201
|
Kraljević N, Langner R, Küppers V, Raimondo F, Patil KR, Eickhoff SB, Müller VI. Network and State Specificity in Connectivity-Based Predictions of Individual Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540387. [PMID: 37215048 PMCID: PMC10197703 DOI: 10.1101/2023.05.11.540387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Predicting individual behavior from brain functional connectivity (FC) patterns can contribute to our understanding of human brain functioning. This may apply in particular if predictions are based on features derived from circumscribed, a priori defined functional networks, which improves interpretability. Furthermore, some evidence suggests that task-based FC data may yield more successful predictions of behavior than resting-state FC data. Here, we comprehensively examined to what extent the correspondence of functional network priors and task states with behavioral target domains influences the predictability of individual performance in cognitive, social, and affective tasks. To this end, we used data from the Human Connectome Project for large-scale out-of-sample predictions of individual abilities in working memory (WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared error and coefficient of determination to evaluate model fit revealed that predictive performance was rather poor overall. Predictions from whole-brain FC were slightly better than those from FC in task-specific networks, and a slight benefit of predictions based on FC from task versus resting state was observed for performance in the WM domain. Beyond that, we did not find any significant effects of a correspondence of network, task state, and performance domains. Together, these results suggest that multivariate FC patterns during both task and resting states contain rather little information on individual performance levels, calling for a reconsideration of how the brain mediates individual differences in mental abilities.
Collapse
Affiliation(s)
- Nevena Kraljević
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Veronika I Müller
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| |
Collapse
|
202
|
Giglberger M, Peter HL, Henze GI, Kraus E, Bärtl C, Konzok J, Kreuzpointner L, Kirsch P, Kudielka BM, Wüst S. Neural responses to acute stress predict chronic stress perception in daily life over 13 months. Sci Rep 2023; 13:19990. [PMID: 37968323 PMCID: PMC10651906 DOI: 10.1038/s41598-023-46631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
The importance of amygdala, hippocampus, and medial prefrontal cortex (mPFC) for the integration of neural, endocrine, and affective stress processing was shown in healthy participants and patients with stress-related disorders. The present manuscript which reports on one study-arm of the LawSTRESS project, aimed at investigating the predictive value of acute stress responses in these regions for biopsychological consequences of chronic stress in daily life. The LawSTRESS project examined law students either in preparation for their first state examination (stress group [SG]) or in the mid-phase of their study program (control group [CG]) over 13 months. Ambulatory assessments comprising perceived stress measurements and the cortisol awakening response (CAR) were administered on six sampling points (t1 = - 1 year, t2 = - 3 months, t3 = - 1 week, t4 = exam, t5 = + 1 week, t6 = + 1 month). In a subsample of 124 participants (SG: 61; CG: 63), ScanSTRESS was applied at baseline. In the SG but not in the CG, amygdala, hippocampus, and (post-hoc analyzed) right mPFC activation changes during ScanSTRESS were significantly associated with the trajectory of perceived stress but not with the CAR. Consistent with our finding in the total LawSTRESS sample, a significant increase in perceived stress and a blunted CAR over time could be detected in the SG only. Our findings suggest that more pronounced activation decreases of amygdala, hippocampus, and mPFC in response to acute psychosocial stress at baseline were related to a more pronounced increase of stress in daily life over the following year.
Collapse
Affiliation(s)
- Marina Giglberger
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Hannah L Peter
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Gina-Isabelle Henze
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elisabeth Kraus
- Department of Psychology, Computational Modeling in Psychology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christoph Bärtl
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Julian Konzok
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Ludwig Kreuzpointner
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Brigitte M Kudielka
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Stefan Wüst
- Department of Psychology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
203
|
Puglia MH, Lynch ME, Nance MG, Connelly JJ, Morris JP. DNA methylation of the oxytocin receptor interacts with age to impact neural response to social stimuli. Front Aging Neurosci 2023; 15:1252478. [PMID: 38020783 PMCID: PMC10665856 DOI: 10.3389/fnagi.2023.1252478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Social isolation is one of the strongest predictors of increased risk of mortality in older adulthood. The ability to form and maintain the social relationships that mitigate this risk is partially regulated by the oxytocinergic system and one's ability to attend to and process social information. We have previously shown that an epigenetic change to the DNA of the oxytocin receptor gene (OXTR methylation) affects the salience of social information in young adults. Little is known about how the oxytocinergic system ages and what effect this aging system has on social cognitive abilities throughout the lifespan. Methods Here we explored age-related differences in the association between neural response during selective social attention and OXTR DNA methylation in young (age 18-31) and older (age 58-81) adults. Participants underwent fMRI during a selective social attention task and provided a DNA sample for the assessment of OXTR methylation. Results and Discussion We found that older adults activated diffuse areas of visual cortex and dorsolateral prefrontal cortex during selective social attention, consistent with the dedifferentiation and compensatory neural activation commonly reported in aging. We found a significant age-by-OXTR methylation interaction on neural response when attending to social stimuli in a complex display; young adults displayed a positive association between OXTR methylation and neural activation, replicating our prior finding that young adults with presumed diminished endogenous access to oxytocin recruit regions of the attentional cortex to a greater extent. This association did not hold for older adults. Instead, perceived social support interacted with OXTR methylation to influence neural response during selective social attention. These data suggest that environmental factors like social support moderate biological processes in aging and highlight the importance of a lifespan perspective for understanding associations between individual differences in the oxytocinergic system, neural function, and social behavior.
Collapse
Affiliation(s)
- Meghan H. Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Morgan E. Lynch
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Madelyn G. Nance
- Department of Neurology, University of Virginia, Charlottesville, VA, United States
| | - Jessica J. Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - James P. Morris
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
204
|
Seifert AC, Xu J, Kong Y, Eippert F, Miller KL, Tracey I, Vannesjo SJ. Thermal Stimulus Task fMRI in the Cervical Spinal Cord at 7 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526451. [PMID: 36778391 PMCID: PMC9915652 DOI: 10.1101/2023.01.31.526451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Although functional MRI is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0. Increasing field strength enables higher spatial resolution and improved sensitivity to BOLD signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first stimulus task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D EPI protocols, as they differ in sensitivity to spatial and temporal B0 inhomogeneity. METHODS The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. For each protocol, the BOLD response to thirteen 10-second noxious thermal stimuli applied to the right thumb was acquired in a 10-minute fMRI run. Image quality, temporal SNR, and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. RESULTS Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. CONCLUSION Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment.
Collapse
|
205
|
Slomp M, de Lange IGS, Mul JD, Schrantee A, la Fleur SE. Investigating Habenula Functional Connectivity and Reward-Related Activity in Obesity Using Human Connectome Project Data. Brain Connect 2023; 13:541-552. [PMID: 37578129 DOI: 10.1089/brain.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction: The habenula, a brain region involved in aversion, might negatively modulate caloric intake. Functional magnetic resonance imaging (fMRI) studies reported associations between weight loss and habenula functional connectivity. However, whether habenula resting-state functional connectivity (rsFC) and reward-related activity are altered in obesity is yet unknown. Methods: Using data from the Human Connectome Project, we included 300 subjects with various body mass indexes (BMIs) and a healthy long-term blood glucose (hemoglobin A1c [HbA1c]). In addition, we investigated a potential BMI × HbA1c interaction in a separate cohort including subjects with prediabetes (n = 72). Habenula rsFC was assessed using a region of interest (ROI)-to-ROI analysis. Furthermore, a separate analysis using gambling task fMRI data focused on reward-related habenula activity. Results: We did not find an association between BMI and habenula rsFC for any of the ROIs. For the exploratory analysis of the BMI × HbA1c effect, a significant interaction effect was found for the habenula-ventral tegmental area (VTA) connection, but this did not survive multiple comparisons correction. Monetary punishment compared with reward activated the bilateral habenula in the BMI sample, but this activity was not associated with BMI. Discussion: In conclusion, we did not find evidence for an association between BMI and habenula rsFC or reward-related activity. However, there might be an interaction between BMI and HbA1c for the habenula-VTA rsFC, suggestive of a role of the habenula in glucose regulation. Future studies should focus on metabolic parameters in their experimental design to confirm our findings and explore the precise role of the habenula in metabolism.
Collapse
Affiliation(s)
- Margo Slomp
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, The Netherlands
| | - Ilke G S de Lange
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, The Netherlands
| | - Joram D Mul
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk Schrantee
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
206
|
Macoveanu J, Petersen JZ, Fisher PM, Kessing LV, Knudsen GM, Miskowiak KW. Associations between aberrant working memory-related neural activity and cognitive impairments in somatically healthy, remitted patients with mood disorders. Psychol Med 2023; 53:7203-7213. [PMID: 37051904 DOI: 10.1017/s0033291723000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Persistent cognitive deficits are prevalent in patients with bipolar disorder (BD) and unipolar disorder (UD), but treatments effectively targeting cognition in these mood disorders are lacking. This is partly due to poor insight into the neuronal underpinnings of cognitive deficits. METHODS The aim of this functional magnetic resonance imaging (fMRI) study was to investigate the neuronal underpinnings of working memory (WM)-related deficits in somatically healthy, remitted patients with BD or UD (n = 66) with cognitive and functional impairments compared to 38 healthy controls (HC). The participants underwent neuropsychological testing and fMRI, while performing a visuospatial and a verbal N-back WM paradigm. RESULTS Relative to HC, patients exhibited hypo-activity across dorsolateral prefrontal cortex as well as frontal and parietal nodes of the cognitive control network (CCN) and hyper-activity in left orbitofrontal cortex within the default mode network (DMN) during both visuospatial and verbal WM performance. Verbal WM-related response in the left posterior superior frontal gyrus (SFG) within CCN was lower in patients and correlated positively with out-of-scanner executive function performance across all participants. CONCLUSIONS Our findings suggest that cognitive impairments across BD and UD are associated with insufficient recruitment of task-relevant regions in the CCN and down-regulation of task-irrelevant orbitofrontal activity within the DMN during task performance. Specifically, a lower recruitment of the left posterior SFG within CCN during verbal WM was associated with lower cognitive performance.
Collapse
Affiliation(s)
- Julian Macoveanu
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Jeff Zarp Petersen
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit and Center for Integrated Molecular Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Imaging, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
207
|
Mariani Wigley ILC, Björnsdotter M, Scheinin NM, Merisaari H, Saunavaara J, Parkkola R, Bonichini S, Montirosso R, Karlsson L, Karlsson H, Tuulari JJ. Infants' sex affects neural responses to affective touch in early infancy. Dev Psychobiol 2023; 65:e22419. [PMID: 37860896 DOI: 10.1002/dev.22419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023]
Abstract
Social touch is closely related to the establishment and maintenance of social bonds in humans, and the sensory brain circuit for gentle brushing is already active soon after birth. Brain development is known to be sexually dimorphic, but the potential effect of sex on brain activation to gentle touch remains unknown. Here, we examined brain activation to gentle skin stroking, a tactile stimulation that resembles affective or social touch, in term-born neonates. Eighteen infants aged 11-36 days, recruited from the FinnBrain Birth Cohort Study, were included in the study. During natural sleep, soft brush strokes were applied to the skin of the right leg during functional magnetic resonance imaging (fMRI) at 3 cm/s velocity. We examined potential differences in brain activation between males (n = 10) and females (n = 8) and found that females had larger blood oxygenation level dependent (BOLD) responses (brushing vs. rest) in bilateral orbitofrontal cortex (OFC), right ventral striatum and bilateral inferior striatum, pons, and cerebellum compared to males. Moreover, the psychophysiological interactions (PPI) analysis, setting the left and right OFC as seed regions, revealed significant differences between males and females. Females exhibited stronger PPI connectivity between the left OFC and posterior cingulate or cuneus. Our work suggests that social touch neural responses are different in male and female neonates, which may have major ramifications for later brain, cognitive, and social development. Finally, many of the sexually dimorphic brain responses were subcortical, not captured by surface-based neuroimaging, indicating that fMRI will be a relevant technique for future studies.
