prediction in cancer patients. However, most image-based survival prediction methods are limited to using either histology or radiology alone, leaving integrated approaches across histology and radiology relatively underdeveloped. There are two main challenges in integrating WSIs and radiology images: (1) the gigapixel nature of WSIs and (2) the vast difference in spatial scales between WSIs and radiology images. To address these challenges, in this work, we propose an interpretable, weakly-supervised, multimodal learning framework, called Hierarchical Multimodal Co-Attention Transformer (HMCAT), to integrate WSIs and radiology images for survival prediction. Our approach first uses hierarchical feature extractors to capture various information including cellular features, cellular organization, and tissue phenotypes in WSIs. Then the hierarchical radiology-guided co- attention (HRCA) in HMCAT characterizes the multimodal interactions between hierarchical histology-based visual concepts and radiology features and learns hierarchical co- attention mappings for two modalities. Finally, HMCAT combines their complementary information into a multimodal risk score and discovers prognostic features from two modalities by multimodal interpretability. We apply our approach to two cancer datasets (365 WSIs with matched magnetic resonance [MR] images and 213 WSIs with matched computed tomography [CT] images). Our results demonstrate that the proposed HMCAT consistently achieves superior performance over the unimodal approaches trained on either histology or radiology data alone, as well as other state-of-the-art methods.
Collapse
|
226
|
Matsushima J, Sato T, Ohnishi T, Yoshimura Y, Mizutani H, Koto S, Ikeda JI, Kano M, Matsubara H, Hayashi H. The Use of Deep Learning-Based Computer Diagnostic Algorithm for Detection of Lymph Node Metastases of Gastric Adenocarcinoma. Int J Surg Pathol 2023; 31:975-981. [PMID: 35898183 DOI: 10.1177/10668969221113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives. The diversifying modalities of treatment for gastric cancer raise urgent demands for the rapid and precise diagnosis of metastases in regional lymph nodes, thereby significantly impact the workload of pathologists. Meanwhile, the recent advent of whole-slide scanners and deep-learning techniques have enabled the computer-assisted analysis of histopathological images, which could help to alleviate this impact. Thus, we developed a deep learning-based diagnostic algorithm to detect lymph node metastases of gastric adenocarcinoma and evaluated its performance. Methods. We randomly selected 20 patients with gastric adenocarcinoma who underwent surgery as definitive treatment and were found to be node metastasis-positive. HEMATOXYLIN-eosin (HE) stained glass slides, including a total of 51 metastasis-positive nodes, were retrieved from the specimens of these cases. Other slides with 776 metastasis-negative nodes were also retrieved from other twenty cases with the same disease that were diagnosed as metastasis-negative by the final pathological examinations. All glass slides were digitized using a whole-slide scanner. A deep-learning algorithm to detect metastases was developed using the data in which metastasis-positive parts of the images were annotated by a well-trained pathologist, and its performance in detecting metastases was evaluated. Results. Cross-validation analysis indicated an area of 0.9994 under the receiver operating characteristic curve. Free-response receiver operating characteristic curve (FROC) analysis indicated a sensitivity of 1.00 with three false positives. Further evaluation using an independent dataset also showed similar level of accuracies. Conclusion. This deep learning-based diagnosis-aid system is a promising tool that can assist pathologists involved in gastric cancer care and reduce their workload.
Collapse
Affiliation(s)
- Jun Matsushima
- Department of Pathology, Saitama Medical Center, Dokkyo Medical University, Saitama, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tamotsu Sato
- Toshiba Digital Solutions Corporation, Kanagawa, Japan
| | - Takashi Ohnishi
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | | | | | | | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Hayashi
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
227
|
Liu Q, Jiang N, Hao Y, Hao C, Wang W, Bian T, Wang X, Li H, zhang Y, Kang Y, Xie F, Li Y, Jiang X, Feng Y, Mao Z, Wang Q, Gao Q, Zhang W, Cui B, Dong T. Identification of lymph node metastasis in pre-operation cervical cancer patients by weakly supervised deep learning from histopathological whole-slide biopsy images. Cancer Med 2023; 12:17952-17966. [PMID: 37559500 PMCID: PMC10523985 DOI: 10.1002/cam4.6437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Lymph node metastasis (LNM) significantly impacts the prognosis of individuals diagnosed with cervical cancer, as it is closely linked to disease recurrence and mortality, thereby impacting therapeutic schedule choices for patients. However, accurately predicting LNM prior to treatment remains challenging. Consequently, this study seeks to utilize digital pathological features extracted from histopathological slides of primary cervical cancer patients to preoperatively predict the presence of LNM. METHODS A deep learning (DL) model was trained using the Vision transformer (ViT) and recurrent neural network (RNN) frameworks to predict LNM. This prediction was based on the analysis of 554 histopathological whole-slide images (WSIs) obtained from Qilu Hospital of Shandong University. To validate the model's performance, an external test was conducted using 336 WSIs from four other hospitals. Additionally, the efficiency of the DL model was evaluated using 190 cervical biopsies WSIs in a prospective set. RESULTS In the internal test set, our DL model achieved an area under the curve (AUC) of 0.919, with sensitivity and specificity values of 0.923 and 0.905, respectively, and an accuracy (ACC) of 0.909. The performance of the DL model remained strong in the external test set. In the prospective cohort, the AUC was 0.91, and the ACC was 0.895. Additionally, the DL model exhibited higher accuracy compared to imaging examination in the evaluation of LNM. By utilizing the transformer visualization method, we generated a heatmap that illustrates the local pathological features in primary lesions relevant to LNM. CONCLUSION DL-based image analysis has demonstrated efficiency in predicting LNM in early operable cervical cancer through the utilization of biopsies WSI. This approach has the potential to enhance therapeutic decision-making for patients diagnosed with cervical cancer.
