201
|
Weng CY, Chiou SY, Wang L, Kou MC, Wang YJ, Wu MJ. Arsenic trioxide induces unfolded protein response in vascular endothelial cells. Arch Toxicol 2013; 88:213-26. [PMID: 23892647 DOI: 10.1007/s00204-013-1101-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Abstract
Chronic arsenic exposure has been linked to endothelial dysfunction and apoptosis. We investigate the involvement of unfolded protein response (UPR) signaling in the arsenic-mediated cytotoxicity of the SVEC4-10 mouse endothelial cells. The SVEC4-10 cells underwent apoptosis in response to As2O3 dose- and time-dependently, accompanied by increased accumulation of calcium, and activation of caspase-3. These phenomena were completely inhibited by α-lipoic acid (LA), which did not scavenge ROS over-production, but were only partially or not ameliorated by tiron, a potent superoxide scavenger. Moreover, arsenic activated UPR, leading to phosphorylation of eukaryotic translation initiation factor 2 subunit α (eIF2α), induction of ATF4, and processing of ATF6. Treatment with arsenic also triggered the expression of endoplasmic reticulum (ER) stress markers, GRP78 (glucose-regulated protein), and CHOP (C/EBP homologous protein). The activation of eIF2α, ATF4 and ATF6 and expression of GRP78 and CHOP are repressed by both LA and tiron, indicating arsenic-induced UPR is mediated through ROS-dependent and ROS-independent pathways. Arsenic also induced ER stress-inducible genes, BAX, PUMA (p53 upregulated modulator of apoptosis), TRB3 (tribbles-related protein 3), and SNAT2 (sodium-dependent neutral amino acid transporter 2). Consistent with intracellular calcium and cell viability data, ROS may not be important in arsenic-induced death, because tiron did not affect the expression of these pro-apoptotic genes. In addition, pretreatment with salubrinal, a selective inhibitor of eIF2α dephosphorylation, enhanced arsenic-induced GRP78 and CHOP expression and partially prevented arsenic cytotoxicity in SVEC4-10 cells. Taken together, these results suggest that arsenic-induced endothelial cytotoxicity is associated with ER stress, which is mediated by ROS-dependent and ROS-independent signaling.
Collapse
Affiliation(s)
- Ching-Yi Weng
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | | | | | | | | | | |
Collapse
|
202
|
Wang K, Cao F, Fang W, Hu Y, Chen Y, Ding H, Yu G. Activation of SNAT1/SLC38A1 in human breast cancer: correlation with p-Akt overexpression. BMC Cancer 2013; 13:343. [PMID: 23848995 PMCID: PMC3729721 DOI: 10.1186/1471-2407-13-343] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SNAT1 is a subtype of the amino acid transport system A that has been implicated to play a potential role in cancer development and progression, yet its role in breast cancer remains unclear. In present study, we detected SNAT1 expression in breast cancers and explored its underlying mechanism in promoting breast carcinogenesis. METHODS RT-PCR and Western blotting were performed to analyze the transcription and protein levels of SNAT1 in breast cancer cell lines and fresh tissues. Tissue microarray blocks containing breast cancer specimens obtained from 210 patients were constructed. Expression of SNAT1 in these specimens was analyzed using immunohistochemical studies. SNAT1 was down-regulated by SNAT1-shRNA in breast cancer cells and the functional significance was measured. RESULTS SNAT1 was up-regulated in breast cancer cell lines and breast cancer tissues. Overexpression of SNAT1 was observed in 127 cases (60.5%). Expression of SNAT1 was significantly associated with tumor size, nodal metastasis, advanced disease stage, Ki-67, and ER status. Suppression of endogenous SNAT1 leads to cell growth inhibition, cell cycle arrest, and apoptosis of 4T1 cells and lowered the phosphorylation level of Akt. SNAT1 expression correlated significantly with p-Akt expression in human breast cancer samples. CONCLUSIONS The cross-talk between Akt signaling and SNAT1 might play a critical role in the development and progression of breast cancer, providing an important molecular basis for novel diagnostic markers and new attractive targets in the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Kuo Wang
- Department of Surgery, The Affiliated Kunshan First People's Hospital, Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
203
|
Rooman I, Lutz C, Pinho AV, Huggel K, Reding T, Lahoutte T, Verrey F, Graf R, Camargo SMR. Amino acid transporters expression in acinar cells is changed during acute pancreatitis. Pancreatology 2013; 13:475-85. [PMID: 24075511 DOI: 10.1016/j.pan.2013.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
Pancreatic acinar cells accumulate amino acids against a marked concentration gradient to synthesize digestive enzymes. Thus, the function of acinar cells depends on amino acid uptake mediated by active transport. Despite the importance of this process, pancreatic amino acid transporter expression and cellular localization is still unclear. We screened mouse pancreas for the expression of genes encoding amino acid transporters. We showed that the most highly expressed transporters, namely sodium dependent SNAT3 (Slc38a3) and SNAT5 (Slc38a5) and sodium independent neutral amino acids transporters LAT1 (Slc7a5) and LAT2 (Slc7a8), are expressed in the basolateral membrane of acinar cells. SNAT3 and SNAT5, LAT1 and LAT2 are expressed in acinar cells. Additional evidence that these transporters are expressed in mature acinar cells was gained using acinar cell culture and acute pancreatitis models. In the acute phase of pancreatic injury, when acinar cell loss occurs, and in an acinar cell culture model, which mimics changes occurring during pancreatitis, SNAT3 and SNAT5 are strongly down-regulated. LAT1 and LAT2 were down-regulated only in the in vitro model. At protein level, SNAT3 and SNAT5 expression was also reduced during pancreatitis. Expression of other amino acid transporters was also modified in both models of pancreatitis. The subset of transporters with differential expression patterns during acute pancreatitis might be involved in the injury/regeneration phases. Further expression, localization and functional studies will follow to better understand changes occurring during acute pancreatitis. These findings provide insight into pancreatic amino acid transport in healthy pancreas and during acute pancreatitis injury.
Collapse
Affiliation(s)
- Ilse Rooman
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst-Sydney, NSW, Australia; St Vincent's Clinical School, University New South Wales, Australia; Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Pochini L, Scalise M, Galluccio M, Indiveri C. OCTN cation transporters in health and disease: role as drug targets and assay development. ACTA ACUST UNITED AC 2013; 18:851-67. [PMID: 23771822 DOI: 10.1177/1087057113493006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three members of the organic cation transporter novel subfamily are known to be involved in interactions with xenobiotic compounds. These proteins are characterized by 12 transmembrane segments connected by nine short loops and two large hydrophilic loops. It has been recently pointed out that acetylcholine is a physiological substrate of OCTN1. Its transport could be involved in nonneuronal cholinergic functions. OCTN2 maintains the carnitine homeostasis, resulting from intestinal absorption, distribution to tissues, and renal excretion/reabsorption. OCTN3, identified only in mouse, mediates also carnitine transport. OCTN1 and OCTN2 are associated with several pathologies, such as inflammatory bowel disease, primary carnitine deficiency, diabetes, neurological disorders, and cancer, thus representing useful pharmacological targets. The function and interaction with drugs of OCTNs have been studied in intact cell systems and in proteoliposomes. The latter experimental model enables reduced interference from other transporters or enzyme pathways. Using proteoliposomes, the molecular bases of toxicity of some drugs have recently been revealed. Therefore, proteoliposomes represent a promising experimental tool suitable for large-scale molecular screening of interactions of OCTNs with chemicals regarding human health.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry and Molecular Biotechnology, Department BEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Italy
| | | | | | | |
Collapse
|
205
|
Schweikhard ES, Ziegler CM. Amino acid secondary transporters: toward a common transport mechanism. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177982 DOI: 10.1016/b978-0-12-394316-3.00001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solute carriers (SLC) that transport amino acids are key players in health and diseases in humans. Their prokaryotic relatives are often involved in essential physiological processes in microorganisms, e.g. in homeostasis and acidic/osmotic stress response. High-resolution X-ray structures of the sequence-unrelated amino acid transporters unraveled a striking structural similarity between carriers, which were formerly assigned to different families. The highly conserved fold is characterized by two inverted structural repeats of five transmembrane helices each and indicates common mechanistic transport concepts if not an evolutionary link among a large number of amino acid transporters. Therefore, these transporters are classified now into the structural amino acid-polyamine-organocation superfamily (APCS). The APCS includes among others the mammalian SLC6 transporters and the heterodimeric SLC7/SLC3 transporters. However, it has to be noted that the APCS is not limited entirely to amino acid transporters but contains also transporters for, e.g. amino acid derivatives and sugars. For instance, the betaine-choline-carnitine transporter family of bacterial activity-regulated Na(+)- and H(+)-coupled symporters for glycine betaine and choline is also part of this second largest structural superfamily. The APCS fold provides different possibilities to transport the same amino acid. Arginine can be transported by an H(+)-coupled symport or by antiport mechanism in exchange against agmatine for example. The convergence of the mechanistic concept of transport under comparable physiological conditions allows speculating if structurally unexplored amino acid transporters, e.g. the members of the SLC36 and SLC38 family, belong to the APCS, too. In the kidney, which is an organ that depends critically on the regulated amino acid transport, these different SLC transporters have to work together to account for proper function. Here, we will summarize the basic concepts of Na(+)- and H(+)-coupled amino acid symport and amino acid-product antiport in the light of the respective physiological requirements.