Collapse
Affiliation(s)
| | - Malin Björnsdotter
- Department of Affective Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Center for Cognitive and Computational Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Harri Merisaari
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Department of Radiology, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Radiology, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Sabrina Bonichini
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Linnea Karlsson
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| | - Hasse Karlsson
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
208
|
Orlando I, Ricci C, Griffanti L, Filippini N. Neural correlates of successful emotion recognition in healthy elderly: a multimodal imaging study. Soc Cogn Affect Neurosci 2023; 18:nsad058. [PMID: 37837299 PMCID: PMC10612567 DOI: 10.1093/scan/nsad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The ageing process is associated with reduced emotional recognition (ER) performance. The ER ability is an essential part of non-verbal communication, and its role is crucial for proper social functioning. Here, using the 'Cambridge Centre for Ageing and Neuroscience cohort sample', we investigated when ER, measured using a facial emotion recognition test, begins to consistently decrease along the lifespan. Moreover, using structural and functional MRI data, we identified the neural correlates associated with ER maintenance in the age groups showing early signs of ER decline (N = 283; age range: 58-89 years). The ER performance was positively correlated with greater volume in the superior parietal lobule, higher white matter integrity in the corpus callosum and greater functional connectivity in the mid-cingulate area. Our results suggest that higher ER accuracy in older people is associated with preserved gray and white matter volumes in cognitive or interconnecting areas, subserving brain regions directly involved in emotional processing.
Collapse
Affiliation(s)
- Isabella Orlando
- Department of Psychology, Salesian Pontifical University of Rome, Rome 00139, Italy
| | - Carlo Ricci
- Department of Psychology, Salesian Pontifical University of Rome, Rome 00139, Italy
- Department of Psychology, Walden Institute of Rome, Rome 00186, Italy
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | |
Collapse
|
209
|
Sherman BE, Harris BB, Turk-Browne NB, Sinha R, Goldfarb EV. Hippocampal Mechanisms Support Cortisol-Induced Memory Enhancements. J Neurosci 2023; 43:7198-7212. [PMID: 37813570 PMCID: PMC10601369 DOI: 10.1523/jneurosci.0916-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution fMRI, and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure (in both sexes). Behaviorally, hydrocortisone promoted the encoding of subjectively arousing, positive associative memories. Neurally, hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional associations. Cortisol also modified the relationship between hippocampal representations and associative memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional associative memory enhancements under cortisol.SIGNIFICANCE STATEMENT Our daily lives are filled with stressful events, which powerfully shape the way we form episodic memories. For example, stress and stress-related hormones can enhance our memory for emotional events. However, the mechanisms underlying these memory benefits are unclear. In the current study, we combined functional neuroimaging, behavioral tests of memory, and double-blind, placebo-controlled hydrocortisone administration to uncover the effects of the stress-related hormone cortisol on the function of the human hippocampus, a brain region important for episodic memory. We identified novel ways in which cortisol can enhance hippocampal function to promote emotional memories, highlighting the adaptive role of cortisol in shaping memory formation.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, University of Pennsylvania, Philadelphia 19104
| | - Bailey B Harris
- Department of Psychology, UCLA, Los Angeles, California 90095
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
| | - Elizabeth V Goldfarb
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- National Center for PTSD, VA Connecticut Healthcare System, West Haven, Connecticut 06477
| |
Collapse
|
210
|
Zaff O, Wyngaarden JB, Dennison JB, Sazhin D, Chein J, McCloskey M, Alloy LB, Jarcho JM, Smith DV, Fareri DS. Social Context and Reward Sensitivity Enhance Corticostriatal Function during Experiences of Shared Rewards. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.562908. [PMID: 37905048 PMCID: PMC10614966 DOI: 10.1101/2023.10.19.562908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Although prior research has demonstrated enhanced striatal response when sharing rewards with close social connections, less is known about how individual differences affect ventral striatal (VS) activation and connectivity when experiencing rewards within social contexts. Given that self-reported reward sensitivity and level of substance use have been associated with differences in VS activation, we set out to investigate whether these factors would be independently associated with enhancements to neural reward responses within social contexts. In this pre-registered study, participants (N=45) underwent fMRI while playing a card guessing game in which correct or incorrect guesses resulted in monetary gains and losses that were shared evenly with either a close friend, stranger (confederate), or non-human partner. Consistent with our prior work, we found increased VS activation when sharing rewards with a socially close peer as opposed to an out-of-network stranger. As self-reported reward sensitivity increased, the difference in VS response to rewards shared with friends and strangers decreased. We also found enhanced connectivity between the VS and temporoparietal junction when sharing rewards with close friends as opposed to strangers. Finally, exploratory analyses revealed that as reward sensitivity and sub-clinical substance use increase, the difference in VS connectivity with the right fusiform face area increases as a function of social context. These findings demonstrate that responsivity to the context of close friends may be tied to individual reward sensitivity or sub-clinical substance use habits; together these factors may inform predictions of risk for future mental health disorders.
Collapse
Affiliation(s)
- Ori Zaff
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - James B. Wyngaarden
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jeffrey B. Dennison
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jason Chein
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Michael McCloskey
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Lauren B. Alloy
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Johanna M. Jarcho
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - David V. Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Dominic S. Fareri
- Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
211
|
Li X, Motwani C, Cao M, Martin E, Halperin JM. Working Memory-Related Neurofunctional Correlates Associated with the Frontal Lobe in Children with Familial vs. Non-Familial Attention Deficit/Hyperactivity Disorder. Brain Sci 2023; 13:1469. [PMID: 37891836 PMCID: PMC10605263 DOI: 10.3390/brainsci13101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high prevalence, heritability, and heterogeneity. Children with a positive family history of ADHD have a heightened risk of ADHD emergence, persistence, and executive function deficits, with the neural mechanisms having been under investigated. The objective of this study was to investigate working memory-related functional brain activation patterns in children with ADHD (with vs. without positive family histories (ADHD-F vs. ADHD-NF)) and matched typically developing children (TDC). Voxel-based and region of interest analyses were conducted on two-back task-based fMRI data of 362 subjects, including 186, 96, and 80 children in groups of TDC, ADHD-NF, and ADHD-F, respectively. Relative to TDC, both ADHD groups had significantly reduced activation in the left inferior frontal gyrus (IFG). And the ADHD-F group demonstrated a significant positive association of left IFG activation with task reaction time, a negative association of the right IFG with ADHD symptomatology, and a negative association of the IFG activation laterality index with the inattention symptom score. These results suggest that working memory-related functional alterations in bilateral IFGs may play distinct roles in ADHD-F, with the functional underdevelopment of the left IFG significantly informing the onset of ADHD symptoms. Our findings have the potential to assist in tailored diagnoses and targeted interventions in children with ADHD-F.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Chirag Motwani
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Elizabeth Martin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (C.M.); (M.C.); (E.M.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA;
| |
Collapse
|
212
|
Andrushko JW, Rinat S, Kirby ED, Dahlby J, Ekstrand C, Boyd LA. Females exhibit smaller volumes of brain activation and lower inter-subject variability during motor tasks. Sci Rep 2023; 13:17698. [PMID: 37848679 PMCID: PMC10582116 DOI: 10.1038/s41598-023-44871-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Past work has shown that brain structure and function differ between females and males. Males have larger cortical and sub-cortical volume and surface area (both total and subregional), while females have greater cortical thickness in most brain regions. Functional differences are also reported in the literature, yet to date little work has systematically considered whether patterns of brain activity indexed with functional magnetic resonance imaging (fMRI) differ between females and males. The current study sought to remediate this issue by employing task-based whole brain motor mapping analyses using an openly available dataset. We tested differences in patterns of functional brain activity associated with 12 voluntary movement patterns in females versus males. Results suggest that females exhibited smaller volumes of brain activation across all 12 movement tasks, and lower patterns of variability in 10 of the 12 movements. We also observed that females had greater cortical thickness, which is in alignment with previous analyses of structural differences. Overall, these findings provide a basis for considering biological sex in future fMRI research and provide a foundation of understanding differences in how neurological pathologies present in females vs males.
Collapse
Affiliation(s)
- Justin W Andrushko
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Eric D Kirby
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Julia Dahlby
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chelsea Ekstrand
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
213
|
Ganesan S, A Moffat B, Van Dam NT, Lorenzetti V, Zalesky A. Meditation attenuates default-mode activity: A pilot study using ultra-high field 7 Tesla MRI. Brain Res Bull 2023; 203:110766. [PMID: 37734622 DOI: 10.1016/j.brainresbull.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES Mapping the neurobiology of meditation has been bolstered by functional MRI (fMRI) research, with advancements in ultra-high field 7 Tesla fMRI further enhancing signal quality and neuroanatomical resolution. Here, we utilize 7 Tesla fMRI to examine the neural substrates of meditation and replicate existing widespread findings, after accounting for relevant physiological confounds. METHODS In this feasibility study, we scanned 10 beginner meditators (N = 10) while they either attended to breathing (focused attention meditation) or engaged in restful thinking (non-focused rest). We also measured and adjusted the fMRI signal for key physiological differences between meditation and rest. Finally, we explored changes in state mindfulness, state anxiety and focused attention attributes for up to 2 weeks following the single fMRI meditation session. RESULTS Group-level task fMRI analyses revealed significant reductions in activity during meditation relative to rest in default-mode network hubs, i.e., antero-medial prefrontal and posterior cingulate cortices, precuneus, as well as visual and thalamic regions. These findings survived stringent statistical corrections for fluctuations in physiological responses which demonstrated significant differences (p < 0.05/n, Bonferroni controlled) between meditation and rest. Compared to baseline, State Mindfulness Scale (SMS) scores were significantly elevated (F(3,9) = 8.16, p < 0.05/n, Bonferroni controlled) following the fMRI meditation session, and were closely maintained at 2-week follow up. CONCLUSIONS This pilot study establishes the feasibility and utility of investigating focused attention meditation using ultra-high field (7 Tesla) fMRI, by supporting widespread evidence that focused attention meditation attenuates default-mode activity responsible for self-referential processing. Future functional neuroimaging studies of meditation should control for physiological confounds and include behavioural assessments.
Collapse
Affiliation(s)
- Saampras Ganesan
- Melbourne Neuropsychiatry Centre, Carlton, Victoria 3053, Australia; Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia; Contemplative Studies Centre, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Nicholas T Van Dam
- Contemplative Studies Centre, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Faculty of Health, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Carlton, Victoria 3053, Australia; Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia
| |
Collapse
|
214
|
Başgöze Z, Demers L, Thai M, Falke CA, Mueller BA, Fiecas MB, Roediger DJ, Thomas KM, Klimes-Dougan B, Cullen KR. A Multilevel Examination of Cognitive Control in Adolescents With Nonsuicidal Self-injury. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:855-866. [PMID: 37881532 PMCID: PMC10593942 DOI: 10.1016/j.bpsgos.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 10/27/2023] Open
Abstract
Background Nonsuicidal self-injury (NSSI), a transdiagnostic behavior, often emerges during adolescence. This study used the Research Domain Criteria approach to examine cognitive control (CC) with a focus on response inhibition and urgency relative to NSSI severity in adolescents. Methods One hundred thirty-eight adolescents, assigned female sex at birth, with a continuum of NSSI severity completed negative and positive urgency measurements (self-report), an emotional Go/NoGo task within negative and positive contexts (behavioral), and structural and functional imaging during resting state and task (brain metrics). Cortical thickness, subcortical volume, resting-state functional connectivity, and task activation focused on an a priori-defined CC network. Eighty-four participants had all these main measures. Correlations and stepwise model selection followed by multiple regression were used to examine the association between NSSI severity and multiunit CC measurements. Results Higher NSSI severity correlated with higher negative urgency and lower accuracy during positive no-inhibition (Go). Brain NSSI severity correlates varied across modalities and valence. For right medial prefrontal cortex and right caudate, higher NSSI severity correlated with greater negative but lower positive inhibition (NoGo) activation. The opposite pattern was observed for the right dorsolateral prefrontal cortex. Higher NSSI severity correlated with lower left dorsal anterior cingulate cortex (ACC) negative inhibition activation and thicker left dorsal ACC, yet it was correlated with higher right rostral ACC positive inhibition activation and thinner right rostral ACC, as well as lower CC network resting-state functional connectivity. Conclusions Findings revealed multifaceted signatures of NSSI severity across CC units of analysis, confirming the relevance of this domain in adolescent NSSI and illustrating how multimodal approaches can shed light on psychopathology.