Collapse
Affiliation(s)
- Qingqing Liu
- Cheeloo College of MedicineShandong UniversityJinan CityChina
| | - Nan Jiang
- Cheeloo College of MedicineShandong UniversityJinan CityChina
| | - Yiping Hao
- Cheeloo College of MedicineShandong UniversityJinan CityChina
| | - Chunyan Hao
- Department of Pathology, School of Basic Medical Science, Cheeloo College of MedicineShandong UniversityJinan CityChina
- Department of PathologyQilu Hospital of Shandong UniversityJinan CityChina
| | - Wei Wang
- Department of PathologyAffiliated Hospital of Jining Medical UniversityJining CityChina
| | - Tingting Bian
- Department of Medical ImagingAffiliated Hospital of Jining Medical UniversityJining CityChina
| | - Xiaohong Wang
- Department of Obstetrics and GynecologyJinan People's HospitalJinan CityChina
| | - Hua Li
- Department of Obstetrics and GynecologyTai'an City Central HospitalTai'an CityChina
| | - Yan zhang
- Department of Obstetrics and GynecologyWeifang People's HospitalWeifang CityChina
| | - Yanjun Kang
- Department of Obstetrics and GynecologyWomen and Children's Hospital, Qingdao UniversityQingdao CityChina
| | - Fengxiang Xie
- Department of PathologyKingMed DiagnosticsJinan CityChina
| | - Yawen Li
- Department of PathologyQilu Hospital of Shandong UniversityJinan CityChina
| | - XuJi Jiang
- Cheeloo College of MedicineShandong UniversityJinan CityChina
| | - Yuan Feng
- Cheeloo College of MedicineShandong UniversityJinan CityChina
| | - Zhonghao Mao
- Cheeloo College of MedicineShandong UniversityJinan CityChina
| | - Qi Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Qianfoshan HospitalShandong UniversityJinan CityChina
| | - Qun Gao
- Department of Obstetrics and GynecologyThe Affiliated Hospital of Qingdao UniversityQingdao CityChina
| | - Wenjing Zhang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityChina
| | - Baoxia Cui
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityChina
| | - Taotao Dong
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityChina
| |
Collapse
|
228
|
Lu D, Long X, Fu W, Liu B, Zhou X, Sun S. Predictive value of machine learning for breast cancer recurrence: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2023; 149:10659-10674. [PMID: 37302114 DOI: 10.1007/s00432-023-04967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE Recurrence of breast cancer leads to a high lifetime risk and a low 5 year survival rate. Researchers have used machine learning to predict the risk of recurrence in patients with breast cancer, but the predictive performance of machine learning remains controversial. Hence, this study aimed to explore the accuracy of machine learning in predicting breast cancer recurrence risk and aggregate predictive variables to provide guidance for the development of subsequent risk scoring systems. METHODS We searched Pubmed, EMBASE, Cochrane, and Web of Science. The risk of bias in the included studies was evaluated using prediction model risk of bias assessment tool (PROBAST). Meta-regression was adopted to explore whether there was a significant difference in the recurrence time by machine learning. RESULTS Thirty-four studies involving 67,560 subjects were included, among whom 8695 experienced breast cancer recurrence. The c-index of prediction models was 0.814 (95%CI 0.802-0.826) and 0.770 (95%CI 0.737-0.803) in the training and validation sets, respectively; the sensitivity and specificity were 0.69 (95% CI 0.64-0.74), 0.89 (95% CI 0.86-0.92) in the training, and 0.64 (95% CI 0.58-0.70), 0.88 (95% CI 0.82-0.92) in the validation, respectively. Age, histological grading, and lymph node status are the most commonly used variables in model construction. Attention should be paid to unhealthy lifestyles such as drinking, smoking and BMI as modeling variables. Risk prediction models based on machine learning have long-term monitoring value for breast cancer population, and subsequent studies should consider using large-sample and multi-center data to establish risk equations for verification. CONCLUSION Machine learning may be used as a predictive tool for breast cancer recurrence. Currently, there is a lack of effective and universally applicable machine learning models in clinical practice. We expect to incorporate multi-center studies in the future and attempt to develop tools for predicting breast cancer recurrence risk, so as to effectively identify populations at high risk of recurrence and develop personalized follow-up strategies and prognostic interventions to reduce the risk of recurrence.
Collapse
Affiliation(s)
- Dongmei Lu
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Xiaozhou Long
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Wenjie Fu
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Bo Liu
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Xing Zhou
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China
| | - Shaoqin Sun
- Radiology Department, Gansu Provincial Hospital, No. 204, Donggang West Road, Gansu, Lanzhou, China.
| |
Collapse
|
229
|
Liu Y, Han D, Parwani AV, Li Z. Applications of Artificial Intelligence in Breast Pathology. Arch Pathol Lab Med 2023; 147:1003-1013. [PMID: 36800539 DOI: 10.5858/arpa.2022-0457-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 02/19/2023]
Abstract
CONTEXT.— Increasing implementation of whole slide imaging together with digital workflow and advances in computing capacity enable the use of artificial intelligence (AI) in pathology, including breast pathology. Breast pathologists often face a significant workload, with diagnosis complexity, tedious repetitive tasks, and semiquantitative evaluation of biomarkers. Recent advances in developing AI algorithms have provided promising approaches to meet the demand in breast pathology. OBJECTIVE.— To provide an updated review of AI in breast pathology. We examined the success and challenges of current and potential AI applications in diagnosing and grading breast carcinomas and other pathologic changes, detecting lymph node metastasis, quantifying breast cancer biomarkers, predicting prognosis and therapy response, and predicting potential molecular changes. DATA SOURCES.— We obtained data and information by searching and reviewing literature on AI in breast pathology from PubMed and based our own experience. CONCLUSIONS.— With the increasing application in breast pathology, AI not only assists in pathology diagnosis to improve accuracy and reduce pathologists' workload, but also provides new information in predicting prognosis and therapy response.