Collapse
Affiliation(s)
- Eva S Schweikhard
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | |
Collapse
|
206
|
Parisi F, Riccardo S, Zola S, Lora C, Grifoni D, Brown LM, Bellosta P. dMyc expression in the fat body affects DILP2 release and increases the expression of the fat desaturase Desat1 resulting in organismal growth. Dev Biol 2013; 379:64-75. [PMID: 23608455 DOI: 10.1016/j.ydbio.2013.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 04/05/2013] [Accepted: 04/10/2013] [Indexed: 01/12/2023]
Abstract
Drosophila dMyc (dMyc) is known for its role in cell-autonomous regulation of growth. Here we address its role in the fat body (FB), a metabolic tissue that functions as a sensor of circulating nutrients to control the release of Drosophila Insulin-like peptides (Dilps) from the brain influencing growth and development. Our results show that expression of dMyc in the FB affects development and animal size. Expression of dMyc, but not of CycD/cdk4 or Rheb, in the FB diminishes the ability to retain Drosophila Insulin-like peptide-2 (DILP2) in the brain during starvation, suggesting that expression of dMyc mimics the signal that remotely controls the release of Dilps into the hemolymph. dMyc also affects glucose metabolism and increases the transcription of Glucose-transporter-1 mRNA, and of Hexokinase and Pyruvate-Kinase mRNAs, key regulators of glycolysis. These animals are able to counteract the increased levels of circulating trehalose induced by a high sugar diet leading to the conclusion that dMyc activity in the FB promotes glucose disposal. dMyc expression induces cell autonomous accumulation of triglycerides, which correlates with increased levels of Fatty Acid Synthase and Acetyl CoA Carboxylase mRNAs, enzymes responsible for lipid synthesis. We also found the expression of Stearoyl-CoA desaturase, Desat1 mRNA significantly higher in FB overexpressing dMyc. Desat1 is an enzyme that is necessary for monosaturation and production of fatty acids, and its reduction affects dMyc's ability to induce fat storage and resistance to animal survival. In conclusion, here we present novel evidences for dMyc function in the Drosophila FB in controlling systemic growth. We discovered that dMyc expression triggers cell autonomous mechanisms that control glucose and lipid metabolism to favor the storage of nutrients (lipids and sugars). In addition, the regulation of Desat1 controls the synthesis of triglycerides in FB and this may affect the humoral signal that controls DILP2 release in the brain.
Collapse
Affiliation(s)
- Federica Parisi
- Department of Biology, City College of the City University of New York, New York, NY 10031, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Combined walking exercise and alkali therapy in patients with CKD4-5 regulates intramuscular free amino acid pools and ubiquitin E3 ligase expression. Eur J Appl Physiol 2013; 113:2111-24. [PMID: 23591985 DOI: 10.1007/s00421-013-2628-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 03/13/2013] [Indexed: 01/04/2023]
Abstract
Muscle-wasting in chronic kidney disease (CKD) arises from several factors including sedentary behaviour and metabolic acidosis. Exercise is potentially beneficial but might worsen acidosis through exercise-induced lactic acidosis. We studied the chronic effects of exercise in CKD stage 4-5 patients (brisk walking, 30 min, 5 times/week), and non-exercising controls; each group receiving standard oral bicarbonate (STD), or additional bicarbonate (XS) (Total n = 26; Exercising + STD n = 9; Exercising +XS n = 6; Control + STD n = 8; Control + XS n = 3). Blood and vastus lateralis biopsies were drawn at baseline and 6 months. The rise in blood lactate in submaximal treadmill tests was suppressed in the Exercising + XS group. After 6 months, intramuscular free amino acids (including the branched chain amino acids) in the Exercising + STD group showed a striking chronic depletion. This did not occur in the Exercising + XS group. The effect in Exercising + XS patients was accompanied by reduced transcription of ubiquitin E3-ligase MuRF1 which activates proteolysis via the ubiquitin-proteasome pathway. Other anabolic indicators (Akt activation and suppression of the 14 kDa actin catabolic marker) were unaffected in Exercising + XS patients. Possibly because of this, overall suppression of myofibrillar proteolysis (3-methylhistidine output) was not observed. It is suggested that alkali effects in exercisers arose by countering exercise-induced acidosis. Whether further anabolic effects are attainable on combining alkali with enhanced exercise (e.g. resistance exercise) merits further investigation.
Collapse
|
208
|
Metzler R, Meleshkevitch EA, Fox J, Kim H, Boudko DY. An SLC6 transporter of the novel B(0,)- system aids in absorption and detection of nutrient amino acids in Caenorhabditis elegans. ACTA ACUST UNITED AC 2013; 216:2843-57. [PMID: 23580723 DOI: 10.1242/jeb.081497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nutrient amino acid transporters (NATs) of solute carrier family 6 (SLC6) mediate uptake of essential amino acids in mammals and insects. Phylogenomic analysis of the Caenorhabditis elegans (Ce) SLC6 family identifies five genes paralogous to an insect-specific NAT subfamily. Here we cloned and characterized the first representative of the identified nematode-specific transporters, SNF-5. SNF-5 mediates broad spectrum cation-coupled transport of neutral amino acids with submillimolar affinities and stoichiometry of 1 AA:1 Na(+), except for 1 l-Pro:2 Na(+). Unexpectedly, it transports acidic l-Glu(-) and l-Asp(-) (1 AA(-):3 Na(+)), revealing it to be the first member of a new B(0,-) system among characterized SLC6 transporters. This activity correlates with a unique positively charged His(+) 377 in the substrate-binding pocket. snf-5 promoter-driven enhanced green fluorescent protein labels intestinal cells INT1-9 and three pairs of amphid sensory neurons: ASI, ADF and ASK. These cells are intimately involved in control of dauer diapause, development, metabolism and longevity. The snf-5 deletion mutants do not show apparent morphological disorders, but increase dauer formation while reducing dauer maintenance upon starvation. Overall, the present study characterized the first nematode-specific NAT and revealed important structural and functional aspects of this transporter. In addition to the predictable role in alimentary amino acid absorption, our results indicate possible neuronal roles of SNF-5 as an amino acid provider to specific neuronal functions, including sensing of amino acid availability.
Collapse
Affiliation(s)
- Ryan Metzler
- The Department of Physiology and Biophysics of the Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
209
|
Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 2013; 121:117-24. [PMID: 23562864 DOI: 10.1016/j.physbeh.2013.03.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/25/2013] [Accepted: 03/06/2013] [Indexed: 02/04/2023]
Abstract
Physiological fluctuations in the levels of hormones, nutrients, and gasses are sensed in parallel by interacting control systems distributed throughout the brain and body. We discuss the logic of this arrangement and the definitions of "sensing"; and then focus on lateral hypothalamic (LH) control of energy balance and respiration. LH neurons control diverse behavioral and autonomic processes by projecting throughout the neuraxis. Three recently characterized types of LH cells are discussed here. LH orexin/hypocretin (ORX) neurons fire predominantly during wakefulness and are thought to promote reward-seeking, arousal, obesity resistance, and adaptive thermogenesis. Bidirectional control of ORX cells by extracellular macronutrients may add a new regulatory loop to these processes. ORX neurons also stimulate breathing and are activated by acid/CO2in vivo and in vitro. LH melanin-concentrating hormone (MCH) neurons fire mostly during sleep, promote physical inactivity, weight gain, and may impair glucose tolerance. Reported stimulation of MCH neurons by glucose may thus modulate energy homeostasis. Leptin receptor (LepR) neurons of the LH are distinct from ORX and MCH neurons, and may suppress feeding and locomotion by signaling to the mesolimbic dopamine system and local ORX neurons. Integration within the ORX-MCH-LepR microcircuit is suggested by anatomical and behavioral data, but requires clarification with direct assays of functional connectivity. Further studies of how LH circuits counteract evolutionarily-relevant environmental fluctuations will provide key information about the logic and fragilities of brain controllers of healthy homeostasis.
Collapse
Affiliation(s)
- Denis Burdakov
- King's College London, MRC Center for Developmental Neurobiology, London, UK; MRC National Institute for Medical Research, London, UK.
| | | | | |
Collapse
|
210
|
Gaccioli F, Lager S, Powell TL, Jansson T. Placental transport in response to altered maternal nutrition. J Dev Orig Health Dis 2013; 4:101-15. [PMID: 25054676 PMCID: PMC4237017 DOI: 10.1017/s2040174412000529] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanisms linking maternal nutrition to fetal growth and programming of adult disease remain to be fully established. We review data on changes in placental transport in response to altered maternal nutrition, including compromized utero-placental blood flow. In human intrauterine growth restriction and in most animal models involving maternal undernutrition or restricted placental blood flow, the activity of placental transporters, in particular for amino acids, is decreased in late pregnancy. The effect of maternal overnutrition on placental transport remains largely unexplored. However, some, but not all, studies in women with diabetes giving birth to large babies indicate an upregulation of placental transporters for amino acids, glucose and fatty acids. These data support the concept that the placenta responds to maternal nutritional cues by altering placental function to match fetal growth to the ability of the maternal supply line to allocate resources to the fetus. On the other hand, some findings in humans and mice suggest that placental transporters are regulated in response to fetal demand signals. These observations are consistent with the idea that fetal signals regulate placental function to compensate for changes in nutrient availability. We propose that the placenta integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensors. Together, these signals regulate placental growth and nutrient transport to balance fetal demand with the ability of the mother to support pregnancy. Thus, the placenta plays a critical role in modulating maternal-fetal resource allocation, thereby affecting fetal growth and the long-term health of the offspring.
Collapse
Affiliation(s)
- F Gaccioli
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - S Lager
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - T L Powell
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - T Jansson
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
211
|
McCracken AN, Edinger AL. Nutrient transporters: the Achilles' heel of anabolism. Trends Endocrinol Metab 2013; 24:200-8. [PMID: 23402769 PMCID: PMC3617053 DOI: 10.1016/j.tem.2013.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 01/08/2023]
Abstract
Highly proliferative cells, including cancer cells, require a constant supply of molecular building blocks to support their growth. To acquire substrates such as glucose and amino acids from the extracellular space, dividing cells rely on transporter proteins in the plasma membrane. Numerous studies link transcriptional and post-translational control of nutrient transporter expression with proliferation, highlighting the importance of nutrient transporters in both physiologic and pathologic growth. Here we review recent work that spotlights the crucial role of nutrient transporters in cell growth and proliferation, discuss post-translational mechanisms for coordinating expression of different transporters, and consider the therapeutic potential of targeting these proteins in cancer and other diseases characterized by inappropriate cell division.