Collapse
Affiliation(s)
- Zeynep Başgöze
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Lauren Demers
- Child Development & Rehabilitation Center, Oregon Health & Science University, Portland, Oregon
| | - Michelle Thai
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Chloe A. Falke
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Bryon A. Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mark B. Fiecas
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Donovan J. Roediger
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | | | - Kathryn R. Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
215
|
Tong H, Maloney TC, Payne MF, Suñol M, Dudley JA, King CD, Ting TV, Kashikar-Zuck S, Coghill RC, López-Solà M. Augmented pain-evoked primary sensorimotor cortex activation in adolescent girls with juvenile fibromyalgia. Pain 2023; 164:2316-2326. [PMID: 37326678 PMCID: PMC10502878 DOI: 10.1097/j.pain.0000000000002933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT Juvenile fibromyalgia (JFM) is a chronic widespread pain condition that primarily affects adolescent girls. Previous studies have found increased sensitivity to noxious pressure in adolescents with JFM. However, the underlying changes in brain systems remain unclear. The aim of this study was to characterize pain-evoked brain responses and identify brain mediators of pain hypersensitivity in adolescent girls with JFM. Thirty-three adolescent girls with JFM and 33 healthy adolescent girls underwent functional magnetic resonance imaging scans involving noxious pressure applied to the left thumbnail at an intensity of 2.5 or 4 kg/cm 2 and rated pain intensity and unpleasantness on a computerized Visual Analogue Scale. We conducted standard general linear model analyses and exploratory whole-brain mediation analyses. The JFM group reported significantly greater pain intensity and unpleasantness than the control group in response to noxious pressure stimuli at both intensities ( P < 0.05). The JFM group showed augmented right primary somatosensory cortex (S1) activation to 4 kg/cm 2 (Z > 3.1, cluster-corrected P < 0.05), and the peak S1 activation magnitudes significantly correlated with the scores on the Widespread Pain Index ( r = 0.35, P = 0.048) with higher activation associated with more widespread pain. We also found that greater primary sensorimotor cortex activation in response to 4 kg/cm 2 mediated the between-group differences in pain intensity ratings ( P < 0.001). In conclusion, we found heightened sensitivity to noxious pressure stimuli and augmented pain-evoked sensorimotor cortex responses in adolescent girls with JFM, which could reflect central sensitization or amplified nociceptive input.
Collapse
Affiliation(s)
- Han Tong
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Thomas C. Maloney
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael F. Payne
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Maria Suñol
- Unit of Psychological Medicine, Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Jonathan A. Dudley
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Christopher D. King
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tracy V. Ting
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Susmita Kashikar-Zuck
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert C. Coghill
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marina López-Solà
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Unit of Psychological Medicine, Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
216
|
Thapak P, Smith G, Ying Z, Paydar A, Harris N, Gomez-Pinilla F. The BDNF mimetic R-13 attenuates TBI pathogenesis using TrkB-related pathways and bioenergetics. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166781. [PMID: 37286142 PMCID: PMC10619508 DOI: 10.1016/j.bbadis.2023.166781] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Traumatic brain injury (TBI) is major neurological burden globally, and effective treatments are urgently needed. TBI is characterized by a reduction in energy metabolism and synaptic function that seems a primary cause of neuronal dysfunction. R13, a small drug and BDNF mimetic showed promising results in improving spatial memory and anxiety-like behavior after TBI. Additionally, R13 was found to counteract reductions in molecules associated with BDNF signaling (p-TrkB, p-PI3K, p-AKT), synaptic plasticity (GluR2, PSD95, Synapsin I) as well as bioenergetic components such as mitophagy (SOD, PGC-1α, PINK1, Parkin, BNIP3, and LC3) and real-time mitochondrial respiratory capacity. Behavioral and molecular changes were accompanied by adaptations in functional connectivity assessed using MRI. Results highlight the potential of R13 as a therapeutic agent for TBI and provide valuable insights into the molecular and functional changes associated with this condition.
Collapse
Affiliation(s)
- Pavan Thapak
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America
| | - Gregory Smith
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America
| | - Zhe Ying
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America
| | - Afshin Paydar
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America
| | - Neil Harris
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America; Intellectual Development and Disabilities Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America; Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America.
| |
Collapse
|
217
|
Dresbach S, Huber LR, Gulban OF, Goebel R. Layer-fMRI VASO with short stimuli and event-related designs at 7 T. Neuroimage 2023; 279:120293. [PMID: 37562717 DOI: 10.1016/j.neuroimage.2023.120293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Layers and columns are the dominant processing units in the human (neo)cortex at the mesoscopic scale. While the blood oxygenation dependent (BOLD) signal has a high detection sensitivity, it is biased towards unwanted signals from large draining veins at the cortical surface. The additional fMRI contrast of vascular space occupancy (VASO) has the potential to augment the neuroscientific interpretability of layer-fMRI results by means of capturing complementary information of locally specific changes in cerebral blood volume (CBV). Specifically, VASO is not subject to unwanted sensitivity amplifications of large draining veins. Because of constrained sampling efficiency, it has been mainly applied in combination with efficient block task designs and long trial durations. However, to study cognitive processes in neuroscientific contexts, or probe vascular reactivity, short stimulation periods are often necessary. Here, we developed a VASO acquisition procedure with a short acquisition period and sub-millimeter resolution. During visual event-related stimulation, we show reliable responses in visual cortices within a reasonable number of trials (∼20). Furthermore, the short TR and high spatial specificity of our VASO implementation enabled us to show differences in laminar reactivity and onset times. Finally, we explore the generalizability to a different stimulus modality (somatosensation). With this, we showed that CBV-sensitive VASO provides the means to capture layer-specific haemodynamic responses with high spatio-temporal resolution and is able to be used with event-related paradigms.
Collapse
Affiliation(s)
- Sebastian Dresbach
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Laurentius Renzo Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; National Institute of Health, Bethesda, DC, USA
| | - Omer Faruk Gulban
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Brain Innovation, Maastricht, Netherlands
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Brain Innovation, Maastricht, Netherlands
| |
Collapse
|
218
|
Zhao L, Wu Z, Dai H, Liu Z, Hu X, Zhang T, Zhu D, Liu T. A generic framework for embedding human brain function with temporally correlated autoencoder. Med Image Anal 2023; 89:102892. [PMID: 37482031 DOI: 10.1016/j.media.2023.102892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/19/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Learning an effective and compact representation of human brain function from high-dimensional fMRI data is crucial for studying the brain's functional organization. Traditional representation methods such as independent component analysis (ICA) and sparse dictionary learning (SDL) mainly rely on matrix decomposition which represents the brain function as spatial brain networks and the corresponding temporal patterns. The correspondence of those brain networks across individuals are built by viewing them as one-hot vectors and then performing the matching. However, those one-hot vectors do not encode the regularity and/or variability of different brains very well, and thus are limited in effectively representing the functional brain activities across individuals and among different time points. To address this problem, in this paper, we formulate the human brain functional representation as an embedding problem, and propose a novel embedding framework based on the Transformer model to encode the brain function in a compact, stereotyped and comparable latent space where the brain activities are represented as dense embedding vectors. We evaluate the proposed embedding framework on the publicly available Human Connectome Project (HCP) task fMRI dataset. The experiments on brain state prediction task indicate the effectiveness and generalizability of the learned embedding. We also explore the interpretability of the learned embedding from both spatial and temporal perspective. In general, our approach provides novel insights on representing the regularity and variability of human brain function in a general, comparable, and stereotyped latent space.
Collapse
Affiliation(s)
- Lin Zhao
- School of Computing, The University of Georgia, Athens 30602, USA
| | - Zihao Wu
- School of Computing, The University of Georgia, Athens 30602, USA
| | - Haixing Dai
- School of Computing, The University of Georgia, Athens 30602, USA
| | - Zhengliang Liu
- School of Computing, The University of Georgia, Athens 30602, USA
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA.
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens 30602, USA.
| |
Collapse
|
219
|
Meiering MS, Weigner D, Enge S, Grimm S. Transdiagnostic phenomena of psychopathology in the context of the RDoC: protocol of a multimodal cross-sectional study. BMC Psychol 2023; 11:297. [PMID: 37770998 PMCID: PMC10540421 DOI: 10.1186/s40359-023-01335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
In the past, affective and cognitive processes related to psychopathology have been examined within the boundaries of phenotype-based diagnostic labels, which has led to inconsistent findings regarding their underlying operating principles. Investigating these processes dimensionally in healthy individuals and by means of multiple modalities may provide additional insights into the psychological and neuronal mechanisms at their core. The transdiagnostic phenomena Neuroticism and Rumination are known to be closely linked. However, the exact nature of their relationship remains to be elucidated. The same applies to the associations between Hedonic Capacity, Negativity Bias and different Emotion Regulation strategies.This multimodal cross-sectional study examines the relationship of the transdiagnostic phenomena Neuroticism and Rumination as well as Hedonic Capacity, the Negativity Bias and Emotion Regulation from a RDoC (Research Domain Criteria) perspective. A total of 120 currently healthy subjects (past 12 months) will complete several questionnaires regarding personality, emotion regulation, hedonic capacity, and psychopathologies as well as functional magnetic resonance imaging (fMRI) during cognitive and emotional processing, to obtain data on the circuit, behavioral and self-report level.This study aims to contribute to the understanding of the relationship between cognitive and affective processes associated with psychopathologies as well as their neuronal correlates. Ultimately, a grounded understanding of these processes could guide improvement of diagnostic labels and treatments. Limitations include the cross-sectional design and the limited variability in psychopathology scores due to the restriction of the sample to currently healthy subjects.
Collapse
Affiliation(s)
- Marvin S Meiering
- Department of Natural Sciences, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany.
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195, Berlin, Germany.
| | - David Weigner
- Department of Natural Sciences, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14195, Berlin, Germany
| | - Sören Enge
- Department of Natural Sciences, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Simone Grimm
- Department of Natural Sciences, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, CH-8032, Zurich, Switzerland
| |
Collapse
|
220
|
Groot JM, Miletic S, Isherwood SJS, Tse DHY, Habli S, Håberg AK, Forstmann BU, Bazin PL, Mittner M. Echoes from Intrinsic Connectivity Networks in the Subcortex. J Neurosci 2023; 43:6609-6618. [PMID: 37562962 PMCID: PMC10538587 DOI: 10.1523/jneurosci.1020-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in healthy adult males and females with a fully data-driven approach. We revealed that spontaneous neural activity in subcortical regions can be decomposed into multiple independent subsignals that correlate with, or "echo," the activity in functional networks across the cortex. Distinct subregions of the thalamus, striatum, claustrum, and hippocampus showed a varied pattern of echoes from attention, control, visual, somatomotor, and default mode networks, demonstrating evidence for a heterogeneous organization supportive of functional integration. Multiple network activity furthermore converged within the globus pallidus externa, substantia nigra, and ventral tegmental area but was specific to one subregion, while the amygdala and pedunculopontine nucleus preferentially affiliated with a single network, showing a more homogeneous topography. Subregional connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal gray, and locus coeruleus did not resemble patterns of cortical network activity. Together, these finding describe potential mechanisms through which the subcortex participates in integrated and segregated information processing and shapes the spontaneous cognitive dynamics during rest.SIGNIFICANCE STATEMENT Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional mapping of subcortical structures severely lags behind that of the cortex. Recent developments in subcortical atlasing and imaging at ultra-high field provide new avenues for studying the intricate functional architecture of the human subcortex. With a fully data-driven analysis, we reveal subregional connectivity profiles of a large set of noncortical structures, including those rarely studied in fMRI research. The results have implications for understanding how the functional organization of the subcortex facilitates integrative processing through cross-network information convergence, paving the way for future work aimed at improving our knowledge of subcortical contributions to intrinsic brain dynamics and spontaneous cognition.