Collapse
Affiliation(s)
- Yueping Liu
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| | - Dandan Han
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| | - Anil V Parwani
- The Department of Pathology, The Ohio State University, Columbus (Parwani, Li)
| | - Zaibo Li
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| |
Collapse
|
230
|
Kaczmarzyk JR, Gupta R, Kurc TM, Abousamra S, Saltz JH, Koo PK. ChampKit: A framework for rapid evaluation of deep neural networks for patch-based histopathology classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 239:107631. [PMID: 37271050 PMCID: PMC11093625 DOI: 10.1016/j.cmpb.2023.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/23/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Histopathology is the gold standard for diagnosis of many cancers. Recent advances in computer vision, specifically deep learning, have facilitated the analysis of histopathology images for many tasks, including the detection of immune cells and microsatellite instability. However, it remains difficult to identify optimal models and training configurations for different histopathology classification tasks due to the abundance of available architectures and the lack of systematic evaluations. Our objective in this work is to present a software tool that addresses this need and enables robust, systematic evaluation of neural network models for patch classification in histology in a light-weight, easy-to-use package for both algorithm developers and biomedical researchers. METHODS Here we present ChampKit (Comprehensive Histopathology Assessment of Model Predictions toolKit): an extensible, fully reproducible evaluation toolkit that is a one-stop-shop to train and evaluate deep neural networks for patch classification. ChampKit curates a broad range of public datasets. It enables training and evaluation of models supported by timm directly from the command line, without the need for users to write any code. External models are enabled through a straightforward API and minimal coding. As a result, Champkit facilitates the evaluation of existing and new models and deep learning architectures on pathology datasets, making it more accessible to the broader scientific community. To demonstrate the utility of ChampKit, we establish baseline performance for a subset of possible models that could be employed with ChampKit, focusing on several popular deep learning models, namely ResNet18, ResNet50, and R26-ViT, a hybrid vision transformer. In addition, we compare each model trained either from random weight initialization or with transfer learning from ImageNet pretrained models. For ResNet18, we also consider transfer learning from a self-supervised pretrained model. RESULTS The main result of this paper is the ChampKit software. Using ChampKit, we were able to systemically evaluate multiple neural networks across six datasets. We observed mixed results when evaluating the benefits of pretraining versus random intialization, with no clear benefit except in the low data regime, where transfer learning was found to be beneficial. Surprisingly, we found that transfer learning from self-supervised weights rarely improved performance, which is counter to other areas of computer vision. CONCLUSIONS Choosing the right model for a given digital pathology dataset is nontrivial. ChampKit provides a valuable tool to fill this gap by enabling the evaluation of hundreds of existing (or user-defined) deep learning models across a variety of pathology tasks. Source code and data for the tool are freely accessible at https://github.com/SBU-BMI/champkit.
Collapse
Affiliation(s)
- Jakub R Kaczmarzyk
- Department of Biomedical Informatics, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, 11794, NY, USA; Simons Center for Quantitative Biology, 1 Bungtown Rd, Cold Spring Harbor, 11724, NY, USA.
| | - Rajarsi Gupta
- Department of Biomedical Informatics, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, 11794, NY, USA
| | - Tahsin M Kurc
- Department of Biomedical Informatics, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, 11794, NY, USA
| | - Shahira Abousamra
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Joel H Saltz
- Department of Biomedical Informatics, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, 11794, NY, USA.
| | - Peter K Koo
- Simons Center for Quantitative Biology, 1 Bungtown Rd, Cold Spring Harbor, 11724, NY, USA.
| |
Collapse
|
231
|
Cooper M, Ji Z, Krishnan RG. Machine learning in computational histopathology: Challenges and opportunities. Genes Chromosomes Cancer 2023; 62:540-556. [PMID: 37314068 DOI: 10.1002/gcc.23177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/15/2023] Open
Abstract
Digital histopathological images, high-resolution images of stained tissue samples, are a vital tool for clinicians to diagnose and stage cancers. The visual analysis of patient state based on these images are an important part of oncology workflow. Although pathology workflows have historically been conducted in laboratories under a microscope, the increasing digitization of histopathological images has led to their analysis on computers in the clinic. The last decade has seen the emergence of machine learning, and deep learning in particular, a powerful set of tools for the analysis of histopathological images. Machine learning models trained on large datasets of digitized histopathology slides have resulted in automated models for prediction and stratification of patient risk. In this review, we provide context for the rise of such models in computational histopathology, highlight the clinical tasks they have found success in automating, discuss the various machine learning techniques that have been applied to this domain, and underscore open problems and opportunities.
Collapse
Affiliation(s)
- Michael Cooper
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Zongliang Ji
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Rahul G Krishnan
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
232
|
Ruiz-Fresneda MA, Gijón A, Morales-Álvarez P. Bibliometric analysis of the global scientific production on machine learning applied to different cancer types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96125-96137. [PMID: 37566331 PMCID: PMC10482761 DOI: 10.1007/s11356-023-28576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Cancer disease is one of the main causes of death in the world, with million annual cases in the last decades. The need to find a cure has stimulated the search for efficient treatments and diagnostic procedures. One of the most promising tools that has emerged against cancer in recent years is machine learning (ML), which has raised a huge number of scientific papers published in a relatively short period of time. The present study analyzes global scientific production on ML applied to the most relevant cancer types through various bibliometric indicators. We find that over 30,000 studies have been published so far and observe that cancers with the highest number of published studies using ML (breast, lung, and colon cancer) are those with the highest incidence, being the USA and China the main scientific producers on the subject. Interestingly, the role of China and Japan in stomach cancer is correlated with the number of cases of this cancer type in Asia (78% of the worldwide cases). Knowing the countries and institutions that most study each area can be of great help for improving international collaborations between research groups and countries. Our analysis shows that medical and computer science journals lead the number of publications on the subject and could be useful for researchers in the field. Finally, keyword co-occurrence analysis suggests that ML-cancer research trends are focused not only on the use of ML as an effective diagnostic method, but also for the improvement of radiotherapy- and chemotherapy-based treatments.
Collapse
Affiliation(s)
| | - Alfonso Gijón
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Pablo Morales-Álvarez
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
| |
Collapse
|
233
|
Liu Z, Lv Q, Yang Z, Li Y, Lee CH, Shen L. Recent progress in transformer-based medical image analysis. Comput Biol Med 2023; 164:107268. [PMID: 37494821 DOI: 10.1016/j.compbiomed.2023.107268] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
The transformer is primarily used in the field of natural language processing. Recently, it has been adopted and shows promise in the computer vision (CV) field. Medical image analysis (MIA), as a critical branch of CV, also greatly benefits from this state-of-the-art technique. In this review, we first recap the core component of the transformer, the attention mechanism, and the detailed structures of the transformer. After that, we depict the recent progress of the transformer in the field of MIA. We organize the applications in a sequence of different tasks, including classification, segmentation, captioning, registration, detection, enhancement, localization, and synthesis. The mainstream classification and segmentation tasks are further divided into eleven medical image modalities. A large number of experiments studied in this review illustrate that the transformer-based method outperforms existing methods through comparisons with multiple evaluation metrics. Finally, we discuss the open challenges and future opportunities in this field. This task-modality review with the latest contents, detailed information, and comprehensive comparison may greatly benefit the broad MIA community.