Collapse
Affiliation(s)
| | - Aimee L. Edinger
- Corresponding Author: Aimee L. Edinger 2128 Natural Sciences 1 University of California, Irvine Irvine, CA 92697-2300 Tel: 949-824-1921 FAX: 949-824-4709
| |
Collapse
|
212
|
Grewer C, Gameiro A, Mager T, Fendler K. Electrophysiological characterization of membrane transport proteins. Annu Rev Biophys 2013; 42:95-120. [PMID: 23451896 DOI: 10.1146/annurev-biophys-083012-130312] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Active transport in biological membranes has been traditionally studied using a variety of biochemical and biophysical techniques, including electrophysiology. This review focuses on aspects of electrophysiological methods that make them particularly suited for the investigation of transporter function. Two major approaches to electrical recording of transporter activity are discussed: (a) artificial planar lipid membranes, such as the black lipid membrane and solid supported membrane, which are useful for studies on bacterial transporters and transporters of intracellular compartments, and (b) patch clamp and voltage clamp techniques, which investigate transporters in native cellular membranes. The analytical power of these methods is highlighted by several examples of mechanistic studies of specific membrane proteins, including cytochrome c oxidase, NhaA Na(+)/H(+) exchanger, ClC-7 H(+)/Cl(-) exchanger, glutamate transporters, and neutral amino acid transporters. These examples reveal the wealth of mechanistic information that can be obtained when electrophysiological methods are used in combination with rapid perturbation approaches.
Collapse
Affiliation(s)
- Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA.
| | | | | | | |
Collapse
|
213
|
Padmanabhan Iyer R, Gu S, Nicholson BJ, Jiang JX. Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter. PLoS One 2013; 8:e56792. [PMID: 23451088 PMCID: PMC3579933 DOI: 10.1371/journal.pone.0056792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/14/2013] [Indexed: 11/23/2022] Open
Abstract
SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine (TCEP), indicating the possible involvement of disulfide bridge(s). Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Bruce J. Nicholson
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Jean X. Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
214
|
Ishiwata S, Ogata S, Umino A, Shiraku H, Ohashi Y, Kajii Y, Nishikawa T. Increasing effects of S-methyl-L-cysteine on the extracellular D-serine concentrations in the rat medial frontal cortex. Amino Acids 2013; 44:1391-5. [PMID: 23417484 DOI: 10.1007/s00726-013-1464-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/23/2013] [Indexed: 02/06/2023]
Abstract
In an in vivo dialysis experiment, the intra-medial frontal cortex infusion of a system A and Asc-1 transporter inhibitor, S-methyl-L-cysteine, caused a concentration-dependent increase in the dialysate contents of an endogenous coagonist for the N-methyl-D-aspartate (NMDA) type glutamate receptor, D-serine, in the cortical portion. These results suggest that these neutral amino acid transporters could control the extracellular D-serine signaling in the brain and be a target for the development of a novel threapy for neuropsychiatric disorders with an NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Sayuri Ishiwata
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
215
|
Yasui DH, Xu H, Dunaway KW, Lasalle JM, Jin LW, Maezawa I. MeCP2 modulates gene expression pathways in astrocytes. Mol Autism 2013; 4:3. [PMID: 23351786 PMCID: PMC3561260 DOI: 10.1186/2040-2392-4-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/10/2013] [Indexed: 12/04/2022] Open
Abstract
Background Mutations in MECP2 encoding methyl-CpG-binding protein 2 (MeCP2) cause the X-linked neurodevelopmental disorder Rett syndrome. Rett syndrome patients exhibit neurological symptoms that include irregular breathing, impaired mobility, stereotypic hand movements, and loss of speech. MeCP2 protein epigenetically modulates gene expression through genome-wide binding to methylated CpG dinucleotides. While neurons have the highest level of MeCP2 expression, astrocytes and other cell types also express detectable levels of MeCP2. Recent studies suggest that astrocytes likely control the progression of Rett syndrome. Thus, the object of these studies was to identify gene targets that are affected by loss of MeCP2 binding in astrocytes. Methods To identify gene targets of MeCP2 in astrocytes, combined approaches of expression microarray and chromatin immunoprecipitation of MeCP2 followed by sequencing (ChIP-seq) were compared between wild-type and MeCP2-deficient astrocytes. MeCP2 gene targets were compared with genes in the top 10% of MeCP2 binding levels in gene windows either within 2 kb upstream of the transcription start site, or the ‘gene body’ that extended from transcription start to end site, or 2 kb downstream of the transcription end site. Results A total of 118 gene transcripts surpassed the highly significant threshold (P < 0.005, fold change > 1.2) in expression microarray analysis from triplicate cultures. The top 10% of genes with the highest levels of MeCP2 binding were identified in two independent ChIP-seq experiments. Together this integrated, genome-wide screen for MeCP2 target genes provided an overlapping list of 19 high-confidence MeCP2-responsive gene transcripts in astrocytes. Validation of candidate target gene transcripts by RT-PCR revealed that expression of Apoc2, Cdon, Csrp and Nrep were consistently responsive to MeCP2 deficiency in astrocytes. Conclusions The first MeCP2 ChIP-seq and gene expression microarray analysis in astrocytes reveals a set of potential MeCP2 target genes that may contribute to normal astrocyte signaling, cell division and neuronal support functions, the loss of which may contribute to the Rett syndrome phenotype.
Collapse
Affiliation(s)
- Dag H Yasui
- Department of Medical Microbiology and Immunology, UC Davis Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| | | | | | | | | | | |
Collapse
|
216
|
Abstract
PURPOSE OF REVIEW We consider recent advances in epithelial amino acid transport physiology and our understanding of the functioning of amino acid transporters as sensors, as well as carriers, of tissue nutrient supplies. RECENT FINDINGS Gut hormones (e.g. leptin) may regulate intestinal amino acid transporter activity by a variety of mechanisms, although the overall functional significance of such regulation is not yet fully understood. Important functional interactions between amino acid transporters and nutrient-signalling pathways which regulate metabolism [e.g. the mammalian target of rapamycin (mTOR)C1 pathway which promotes cell growth] have been revealed in recent studies. Amino acid transporters on endosomal (e.g. lysosomal) membranes may be of unexpected significance as intracellular nutrient sensors. It is also now evident that certain amino acid transporters may have dual receptor-transporter functions and act as 'transceptors' to sense amino acid availability upstream of signal pathways. SUMMARY Increased knowledge on the timescale of the amino acid sensor-signal-effector process(es) should help in the optimization of protein-feeding regimes to gain maximum anabolic effect. New opportunities for nutritional therapy include targeting of amino acid transceptors to promote protein-anabolic signals and mechanisms up-regulating amino acid transporter expression to improve absorptive capacity for nutrients.
Collapse
Affiliation(s)
- Nadège Poncet
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, UK
| | | |
Collapse
|
217
|
Modulation of Human Colostrum Phagocyte Activity by the Glycine-Adsorbed Polyethylene Glycol Microspheres. J CHEM-NY 2013. [DOI: 10.1155/2013/845270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Colostrum is a secretion that contains immunologically active components, including immunocompetent cells and glycine, which has anti-inflammatory, immunomodulatory, and cytoprotective effects. The aim of this study was to evaluate the adsorption of glycine onto polyethylene glycol (PEG) microspheres and to verify the immunomodulatory effect of this nanomaterial on human colostrum phagocytes. The PEG microspheres were evaluated by fluorescence microscopy. The effects of PEG microspheres with adsorbed glycine on viability, superoxide release, phagocytosis, microbicidal activity, and intracellular calcium release of mononuclear (MN) and polymorphonuclear (PMN) colostrum phagocytes were determined. Fluorescence microscopy analyses revealed that glycine was able to be adsorbed to the PEG microspheres. The PMN phagocytes exposed to glycine-PEG microspheres showed the highest superoxide levels. The phagocytes (both MN and PMN) displayed increased microbicidal activity and intracellular calcium release in the presence of PEG microspheres with adsorbed glycine. These data suggest that the adsorption of PEG microspheres with adsorbed glycine was able to stimulate the colostrum phagocytes. This material may represent a possible alternative therapy for future clinical applications on patients with gastrointestinal infections.
Collapse
|
218
|
Rosario FJ, Kanai Y, Powell TL, Jansson T. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol 2012; 591:609-25. [PMID: 23165769 DOI: 10.1113/jphysiol.2012.238014] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abnormal fetal growth increases the risk for perinatal complications and predisposes for the development of obesity, diabetes and cardiovascular disease later in life. Emerging evidence suggests that changes in placental amino acid transport directly contribute to altered fetal growth. However, the molecular mechanisms regulating placental amino acid transport are largely unknown. Here we combined small interfering (si) RNA-mediated silencing approaches with protein expression/localization and functional studies in cultured primary human trophoblast cells to test the hypothesis that mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate amino acid transporters by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal System A and System L amino acid transport activity but had no effect on growth factor-stimulated amino acid uptake. Simultaneous inhibition of mTORC1 and 2 completely inhibited both basal and growth factor-stimulated amino acid transport activity. In contrast, mTOR inhibition had no effect on serotonin transport. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of specific System A (SNAT2, SLC38A2) and System L (LAT1, SLC7A5) transporter isoforms without affecting global protein expression. In conclusion, mTORC1 and mTORC2 regulate human trophoblast amino acid transporters by modulating the cell surface abundance of specific transporter isoforms. This is the first report showing regulation of amino acid transport by mTORC2. Because placental mTOR activity and amino acid transport are decreased in human intrauterine growth restriction our data are consistent with the possibility that dysregulation of placental mTOR plays an important role in the development of abnormal fetal growth.