Collapse
Affiliation(s)
- Josephine M Groot
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Steven Miletic
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Scott J S Isherwood
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Desmond H Y Tse
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Sarah Habli
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, 8900, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, 8900, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, 7006, Norway
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, 1001 NK, The Netherlands
| | - Pierre-Louis Bazin
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
- Departments of Neurophysics and Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04303, Germany
| | - Matthias Mittner
- Department of Psychology, UiT-Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
221
|
Nunes JD, Vourvopoulos A, Blanco-Mora DA, Jorge C, Fernandes JC, Bermudez i Badia S, Figueiredo P. Brain activation by a VR-based motor imagery and observation task: An fMRI study. PLoS One 2023; 18:e0291528. [PMID: 37756271 PMCID: PMC10529559 DOI: 10.1371/journal.pone.0291528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Training motor imagery (MI) and motor observation (MO) tasks is being intensively exploited to promote brain plasticity in the context of post-stroke rehabilitation strategies. This may benefit from the use of closed-loop neurofeedback, embedded in brain-computer interfaces (BCI's) to provide an alternative non-muscular channel, which may be further augmented through embodied feedback delivered through virtual reality (VR). Here, we used functional magnetic resonance imaging (fMRI) in a group of healthy adults to map brain activation elicited by an ecologically-valid task based on a VR-BCI paradigm called NeuRow, whereby participants perform MI of rowing with the left or right arm (i.e., MI), while observing the corresponding movement of the virtual arm of an avatar (i.e., MO), on the same side, in a first-person perspective. We found that this MI-MO task elicited stronger brain activation when compared with a conventional MI-only task based on the Graz BCI paradigm, as well as to an overt motor execution task. It recruited large portions of the parietal and occipital cortices in addition to the somatomotor and premotor cortices, including the mirror neuron system (MNS), associated with action observation, as well as visual areas related with visual attention and motion processing. Overall, our findings suggest that the virtual representation of the arms in an ecologically-valid MI-MO task engage the brain beyond conventional MI tasks, which we propose could be explored for more effective neurorehabilitation protocols.
Collapse
Affiliation(s)
- João D. Nunes
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, and Faculty of Engineering, University of Porto, Porto, Portugal
| | - Athanasios Vourvopoulos
- Institute for Systems and Robotics - Lisboa, and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Diego Andrés Blanco-Mora
- Faculdade de Ciências Exatas e da Engenharia, N-LINCS Madeira — ARDITI, Universidade da Madeira, Funchal, Portugal
| | - Carolina Jorge
- Faculdade de Ciências Exatas e da Engenharia, N-LINCS Madeira — ARDITI, Universidade da Madeira, Funchal, Portugal
| | - Jean-Claude Fernandes
- Central Hospital of Funchal, Physical Medicine and Rehabilitation Service, Funchal, Portugal
| | - Sergi Bermudez i Badia
- Faculdade de Ciências Exatas e da Engenharia, N-LINCS Madeira — ARDITI, Universidade da Madeira, Funchal, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa, and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
222
|
Şişman M, Nguyen TD, Roberts AG, Romano DJ, Dimov AV, Kovanlikaya I, Spincemaille P, Wang Y. Microstructure-Informed Myelin Mapping (MIMM) from Gradient Echo MRI using Stochastic Matching Pursuit. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.22.23295993. [PMID: 37808826 PMCID: PMC10557811 DOI: 10.1101/2023.09.22.23295993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Quantification of the myelin content of the white matter is important for studying demyelination in neurodegenerative diseases such as Multiple Sclerosis (MS), particularly for longitudinal monitoring. A novel noninvasive MRI method, called Microstructure-Informed Myelin Mapping (MIMM), is developed to quantify the myelin volume fraction (MVF) by utilizing a multi gradient echo sequence (mGRE) and a detailed biophysical model of tissue microstructure. Myelin is modeled as anisotropic negative susceptibility source based on the Hollow Cylindrical Fiber Model (HCFM), and iron as isotropic positive susceptibility source in the extracellular region. Voxels with a range of biophysical parameters are simulated to create a dictionary of MR echo time magnitude signals and total susceptibility values. MRI signals measured using a mGRE sequence are then matched voxel-by-voxel to the created dictionary to obtain the spatial distributions of myelin and iron. Three different MIMM versions are presented to deal with the fiber orientation dependent susceptibility effects of the myelin sheaths: a basic variation, which assumes fiber orientation is an unknown to fit, two orientation informed variations, which assume the fiber orientation distribution is available either from a separate diffusion tensor imaging (DTI) acquisition or from a DTI atlas based fiber orientation map. While all showed a significant linear correlation with the reference method based on T2-relaxometry (p < 0.0001), DTI orientation informed and atlas orientation informed variations reduced overestimation at white matter tracts compared to the basic variation. Finally, the implications and usefulness of attaining an additional iron susceptibility distribution map are discussed. Highlights novel stochastic matching pursuit algorithm called microstructure-informed myelin mapping (MIMM) is developed to quantify Myelin Volume Fraction (MVF) using Magnetic Resonance Imaging (MRI) and microstructural modeling.utilizes a detailed biophysical model to capture the susceptibility effects on both magnitude and phase to quantify myelin and iron.matter fiber orientation effects are considered for the improved MVF quantification in the major fiber tracts.acquired myelin and iron maps may be utilized to monitor longitudinal disease progress.
Collapse
|
223
|
Min J, Koenig J, Nashiro K, Yoo HJ, Cho C, Thayer JF, Mather M. Sex Differences in Neural Correlates of Emotion Regulation in Relation to Resting Heart Rate Variability. Brain Topogr 2023; 36:698-709. [PMID: 37353651 PMCID: PMC10415482 DOI: 10.1007/s10548-023-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
Prior studies suggest that sex differences in emotion regulation (ER) ability contribute to sex disparities in affective disorders. In behavioral studies, females rely more on maladaptive strategies to cope with emotional distress than males. Neuroimaging studies suggest that males more efficiently regulate emotion than females by showing less prefrontal cortex activity (suggesting less effort) for similar amygdala activity (similar regulation outcome). However, physiological studies involving heart rate variability (HRV) indicated that, compared with males, females have higher resting HRV, indicative of parasympathetic dominance and better control of emotion. To help resolve these apparently inconsistent findings, we examined sex differences in how resting HRV relates to brain activity while using cognitive reappraisal, one of the adaptive strategies. Based on 51 males and 49 females, we found that females showed different levels of self-rated emotional intensity and amygdala activity for negative versus positive emotions, while males did not. Females also showed greater overall prefrontal cortex activity but similar levels of amygdala activity compared to males. Sex differences in how resting HRV related to brain activity during ER were evident only during viewing or regulating positive emotion. The results suggest that sex differences in the neural correlates of ER and resting HRV might lie in valence more than arousal modulation.
Collapse
Affiliation(s)
- Jungwon Min
- University of Southern California, Davis School of Gerontology, Los Angeles, USA
- University of Southern California, Department of Psychology, Los Angeles, USA
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Kaoru Nashiro
- University of Southern California, Davis School of Gerontology, Los Angeles, USA
| | - Hyun Joo Yoo
- University of Southern California, Davis School of Gerontology, Los Angeles, USA
| | - Christine Cho
- University of Southern California, Davis School of Gerontology, Los Angeles, USA
| | - Julian F Thayer
- University of California Irvine, Department of Psychological Science, Irvine, USA
| | - Mara Mather
- University of Southern California, Davis School of Gerontology, Los Angeles, USA.
- University of Southern California, Department of Psychology, Los Angeles, USA.
| |
Collapse
|
224
|
Zuleger TM, Slutsky-Ganesh AB, Anand M, Kim H, Warren SM, Grooms DR, Foss KDB, Riley MA, Yuan W, Gore RK, Myer GD, Diekfuss JA. The effects of sports-related concussion history on female adolescent brain activity and connectivity for bilateral lower extremity knee motor control. Psychophysiology 2023; 60:e14314. [PMID: 37114838 PMCID: PMC10523876 DOI: 10.1111/psyp.14314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Sports-related concussions (SRCs) are associated with neuromuscular control deficits in athletes following return to play. However, the connection between SRC and potentially disrupted neural regulation of lower extremity motor control has not been investigated. The purpose of this study was to investigate brain activity and connectivity during a functional magnetic resonance imaging (fMRI) lower extremity motor control task (bilateral leg press) in female adolescent athletes with a history of SRC. Nineteen female adolescent athletes with a history of SRC and nineteen uninjured (without a history of SRC) age- and sport-matched control athletes participated in this study. Athletes with a history of SRC exhibited less neural activity in the left inferior parietal lobule/supramarginal gyrus (IPL) during the bilateral leg press compared to matched controls. Based upon signal change detected in the brain activity analysis, a 6 mm region of interest (seed) was defined to perform secondary connectivity analyses using psychophysiological interaction (PPI) analyses. During the motor control task, the left IPL (seed) was significantly connected to the right posterior cingulate gyrus/precuneus cortex and right IPL for athletes with a history of SRC. The left IPL was significantly connected to the left primary motor cortex (M1) and primary somatosensory cortex (S1), right inferior temporal gyrus, and right S1 for matched controls. Altered neural activity in brain regions important for sensorimotor integration and motor attention, combined with unique connectivity to regions responsible for attentional, cognitive, and proprioceptive processing, indicate compensatory neural mechanisms may underlie the lingering neuromuscular control deficits associated with SRC.
Collapse
Affiliation(s)
- Taylor M. Zuleger
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
| | - Alexis B. Slutsky-Ganesh
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Manish Anand
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, TN, India
| | - HoWon Kim
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
| | - Shayla M. Warren
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Science and Professions, Ohio University, Grover Center, Athens, OH, USA
| | - Kim D. Barber Foss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael A. Riley
- Department of Rehabilitation, Exercise, & Nutrition Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Russell K. Gore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Shepherd Center, Atlanta, GA, USA
| | - Gregory D. Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| | - Jed A. Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
225
|
Saragosa-Harris NM, Guassi Moreira JF, Waizman YH, Sedykin A, Silvers JA, Peris TS. Neural representations of ambiguous affective stimuli and resilience to anxiety in emerging adults. Biol Psychol 2023; 182:108624. [PMID: 37394090 DOI: 10.1016/j.biopsycho.2023.108624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/18/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
The tendency to interpret ambiguous stimuli as threatening has been associated with a range of anxiety disorders. Responses to ambiguity may be particularly relevant to mental health during the transition from adolescence to adulthood ("emerging adulthood"), when individuals encounter unfamiliar challenges and navigate novel social situations. However, it remains unclear whether neural representations of ambiguity relate to risk for anxiety. The present study sought to examine whether multivariate representations of ambiguity - and their similarity to representations of threat - relate to appraisals of ambiguity or anxiety in a sample of emerging adults. Participants (N = 41) viewed threatening (angry), nonthreatening (happy), and ambiguous (surprised) facial stimuli while undergoing fMRI. Outside of the scanner, participants were presented with the same stimuli and categorized the ambiguous faces as positive or negative. Using representational similarity analyses (RSA), we investigated whether the degree of pattern similarity in responses to ambiguous, nonthreatening, and threatening faces within the amygdala related to appraisals of ambiguous stimuli and anxiety symptomatology. We found that individuals who evidenced greater similarity (i.e., less differentiation) in neural representations of ambiguous and nonthreatening faces within the left amygdala reported lower concurrent anxiety. Additionally, trial-level pattern similarity predicted subsequent appraisals of ambiguous stimuli. These findings provide insight into how neural representations of ambiguity relate to risk or resilience for the development of anxiety.