Collapse
Affiliation(s)
- Zhaoshan Liu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| | - Qiujie Lv
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore; School of Intelligent Systems Engineering, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, China.
| | - Ziduo Yang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore; School of Intelligent Systems Engineering, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, China.
| | - Yifan Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| | - Chau Hung Lee
- Department of Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| |
Collapse
|
234
|
Si Y, Li P, Wang X, Yao G, Liu C, Liu Y, Zhang J, Zhang H, Luo Y. Cueing effect of attention among nurses with different anxiety levels: an EEG study. Med Biol Eng Comput 2023; 61:2269-2279. [PMID: 36988789 DOI: 10.1007/s11517-023-02829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
The attention to cueing among nurses with anxiety affects their nursing quality seriously. Nevertheless, the neural mechanism of attention under anxiety among nurses has not been revealed. In this study, we utilized the event-related potential (ERP) and functional brain networks to investigate the neural mechanism of the cueing attention differences between anxiety and non-anxiety nurse groups (AG-20 nurses; NAG-20 nurses) in the spatial cueing task. The results revealed that in the invalid cues (144 trials), longer reaction times, larger P2 amplitudes, and more linkages between the right frontal and parietal areas were found in AG compared to NAG. In the valid cues (288 trials), there were no significant behavioral and neural differences between the two groups. The AG in the invalid cues showed slower response times, larger P2 and N5 amplitudes, and denser linkages originating from the occipital cortex than those in the valid cues. The convolutional neural network was trained for discriminating between the anxiety nurses and the normal ones, with the average accuracy being 0.76. The findings provided a potential physiological biomarker to predict the anxiety group who need to give more psychological attention. Nurse leaders maybe get more information for offering solutions to retain mental health among nurses.
Collapse
Affiliation(s)
- Yajing Si
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Municipal Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, Henan, China
| | - Peiyang Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xinge Wang
- Department of Nursing, Guangdong Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Guiying Yao
- School of Nursing, Xinxiang Medical University, Xinxiang, Henan, China
| | - Congcong Liu
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yize Liu
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, China.
- Xinxiang Municipal Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, Henan, China.
| | - Yanyan Luo
- School of Nursing, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
235
|
Zheng Y, Li J, Shi J, Xie F, Huai J, Cao M, Jiang Z. Kernel Attention Transformer for Histopathology Whole Slide Image Analysis and Assistant Cancer Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2726-2739. [PMID: 37018112 DOI: 10.1109/tmi.2023.3264781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transformer has been widely used in histopathology whole slide image analysis. However, the design of token-wise self-attention and positional embedding strategy in the common Transformer limits its effectiveness and efficiency when applied to gigapixel histopathology images. In this paper, we propose a novel kernel attention Transformer (KAT) for histopathology WSI analysis and assistant cancer diagnosis. The information transmission in KAT is achieved by cross-attention between the patch features and a set of kernels related to the spatial relationship of the patches on the whole slide images. Compared to the common Transformer structure, KAT can extract the hierarchical context information of the local regions of the WSI and provide diversified diagnosis information. Meanwhile, the kernel-based cross-attention paradigm significantly reduces the computational amount. The proposed method was evaluated on three large-scale datasets and was compared with 8 state-of-the-art methods. The experimental results have demonstrated the proposed KAT is effective and efficient in the task of histopathology WSI analysis and is superior to the state-of-the-art methods.
Collapse
|
236
|
Kataoka Y, Taito S, Yamamoto N, So R, Tsutsumi Y, Anan K, Banno M, Tsujimoto Y, Wada Y, Sagami S, Tsujimoto H, Nihashi T, Takeuchi M, Terasawa T, Iguchi M, Kumasawa J, Ichikawa T, Furukawa R, Yamabe J, Furukawa TA. An open competition involving thousands of competitors failed to construct useful abstract classifiers for new diagnostic test accuracy systematic reviews. Res Synth Methods 2023; 14:707-717. [PMID: 37337729 DOI: 10.1002/jrsm.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
There are currently no abstract classifiers, which can be used for new diagnostic test accuracy (DTA) systematic reviews to select primary DTA study abstracts from database searches. Our goal was to develop machine-learning-based abstract classifiers for new DTA systematic reviews through an open competition. We prepared a dataset of abstracts obtained through database searches from 11 reviews in different clinical areas. As the reference standard, we used the abstract lists that required manual full-text review. We randomly splitted the datasets into a train set, a public test set, and a private test set. Competition participants used the training set to develop classifiers and validated their classifiers using the public test set. The classifiers were refined based on the performance of the public test set. They could submit as many times as they wanted during the competition. Finally, we used the private test set to rank the submitted classifiers. To reduce false exclusions, we used the Fbeta measure with a beta set to seven for evaluating classifiers. After the competition, we conducted the external validation using a dataset from a cardiology DTA review. We received 13,774 submissions from 1429 teams or persons over 4 months. The top-honored classifier achieved a Fbeta score of 0.4036 and a recall of 0.2352 in the external validation. In conclusion, we were unable to develop an abstract classifier with sufficient recall for immediate application to new DTA systematic reviews. Further studies are needed to update and validate classifiers with datasets from other clinical areas.