Collapse
Affiliation(s)
- Fredrick J Rosario
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
219
|
Tai W, Chen Z, Cheng K. Expression profile and functional activity of peptide transporters in prostate cancer cells. Mol Pharm 2012; 10:477-87. [PMID: 22950754 DOI: 10.1021/mp300364k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peptide transporters are expressed predominantly in intestinal and renal epithelial cells. The functional expression of peptide transporters is also identified in other types of tissues, such as glia cells, macrophages, and the epithelia of the bile duct, the lungs, and the mammary glands. However, their presence and role are poorly understood in carcinomas. We explored the expression profile and functional activity of peptide transporters in the prostate cancer cell lines LNCaP, PC-3, and DU145. Quantitative real time RT-PCR (qRT-PCR) and Western blot were used to evaluate the expression profile of peptide transporter 1 (PEPT1), peptide transporter 2 (PEPT2), peptide histidine transporter 1 (PHT1), and peptide histidine transporter 2 (PHT2) in these cells. LNCaP expresses high levels of PEPT2 and PHT1, while PC-3 demonstrates strong expression of PEPT1 and PHT1. DU145 shows only weak expression of PEPT1 and PHT1. Functional activities were studied in these cell lines using radiolabeled glycylsarcosine ([(3)H]Gly-Sar) and l-histidine ([(3)H]-l-histidine). The uptake of [(3)H]Gly-Sar and [(3)H]-l-histidine was time- and pH-dependent. A kinetic study showed that the uptake of Gly-Sar and l-histidine is saturable over the tested concentration range. The binding affinity (K(m)) and the maximal velocity (V(max)) exhibited in the three cell lines were consistent with the expression profiles we observed in qRT-PCR and Western blot analysis. A competitive inhibition study revealed that peptide transporters in prostate cancer cells exhibited broad substrate specificity with a preference for hydrophobic dipeptides, such as Leu-Leu. Fluorescence microscopy study revealed that the fluorescent dipeptide probe d-Ala-Lys-AMCA (a substrate of peptide transporters) specifically accumulated in the cytoplasm of LNCaP and PC-3, but not DU145 cells. Inhibiting the peptide transporter activity by Gly-Sar suppressed the growth of LNCaP and PC-3 cells. Our study indicated that PC-3 cells can be established as a new cell culture model for PEPT1 study, and LNCaP can be used as a model for PEPT2 study. Moreover, our results suggested that peptide transporters are overexpressed in prostate cancer cells and can be adopted as a promising target for tumor-specific drug delivery.
Collapse
Affiliation(s)
- Wanyi Tai
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, Missouri 64108, United States
| | | | | |
Collapse
|
220
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hyytia P, Colombo G, Edenberg HJ, Lumeng L, Bell RL. Gene expression in the ventral tegmental area of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Pharmacol Biochem Behav 2012; 102:275-85. [PMID: 22579914 PMCID: PMC3383357 DOI: 10.1016/j.pbb.2012.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/20/2012] [Accepted: 04/30/2012] [Indexed: 12/28/2022]
Abstract
The objective of this study was to determine if there are common innate differences in gene expression or gene pathways in the ventral tegmental area (VTA) among 5 different pairs of rat lines selectively bred for high (HEC) or low (LEC) ethanol consumption: (a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats; (b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line pairs 1 and 2); (c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats; and (d) Sardinian alcohol-preferring (sP) vs. alcohol-nonpreferring (sNP) rats. Microarray analysis revealed between 370 and 1340 unique named genes that significantly differed in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 line-pairs, but not for all 5 line-pairs; moreover, there were few genes in common in these categories and networks. ANOVA of the combined data for the 5 line-pairs indicated 1295 significant (p<0.01) differences in expression of named genes. Although no individual named gene was significant across all 5 line-pairs, there were 22 genes that overlapped in the same direction in 3 or 4 of the line-pairs. Overall, the findings suggest that (a) some biological categories or networks may be in common for subsets of line-pairs; and (b) regulation of different genes and/or combinations of multiple biological systems (e.g., transcription, synaptic function, intracellular signaling and protection against oxidative stress) within the VTA (possibly involving dopamine and glutamate) may be contributing to the disparate alcohol drinking behaviors of these line-pairs.
Collapse
Affiliation(s)
- William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
The brain's response to an essential amino acid-deficient diet and the circuitous route to a better meal. Mol Neurobiol 2012; 46:332-48. [PMID: 22674217 DOI: 10.1007/s12035-012-8283-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/24/2012] [Indexed: 12/16/2022]
Abstract
The essential (indispensable) amino acids (IAA) are neither synthesized nor stored in metazoans, yet they are the building blocks of protein. Survival depends on availability of these protein precursors, which must be obtained in the diet; it follows that food selection is critical for IAA homeostasis. If even one of the IAA is depleted, its tRNA becomes quickly deacylated and the levels of charged tRNA fall, leading to disruption of global protein synthesis. As they have priority in the diet, second only to energy, the missing IAA must be restored promptly or protein catabolism ensues. Animals detect and reject an IAA-deficient meal in 20 min, but how? Here, we review the molecular basis for sensing IAA depletion and repletion in the brain's IAA chemosensor, the anterior piriform cortex (APC). As animals stop eating an IAA-deficient meal, they display foraging and altered choice behaviors, to improve their chances of encountering a better food. Within 2 h, sensory cues are associated with IAA depletion or repletion, leading to learned aversions and preferences that support better food selection. We show neural projections from the APC to appetitive and consummatory motor control centers, and to hedonic, motivational brain areas that reinforce these adaptive behaviors.
Collapse
|
222
|
Fike CD, Sidoryk-Wegrzynowicz M, Aschner M, Summar M, Prince LS, Cunningham G, Kaplowitz M, Zhang Y, Aschner JL. Prolonged hypoxia augments L-citrulline transport by system A in the newborn piglet pulmonary circulation. Cardiovasc Res 2012; 95:375-84. [PMID: 22673370 DOI: 10.1093/cvr/cvs186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIMS Pulmonary arterial endothelial cells (PAECs) express the enzymes needed for generation of l-arginine from intracellular l-citrulline but do not express the enzymes needed for de novo l-citrulline synthesis. Hence, l-citrulline levels in PAECs are dependent on l-citrulline transport. Once generated, l-arginine can be converted to l-citrulline and nitric oxide (NO) by the enzyme NO synthase. We sought to determine whether hypoxia, a condition aetiologically linked to pulmonary hypertension, alters the transport of l-citrulline and the expression of the sodium-coupled neutral amino acid transporters (SNATs) in PAECs from newborn piglets. METHODS AND RESULTS PAECs isolated from newborn piglets were cultured under normoxic and hypoxic conditions and used to measure SNAT1, 2, 3, and 5 protein expression and (14)C-l-citrulline uptake. SNAT1 protein expression was increased, while SNAT2, SNAT3, and SNAT5 expression was unaltered in hypoxic PAECs. (14)C-l-citrulline uptake was increased in hypoxic PAECs. Studies with inhibitors of System A (SNAT1/2) and System N (SNAT3/5) revealed that the increased (14)C-l-citrulline uptake was largely due to System A-mediated transport. Additional studies were performed to evaluate SNAT protein expression and l-citrulline levels in lungs of piglets with chronic hypoxia-induced pulmonary hypertension and comparable age controls. Lungs from piglets raised in chronic hypoxia exhibited greater SNAT1 expression and higher l-citrulline levels than lungs from controls. CONCLUSION Increased SNAT1 expression and the concomitant enhanced ability to transport l-citrulline in PAECs could represent an important regulatory mechanism to counteract NO signalling impairments known to occur during the development of chronic hypoxia-induced pulmonary hypertension in newborns.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, University School of Medicine, Vanderbilt University Medical Center, 2215 B Garland Ave., Nashville, TN 37232-0656, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Bridges RJ, Natale NR, Patel SA. System xc⁻ cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 2012; 165:20-34. [PMID: 21564084 DOI: 10.1111/j.1476-5381.2011.01480.x] [Citation(s) in RCA: 397] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
System x(c)(-) is an amino acid antiporter that typically mediates the exchange of extracellular l-cystine and intracellular L-glutamate across the cellular plasma membrane. Studied in a variety of cell types, the import of L-cystine through this transporter is critical to glutathione production and oxidative protection. The exchange-mediated export of L-glutamate takes on added significance within the CNS, as it represents a non-vesicular route of release through which this excitatory neurotransmitter can participate in either neuronal signalling or excitotoxic pathology. When both the import of L-cystine and the export of L-glutamate are taken into consideration, system x(c)(-) has now been linked to a wide range of CNS functions, including oxidative protection, the operation of the blood-brain barrier, neurotransmitter release, synaptic organization, viral pathology, drug addiction, chemosensitivity and chemoresistance, and brain tumour growth. The ability to selectively manipulate system x(c)(-), delineate its function, probe its structure and evaluate it as a therapeutic target is closely linked to understanding its pharmacology and the subsequent development of selective inhibitors and substrates. Towards that goal, this review will examine the current status of our understanding of system x(c)(-) pharmacology and the structure-activity relationships that have guided the development of an initial pharmacophore model, including the presence of lipophilic domains adjacent to the substrate binding site. A special emphasis is placed on the roles of system x(c)(-) within the CNS, as it is these actions that are among the most exciting as potential long-range therapeutic targets.