Collapse
Affiliation(s)
- Natalie M Saragosa-Harris
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - João F Guassi Moreira
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yael H Waizman
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Anna Sedykin
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Jennifer A Silvers
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Tara S Peris
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
226
|
Ertl N, Lawn W, Mokrysz C, Freeman TP, Alnagger N, Borissova A, Fernandez-Vinson N, Lees R, Ofori S, Petrilli K, Trinci K, Viding E, Curran HV, Wall MB. Associations between regular cannabis use and brain resting-state functional connectivity in adolescents and adults. J Psychopharmacol 2023; 37:904-919. [PMID: 37515469 DOI: 10.1177/02698811231189441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
BACKGROUND/AIM Cannabis use is highly prevalent in adolescents; however, little is known about its effects on adolescent brain function. METHOD Resting-state functional magnetic resonance imaging was used in matched groups of regular cannabis users (N = 70, 35 adolescents: 16-17 years old, 35 adults: 26-29 years old) and non-regular-using controls (N = 70, 35 adolescents/35 adults). Pre-registered analyses examined the connectivity of seven major cortical and sub-cortical brain networks (default mode network, executive control network (ECN), salience network, hippocampal network and three striatal networks) using seed-based analysis methods with cross-sectional comparisons between user groups and age groups. RESULTS The regular cannabis use group (across both age groups), relative to controls, showed localised increases in connectivity only in the ECN analysis. All networks showed localised connectivity differences based on age group, with the adolescents generally showing weaker connectivity than adults, consistent with the developmental effects. Mean connectivity across entire network regions of interest (ROIs) was also significantly decreased in the ECN in adolescents. However, there were no significant interactions found between age group and user group in any of the seed-based or ROI analyses. There were also no associations found between cannabis use frequency and any of the derived connectivity measures. CONCLUSION Regular cannabis use is associated with changes in connectivity of the ECN, which may reflect allostatic or compensatory changes in response to regular cannabis intoxication. However, these associations were not significantly different in adolescents compared to adults.
Collapse
Affiliation(s)
- Natalie Ertl
- Invicro London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Will Lawn
- Department of Psychology, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Department of Addictions, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Claire Mokrysz
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Tom P Freeman
- Clinical Psychopharmacology Unit, University College London, London, UK
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Naji Alnagger
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Anna Borissova
- Clinical Psychopharmacology Unit, University College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | | | - Rachel Lees
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Shelan Ofori
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Kat Petrilli
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Katie Trinci
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Essi Viding
- Clinical, Educational, and Health Psychology Research Department, University College London, London, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Matthew B Wall
- Invicro London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Clinical Psychopharmacology Unit, University College London, London, UK
| |
Collapse
|
227
|
Namaky N, Swearingen HR, Winter J, Bozzay M, Primack JM, Philip NS, Barredo J. Suicidal thoughts and behaviours among military veterans: protocol for a prospective, observational, neuroimaging study. BMJ Open 2023; 13:e070654. [PMID: 37586858 PMCID: PMC10432662 DOI: 10.1136/bmjopen-2022-070654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION This study's overarching goal is to examine the relationship between brain circuits and suicidal thoughts and behaviours (STBs) in a transdiagnostic sample of US military veterans. Because STBs have been linked with maladaptive decision-making and disorders linked to impulsivity, this investigation focuses on valence and inhibitory control circuits. METHODS AND ANALYSIS In this prospective, observational study, we will collect functional MRI (fMRI), cognitive and clinical data from 136 veterans (target sample size) recruited from the Providence VA Health System (PVAHS): 68 with STBs and 68 matched controls. Behavioural data will be collected using standardised measures of STBs, psychiatric symptoms, cognition, functioning and medical history. Neuroimaging data will include structural, task and resting fMRI. We will conduct follow-up interviews and assessments at 6, 12 and 24 months post-enrolment. Primary analyses will compare data from veterans with and without STBs and will also evaluate whether activation and connectivity within circuits of valence and inhibition covary with historical and prospective patterns of suicidal ideation and behaviour. ETHICS AND DISSEMINATION The PVAHS Institutional Review Board approved this study (2018-051). Written informed consent will be obtained from all participants. Findings from this study will be published in peer-reviewed journals and presented at local, regional, national and international conferences.Nauder Namaky, Ph.D.* nauder_namaky@brown.edu.
Collapse
Affiliation(s)
- Nauder Namaky
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| | - Hannah R Swearingen
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| | - Jake Winter
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| | - Melanie Bozzay
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jennifer M Primack
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- VA Long Term Services and Support Center of Innovation, Providence, Rhode Island, USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| | - Jennifer Barredo
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| |
Collapse
|
228
|
Nagle A, Gerrelts JP, Krause BM, Boes AD, Bruss JE, Nourski KV, Banks MI, Van Veen B. High-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors. Neuroimage 2023; 277:120211. [PMID: 37385393 PMCID: PMC10528866 DOI: 10.1016/j.neuroimage.2023.120211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Multivariate autoregressive (MVAR) model estimation enables assessment of causal interactions in brain networks. However, accurately estimating MVAR models for high-dimensional electrophysiological recordings is challenging due to the extensive data requirements. Hence, the applicability of MVAR models for study of brain behavior over hundreds of recording sites has been very limited. Prior work has focused on different strategies for selecting a subset of important MVAR coefficients in the model to reduce the data requirements of conventional least-squares estimation algorithms. Here we propose incorporating prior information, such as resting state functional connectivity derived from functional magnetic resonance imaging, into MVAR model estimation using a weighted group least absolute shrinkage and selection operator (LASSO) regularization strategy. The proposed approach is shown to reduce data requirements by a factor of two relative to the recently proposed group LASSO method of Endemann et al (Neuroimage 254:119057, 2022) while resulting in models that are both more parsimonious and more accurate. The effectiveness of the method is demonstrated using simulation studies of physiologically realistic MVAR models derived from intracranial electroencephalography (iEEG) data. The robustness of the approach to deviations between the conditions under which the prior information and iEEG data is obtained is illustrated using models from data collected in different sleep stages. This approach allows accurate effective connectivity analyses over short time scales, facilitating investigations of causal interactions in the brain underlying perception and cognition during rapid transitions in behavioral state.
Collapse
Affiliation(s)
- Alliot Nagle
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, 53706, WI, USA; Department of Anesthesiology, University of Wisconsin, Madison, 53706, WI, USA
| | - Josh P Gerrelts
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, 53706, WI, USA
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, 53706, WI, USA
| | - Aaron D Boes
- Department of Neurology, The University of Iowa, Iowa City, 52242, IA, USA
| | - Joel E Bruss
- Department of Neurology, The University of Iowa, Iowa City, 52242, IA, USA
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, 52242, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, 52242, IA, USA
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, 53706, WI, USA.
| | - Barry Van Veen
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, 53706, WI, USA
| |
Collapse
|
229
|
Argiris G, Stern Y, Lee S, Ryu H, Habeck C. Simple topological task-based functional connectivity features predict longitudinal behavioral change of fluid reasoning in the RANN cohort. Neuroimage 2023; 277:120237. [PMID: 37343735 PMCID: PMC10999229 DOI: 10.1016/j.neuroimage.2023.120237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023] Open
Abstract
Recent attention has been given to topological data analysis (TDA), and more specifically persistent homology (PH), to identify the underlying shape of brain network connectivity beyond simple edge pairings by computing connective components across different connectivity thresholds (see Sizemore et al., 2019). In the present study, we applied PH to task-based functional connectivity, computing 0-dimension Betti (B0) curves and calculating the area under these curves (AUC); AUC indicates how quickly a single connected component is formed across correlation filtration thresholds, with lower values interpreted as potentially analogous to lower whole-brain system segregation (e.g., Gracia-Tabuenca et al., 2020). One hundred sixty-three participants from the Reference Ability Neural Network (RANN) longitudinal lifespan cohort (age 20-80 years) were tested in-scanner at baseline and five-year follow-up on a battery of tests comprising four domains of cognition (i.e., Stern et al., 2014). We tested for 1.) age-related change in the AUC of the B0 curve over time, 2.) the predictive utility of AUC in accounting for longitudinal change in behavioral performance and 3.) compared system segregation to the PH approach. Results demonstrated longitudinal age-related decreases in AUC for Fluid Reasoning, with these decreases predicting longitudinal declines in cognition, even after controlling for demographic and brain integrity factors; moreover, change in AUC partially mediated the effect of age on change in cognitive performance. System segregation also significantly decreased with age in three of the four cognitive domains but did not predict change in cognition. These results argue for greater application of TDA to the study of aging.
Collapse
Affiliation(s)
- Georgette Argiris
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, 3rd floor, New York, NY 10032, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, 3rd floor, New York, NY 10032, United States
| | - Seonjoo Lee
- Mental Health Data Science, New York State Psychiatric Institute, New York, NY, United States; Department of Biostatistics, Mailman School of Public Health, New York, NY, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Hyunnam Ryu
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, 3rd floor, New York, NY 10032, United States; Taub Institute, Columbia University, New York, NY, United States; Mental Health Data Science, New York State Psychiatric Institute, New York, NY, United States
| | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, 3rd floor, New York, NY 10032, United States; Taub Institute, Columbia University, New York, NY, United States.
| |
Collapse
|
230
|
Du J, DiNicola LM, Angeli PA, Saadon-Grosman N, Sun W, Kaiser S, Ladopoulou J, Xue A, Yeo BTT, Eldaief MC, Buckner RL. Within-Individual Organization of the Human Cerebral Cortex: Networks, Global Topography, and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552437. [PMID: 37609246 PMCID: PMC10441314 DOI: 10.1101/2023.08.08.552437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The human cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks using a Multi-Session Hierarchical Bayesian Model (MS-HBM) applied to intensively sampled within-individual functional MRI (fMRI) data. The network estimation procedure was initially developed and tested in two participants (each scanned 31 times) and then prospectively applied to 15 new participants (each scanned 8 to 11 times). Detailed analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that also linked to distant regions. Third-order networks each possessed regions distributed widely throughout association cortex. Moreover, regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated similarly across multiple cortical zones. We refer to these as Supra-Areal Association Megaclusters (SAAMs). Within each SAAM, two candidate control regions were typically adjacent to three separate domain-specialized regions. Independent task data were analyzed to explore functional response properties. The somatomotor and visual first-order networks responded to body movements and visual stimulation, respectively. A subset of the second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient or novel events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions within each SAAM did not track working memory load but rather dissociated across language, social, and spatial / episodic processing domains. These results support a model of the cerebral cortex in which progressively higher-order networks nest outwards from primary sensory and motor cortices. Within the apex zones of association cortex there is specialization of large-scale networks that divides domain-flexible from domain-specialized regions repeatedly across parietal, temporal, and prefrontal cortices. We discuss implications of these findings including how repeating organizational motifs may emerge during development.
Collapse
Affiliation(s)
- Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wendy Sun
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Kaiser
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joanna Ladopoulou
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aihuiping Xue
- Centre for Sleep & Cognition & Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
231
|
Voldsbekk I, Kjelkenes R, Dahl A, Holm MC, Lund MJ, Kaufmann T, Tamnes CK, Andreassen OA, Westlye LT, Alnæs D. Delineating disorder-general and disorder-specific dimensions of psychopathology from functional brain networks in a developmental clinical sample. Dev Cogn Neurosci 2023; 62:101271. [PMID: 37348146 PMCID: PMC10439505 DOI: 10.1016/j.dcn.2023.101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
The interplay between functional brain network maturation and psychopathology during development remains elusive. To establish the structure of psychopathology and its neurobiological mechanisms, mapping of both shared and unique functional connectivity patterns across developmental clinical populations is needed. We investigated shared associations between resting-state functional connectivity and psychopathology in children and adolescents aged 5-21 (n = 1689). Specifically, we used partial least squares (PLS) to identify latent variables (LV) between connectivity and both symptom scores and diagnostic information. We also investigated associations between connectivity and each diagnosis specifically, controlling for other diagnosis categories. PLS identified five significant LVs between connectivity and symptoms, mapping onto the psychopathology hierarchy. The first LV resembled a general psychopathology factor, followed by dimensions of internalising- externalising, neurodevelopment, somatic complaints, and thought problems. Another PLS with diagnostic data revealed one significant LV, resembling a cross-diagnostic case-control pattern. The diagnosis-specific PLS identified a unique connectivity pattern for autism spectrum disorder (ASD). All LVs were associated with distinct patterns of functional connectivity. These dimensions largely replicated in an independent sample (n = 420) from the same dataset, as well as to an independent cohort (n = 3504). This suggests that covariance in developmental functional brain networks supports transdiagnostic dimensions of psychopathology.