Collapse
Affiliation(s)
- Yuki Kataoka
- Department of Internal Medicine, Kyoto Min-iren Asukai Hospital, Kyoto, Japan
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | - Shunsuke Taito
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Norio Yamamoto
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Orthopedic Surgery, Miyamoto Orthopedic Hospital, Okayama, Japan
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuhei So
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Psychiatry, Okayama Psychiatric Medical Center, Okayama, Japan
- CureApp, Inc., Tokyo, Japan
| | - Yusuke Tsutsumi
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
- Department of Emergency Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Keisuke Anan
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Division of Respiratory Medicine, Saiseikai Kumamoto Hospital, Kumamoto, Japan
- Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Masahiro Banno
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Psychiatry, Seichiryo Hospital, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasushi Tsujimoto
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Oku Medical Clinic, Osaka, Japan
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto University, Kyoto, Japan
| | - Yoshitaka Wada
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Shintaro Sagami
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
- Department of Gastroenterology and Hepatology, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Hiraku Tsujimoto
- Hospital Care Research Unit, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Takashi Nihashi
- Department of Radiology, Komaki City Hospital, Komaki, Japan
| | - Motoki Takeuchi
- Department of Emergency and General Internal Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teruhiko Terasawa
- Section of General Internal Medicine, Department of Emergency and General Internal Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masahiro Iguchi
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Junji Kumasawa
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Critical Care Medicine, Sakai City Medical Center, Sakai, Japan
| | | | | | | | - Toshi A Furukawa
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto University, Kyoto, Japan
| |
Collapse
|
237
|
Zhang Y, Liu YL, Nie K, Zhou J, Chen Z, Chen JH, Wang X, Kim B, Parajuli R, Mehta RS, Wang M, Su MY. Deep Learning-based Automatic Diagnosis of Breast Cancer on MRI Using Mask R-CNN for Detection Followed by ResNet50 for Classification. Acad Radiol 2023; 30 Suppl 2:S161-S171. [PMID: 36631349 PMCID: PMC10515321 DOI: 10.1016/j.acra.2022.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
RATIONALE AND OBJECTIVES Diagnosis of breast cancer on MRI requires, first, the identification of suspicious lesions; second, the characterization to give a diagnostic impression. We implemented Mask Reginal-Convolutional Neural Network (R-CNN) to detect abnormal lesions, followed by ResNet50 to estimate the malignancy probability. MATERIALS AND METHODS Two datasets were used. The first set had 176 cases, 103 cancer, and 73 benign. The second set had 84 cases, 53 cancer, and 31 benign. For detection, the pre-contrast image and the subtraction images of left and right breasts were used as inputs, so the symmetry could be considered. The detected suspicious area was characterized by ResNet50, using three DCE parametric maps as inputs. The results obtained using slice-based analyses were combined to give a lesion-based diagnosis. RESULTS In the first dataset, 101 of 103 cancers were detected by Mask R-CNN as suspicious, and 99 of 101 were correctly classified by ResNet50 as cancer, with a sensitivity of 99/103 = 96%. 48 of 73 benign lesions and 131 normal areas were identified as suspicious. Following classification by ResNet50, only 16 benign and 16 normal areas remained as malignant. The second dataset was used for independent testing. The sensitivity was 43/53 = 81%. Of the total of 121 identified non-cancerous lesions, only 6 of 31 benign lesions and 22 normal tissues were classified as malignant. CONCLUSION ResNet50 could eliminate approximately 80% of false positives detected by Mask R-CNN. Combining Mask R-CNN and ResNet50 has the potential to develop a fully-automatic computer-aided diagnostic system for breast cancer on MRI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiological Sciences, University of California, Irvine, California; Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yan-Lin Liu
- Department of Radiological Sciences, University of California, Irvine, California
| | - Ke Nie
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Jiejie Zhou
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongwei Chen
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jeon-Hor Chen
- Department of Radiological Sciences, University of California, Irvine, California; Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan
| | - Xiao Wang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Bomi Kim
- Department of Radiological Sciences, University of California, Irvine, California; Department of Breast Radiology, Ilsan Hospital, Goyang, South Korea
| | - Ritesh Parajuli
- Department of Medicine, University of California, Irvine, United States
| | - Rita S Mehta
- Department of Medicine, University of California, Irvine, United States
| | - Meihao Wang
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California; Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
238
|
Zhang F, Xu J, Zhang C, Li Y, Gao J, Qu L, Zhang S, Zhu S, Zhang J, Yang B. Three-Dimensional Histological Electrophoresis for High-Throughput Cancer Margin Detection in Multiple Types of Tumor Specimens. NANO LETTERS 2023; 23:7607-7614. [PMID: 37527513 PMCID: PMC10450807 DOI: 10.1021/acs.nanolett.3c02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Accurate identification of tumor margins during cancer surgeries relies on a rapid detection technique that can perform high-throughput detection of multiple suspected tumor lesions at the same time. Unfortunately, the conventional histopathological analysis of frozen tissue sections, which is considered the gold standard, often demonstrates considerable variability, especially in many regions without adequate access to trained pathologists. Therefore, there is a clinical need for a multitumor-suitable complementary tool that can accurately and high-throughput assess tumor margins in every direction within the surgically resected tissue. We herein describe a high-throughput three-dimensional (3D) histological electrophoresis device that uses tumor-specific proteins to identify and contour tumor margins intraoperatively. Testing on seven cell-line xenograft models and human cervical cancer models (representing five types of tissues) demonstrated the high-throughput detection utility of this approach. We anticipate that the 3D histological electrophoresis device will improve the accuracy and efficiency of diagnosing a wide range of cancers.
Collapse
Affiliation(s)
- Feiran Zhang
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiajun Xu
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chengbin Zhang
- Department
of Pathology, The First Hospital of Jilin
University, Changchun 130021, P. R. China
| | - Yin Li
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiawei Gao
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Limei Qu
- Department
of Pathology, The First Hospital of Jilin
University, Changchun 130021, P. R. China
| | - Songling Zhang
- Department
of Obstetrics and Gynecology, The First
Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shoujun Zhu
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junhu Zhang
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- Joint
Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Center for
Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
239
|
Liu CF, Leigh R, Johnson B, Urrutia V, Hsu J, Xu X, Li X, Mori S, Hillis AE, Faria AV. A large public dataset of annotated clinical MRIs and metadata of patients with acute stroke. Sci Data 2023; 10:548. [PMID: 37607929 PMCID: PMC10444746 DOI: 10.1038/s41597-023-02457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
To extract meaningful and reproducible models of brain function from stroke images, for both clinical and research proposes, is a daunting task severely hindered by the great variability of lesion frequency and patterns. Large datasets are therefore imperative, as well as fully automated image post-processing tools to analyze them. The development of such tools, particularly with artificial intelligence, is highly dependent on the availability of large datasets to model training and testing. We present a public dataset of 2,888 multimodal clinical MRIs of patients with acute and early subacute stroke, with manual lesion segmentation, and metadata. The dataset provides high quality, large scale, human-supervised knowledge to feed artificial intelligence models and enable further development of tools to automate several tasks that currently rely on human labor, such as lesion segmentation, labeling, calculation of disease-relevant scores, and lesion-based studies relating function to frequency lesion maps.
Collapse
Affiliation(s)
- Chin-Fu Liu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Richard Leigh
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Brenda Johnson
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Victor Urrutia
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Johnny Hsu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Xu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Li
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine & Rehabilitation, and Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Andreia V Faria
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
240
|
Borsekofsky S, Tsuriel S, Hagege RR, Hershkovitz D. Perineural invasion detection in pancreatic ductal adenocarcinoma using artificial intelligence. Sci Rep 2023; 13:13628. [PMID: 37604973 PMCID: PMC10442355 DOI: 10.1038/s41598-023-40833-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Perineural invasion (PNI) refers to the presence of cancer cells around or within nerves, raising the risk of residual tumor. Linked to worse prognosis in pancreatic ductal adenocarcinoma (PDAC), PNI is also being explored as a therapeutic target. The purpose of this work was to build a PNI detection algorithm to enhance accuracy and efficiency in identifying PNI in PDAC specimens. Training used 260 manually segmented nerve and tumor HD images from 6 scanned PDAC cases; Analytical performance analysis used 168 additional images; clinical analysis used 59 PDAC cases. The algorithm pinpointed key areas of tumor-nerve proximity for pathologist confirmation. Analytical performance reached sensitivity of 88% and 54%, and specificity of 78% and 85% for the detection of nerve and tumor, respectively. Incorporating tumor-nerve distance in clinical evaluation raised PNI detection from 52 to 81% of all cases. Interestingly, pathologist analysis required an average of only 24 s per case. This time-efficient tool accurately identifies PNI in PDAC, even with a small training cohort, by imitating pathologist thought processes.