Collapse
Affiliation(s)
- Richard J Bridges
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|
224
|
Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids 2012; 45:523-30. [PMID: 22643846 DOI: 10.1007/s00726-012-1326-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/15/2012] [Indexed: 01/22/2023]
Abstract
Previously we demonstrated that the insulin- and amino acid-induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. Recent studies have indicated that members of the System A transporter (SNAT2), the System N transporter (SNAT3), the System L transporters (LAT1 and LAT2), and the proton-assisted amino acid transporters (PAT1 and PAT2) have crucial roles in the activation of mTORC1 and that the abundance of amino acid transporters is positively correlated with their activation. This study aimed to determine the effect of the post-prandial rise in insulin and amino acids on the abundance or activation of SNAT2, SNAT3, LAT1, LAT2, PAT1, and PAT2 and whether the response is modified by development. Overnight fasted 6- and 26-day-old pigs were infused for 2 h with saline (Control) or with insulin or amino acids to achieve fed levels while amino acids or insulin, respectively, as well as glucose were maintained at fasting levels. The abundance of SNAT2, SNAT3, LAT1, LAT2, PAT1, and PAT2 was higher in muscle of 6- compared with 26-day-old pigs. The abundance of the PAT2-mTOR complex was greater in 6- than in 26-day-old pigs, consistent with the higher activation of mTORC1. Neither insulin nor amino acids altered amino acid transporter or PAT2-mTOR complex abundance. In conclusion, the amino acid transporters, SNAT 2/3, LAT 1/2, and PAT1/2, likely have important roles in the enhanced amino acid-induced activation of mTORC1 in skeletal muscle of the neonate.
Collapse
|
225
|
Kirischuk S, Parpura V, Verkhratsky A. Sodium dynamics: another key to astroglial excitability? Trends Neurosci 2012; 35:497-506. [PMID: 22633141 DOI: 10.1016/j.tins.2012.04.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 11/19/2022]
Abstract
Astroglial excitability is largely mediated by fluctuations in intracellular ion concentrations. In addition to generally acknowledged Ca²⁺ excitability of astroglia, recent studies have demonstrated that neuronal activity triggers transient increases in the cytosolic Na⁺ concentration ([Na⁺](i)) in perisynaptic astrocytes. These [Na⁺](i) transients are controlled by multiple Na⁺-permeable channels and Na⁺-dependent transporters; spatiotemporally organized [Na⁺](i) dynamics in turn regulate diverse astroglial homeostatic responses such as metabolic/signaling utilization of lactate and glutamate, transmembrane transport of neurotransmitters and K⁺ buffering. In particular, near-membrane [Na⁺](i) transients determine the rate and the direction of the transmembrane transport of GABA and Ca²⁺. We discuss here the role of Na⁺ in the regulation of various systems that mediate fast bidirectional communication between neurones and glia at the single synapse level.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology and Pathophysiology, Universal Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
226
|
Melnik BC. Excessive Leucine-mTORC1-Signalling of Cow Milk-Based Infant Formula: The Missing Link to Understand Early Childhood Obesity. J Obes 2012; 2012:197653. [PMID: 22523661 PMCID: PMC3317169 DOI: 10.1155/2012/197653] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 01/09/2012] [Indexed: 01/22/2023] Open
Abstract
Increased protein supply by feeding cow-milk-based infant formula in comparison to lower protein content of human milk is a well-recognized major risk factor of childhood obesity. However, there is yet no conclusive biochemical concept explaining the mechanisms of formula-induced childhood obesity. It is the intention of this article to provide the biochemical link between leucine-mediated signalling of mammalian milk proteins and adipogenesis as well as early adipogenic programming. Leucine has been identified as the predominant signal transducer of mammalian milk, which stimulates the nutrient-sensitive kinase mammalian target of rapamycin complex 1 (mTORC1). Leucine thus functions as a maternal-neonatal relay for mTORC1-dependent neonatal β-cell proliferation and insulin secretion. The mTORC1 target S6K1 plays a pivotal role in stimulation of mesenchymal stem cells to differentiate into adipocytes and to induce insulin resistance. It is of most critical concern that infant formulas provide higher amounts of leucine in comparison to human milk. Exaggerated leucine-mediated mTORC1-S6K1 signalling induced by infant formulas may thus explain increased adipogenesis and generation of lifelong elevated adipocyte numbers. Attenuation of mTORC1 signalling of infant formula by leucine restriction to physiologic lower levels of human milk offers a great chance for the prevention of childhood obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
| |
Collapse
|
227
|
Coustry F, Posey KL, Liu P, Alcorn JL, Hecht JT. D469del-COMP retention in chondrocytes stimulates caspase-independent necroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:738-48. [PMID: 22154936 PMCID: PMC3349870 DOI: 10.1016/j.ajpath.2011.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/19/2011] [Accepted: 10/23/2011] [Indexed: 12/31/2022]
Abstract
Mutations in the cartilage oligomeric matrix protein gene (COMP) cause pseudoachondroplasia (PSACH). This dysplasia results from the intracellular retention of mutant COMP protein and premature death of growth-plate chondrocytes. Toward better understanding of these underlying mechanisms, we examined D469del-COMP activation of the unfolded protein response and cell death pathways in rat chondrosarcoma cells. Using an inducible expression system, we examined the effects of D469del-COMP retention after 4 days of mRNA expression and then 5 days without inducing agent. Retention of D469del-COMP stimulated Chop (Ddit3) and Gadd34 (Ppp1r15a) and triggered reactivation of protein translation that exacerbated intracellular retention. High levels of Nox4 and endoplasmic reticulum receptor stress-inducible Ero1β generated reactive oxygen species, causing oxidative stress. Increased expression of Gadd genes and presence of γH2AX indicated that DNA damage was occurring. The presence of cleaved apoptosis inducing factor (tAIF) and the absence of activated caspases indicated that retention of D469del-COMP triggers cell death in chondrocytes by necroptosis, a caspase-independent programmed necrosis. Loss of growth-plate chondrocytes by necroptosis was also found in our pseudoachondroplasia mouse model. These results suggest a model in which D469del-COMP expression induces persistent endoplasmic reticulum stress, oxidative stress, and DNA damage, thus priming chondrocytes for necroptosis. We define for the first time the precise mechanisms underlying D469del-COMP pathology in pseudoachondroplasia and suggest that oxidative stress and AIF may be promising therapeutic targets.
Collapse
Affiliation(s)
- Françoise Coustry
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Karen L. Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Peiman Liu
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Joseph L. Alcorn
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
- Shriners Hospital for Children, Houston, Texas
| |
Collapse
|
228
|
Rosario FJ, Schumacher MA, Jiang J, Kanai Y, Powell TL, Jansson T. Chronic maternal infusion of full-length adiponectin in pregnant mice down-regulates placental amino acid transporter activity and expression and decreases fetal growth. J Physiol 2012; 590:1495-509. [PMID: 22289908 DOI: 10.1113/jphysiol.2011.226399] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Maternal adiponectin levels are inversely correlated to birth weight, suggesting that maternal adiponectin limits fetal growth. We hypothesized that full-length adiponectin (fADN) infusion in pregnant mice down-regulates placental amino acid transporters and decreases fetal growth. Starting at embryonic day (E) 14.5, fADN (0.62 ± 0.02 μg (g body weight)(−1) day(−1), n = 7) or vehicle (control, n = 9) were infused in pregnant C57/BL6 mice by mini-osmotic pump. At E18.5, dams were killed and placental homogenates and trophoblast plasma membrane (TPM) vesicles were prepared. Infusion of fADN elevated maternal serum fADN by 4-fold and decreased fetal weights by 18%. Adiponectin receptor 2, but not adiponectin receptor 1, was expressed in TPM. fADN infusion decreased TPM System A (–56%, P < 0.001) and System L amino acid transporter activity (–50%, P < 0.03). TPM protein expression of SNAT1, 2 and 4 (System A amino acid transporter isoforms) and LAT1 and LAT2, but not CD98, (System L amino acid transporter isoforms) was down-regulated by fADN infusion. To identify possible mechanisms underlying these changes we determined the phosphorylation of proteins in signalling pathways known to regulate placental amino acid transporters. fADN decreased phosphorylation of insulin receptor substrate-1 (Tyr-608), Akt (Thr-308 and Ser-473), S6 kinase 1 (Thr-389), eukaryotic initiation factor 4E binding protein 1 (Thr-37/46 and Thr-70) and ribosomal protein S6 (Ser-235/236) and increased the phosphorylation of peroxisome proliferator-activated receptor α (PPARα) (Ser-21) in the placenta. These data suggest that maternal adiponectin decreases fetal growth by down-regulation of placental amino acid transporters, which limits fetal nutrient availability. This effect may be mediated by inhibition of insulin/IGF-I and mTOR signalling pathways, which are positive regulators of placental amino acid transporters. We have identified a novel physiological mechanism by which the endocrine functions of maternal adipose tissue influence fetal growth.
Collapse
Affiliation(s)
- Fredrick J Rosario
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
229
|
Abstract
Hypothalamic orexin/hypocretin (orx/hcrt) neurons regulate energy balance, wakefulness, and reward; their loss produces narcolepsy and weight gain. Glucose can lower the activity of orx/hcrt cells, but whether other dietary macronutrients have similar effects is unclear. We show that orx/hcrt cells are stimulated by nutritionally relevant mixtures of amino acids (AAs), both in brain slice patch-clamp experiments, and in c-Fos expression assays following central or peripheral administration of AAs to mice in vivo. Physiological mixtures of AAs electrically excited orx/hcrt cells through a dual mechanism involving inhibition of K(ATP) channels and activation of system-A amino acid transporters. Nonessential AAs were more potent in activating orx/hcrt cells than essential AAs. Moreover, the presence of physiological concentrations of AAs suppressed the glucose responses of orx/hcrt cells. These results suggest a new mechanism of hypothalamic integration of macronutrient signals and imply that orx/hcrt cells sense macronutrient balance, rather than net energy value, in extracellular fluid.