Collapse
Affiliation(s)
- Irene Voldsbekk
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Rikka Kjelkenes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Andreas Dahl
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Madelene C Holm
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Martina J Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, & Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, & Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Kristiania University College, Oslo, Norway
| |
Collapse
|
232
|
Tik N, Gal S, Madar A, Ben-David T, Bernstein-Eliav M, Tavor I. Generalizing prediction of task-evoked brain activity across datasets and populations. Neuroimage 2023; 276:120213. [PMID: 37268097 DOI: 10.1016/j.neuroimage.2023.120213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Predictions of task-based functional magnetic resonance imaging (fMRI) from task-free resting-state (rs) fMRI have gained popularity over the past decade. This method holds a great promise for studying individual variability in brain function without the need to perform highly demanding tasks. However, in order to be broadly used, prediction models must prove to generalize beyond the dataset they were trained on. In this work, we test the generalizability of prediction of task-fMRI from rs-fMRI across sites, MRI vendors and age-groups. Moreover, we investigate the data requirements for successful prediction. We use the Human Connectome Project (HCP) dataset to explore how different combinations of training sample sizes and number of fMRI datapoints affect prediction success in various cognitive tasks. We then apply models trained on HCP data to predict brain activations in data from a different site, a different MRI vendor (Phillips vs. Siemens scanners) and a different age group (children from the HCP-development project). We demonstrate that, depending on the task, a training set of approximately 20 participants with 100 fMRI timepoints each yields the largest gain in model performance. Nevertheless, further increasing sample size and number of timepoints results in significantly improved predictions, until reaching approximately 450-600 training participants and 800-1000 timepoints. Overall, the number of fMRI timepoints influences prediction success more than the sample size. We further show that models trained on adequate amounts of data successfully generalize across sites, vendors and age groups and provide predictions that are both accurate and individual-specific. These findings suggest that large-scale publicly available datasets may be utilized to study brain function in smaller, unique samples.
Collapse
Affiliation(s)
- Niv Tik
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shachar Gal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Ben-David
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Bernstein-Eliav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ido Tavor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
233
|
Burrows M, Kotoula V, Dipasquale O, Stringaris A, Mehta MA. Ketamine-induced changes in resting state connectivity, 2 h after the drug administration in patients with remitted depression. J Psychopharmacol 2023; 37:784-794. [PMID: 37491833 DOI: 10.1177/02698811231189432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND Resting state connectivity studies link ketamine's antidepressant effects with normalisation of the brain connectivity changes that are observed in depression. These changes, however, usually co-occur with improvement in depressive symptoms, making it difficult to attribute these changes to ketamine's effects per se. AIMS Our aim is to examine the effects of ketamine in brain connectivity, 2 h after its administration in a cohort of volunteers with remitted depression. Any significant changes observed in this study could provide insight of ketamine's antidepressant mechanism as they are not accompanied by symptom changes. METHODS In total, 35 participants with remitted depression (21 females, mean age = 28.5 years) participated in a double-blind, placebo-controlled study of ketamine (0.5 mg/kg) or saline. Resting state scans were acquired approximately 2 h after the ketamine infusion. Brain connectivity was examined using a seed-based approach (ventral striatum, amygdala, hippocampus, posterior cingulate cortex and subgenual anterior cingulate cortex (sgACC)) and a brain network analysis (independent component analysis). RESULTS Decreased connectivity between the sgACC and the amygdala was observed approximately 2 h after the ketamine infusion, compared to placebo (pFWE < 0.05). The executive network presented with altered connectivity with different cortical and subcortical regions. Within the network, the left hippocampus and right amygdala had decreased connectivity (pFWE < 0.05). CONCLUSIONS Our findings support a model whereby ketamine would change the connectivity of brain areas and networks that are important for cognitive processing and emotional regulation. These changes could also be an indirect indicator of the plasticity changes induced by the drug.
Collapse
Affiliation(s)
- Matthew Burrows
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| | - Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda, MA, USA
| | - Ottavia Dipasquale
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| | - Argyris Stringaris
- Division of Psychiatry and Department of Clinical, Educational & Health Psychology, UCL, London, UK
- First Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| |
Collapse
|
234
|
Artiach Hortelano P, Martens MAG, Pringle A, Harmer CJ. Effect of lithium administration on brain activity under an emotion regulation paradigm in healthy participants: a functional magnetic resonance imaging study. Psychopharmacology (Berl) 2023; 240:1719-1734. [PMID: 37338568 PMCID: PMC10349753 DOI: 10.1007/s00213-023-06395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
RATIONALE Emotion regulation (ER) difficulties have been previously described in bipolar disorder (BD). Whilst lithium has been shown to be effective in the treatment of BD, the mechanisms underlying lithium's effect on mood stabilisation remain unclear. OBJECTIVES Unravelling lithium's effect on psychological processes impaired in BD, such as ER, could address this translational gap and inform the development of new treatments. METHODS This study investigated the neural effects of lithium (800mg) on ER in 33 healthy volunteers in a double-blind between-groups design, randomised to lithium (n=17) or placebo (n=16) for 11 days. At treatment completion, participants underwent 3-Tesla fMRI scan whilst performing an ER task. RESULTS Reappraisal reduced negative affect across groups and led to the expected increase in frontal brain activity. Participants receiving lithium showed (1) decreased activation in prefrontal and posterior parietal cortices and connectivity between the fronto-limbic network (Z>2.3, p<0.05 corrected); and (2) increased activity in the right superior temporal gyrus (Z>3.1, p<0.05 corrected) and connectivity between the right medial temporal gyrus (MTG) and left middle frontal gyrus (Z>2.3, p<0.05 corrected) during reappraisal. Further effects of lithium were found in response to negative picture presentation, whereby an anticorrelation was found between the left amygdala and the frontal cortex, and greater connectivity between the right MTG and the bilateral medial prefrontal cortex extending into the paracingulate gyrus, compared to placebo (Z>2.3, p < 0.05 corrected). CONCLUSIONS These results show a potential effect of lithium on ER through its effects on activity and connectivity, and further elaborate the neural underpinnings of cognitive reappraisal. Future work should investigate longer term effects of lithium on ER in BD, ultimately benefitting the development of novel and more effective treatments.
Collapse
Affiliation(s)
| | - Marieke A G Martens
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK.
| | | | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
235
|
Li YP, Wang Y, Turk-Browne NB, Kuhl BA, Hutchinson JB. Perception and memory retrieval states are reflected in distributed patterns of background functional connectivity. Neuroimage 2023; 276:120221. [PMID: 37290674 PMCID: PMC10484747 DOI: 10.1016/j.neuroimage.2023.120221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023] Open
Abstract
The same visual input can serve as the target of perception or as a trigger for memory retrieval depending on whether cognitive processing is externally oriented (perception) or internally oriented (memory retrieval). While numerous human neuroimaging studies have characterized how visual stimuli are differentially processed during perception versus memory retrieval, perception and memory retrieval may also be associated with distinct neural states that are independent of stimulus-evoked neural activity. Here, we combined human fMRI with full correlation matrix analysis (FCMA) to reveal potential differences in "background" functional connectivity across perception and memory retrieval states. We found that perception and retrieval states could be discriminated with high accuracy based on patterns of connectivity across (1) the control network, (2) the default mode network (DMN), and (3) retrosplenial cortex (RSC). In particular, clusters in the control network increased connectivity with each other during the perception state, whereas clusters in the DMN were more strongly coupled during the retrieval state. Interestingly, RSC switched its coupling between networks as the cognitive state shifted from retrieval to perception. Finally, we show that background connectivity (1) was fully independent from stimulus-related variance in the signal and, further, (2) captured distinct aspects of cognitive states compared to traditional classification of stimulus-evoked responses. Together, our results reveal that perception and memory retrieval are associated with sustained cognitive states that manifest as distinct patterns of connectivity among large-scale brain networks.
Collapse
Affiliation(s)
- Y Peeta Li
- Department of Psychology, University of Oregon, Eugene, OR, United States.
| | - Yida Wang
- Amazon Web Services, Palo Alto, CA, United States
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, CT, United States; Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | | |
Collapse
|
236
|
Mahadevan AS, Cornblath EJ, Lydon-Staley DM, Zhou D, Parkes L, Larsen B, Adebimpe A, Kahn AE, Gur RC, Gur RE, Satterthwaite TD, Wolf DH, Bassett DS. Alprazolam modulates persistence energy during emotion processing in first-degree relatives of individuals with schizophrenia: a network control study. Mol Psychiatry 2023; 28:3314-3323. [PMID: 37353585 PMCID: PMC10618098 DOI: 10.1038/s41380-023-02121-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological modulation and computational modeling to study the contribution of GABAergic abnormalities toward emotion processing deficits in schizophrenia. Specifically, we apply principles from network control theory to model persistence energy - the control energy required to maintain brain activation states - during emotion identification and recall tasks, with and without administration of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam increases persistence energy in relatives but not in controls during threatening face processing, suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and occipital cortices are important for facilitating state transitions during facial affect processing. Finally, we uncover spatial relationships (i) between regional variation in differential control energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems. Together, these findings provide a new perspective on the distributed emotion processing network and the effect of GABAergic modulation on this network, in addition to identifying an association between schizophrenia risk and abnormal GABAergic effects on persistence energy during threat processing.
Collapse
Affiliation(s)
- Arun S Mahadevan
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eli J Cornblath
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - David M Lydon-Staley
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dale Zhou
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Linden Parkes
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Azeez Adebimpe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ari E Kahn
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA.
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
237
|
Hemmerling KJ, Hoggarth MA, Sandhu MS, Parrish TB, Bright MG. Spatial distribution of hand-grasp motor task activity in spinal cord functional magnetic resonance imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537883. [PMID: 37503173 PMCID: PMC10370018 DOI: 10.1101/2023.04.25.537883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Upper extremity motor paradigms during spinal cord functional magnetic resonance imaging (fMRI) can provide insight into the functional organization of the cord. Hand-grasping is an important daily function with clinical significance, but previous studies of similar squeezing movements have not reported consistent areas of activity and are limited by sample size and simplistic analysis methods. Here, we study spinal cord fMRI activation using a unimanual isometric hand-grasping task that is calibrated to participant maximum voluntary contraction (MVC). Two task modeling methods were considered: (1) a task regressor derived from an idealized block design (Ideal) and (2) a task regressor based on the recorded force trace normalized to individual MVC (%MVC). Across these two methods, group motor activity was highly lateralized to the hemicord ipsilateral to the side of the task. Activation spanned C5-C8 and was primarily localized to the C7 spinal cord segment. Specific differences in spatial distribution are also observed, such as an increase in C8 and dorsal cord activity when using the %MVC regressor. Furthermore, we explored the impact of data quantity and spatial smoothing on sensitivity to hand-grasp motor task activation. This analysis shows a large increase in number of active voxels associated with the number of fMRI runs, sample size, and spatial smoothing, demonstrating the impact of experimental design choices on motor activation.
Collapse
Affiliation(s)
- Kimberly J. Hemmerling
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Mark A. Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Physical Therapy, North Central College, Naperville, IL, United States
| | - Milap S. Sandhu
- Shirley Ryan Ability Lab, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Todd B. Parrish
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
238
|
Kaptan M, Horn U, Vannesjo SJ, Mildner T, Weiskopf N, Finsterbusch J, Brooks JCW, Eippert F. Reliability of resting-state functional connectivity in the human spinal cord: Assessing the impact of distinct noise sources. Neuroimage 2023; 275:120152. [PMID: 37142169 PMCID: PMC10262064 DOI: 10.1016/j.neuroimage.2023.120152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023] Open
Abstract
The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T. When investigating connectivity in the entire cervical spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability - due to the removal of stable and participant-specific noise patterns - whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal manner.