Collapse
Affiliation(s)
- Sarah Borsekofsky
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | - Shlomo Tsuriel
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | - Rami R Hagege
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | - Dov Hershkovitz
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel.
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
241
|
Zhang M, Wang C, Cai L, Zhao J, Xu Y, Xing J, Sun J, Zhang Y. Developing a weakly supervised deep learning framework for breast cancer diagnosis with HR status based on mammography images. Comput Struct Biotechnol J 2023; 22:17-26. [PMID: 37655162 PMCID: PMC10465855 DOI: 10.1016/j.csbj.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
The status of hormone receptors (HR) at the molecular level is crucial for accurate diagnosis and effective treatment of breast cancer. Meanwhile, mammography is an effective screening method for detecting breast cancer, which significantly improve survival. However, diagnosing the molecular status of breast cancer involves a pathological biopsy, which can affect the accuracy of the diagnosis. To non-invasively diagnose the hormone receptor (HR) status of breast cancer and reduced manual annotation, we proposed a weakly supervised deep learning framework BSNet which detected breast cancer with HR status and benign tumors. BSNet was trained on 2321 multi-view mammography cases from female undergoing digital mammography for the general population at Harbin Medical University Cancer Hospital in Heilongjiang Province during the period 2017-2018 and was validated on the external cohort. The average AUCs of BSNet on the test set and the external validation set were 0.89 and 0.92, respectively. BSNet demonstrated excellent performance in non-invasive breast cancer diagnosis with HR status, using multiple mammography views without pixel annotation. Furthermore, we developed a web server (http://bsnet.edbc.org) for easy use. BSNet described high-dimensional mammography of breast cancer subtypes, which helped inform early management options.
Collapse
Affiliation(s)
- Mengyan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Cong Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150040, China
| | - Jiyun Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Xu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Jiacheng Xing
- Beidahuang Industry Group General Hospital, 150060 Harbin, China
| | - Jianghong Sun
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China
| |
Collapse
|
242
|
Xulu KR, Nweke EE, Augustine TN. Delineating intra-tumoral heterogeneity and tumor evolution in breast cancer using precision-based approaches. Front Genet 2023; 14:1087432. [PMID: 37662839 PMCID: PMC10469897 DOI: 10.3389/fgene.2023.1087432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
Collapse
Affiliation(s)
- Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
243
|
Madusanka N, Jayalath P, Fernando D, Yasakethu L, Lee BI. Impact of H&E Stain Normalization on Deep Learning Models in Cancer Image Classification: Performance, Complexity, and Trade-Offs. Cancers (Basel) 2023; 15:4144. [PMID: 37627172 PMCID: PMC10452714 DOI: 10.3390/cancers15164144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Accurate classification of cancer images plays a crucial role in diagnosis and treatment planning. Deep learning (DL) models have shown promise in achieving high accuracy, but their performance can be influenced by variations in Hematoxylin and Eosin (H&E) staining techniques. In this study, we investigate the impact of H&E stain normalization on the performance of DL models in cancer image classification. We evaluate the performance of VGG19, VGG16, ResNet50, MobileNet, Xception, and InceptionV3 on a dataset of H&E-stained cancer images. Our findings reveal that while VGG16 exhibits strong performance, VGG19 and ResNet50 demonstrate limitations in this context. Notably, stain normalization techniques significantly improve the performance of less complex models such as MobileNet and Xception. These models emerge as competitive alternatives with lower computational complexity and resource requirements and high computational efficiency. The results highlight the importance of optimizing less complex models through stain normalization to achieve accurate and reliable cancer image classification. This research holds tremendous potential for advancing the development of computationally efficient cancer classification systems, ultimately benefiting cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Nuwan Madusanka
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
| | - Pramudini Jayalath
- Institute of Biochemistry, Faculty of Mathematics and Natural Science, University of Cologne, 50923 Cologne, Germany;
| | - Dileepa Fernando
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Lasith Yasakethu
- Department of Software Engineering, Sri Lanka Technological Campus (SLTC), Padukka 10500, Sri Lanka;
| | - Byeong-Il Lee
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyoung National University, Busan 48513, Republic of Korea
| |
Collapse
|
244
|
Lv Z, Cao X, Jin X, Xu S, Deng H. High-accuracy morphological identification of bone marrow cells using deep learning-based Morphogo system. Sci Rep 2023; 13:13364. [PMID: 37591969 PMCID: PMC10435561 DOI: 10.1038/s41598-023-40424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
Accurate identification and classification of bone marrow (BM) nucleated cell morphology are crucial for the diagnosis of hematological diseases. However, the subjective and time-consuming nature of manual identification by pathologists hinders prompt diagnosis and patient treatment. To address this issue, we developed Morphogo, a convolutional neural network-based system for morphological examination. Morphogo was trained using a vast dataset of over 2.8 million BM nucleated cell images. Its performance was evaluated using 508 BM cases that were categorized into five groups based on the degree of morphological abnormalities, comprising a total of 385,207 BM nucleated cells. The results demonstrated Morphogo's ability to identify over 25 different types of BM nucleated cells, achieving a sensitivity of 80.95%, specificity of 99.48%, positive predictive value of 76.49%, negative predictive value of 99.44%, and an overall accuracy of 99.01%. In most groups, Morphogo cell analysis and Pathologists' proofreading showed high intragroup correlation coefficients for granulocytes, erythrocytes, lymphocytes, monocytes, and plasma cells. These findings further validate the practical applicability of the Morphogo system in clinical practice and emphasize its value in assisting pathologists in diagnosing blood disorders.