Collapse
|
230
|
Oh RS, Pan WC, Yalcin A, Zhang H, Guilarte TR, Hotamisligil GS, Christiani DC, Lu Q. Functional RNA interference (RNAi) screen identifies system A neutral amino acid transporter 2 (SNAT2) as a mediator of arsenic-induced endoplasmic reticulum stress. J Biol Chem 2012; 287:6025-34. [PMID: 22215663 DOI: 10.1074/jbc.m111.311217] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exposure to the toxic metalloid arsenic is associated with diabetes and cancer and causes proteotoxicity and endoplasmic reticulum (ER) stress at the cellular level. Adaptive responses to ER stress are implicated in cancer and diabetes; thus, understanding mechanisms of arsenic-induced ER stress may offer insights into pathogenesis. Here, we identify genes required for arsenite-induced ER stress response in a genome-wide RNAi screen. Using an shRNA library targeting ∼20,000 human genes, together with an ER stress cell model, we performed flow cytometry-based cell sorting to isolate cells with defective response to arsenite. Our screen discovered several genes modulating arsenite-induced ER stress, including sodium-dependent neutral amino acid transporter, SNAT2. SNAT2 expression and activity are up-regulated by arsenite, in a manner dependent on activating transcription factor 4 (ATF4), an important mediator of the integrated stress response. Inhibition of SNAT2 expression or activity or deprivation of its primary substrate, glutamine, specifically suppressed ER stress induced by arsenite but not tunicamycin. Induction of SNAT2 is coincident with the activation of the nutrient-sensing mammalian target of rapamycin (mTOR) pathway, which is at least partially required for arsenite-induced ER stress. Importantly, inhibition of the SNAT2 or the System L transporter, LAT1, suppressed mTOR activation by arsenite, supporting a role for these transporters in modulating amino acid signaling. These findings reveal SNAT2 as an important and specific mediator of arsenic-induced ER stress, and suggest a role for aberrant mTOR activation in arsenic-related human diseases. Furthermore, this study demonstrates the utility of RNAi screens in elucidating cellular mechanisms of environmental toxins.
Collapse
Affiliation(s)
- Raymond S Oh
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y. Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol 2012; 39:109-19. [DOI: 10.1016/j.nucmedbio.2011.06.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/23/2011] [Accepted: 06/22/2011] [Indexed: 11/30/2022]
|
232
|
Abstract
The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate, clearance of neurotransmitters and buffering of extracellular K(+) ions to name but a few. Many (if not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic concentration of two cations, Ca(2+) and Na(+). Intracellular concentration of these ions is tightly controlled by several transporters and can be rapidly affected by the activation of respective fluxes through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial Ca(2+) and Na(+) signalling.
Collapse
|
233
|
Preclinical characterization of 18F-D-FPHCys, a new amino acid-based PET tracer. Eur J Nucl Med Mol Imaging 2011; 39:703-12. [DOI: 10.1007/s00259-011-2017-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022]
|
234
|
Li Z, Lai G, Deng L, Han Y, Zheng D, Song W. Association of SLC38A4 and system A with abnormal fetal birth weight. Exp Ther Med 2011; 3:309-313. [PMID: 22969887 DOI: 10.3892/etm.2011.392] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/16/2011] [Indexed: 11/06/2022] Open
Abstract
In this study, we aimed to explore the correlation between solute carrier family 38 member 4 (SLC38A4) and system A activity in human placentas from pregnancies with abnormal fetal birth weight. We collected placentas from consenting women immediately after their full-term babies were born, with normal, low birth weight or macrosomia, and used real-time PCR and Western blot analysis to detect the levels of SLC38A4 mRNA and protein [also known as sodium-coupled neutral amino acid transport protein 4 (SNAT4)]. Isotope incorporation assay was applied to measure system A activity in the placentas. Compared to the normal birth weight (NBW) group, placentas from the fetal macrosomia (FM) group had significantly increased levels of SLC38A4 mRNA and SNAT4 (both were increased by almost 2-fold; P<0.05), while no significant changes were detected in the placentas from the low birth weight (LBW) group. In addition, system A activity in the placentas from the FM and LBW groups was significantly different from that in the NBW group (1.2±0.20, 0.6±0.14 vs. 1.0±0.18, P<0.05). The data suggest that SNAT4 and system A have a strong association with abnormal fetal birth weight and that they may play a crucial role in fetal growth and development.
Collapse
Affiliation(s)
- Zhen Li
- Departments of Gynaecology and Obstetrics, and
| | | | | | | | | | | |
Collapse
|
235
|
Abstract
Glutamine (Gln) is found abundantly in the central nervous system (CNS) where it participates in a variety of metabolic pathways. Its major role in the brain is that of a precursor of the neurotransmitter amino acids: the excitatory amino acids, glutamate (Glu) and aspartate (Asp), and the inhibitory amino acid, γ-amino butyric acid (GABA). The precursor-product relationship between Gln and Glu/GABA in the brain relates to the intercellular compartmentalization of the Gln/Glu(GABA) cycle (GGC). Gln is synthesized from Glu and ammonia in astrocytes, in a reaction catalyzed by Gln synthetase (GS), which, in the CNS, is almost exclusively located in astrocytes (Martinez-Hernandez et al., 1977). Newly synthesized Gln is transferred to neurons and hydrolyzed by phosphate-activated glutaminase (PAG) to give rise to Glu, a portion of which may be decarboxylated to GABA or transaminated to Asp. There is a rich body of evidence which indicates that a significant proportion of the Glu, Asp and GABA derived from Gln feed the synaptic, neurotransmitter pools of the amino acids. Depolarization-induced-, calcium- and PAG activity-dependent releases of Gln-derived Glu, GABA and Asp have been observed in CNS preparations in vitro and in the brain in situ. Immunocytochemical studies in brain slices have documented Gln transfer from astrocytes to neurons as well as the location of Gln-derived Glu, GABA and Asp in the synaptic terminals. Patch-clamp studies in brain slices and astrocyte/neuron co-cultures have provided functional evidence that uninterrupted Gln synthesis in astrocytes and its transport to neurons, as mediated by specific carriers, promotes glutamatergic and GABA-ergic transmission. Gln entry into the neuronal compartment is facilitated by its abundance in the extracellular spaces relative to other amino acids. Gln also appears to affect neurotransmission directly by interacting with the NMDA class of Glu receptors. Transmission may also be modulated by alterations in cell membrane polarity related to the electrogenic nature of Gln transport or to uncoupled ion conductances in the neuronal or glial cell membranes elicited by Gln transporters. In addition, Gln appears to modulate the synthesis of the gaseous messenger, nitric oxide (NO), by controlling the supply to the cells of its precursor, arginine. Disturbances of Gln metabolism and/or transport contribute to changes in Glu-ergic or GABA-ergic transmission associated with different pathological conditions of the brain, which are best recognized in epilepsy, hepatic encephalopathy and manganese encephalopathy.
Collapse
|
236
|
Abstract
The target of rapamycin (TOR) is a central cell growth regulator conserved from yeast to mammals. Uncontrolled TOR activation is commonly observed in human cancers. TOR forms two distinct structural and functional complexes, TORC1 and TORC2. TORC1 promotes cell growth and cell size by stimulating protein synthesis. A wide range of signals, including nutrients, energy levels, and growth factors, are known to control TORC1 activity. Among them, amino acids (AA) not only potently activate TORC1 but are also required for TORC1 activation by other stimuli, such as growth factors. The mechanisms of growth factors and cellular energy status in activating TORC1 have been well elucidated, whereas the molecular basis of AA signaling is just emerging. Recent advances in the role of AA signaling on TORC1 activation have revealed key components, including the Rag GTPases, protein kinases, nutrient transporters, and the intracellular trafficking machinery, in relaying AA signals to TORC1 activation.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
237
|
Shi Q, Padmanabhan R, Villegas CJ, Gu S, Jiang JX. Membrane topological structure of neutral system N/A amino acid transporter 4 (SNAT4) protein. J Biol Chem 2011; 286:38086-38094. [PMID: 21917917 DOI: 10.1074/jbc.m111.220277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of system N/A amino acid transporter (SNAT) family mediate transport of neutral amino acids, including l-alanine, l-glutamine, and l-histidine, across the plasma membrane and are involved in a variety of cellular functions. By using chemical labeling, glycosylation, immunofluorescence combined with molecular modeling approaches, we resolved the membrane topological structure of SNAT4, a transporter expressed predominantly in liver. To analyze the orientation using the chemical labeling and biotinylation approach, the "Cys-null" mutant of SNAT4 was first generated by mutating all five endogenous cysteine residues. Based on predicted topological structures, a single cysteine residue was introduced individually into all possible nontransmembrane domains of the Cys-null mutant. The cells expressing these mutants were labeled with N-biotinylaminoethyl methanethiosulfonate, a membrane-impermeable cysteine-directed reagent. We mapped the orientations of N- and C-terminal domains. There are three extracellular loop domains, and among them, the second loop domain is the largest that spans from amino acid residue ∼242 to ∼335. The orientation of this domain was further confirmed by the identification of two N-glycosylated residues, Asn-260 and Asn-264. Together, we showed that SNAT4 contains 10 transmembrane domains with extracellular N and C termini and a large N-glycosylated, extracellular loop domain. This is the first report concerning membrane topological structure of mammalian SNAT transporters, which will provide important implications for our understanding of structure-function of the members in this amino acid transporter family.
Collapse
Affiliation(s)
- Qian Shi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Rugmani Padmanabhan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Carla J Villegas
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900.
| |
Collapse
|
238
|
Kiuchi T, Banno Y, Katsuma S, Shimada T. Mutations in an amino acid transporter gene are responsible for sex-linked translucent larval skin of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:680-687. [PMID: 21619931 DOI: 10.1016/j.ibmb.2011.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 05/30/2023]
Abstract
The sex-linked translucent (os) mutation in the silkworm, Bombyx mori, confers slightly translucent larval skin resulting from a decrease in the incorporation of uric acid into epidermal cells. By positional cloning, we narrowed a region linked to the os phenotype to approximately 157 kb located on scaffold Bm_scaf72 on the Z chromosome (chromosome 1). The region contained four gene models. Sequencing analysis revealed that one of the candidate genes had a 7-bp deletion in the coding region. We also found a 111-bp deletion or single-nucleotide substitution in the same gene using independent os mutant strains. Because all the mutations caused the generation of abnormal transcripts followed by translation of a truncated protein, we conclude that the mutation of this candidate gene is responsible for the translucent larval skin of the os mutant. Sequence analysis indicated that the gene responsible for the os mutation had homology to amino acid transporters of the solute carrier family of proteins. Our results suggest that solute carrier proteins are involved in uric acid transport in insects and other invertebrates.