Collapse
Affiliation(s)
- Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S Johanna Vannesjo
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Toralf Mildner
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), Norwich, UK
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
239
|
van Harten TW, van Rooden S, Koemans EA, van Opstal AM, Greenberg SM, van der Grond J, Wermer MJH, van Osch MJP. Impact of region of interest definition on visual stimulation-based cerebral vascular reactivity functional MRI with a special focus on applications in cerebral amyloid angiopathy. NMR IN BIOMEDICINE 2023; 36:e4916. [PMID: 36908068 DOI: 10.1002/nbm.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/15/2023]
Abstract
Cerebral vascular reactivity quantified using blood oxygen level-dependent functional MRI in conjuncture with a visual stimulus has been proven to be a potent and early marker for cerebral amyloid angiopathy. This work investigates the influence of different postprocessing methods on the outcome of such vascular reactivity measurements. Three methods for defining the region of interest (ROI) over which the reactivity is measured are investigated: structural (transformed V1), functional (template based on the activation of a subset of subjects), and percentile (11.5 cm3 most responding voxels). Evaluation is performed both in a test-retest experiment in healthy volunteers (N = 12), as well as in 27 Dutch-type cerebral amyloid angiopathy patients and 33 age- and sex-matched control subjects. The results show that the three methods select a different subset of voxels, although all three lead to similar outcome measures in healthy subjects. However, in (severe) pathology, the percentile method leads to higher reactivity measures than the other two, due to circular analysis or "double dipping" by defining a subject-specific ROI based on the strongest responses within each subject. Furthermore, while different voxels are included in the presence of lesions, this does not necessarily result in different outcome measures. In conclusion, to avoid bias created by the method, either a structural or a functional method is recommended. Both of these methods provide similar reactivity measures, although the functional ROI appears to be less reproducible between studies, because slightly different subsets of voxels were found to be included. On the other hand, the functional method did include fewer lesion voxels than the structural method.
Collapse
Affiliation(s)
- Thijs W van Harten
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna M van Opstal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
240
|
Zheng R, Chen Y, Jiang Y, Zhou B, Han S, Wei Y, Wang C, Cheng J. Abnormal voxel-wise whole-brain functional connectivity in first-episode, drug-naïve adolescents with major depression disorder. Eur Child Adolesc Psychiatry 2023; 32:1317-1327. [PMID: 35318540 DOI: 10.1007/s00787-022-01959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
Major depression disorder (MDD) is one of the most common psychiatric disorders. Previous studies have demonstrated structural and functional abnormalities in adult depression. However, the neurobiology of adolescent depression has not been fully understood. The aim of this study was to investigate the intrinsic dysconnectivity pattern of voxel-level whole-brain functional networks in first-episode, drug-naïve adolescents with MDD. Resting-state functional magnetic resonance imaging data were acquired from 66 depressed adolescents and 47 matched healthy controls. Voxel-wise degree centrality (DC) analysis was performed to identify voxels that showed altered whole-brain functional connectivity (FC) with other voxels. We further conducted seed-based FC analysis to investigate in more detail the connectivity patterns of the identified DC changes. The relationship between altered DC and clinical variables in depressed adolescents was also analyzed. Compared with controls, depressed adolescents showed lower DC in the bilateral hippocampus, left superior temporal gyrus and right insula. Seed-based analysis revealed that depressed adolescents, relative to controls, showed hypoconnectivity between the hippocampus to the medial prefrontal regions and right precuneus. Furthermore, the DC values in the bilateral hippocampus were correlated with the Hamilton Depression Rating Scale score and duration of disease (all P < 0.05, false discovery rate corrected). Our study indicates abnormal intrinsic dysconnectivity patterns of whole-brain functional networks in drug-naïve, first-episode adolescents with MDD, and abnormal DC in the hippocampus may affect the association of prefrontal-hippocampus circuit. These findings may provide new insights into the pathophysiology of adolescent-onset MDD.
Collapse
Affiliation(s)
- Ruiping Zheng
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yuan Chen
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yu Jiang
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Bingqian Zhou
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Shaoqiang Han
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yarui Wei
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Caihong Wang
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Jingliang Cheng
- Functional and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China.
| |
Collapse
|
241
|
Ellingsen DM, Isenburg K, Jung C, Lee J, Gerber J, Mawla I, Sclocco R, Grahl A, Anzolin A, Edwards RR, Kelley JM, Kirsch I, Kaptchuk TJ, Napadow V. Brain-to-brain mechanisms underlying pain empathy and social modulation of pain in the patient-clinician interaction. Proc Natl Acad Sci U S A 2023; 120:e2212910120. [PMID: 37339198 PMCID: PMC10293846 DOI: 10.1073/pnas.2212910120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
Social interactions such as the patient-clinician encounter can influence pain, but the underlying dynamic interbrain processes are unclear. Here, we investigated the dynamic brain processes supporting social modulation of pain by assessing simultaneous brain activity (fMRI hyperscanning) from chronic pain patients and clinicians during video-based live interaction. Patients received painful and nonpainful pressure stimuli either with a supportive clinician present (Dyadic) or in isolation (Solo). In half of the dyads, clinicians performed a clinical consultation and intake with the patient prior to hyperscanning (Clinical Interaction), which increased self-reported therapeutic alliance. For the other half, patient-clinician hyperscanning was completed without prior clinical interaction (No Interaction). Patients reported lower pain intensity in the Dyadic, relative to the Solo, condition. In Clinical Interaction dyads relative to No Interaction, patients evaluated their clinicians as better able to understand their pain, and clinicians were more accurate when estimating patients' pain levels. In Clinical Interaction dyads, compared to No Interaction, patients showed stronger activation of the dorsolateral and ventrolateral prefrontal cortex (dlPFC and vlPFC) and primary (S1) and secondary (S2) somatosensory areas (Dyadic-Solo contrast), and clinicians showed increased dynamic dlPFC concordance with patients' S2 activity during pain. Furthermore, the strength of S2-dlPFC concordance was positively correlated with self-reported therapeutic alliance. These findings support that empathy and supportive care can reduce pain intensity and shed light on the brain processes underpinning social modulation of pain in patient-clinician interactions. Our findings further suggest that clinicians' dlPFC concordance with patients' somatosensory processing during pain can be boosted by increasing therapeutic alliance.
Collapse
Affiliation(s)
- Dan-Mikael Ellingsen
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo0372, Norway
- Department of Psychology, Pedagogy and Law, School of Health Sciences, Kristiania University College, Oslo0107, Norway
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
| | - Kylie Isenburg
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
| | - Changjin Jung
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- KM Research Science Division, Korea Institute of Oriental Medicine, Daejeon461-24, Republic of Korea
| | - Jeungchan Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
| | - Jessica Gerber
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
| | - Ishtiaq Mawla
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
| | - Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Radiology, Logan University, Chesterfield, MO63017
| | - Arvina Grahl
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
| | - Alessandra Anzolin
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
| | - Robert R. Edwards
- Department of Anesthesiology, Brigham and Women’s Hospital, Boston, MA02115
| | - John M. Kelley
- School of Social Sciences, Communication, and Humanities, Endicott College, Beverley, MA02115
- Program in Placebo Studies & Therapeutic Encounter, Harvard Medical School, Boston, MA02215
| | - Irving Kirsch
- Program in Placebo Studies & Therapeutic Encounter, Harvard Medical School, Boston, MA02215
| | - Ted J. Kaptchuk
- Program in Placebo Studies & Therapeutic Encounter, Harvard Medical School, Boston, MA02215
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Radiology, Logan University, Chesterfield, MO63017
| |
Collapse
|
242
|
Tansey R, Graff K, Rohr CS, Dimond D, Ip A, Yin S, Dewey D, Bray S. Functional MRI responses to naturalistic stimuli are increasingly typical across early childhood. Dev Cogn Neurosci 2023; 62:101268. [PMID: 37327695 PMCID: PMC10275704 DOI: 10.1016/j.dcn.2023.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/05/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
While findings show that throughout development, there are child- and age-specific patterns of brain functioning, there is also evidence for significantly greater inter-individual response variability in young children relative to adults. It is currently unclear whether this increase in functional "typicality" (i.e., inter-individual similarity) is a developmental process that occurs across early childhood, and what changes in BOLD response may be driving changes in typicality. We collected fMRI data from 81 typically developing 4-8-year-old children during passive viewing of age-appropriate television clips and asked whether there is increasing typicality of brain response across this age range. We found that the "increasing typicality" hypothesis was supported across many regions engaged by passive viewing. Post hoc analyses showed that in a priori ROIs related to language and face processing, the strength of the group-average shared component of activity increased with age, with no concomitant decline in residual signal or change in spatial extent or variability. Together, this suggests that increasing inter-individual similarity of functional responses to audiovisual stimuli is an important feature of early childhood functional brain development.
Collapse
Affiliation(s)
- Ryann Tansey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Kirk Graff
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Christiane S Rohr
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Amanda Ip
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Shelly Yin
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Signe Bray
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
243
|
van Galen KA, Schrantee A, Ter Horst KW, la Fleur SE, Booij J, Constable RT, Schwartz GJ, DiLeone RJ, Serlie MJ. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat Metab 2023:10.1038/s42255-023-00816-9. [PMID: 37308722 DOI: 10.1038/s42255-023-00816-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
Post-ingestive nutrient signals to the brain regulate eating behaviour in rodents, and impaired responses to these signals have been associated with pathological feeding behaviour and obesity. To study this in humans, we performed a single-blinded, randomized, controlled, crossover study in 30 humans with a healthy body weight (females N = 12, males N = 18) and 30 humans with obesity (females N = 18, males N = 12). We assessed the effect of intragastric glucose, lipid and water (noncaloric isovolumetric control) infusions on the primary endpoints cerebral neuronal activity and striatal dopamine release, as well as on the secondary endpoints plasma hormones and glucose, hunger scores and caloric intake. To study whether impaired responses in participants with obesity would be partially reversible with diet-induced weight loss, imaging was repeated after 10% diet-induced weight loss. We show that intragastric glucose and lipid infusions induce orosensory-independent and preference-independent, nutrient-specific cerebral neuronal activity and striatal dopamine release in lean participants. In contrast, participants with obesity have severely impaired brain responses to post-ingestive nutrients. Importantly, the impaired neuronal responses are not restored after diet-induced weight loss. Impaired neuronal responses to nutritional signals may contribute to overeating and obesity, and ongoing resistance to post-ingestive nutrient signals after significant weight loss may in part explain the high rate of weight regain after successful weight loss.
Collapse
Affiliation(s)
- Katy A van Galen
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Kasper W Ter Horst
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands
- Amsterdam UMC, location AMC, Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam, the Netherlands
| | - Jan Booij
- Amsterdam UMC, location AMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - R Todd Constable
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, USA
| | - Gary J Schwartz
- Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, USA
| | - Ralph J DiLeone
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Mireille J Serlie
- Amsterdam University Medical Centers (UMC), location AMC, Department of Endocrinology and Metabolism and Amsterdam Gastroenterology Metabolism Endocrinology Institute, Amsterdam, the Netherlands.
- Yale University School of Medicine, Department of Endocrinology, New Haven, CT, USA.
| |
Collapse
|
244
|
Ashton C, Gouws AD, Glennon M, Das A, Chen YK, Chrisp C, Felek I, Zanto TP, McNab F. Stimulus specific cortical activity associated with ignoring distraction during working memory encoding and maintenance. Sci Rep 2023; 13:8952. [PMID: 37268747 DOI: 10.1038/s41598-023-34967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
Distraction disrupts Working Memory (WM) performance, but how the brain filters distraction is not known. One possibility is that neural activity associated with distractions is suppressed relative to a baseline/passive task (biased competition). Alternatively, distraction may be denied access to WM, with no suppression. Furthermore, behavioural work indicates separate mechanisms for ignoring distractions which occur (1) while we put information into WM (Encoding Distraction, ED) and (2) while we maintain already encoded information during the WM delay period (Delay Distraction, DD). Here we used fMRI in humans to measure category-sensitive cortical activity and probe the extent to which ED/DD mechanisms involve enhancement/suppression during a WM task. We observed significant enhancement of task-relevant activity, relative to a passive view task, which did not differ according to whether or when distractors appeared. For both ED and DD we found no evidence of suppression, but instead a robust increase in stimulus specific activity in response to additional stimuli presented during the passive view task, which was not seen for the WM task, when those additional stimuli were to be ignored. The results indicate that ED/DD resistance does not necessarily involve suppression of distractor-related activity. Rather, a rise in distractor-associated activity is prevented when distractors are presented, supporting models of input gating, and providing a potential mechanism by which input-gating might be achieved.