Collapse
Affiliation(s)
- Zhanwu Lv
- Bone Marrow Chamber, Guangzhou Kingmed Diagnostic Laboratory Group Co., Ltd., Guangzhou, 510330, China.
| | - Xinyi Cao
- Division of Medical Technology Development, Hangzhou Zhiwei Information Technology Co., Ltd., Hangzhou, 310000, China
| | - Xinyi Jin
- Division of Medical Technology Development, Hangzhou Zhiwei Information Technology Co., Ltd., Hangzhou, 310000, China
| | - Shuangqing Xu
- Bone Marrow Chamber, Guangzhou Kingmed Diagnostic Laboratory Group Co., Ltd., Guangzhou, 510330, China
| | - Huangling Deng
- Bone Marrow Chamber, Guangzhou Kingmed Diagnostic Laboratory Group Co., Ltd., Guangzhou, 510330, China
| |
Collapse
|
245
|
Jiang Y, Zhou K, Sun Z, Wang H, Xie J, Zhang T, Sang S, Islam MT, Wang JY, Chen C, Yuan Q, Xi S, Li T, Xu Y, Xiong W, Wang W, Li G, Li R. Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics. Cell Rep Med 2023; 4:101146. [PMID: 37557177 PMCID: PMC10439253 DOI: 10.1016/j.xcrm.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi-institution cohorts of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME status and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with checkpoint blockade immunotherapy, the model predicts clinical response and further improves predictive accuracy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME, which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kangneng Zhou
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Xie
- Graduate Group of Epidemiology, University of California Davis, Davis, CA, USA
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengtian Sang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jen-Yeu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sujuan Xi
- The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tuanjie Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
246
|
Altukroni A, Alsaeedi A, Gonzalez-Losada C, Lee JH, Alabudh M, Mirah M, El-Amri S, Ezz El-Deen O. Detection of the pathological exposure of pulp using an artificial intelligence tool: a multicentric study over periapical radiographs. BMC Oral Health 2023; 23:553. [PMID: 37563659 PMCID: PMC10416487 DOI: 10.1186/s12903-023-03251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Introducing artificial intelligence (AI) into the medical field proved beneficial in automating tasks and streamlining the practitioners' lives. Hence, this study was conducted to design and evaluate an AI tool called Make Sure Caries Detector and Classifier (MSc) for detecting pathological exposure of pulp on digital periapical radiographs and to compare its performance with dentists. METHODS This study was a diagnostic, multi-centric study, with 3461 digital periapical radiographs from three countries and seven centers. MSc was built using Yolov5-x model, and it was used for exposed and unexposed pulp detection. The dataset was split into a train, validate, and test dataset; the ratio was 8-1-1 to prevent overfitting. 345 images with 752 labels were randomly allocated to test MSc. The performance metrics used to test MSc performance included mean average precision (mAP), precision, F1 score, recall, and area under receiver operating characteristic curve (AUC). The metrics used to compare the performance with that of 10 certified dentists were: right diagnosis exposed (RDE), right diagnosis not exposed (RDNE), false diagnosis exposed (FDE), false diagnosis not exposed (FDNE), missed diagnosis (MD), and over diagnosis (OD). RESULTS MSc achieved a performance of more than 90% in all metrics examined: an average precision of 0.928, recall of 0.918, F1-score of 0.922, and AUC of 0.956 (P<.05). The results showed a higher mean of 1.94 for all right (correct) diagnosis parameters in MSc group, while a higher mean of 0.64 for all wrong diagnosis parameters in the dentists group (P<.05). CONCLUSIONS The designed MSc tool proved itself reliable in the detection and differentiating between exposed and unexposed pulp in the internally validated model. It also showed a better performance for the detection of exposed and unexposed pulp when compared to the 10 dentists' consensus.
Collapse
Affiliation(s)
| | - A Alsaeedi
- Department of Computer Science, College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia
| | - C Gonzalez-Losada
- School of Dentistry, Complutense University of Madrid, Madrid, Spain
| | - J H Lee
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Korea
| | - M Alabudh
- Ministry of Health, Medina, Saudi Arabia
| | - M Mirah
- Department of Dental Materials, Taibah University, Medina, Saudi Arabia
| | | | | |
Collapse
|
247
|
Wang CW, Chu KL, Muzakky H, Lin YJ, Chao TK. Efficient Convolution Network to Assist Breast Cancer Diagnosis and Target Therapy. Cancers (Basel) 2023; 15:3991. [PMID: 37568809 PMCID: PMC10416960 DOI: 10.3390/cancers15153991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women worldwide, and early detection and treatment has been shown to significantly reduce fatality rates from severe illness. Moreover, determination of the human epidermal growth factor receptor-2 (HER2) gene amplification by Fluorescence in situ hybridization (FISH) and Dual in situ hybridization (DISH) is critical for the selection of appropriate breast cancer patients for HER2-targeted therapy. However, visual examination of microscopy is time-consuming, subjective and poorly reproducible due to high inter-observer variability among pathologists and cytopathologists. The lack of consistency in identifying carcinoma-like nuclei has led to divergences in the calculation of sensitivity and specificity. This manuscript introduces a highly efficient deep learning method with low computing cost. The experimental results demonstrate that the proposed framework achieves high precision and recall on three essential clinical applications, including breast cancer diagnosis and human epidermal receptor factor 2 (HER2) amplification detection on FISH and DISH slides for HER2 target therapy. Furthermore, the proposed method outperforms the majority of the benchmark methods in terms of IoU by a significant margin (p<0.001) on three essential clinical applications. Importantly, run time analysis shows that the proposed method obtains excellent segmentation results with notably reduced time for Artificial intelligence (AI) training (16.93%), AI inference (17.25%) and memory usage (18.52%), making the proposed framework feasible for practical clinical usage.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (K.-L.C.); (H.M.)
| | - Kai-Lin Chu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (K.-L.C.); (H.M.)
| | - Hikam Muzakky
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (K.-L.C.); (H.M.)
| | - Yi-Jia Lin
- Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan;
- Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan;
- Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
248
|
Mavropoulos A, Johnson C, Lu V, Nieto J, Schneider EC, Saini K, Phelan ML, Hsie LX, Wang MJ, Cruz J, Mei J, Kim JJ, Lian Z, Li N, Boutet SC, Wong-Thai AY, Yu W, Lu QY, Kim T, Geng Y, Masaeli MM, Lee TD, Rao J. Artificial Intelligence-Driven Morphology-Based Enrichment of Malignant Cells from Body Fluid. Mod Pathol 2023; 36:100195. [PMID: 37100228 DOI: 10.1016/j.modpat.2023.100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
Cell morphology is a fundamental feature used to evaluate patient specimens in pathologic analysis. However, traditional cytopathology analysis of patient effusion samples is limited by low tumor cell abundance coupled with the high background of nonmalignant cells, restricting the ability of downstream molecular and functional analyses to identify actionable therapeutic targets. We applied the Deepcell platform that combines microfluidic sorting, brightfield imaging, and real-time deep learning interpretations based on multidimensional morphology to enrich carcinoma cells from malignant effusions without cell staining or labels. Carcinoma cell enrichment was validated with whole genome sequencing and targeted mutation analysis, which showed a higher sensitivity for detection of tumor fractions and critical somatic variant mutations that were initially at low levels or undetectable in presort patient samples. Our study demonstrates the feasibility and added value of supplementing traditional morphology-based cytology with deep learning, multidimensional morphology analysis, and microfluidic sorting.