Collapse
Affiliation(s)
- Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
239
|
Audette MC, Challis JRG, Jones RL, Sibley CP, Matthews SG. Antenatal dexamethasone treatment in midgestation reduces system A-mediated transport in the late-gestation murine placenta. Endocrinology 2011; 152:3561-70. [PMID: 21733830 DOI: 10.1210/en.2011-0104] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinically, approximately 30% of women who receive synthetic glucocorticoids (sGC) for risk of preterm labor carry to term. In vitro studies have shown that sGC acutely regulate the placental system A amino acid transporter, but there are no comparable data in vivo. Hence, the objective of our study was to examine the acute [embryonic day (E)15.5] and longer-term (E17.5 and E18.5) consequences of midgestation antenatal sGC [dexamethasone (DEX); 0.1 mg/kg on E13.5 and E14.5] on placental system A-mediated transfer in the mouse (measured in vivo as maternal-fetal unidirectional (14)C-methylaminoisobutyric acid transfer per gram of placenta). System A transfer and Slc38a mRNA expression significantly increased from E12.5 to E18.5 (P < 0.05), corresponding to increased fetal growth. DEX treatment had no acute effect at E15.5 or longer-term effect at E17.5 but significantly decreased system A-mediated transfer before term (E18.5; P < 0.05) in placentae of male and female fetuses. There was no effect of DEX on Slc38a gene expression. Administration of DEX in this regime had no effect on birth weight. We conclude that sGC treatment in midgestation leads to a substantial decrease in placental system A-mediated transport in late gestation, suggesting that prenatal sGC therapy may lead to a reduction in availability of neutral amino acids to the fetus if gestation persists to term.
Collapse
Affiliation(s)
- Melanie C Audette
- Department of Physiology, University of Toronto, 1 Kings College Circle, Medical Sciences Building Room 3360, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | |
Collapse
|
240
|
Sathishkumar K, Elkins R, Chinnathambi V, Gao H, Hankins GDV, Yallampalli C. Prenatal testosterone-induced fetal growth restriction is associated with down-regulation of rat placental amino acid transport. Reprod Biol Endocrinol 2011; 9:110. [PMID: 21812961 PMCID: PMC3162507 DOI: 10.1186/1477-7827-9-110] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/03/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Exposure of pregnant mothers to elevated concentrations of circulating testosterone levels is associated with fetal growth restriction and delivery of small-for-gestational-age babies. We examined whether maternal testosterone crosses the placenta to directly suppress fetal growth or if it modifies placental function to reduce the capacity for transport of nutrients to the fetus. METHODS Pregnant rats were exposed to testosterone propionate (TP; 0.5 mg/kg) by daily subcutaneous injection from gestational days (GD) 15-19. Maternal and fetal testosterone levels, placental nutrient transport activity and expression of transporters and birth weight of pups and their anogenital distances were determined. RESULTS This dose of TP doubled maternal testosterone levels but had no effect on fetal testosterone levels. Maternal daily weight gain was significantly lower only on GD 19 in TP treated dams compared to controls. Placental weight and birth weight of pups were significantly reduced, but the anogenital distance of pups were unaffected by TP treatment. Maternal plasma amino acids concentrations were altered following testosterone exposure, with decreases in glutamine, glycine, tyrosine, serine, proline, and hydroxyproline and increases in asparagine, isoleucine, leucine, lysine, histidine and arginine. In the TP dams, placental system A amino acid transport activity was significantly reduced while placental glucose transport capacity was unaffected. Decreased expression of mRNA and protein levels of slc38a2/Snat2, an amino acid transporter, suggests that reduced transporter proteins may be responsible for the decrease in amino acid transport activity. CONCLUSIONS Taken together, these data suggest that increased maternal testosterone concentrations do not cross the placenta to directly suppress fetal growth but affects amino acid nutrient delivery to the fetus by downregulating specific amino acid transporter activity.
Collapse
Affiliation(s)
- Kunju Sathishkumar
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch Galveston, Texas, USA
| | - Rebekah Elkins
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch Galveston, Texas, USA
| | - Vijayakumar Chinnathambi
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch Galveston, Texas, USA
| | - Haijun Gao
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch Galveston, Texas, USA
| | - Gary DV Hankins
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch Galveston, Texas, USA
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch Galveston, Texas, USA
| |
Collapse
|
241
|
Sidoryk-Wegrzynowicz M, Lee E, Mingwei N, Aschner M. Disruption of astrocytic glutamine turnover by manganese is mediated by the protein kinase C pathway. Glia 2011; 59:1732-43. [PMID: 21812036 DOI: 10.1002/glia.21219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/21/2011] [Indexed: 11/11/2022]
Abstract
Manganese (Mn) is a trace element essential for normal human development and is required for the proper functioning of a variety of physiological processes. Chronic exposure to Mn can cause manganism, a neurodegenerative disorder resembling idiopathic Parkinson's disease (PD). Mn(II) neurotoxicity is characterized by astrocytic impairment both in the expression and activity of glutamine (Gln) transporters. Because protein kinase C (PKC) activation leads to the downregulation of a number of neurotransmitter transporters and Mn(II) increases PKC activity, we hypothesized that the PKC signaling pathway contributes to the Mn(II)-mediated disruption of Gln turnover. Our results have shown that Mn exposure increases the phosphorylation of both the PKCα and PKCδ isoforms. PKC activity was also shown to be increased in response to Mn(II) treatment. Corroborating our earlier observations, Mn(II) also caused a decrease in Gln uptake. This effect was blocked by PKC inhibitors. Notably, PKC activation caused a decrease in Gln uptake mediated by systems ASC and N, but had no effect on the activities of systems A and L. Exposure to α-phorbol 12-myristate 13-acetate significantly decreased SNAT3 (system N) and ASCT2 (system ASC) protein levels. Additionally, a co-immunoprecipitation study demonstrated the association of SNAT3 and ASCT2 with the PKCδ isoform, and Western blotting revealed the Mn(II)-mediated activation of PKCδ by proteolytic cleavage. PKC activation was also found to increase SNAT3 and ubiquitin ligase Nedd4-2 binding and to induce hyperubiquitination. Taken together, these findings demonstrate that the Mn(II)-induced dysregulation of Gln homeostasis in astrocytes involves PKCδ signaling accompanied by an increase in ubiquitin-mediated proteolysis.
Collapse
|
242
|
Belkacemi L, Jelks A, Chen CH, Ross MG, Desai M. Altered placental development in undernourished rats: role of maternal glucocorticoids. Reprod Biol Endocrinol 2011; 9:105. [PMID: 21806804 PMCID: PMC3161938 DOI: 10.1186/1477-7827-9-105] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/01/2011] [Indexed: 12/03/2022] Open
Abstract
Maternal undernutrition (MUN) during pregnancy may lead to fetal intrauterine growth restriction (IUGR), which itself predisposes to adult risk of obesity, hypertension, and diabetes. IUGR may stem from insufficient maternal nutrient supply or reduced placental nutrient transfer. In addition, a critical role for maternal stress-induced glucocorticoids (GCs) has been suggested to contribute to both IUGR and the ensuing risk of adult metabolic syndrome. While GC-induced fetal organ defects have been examined, there have been few studies on placental responses to MUN-induced maternal stress. Therefore, we hypothesize that 50% MUN associates with increased maternal GC levels and decreased placental HSD11B. This in turn leads to decreased placental and fetal growth, hence the need to investigate nutrient transporters. We measured maternal serum levels of corticosterone, and the placental basal and labyrinth zone expression of glucocorticoid receptor (NR3C1), 11-hydroxysteroid dehydrogenase B 1 (HSD11B-1) predominantly activates cortisone to cortisol and 11-dehydrocorticosterone (11-DHC) to corticosterone, although can sometimes drive the opposing (inactivating reaction), and HSD11B-2 (only inactivates and converts corticosterone to 11-DHC in rodents) in control and MUN rats at embryonic day 20 (E20). Moreover, we evaluated the expression of nutrient transporters for glucose (SLC2A1, SLC2A3) and amino acids (SLC38A1, 2, and 4). Our results show that MUN dams displayed significantly increased plasma corticosterone levels compared to control dams. Further, a reduction in fetal and placental weights was observed in both the mid-horn and proximal-horn positions. Notably, the placental labyrinth zone, the site of feto-maternal exchange, showed decreased expression of HSD11B1-2 in both horns, and increased HSD11B-1 in proximal-horn placentas, but no change in NR3C1. The reduced placental GCs catabolic capacity was accompanied by downregulation of SLC2A3, SLC38A1, and SLC38A2 expression, and by increased SLC38A4 expression, in labyrinth zones from the mid- and proximal-horns. In marked contrast to the labyrinth zone, the basal zone, which is the site of hormone production, did not show significant changes in any of these enzymes or transporters. These results suggest that dysregulation of the labyrinth zone GC "barrier", and more importantly decreased nutrient supply resulting from downregulation of some of the amino acid system A transporters, may contribute to suboptimal fetal growth under MUN.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- David-Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, California 90095, USA
| | - Andrea Jelks
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- David-Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, California 90095, USA
| | - Chun-Hung Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Chia Yi Medical Center, Chia Yi Chia Pu Road (County Way 168), Chia Yi, Taiwan
| | - Michael G Ross
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- David-Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, California 90095, USA
| | - Mina Desai
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- David-Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, California 90095, USA
| |
Collapse
|
243
|
McConathy J, Yu W, Jarkas N, Seo W, Schuster DM, Goodman MM. Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev 2011; 32:868-905. [DOI: 10.1002/med.20250] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jonathan McConathy
- Mallinckrodt Institute of Radiology; Washington University School of Medicine; St. Louis Missouri
| | - Weiping Yu
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Nachwa Jarkas
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Wonewoo Seo
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - David M. Schuster
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Mark M. Goodman
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| |
Collapse
|
244
|
Tardito S, Chiu M, Franchi-Gazzola R, Dall'Asta V, Comi P, Bussolati O. The non-proteinogenic amino acids L-methionine sulfoximine and DL-phosphinothricin activate mTOR. Amino Acids 2011; 42:2507-12. [PMID: 21769496 DOI: 10.1007/s00726-011-0981-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/20/2011] [Indexed: 01/01/2023]
Abstract
L-Methionine sulfoximine (MSO) and DL-Phosphinothricin (PPT), two non-proteinogenic amino acids known as inhibitors of Glutamine Synthetase, cause a dose-dependent increase in the phosphorylation of the mTOR substrate S6 kinase 1. The effect is particularly evident in glutamine-depleted cells, where mTOR activity is very low, but is detectable for PPT also in the presence of glutamine. The stimulation of mTOR activity by either MSO or PPT is strongly synergized by essential amino acids. Thus, the non-proteinogenic amino acids MSO and PPT are mTOR activators.