Collapse
Affiliation(s)
- Charlotte Ashton
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Andre D Gouws
- York Neuroimaging Centre, University of York, York, YO10 5NY, UK
| | - Marcus Glennon
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Abhishek Das
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Yit-Keat Chen
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Charlotte Chrisp
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Ismail Felek
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Theodore P Zanto
- Department of Neurology, University of California San Francisco, San Francisco, 94158, USA
| | - Fiona McNab
- Department of Psychology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
245
|
Kroon E, Kuhns L, Colyer-Patel K, Filbey F, Cousijn J. Working memory-related brain activity in cannabis use disorder: The role of cross-cultural differences in cannabis attitudes. Addict Biol 2023; 28:e13283. [PMID: 37252877 DOI: 10.1111/adb.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Cannabis legislation and attitudes towards use are changing. Given that evidence from cultural neuroscience research suggests that culture influences the neurobiological mechanisms underlying behaviour, it is of great importance to understand how cannabis legislation and attitudes might affect the brain processes underlying cannabis use disorder. Brain activity of 100 dependent cannabis users and 84 controls was recorded during an N-back working memory (WM) task in participants from the Netherlands (NL; users = 60, controls = 52) and Texas, USA (TX; users = 40, controls = 32). Participants completed a cannabis culture questionnaire as a measure of perceived benefits (positive) and perceived harms (negative) of cannabis from their personal, friends-family's and country-state's perspectives. Amount of cannabis use (grams/week), DSM-5 CUD symptoms and cannabis use-related problems were assessed. Cannabis users self-reported more positive and less negative (personal and friends-family) cannabis attitudes than controls, with this effect being significantly larger in the TX cannabis users. No site difference in country-state attitudes was observed. TX cannabis users, compared with NL cannabis users, and those cannabis users perceiving more positive country-state attitudes showed a more positive association between grams/week and WM-related activity in the superior parietal lobe. NL cannabis users, compared with TX cannabis users, and those cannabis users with less positive personal attitudes showed a more positive association between grams/week and WM-load-related activity in the temporal pole. Both site and cultural attitudes moderated the association of quantity of cannabis use with WM- and WM-load-related activity. Importantly, differences in legislation did not align with perceived cannabis attitudes and appear to be differentially associated with cannabis use-related brain activity.
Collapse
Affiliation(s)
- Emese Kroon
- ADAPT-Laboratory, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Lauren Kuhns
- ADAPT-Laboratory, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Karis Colyer-Patel
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Francesca Filbey
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Janna Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
246
|
Rubien-Thomas E, Berrian N, M Rapuano K, J Skalaban L, Cervera A, Nardos B, Cohen AO, Lowrey A, M Daumeyer N, Watts R, Camp NP, Hughes BL, Eberhardt JL, Taylor-Thompson KA, Fair DA, Richeson JA, Casey BJ. Uncertain threat is associated with greater impulsive actions and neural dissimilarity to Black versus White faces. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:944-956. [PMID: 36732466 PMCID: PMC10390611 DOI: 10.3758/s13415-022-01056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 02/04/2023]
Abstract
Race is a social construct that contributes to group membership and heightens emotional arousal in intergroup contexts. Little is known about how emotional arousal, specifically uncertain threat, influences behavior and brain processes in response to race information. We investigated the effects of experimentally manipulated uncertain threat on impulsive actions to Black versus White faces in a community sample (n = 106) of Black and White adults. While undergoing fMRI, participants performed an emotional go/no-go task under three conditions of uncertainty: 1) anticipation of an uncertain threat (i.e., unpredictable loud aversive sound); 2) anticipation of an uncertain reward (i.e., unpredictable receipt of money); and 3) no anticipation of an uncertain event. Representational similarity analysis was used to examine the neural representations of race information across functional brain networks between conditions of uncertainty. Participants-regardless of their own race-showed greater impulsivity and neural dissimilarity in response to Black versus White faces across all functional brain networks in conditions of uncertain threat relative to other conditions. This pattern of greater neural dissimilarity under threat was enhanced in individuals with high implicit racial bias. Our results illustrate the distinct and important influence of uncertain threat on global differentiation in how race information is represented in the brain, which may contribute to racially biased behavior.
Collapse
Affiliation(s)
| | - Nia Berrian
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Lena J Skalaban
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Alessandra Cervera
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Binyam Nardos
- Departments of Occupational Therapy and Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Ariel Lowrey
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Richard Watts
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Nicholas P Camp
- Department of Organizational Studies, University of Michigan, Ann Arbor, MI, USA
| | - Brent L Hughes
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | | | | | - Damien A Fair
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | | | - B J Casey
- Department of Psychology, Yale University, New Haven, CT, USA.
- Department of Neuroscience and Behavior, Barnard College, New York, NY, USA.
| |
Collapse
|
247
|
Sengupta S, Berman A, Polimeni JR, Setsompop K, Grissom WA. High-resolution motion- and phase-corrected functional MRI at 7 T using shuttered multishot echo-planar imaging. Magn Reson Med 2023; 89:2227-2241. [PMID: 36708203 PMCID: PMC10259881 DOI: 10.1002/mrm.29608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/14/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
PURPOSE To achieve high-resolution multishot echo-planar imaging (EPI) for functional MRI (fMRI) with reduced sensitivity to in-plane motion and between-shot phase variations. METHODS Two-dimensional radiofrequency pulses were incorporated in a multishot EPI sequence at 7T which selectively excited a set of in-plane bands (shutters) in the phase encoding direction, which moved between shots to cover the entire slice. A phase- and motion-corrected reconstruction was implemented for the acquisition. Brain imaging experiments were performed with instructed motion to evaluate image quality for conventional multishot and shuttered EPI. Temporal stability was assessed in three subjects by quantifying temporal SNR (tSNR) and artifact levels, and fMRI activation experiments using visual stimulation were performed to assess the strength and distribution of activation, using both conventional multishot and shuttered EPI. RESULTS In the instructed motion experiment, ghosting was lower in shuttered EPI images without or with corrections and image quality metrics were improved with motion correction. tSNR was improved by phase correction in both conventional multishot and shuttered EPI and the acquisitions had similar tSNR without and with phase correction. However, while phase correction was necessary to maximize tSNR in conventional multishot EPI, it also increased intermittent ghosting, but did not increase intermittent ghosting in shuttered EPI. Phase correction increased activation strength in both conventional multishot and shuttered EPI, but caused increased spurious activation outside the brain and in frontal brain regions in conventional multishot EPI. CONCLUSION Shuttered EPI supports multishot segmented EPI acquisitions with lower sensitivity to artifacts from motion for high-resolution fMRI.
Collapse
Affiliation(s)
- Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Avery Berman
- Department of Physics, Carleton University, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kawin Setsompop
- Radiology, Stanford University, Stanford, California, USA
- Electrical Engineering, Stanford University, Stanford, California, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
248
|
Elder JJ, Davis TH, Hughes BL. A Fluid Self-Concept: How the Brain Maintains Coherence and Positivity across an Interconnected Self-Concept While Incorporating Social Feedback. J Neurosci 2023; 43:4110-4128. [PMID: 37156606 PMCID: PMC10255005 DOI: 10.1523/jneurosci.1951-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
People experience instances of social feedback as interdependent with potential implications for their entire self-concept. How do people maintain positivity and coherence across the self-concept while updating self-views from feedback? We present a network model describing how the brain represents the semantic dependency relations among traits and uses this information to avoid an overall loss of positivity and coherence. Both male and female human participants received social feedback during a self-evaluation task while undergoing functional magnetic resonance imaging. We modeled self-belief updating by incorporating a reinforcement learning model within the network structure. Participants learned more rapidly from positive than negative feedback and were less likely to change self-views for traits with more dependencies in the network. Further, participants back propagated feedback across network relations while retrieving prior feedback on the basis of network similarity to inform ongoing self-views. Activation in ventromedial prefrontal cortex (vmPFC) reflected the constrained updating process such that positive feedback led to higher activation and negative feedback to less activation for traits with more dependencies. Additionally, vmPFC was associated with the novelty of a trait relative to previously self-evaluated traits in the network, and angular gyrus was associated with greater certainty for self-beliefs given the relevance of prior feedback. We propose that neural computations that selectively enhance or attenuate social feedback and retrieve past relevant experiences to guide ongoing self-evaluations may support an overall positive and coherent self-concept.SIGNIFICANCE STATEMENT We humans experience social feedback throughout our lives, but we do not dispassionately incorporate feedback into our self-concept. The implications of feedback for our entire self-concept plays a role in how we either change or retain our prior self-beliefs. In a neuroimaging study, we find that people are less likely to change their beliefs from feedback when the feedback has broader implications for the self-concept. This resistance to change is reflected in processing in the ventromedial prefrontal cortex, a region that is central to self-referential and social cognition. These results are broadly applicable given the role that maintaining a positive and coherent self-concept plays in promoting mental health and development throughout the lifespan.
Collapse
Affiliation(s)
- Jacob J Elder
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| | | | - Brent L Hughes
- Department of Psychology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
249
|
Montemurro S, Filippini N, Ferrazzi G, Mantini D, Arcara G, Marino M. Education differentiates cognitive performance and resting state fMRI connectivity in healthy aging. Front Aging Neurosci 2023; 15:1168576. [PMID: 37293663 PMCID: PMC10244540 DOI: 10.3389/fnagi.2023.1168576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Objectives In healthy aging, the way people cope differently with cognitive and neural decline is influenced by exposure to cognitively enriching life-experiences. Education is one of them, so that in general, the higher the education, the better the expected cognitive performance in aging. At the neural level, it is not clear yet how education can differentiate resting state functional connectivity profiles and their cognitive underpinnings. Thus, with this study, we aimed to investigate whether the variable education allowed for a finer description of age-related differences in cognition and resting state FC. Methods We analyzed in 197 healthy individuals (137 young adults aged 20-35 and 60 older adults aged 55-80 from the publicly available LEMON database), a pool of cognitive and neural variables, derived from magnetic resonance imaging, in relation to education. Firstly, we assessed age-related differences, by comparing young and older adults. Then, we investigated the possible role of education in outlining such differences, by splitting the group of older adults based on their education. Results In terms of cognitive performance, older adults with higher education and young adults were comparable in language and executive functions. Interestingly, they had a wider vocabulary compared to young adults and older adults with lower education. Concerning functional connectivity, the results showed significant age- and education-related differences within three networks: the Visual-Medial, the Dorsal Attentional, and the Default Mode network (DMN). For the DMN, we also found a relationship with memory performance, which strengthen the evidence that this network has a specific role in linking cognitive maintenance and FC at rest in healthy aging. Discussion Our study revealed that education contributes to differentiating cognitive and neural profiles in healthy older adults. Also, the DMN could be a key network in this context, as it may reflect some compensatory mechanisms relative to memory capacities in older adults with higher education.
Collapse
Affiliation(s)
| | | | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Leuven, Belgium
| | | | - Marco Marino
- Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
250
|
Bedel HA, Sivgin I, Dalmaz O, Dar SUH, Çukur T. BolT: Fused window transformers for fMRI time series analysis. Med Image Anal 2023; 88:102841. [PMID: 37224718 DOI: 10.1016/j.media.2023.102841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Deep-learning models have enabled performance leaps in analysis of high-dimensional functional MRI (fMRI) data. Yet, many previous methods are suboptimally sensitive for contextual representations across diverse time scales. Here, we present BolT, a blood-oxygen-level-dependent transformer model, for analyzing multi-variate fMRI time series. BolT leverages a cascade of transformer encoders equipped with a novel fused window attention mechanism. Encoding is performed on temporally-overlapped windows within the time series to capture local representations. To integrate information temporally, cross-window attention is computed between base tokens in each window and fringe tokens from neighboring windows. To gradually transition from local to global representations, the extent of window overlap and thereby number of fringe tokens are progressively increased across the cascade. Finally, a novel cross-window regularization is employed to align high-level classification features across the time series. Comprehensive experiments on large-scale public datasets demonstrate the superior performance of BolT against state-of-the-art methods. Furthermore, explanatory analyses to identify landmark time points and regions that contribute most significantly to model decisions corroborate prominent neuroscientific findings in the literature.
Collapse
Affiliation(s)
- Hasan A Bedel
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Irmak Sivgin
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Onat Dalmaz
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Salman U H Dar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Neuroscience Program, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|