Collapse
Affiliation(s)
| | | | - Vivian Lu
- Deepcell, Inc, Menlo Park, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Weibo Yu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Qing-Yi Lu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Teresa Kim
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Yipeng Geng
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | | | - Thomas D Lee
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, California
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, California.
| |
Collapse
|
249
|
Yuan J, Zhu W, Li H, Yan D, Shen S. Neural Network Based Classification of Breast Cancer Histopathological Image from Intraoperative Rapid Frozen Sections. J Digit Imaging 2023; 36:1597-1607. [PMID: 36932252 PMCID: PMC10406781 DOI: 10.1007/s10278-023-00802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Despite the rapid developments in diagnostic techniques and medical sciences, pathologic diagnosis is still recognized as the gold standard for disease diagnose. Pathologic diagnosis is a time-consuming task performed for pathologists, needing profound professional knowledge and long-term accumulated diagnostic experience. Therefore, the development of automatic and precise histopathological image classification is essential for medical diagnosis. In this study, an improved VGG network was used to classify the breast cancer histopathological image from intraoperative rapid frozen sections. We adopt a transformed loss function by adding a penalty to cross-entropy in our training stage, which improved the accuracy on test data by 4.39%. Laplacian-4 was used for the enhancement of images, which contributes to the improvement of the accuracy. The accuracy of the proposed model on training data and test data reached 88.70% and 82.27%, respectively, which outperforms the original model by 9.39% of accuracy in test data. The process time was less than 0.25 s per image on average. Meanwhile, the heat maps of predictions were given to show the evidential regions in histopathological images, which could drive improvements in the accuracy, speed, and clinical value of pathological diagnoses. In addition to helping with the actual diagnosis, this technology may be a benefit to pathologists, surgeons, and patients. It might prove to be a helpful tool for pathologists in the future.
Collapse
Affiliation(s)
- Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Wenkang Zhu
- The Institute of Technological Sciences, Wuhan University, 430074, Wuhan, China
| | - Hui Li
- The Institute of Technological Sciences, Wuhan University, 430074, Wuhan, China.
- Research Institute of Wuhan University in Shenzhen, 518057, Shenzhen, China.
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China.
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Shengnan Shen
- The Institute of Technological Sciences, Wuhan University, 430074, Wuhan, China
- Research Institute of Wuhan University in Shenzhen, 518057, Shenzhen, China
| |
Collapse
|
250
|
Matsushima J, Sato T, Yoshimura Y, Mizutani H, Koto S, Matsusaka K, Ikeda JI, Sato T, Fujii A, Ono Y, Mitsui T, Ban S, Matsubara H, Hayashi H. Clinical utility of artificial intelligence assistance in histopathologic review of lymph node metastasis for gastric adenocarcinoma. Int J Clin Oncol 2023; 28:1033-1042. [PMID: 37256523 DOI: 10.1007/s10147-023-02356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Advances in whole-slide image capture and computer image analyses using deep learning technologies have enabled the development of computer-assisted diagnostics in pathology. Herein, we built a deep learning algorithm to detect lymph node (LN) metastasis on whole-slide images of LNs retrieved from patients with gastric adenocarcinoma and evaluated its performance in clinical settings. METHODS We randomly selected 18 patients with gastric adenocarcinoma who underwent surgery with curative intent and were positive for LN metastasis at Chiba University Hospital. A ResNet-152-based assistance system was established to detect LN metastases and to outline regions that are highly probable for metastasis in LN images. Reference standards comprising 70 LN images from two different institutions were reviewed by six pathologists with or without algorithm assistance, and their diagnostic performances were compared between the two settings. RESULTS No statistically significant differences were observed between these two settings regarding sensitivity, review time, or confidence levels in classifying macrometastases, isolated tumor cells, and metastasis-negative. Meanwhile, the sensitivity for detecting micrometastases significantly improved with algorithm assistance, although the review time was significantly longer than that without assistance. Analysis of the algorithm's sensitivity in detecting metastasis in the reference standard indicated an area under the curve of 0.869, whereas that for the detection of micrometastases was 0.785. CONCLUSIONS A wide variety of histological types in gastric adenocarcinoma could account for these relatively low performances; however, this level of algorithm performance could suffice to help pathologists improve diagnostic accuracy.
Collapse
Affiliation(s)
- Jun Matsushima
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, Japan
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, Chiba, 263-8522, Japan
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan
| | - Tamotsu Sato
- Toshiba Digital Solutions Corporation, 72-34 Horikawa-Cho, Saiwai-Ku, Kawasaki, Kanagawa, Japan
| | - Yuichiro Yoshimura
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, Chiba, 263-8522, Japan
| | - Hiroyuki Mizutani
- Toshiba Digital Solutions Corporation, 72-34 Horikawa-Cho, Saiwai-Ku, Kawasaki, Kanagawa, Japan
| | - Shinichiro Koto
- Toshiba Digital Solutions Corporation, 72-34 Horikawa-Cho, Saiwai-Ku, Kawasaki, Kanagawa, Japan
| | - Keisuke Matsusaka
- Department of Pathology, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan
| | - Taiki Sato
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Akiko Fujii
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Yuko Ono
- Department of Diagnostic Pathology, Dokkyo Medical University, 880 Kitakobayashi, Shimotusugagun, Mibu, Tochigi, Japan
| | - Takashi Mitsui
- Department of Surgery, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Japan
| | - Shinichi Ban
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan
| | - Hideki Hayashi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, Chiba, 263-8522, Japan.
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, Japan.
| |
Collapse
|