Collapse
Affiliation(s)
- Saverio Tardito
- Unit of General and Clinical Pathology, Department of Experimental Medicine, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | | | | | | | | | | |
Collapse
|
245
|
Ruderisch N, Virgintino D, Makrides V, Verrey F. Differential axial localization along the mouse brain vascular tree of luminal sodium-dependent glutamine transporters Snat1 and Snat3. J Cereb Blood Flow Metab 2011; 31:1637-47. [PMID: 21364602 PMCID: PMC3137466 DOI: 10.1038/jcbfm.2011.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A specialized brain vasculature is key for establishing and maintaining brain interstitial fluid homeostasis, which for most amino acids (AAs) are ∼10% plasma levels. Indeed, regulation of AA homeostasis seems critical for normal central nervous system functions, and disturbances in brain levels have both direct and indirect roles in several neuropathologies. One mechanism contributing to the plasma to brain AA gradients involves polarized expression of solute carrier (SLC) family transporters on blood-brain barrier (BBB) endothelial cells. Of particular interest is the localization of sodium-dependent transporters that can actively move substrates against their concentration gradient. In this study, the in vivo endothelial membrane localization of the sodium-dependent glutamine transporters Snat3 (Slc38a3) and Snat1 (Slc38a1) was investigated in the mouse brain microvasculature using immunofluorescent colocalization with cellular markers. In addition, luminal membrane expression was probed by in vivo biotinylation. A portion of both Snat3 and Snat1 vascular expressions was localized on luminal membranes. Importantly, Snat1 expression was restricted to larger cortical microvessels, whereas Snat3 was additionally expressed on BBB capillary membranes. This differential expression of system A (Snat1) versus system N (Snat3) transporters suggests distinct roles for Snats in the cerebral vasculature and is consistent with Snat3 involvement in net transendothelial BBB AA transport.
Collapse
Affiliation(s)
- Nadine Ruderisch
- Institute of Physiology and Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
246
|
Hägglund MGA, Sreedharan S, Nilsson VCO, Shaik JHA, Almkvist IM, Bäcklin S, Wrange Ö, Fredriksson R. Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem 2011; 286:20500-11. [PMID: 21511949 PMCID: PMC3121473 DOI: 10.1074/jbc.m110.162404] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 04/15/2011] [Indexed: 12/16/2022] Open
Abstract
The SLC38 family of transporters has in total 11 members in humans and they encode amino acid transporters called sodium-coupled amino acid transporters (SNAT). To date, five SNATs have been characterized and functionally subdivided into systems A (SLC38A1, SLC38A2, and SLC38A4) and N (SLC38A3 and SLC38A5) showing the highest transport for glutamine and alanine. Here we present identification of a novel glutamine transporter encoded by the Slc38a7 gene, which we propose should be named SNAT7. This transporter has L-glutamine as the preferred substrate but also transports other amino acids with polar side chains, as well as L-histidine and L-alanine. The expression pattern and substrate profile for SLC38A7 shows highest similarity to the known system N transporters. Therefore, we propose that SLC38A7 is a novel member of this system. We used in situ hybridization and immunohistochemistry with a custom-made antibody to show that SLC38A7 is expressed in all neurons, but not in astrocytes, in the mouse brain. SLC38A7 is unique in being the first system N transporter expressed in GABAergic and also other neurons. The preferred substrate and axonal localization of SLC38A7 close to the synaptic cleft indicates that SLC38A7 could have an important function for the reuptake and recycling of glutamate.
Collapse
Affiliation(s)
- Maria G. A. Hägglund
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden and
| | - Smitha Sreedharan
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden and
| | - Victor C. O. Nilsson
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden and
| | - Jafar H. A. Shaik
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden and
| | - Ingrid M. Almkvist
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden and
| | - Sofi Bäcklin
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden and
| | - Örjan Wrange
- the Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Robert Fredriksson
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala, Sweden and
| |
Collapse
|
247
|
Ortiz V, Alemán G, Escamilla-Del-Arenal M, Recillas-Targa F, Torres N, Tovar AR. Promoter characterization and role of CRE in the basal transcription of the rat SNAT2 gene. Am J Physiol Endocrinol Metab 2011; 300:E1092-102. [PMID: 21386061 DOI: 10.1152/ajpendo.00459.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small neutral amino acid transporter 2 (SNAT2) is the most abundant and ubiquitous transporter for zwitterionic short-chain amino acids. The activity of this amino acid transporter is stimulated in vivo or in vitro by glucagon or cAMP analogs. However, it is not known whether the increase in activity at the protein level is due to an increase in SNAT2 gene transcription. Thus, the aim of the present work was to study whether cAMP was able to stimulate SNAT2 gene expression and to localize and characterize the presence of cAMP response elements (CRE) in the promoter that controls the expression of the rat SNAT2 gene. We found that consumption of a high-protein diet that increased serum glucagon concentration or the administration of glucagon or incubation of hepatocytes with forskolin increased the SNAT2 mRNA level. We then isolated the 5' regulatory region of the SNAT2 gene and determined that the transcriptional start site was located 970 bp upstream of the translation start codon. We identified two potential CRE sites located at -354 and -48 bp. Our results, using deletion analysis of the 5' regulatory region of the SNAT2 gene, revealed that the CRE site located at -48 bp was fully responsible for SNAT2 regulation by cAMP. This evidence was strongly supported by mutation of the CRE site and EMSA and ChIP analysis. Alignment of rat, mouse, and human sequences revealed that this CRE site is highly conserved among species, indicating its essential role in the regulation of SNAT2 gene expression.
Collapse
Affiliation(s)
- Victor Ortiz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico
| | | | | | | | | | | |
Collapse
|
248
|
Hamdi MM, Mutungi G. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism. J Physiol 2011; 589:3623-40. [PMID: 21606113 DOI: 10.1113/jphysiol.2011.207175] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression.
Collapse
Affiliation(s)
- M M Hamdi
- Biomedical and Clinical Sciences Research Institute, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
249
|
Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, Ohe K, Nakanishi T, Tamai I, Namiki M, Kawai K. Putative Transport Mechanism and Intracellular Fate of Trans-1-Amino-3-18F-Fluorocyclobutanecarboxylic Acid in Human Prostate Cancer. J Nucl Med 2011; 52:822-9. [DOI: 10.2967/jnumed.110.086074] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
250
|
Vumma R, Johansson J, Lewander T, Venizelos N. Tryptophan transport in human fibroblast cells-a functional characterization. Int J Tryptophan Res 2011; 4:19-27. [PMID: 22084600 PMCID: PMC3195221 DOI: 10.4137/ijtr.s6913] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There are indications that serotonergic neurotransmission is disturbed in several psychiatric disorders. One explanation may be disturbed transport of tryptophan (precursor for serotonin synthesis) across cell membranes. Human fibroblast cells offer an advantageous model to study the transport of amino acids across cell membranes, since they are easy to propagate and the environmental factors can be controlled. The aim of this study was to functionally characterize tryptophan transport and to identify the main transporters of tryptophan in fibroblast cell lines from healthy controls. Tryptophan kinetic parameters (Vmax and Km) at low and high concentrations were measured in fibroblasts using the cluster tray method. Uptake of 3H (5)-L-tryptophan at different concentrations in the presence and absence of excess concentrations of inhibitors or combinations of inhibitors of amino acid transporters were also measured. Tryptophan transport at high concentration (0.5 mM) had low affinity and high Vmax and the LAT1 isoform of system-L was responsible for approximately 40% of the total uptake of tryptophan. In comparison, tryptophan transport at low concentration (50 nM) had higher affinity, lower Vmax and approximately 80% of tryptophan uptake was transported by system-L with LAT1 as the major isoform. The uptake of tryptophan at the low concentration was mainly sodium (Na+) dependent, while uptake at high substrate concentration was mainly Na+ independent. A series of different transporter inhibitors had varying inhibitory effects on tryptophan uptake. This study indicates that tryptophan is transported by multiple transporters that are active at different substrate concentrations in human fibroblast cells. The tryptophan transport trough system-L was mainly facilitated by the LAT1 isoform, at both low and high substrate concentrations of tryptophan.
Collapse
Affiliation(s)
- Ravi Vumma
- School of Health and Medical Sciences, Department of Clinical Medicine, Örebro University, SE-701 82 Örebro, Sweden
| | | | | | | |
Collapse
|