201
|
Chen J, Li SS, Fang SM, Zhang Z, Yu QY. Olfactory dysfunction and potential mechanisms caused by volatile organophosphate dichlorvos in the silkworm as a model animal. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127940. [PMID: 34896704 DOI: 10.1016/j.jhazmat.2021.127940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Volatile pesticides impair olfactory function in workers/farmers and insects, but data on molecular responses and mechanisms are poorly understood. This study aims to reveal the mechanisms of olfactory dysfunction in the silkworm after exposure to volatile dichlorvos. Our results demonstrated that acute exposure for 12 h significantly reduced electroantennogram responses, and over 62.50% of the treated male moths cannot locate the pheromone source. Transcriptional and proteomic responses of the antennae and heads were investigated. A total of 101 differentially expressed genes (DEGs) in the antennae, 138 DEGs in the heads, and 43 differentially expressed proteins (DEPs) in the heads including antennae were revealed. We discovered that upregulations of Arrestin1 and nitric oxide synthase1 (NOS1) may inhibit cyclic nucleotide-gated channels and hinder calcium influx in the antennae. In the central nervous systems (CNS), downregulations of tyrosine hydroxylase (TH) and tyrosine decarboxylase (TDC) may inhibit olfactory signal transduction by reducing the second messenger biosynthesis. Meanwhile, an abnormal increase of brain cell apoptosis was revealed by Annexin V-mCherry staining, often leading to persistent neurologic impairment. Taken together, this study highlighted olfactory dysfunction caused by dichlorvos, which may provide a novel perspective for understanding the toxicity mechanism of volatile pesticides in other organisms.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shu-Shang Li
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
202
|
Gazmeh S, Azhir M, Elyasi L, Jahanshahi M, Nikmahzar E, Jameie SB. Apelin-13 protects against memory impairment and neuronal loss, Induced by Scopolamine in male rats. Metab Brain Dis 2022; 37:701-709. [PMID: 34982353 DOI: 10.1007/s11011-021-00882-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022]
Abstract
The present study aimed to evaluate the effects of Apelin-13 on scopolamine-induced memory impairment in rats. Forty male rats were divided into five groups of eight. The control group received no intervention; the scopolamine group underwent stereotaxic surgery and received 3 mg/kg intraperitoneal scopolamine. The treatment groups additionally received 1.25, 2.5 and 5 µg apelin-13 in right lateral ventricles for 7 days. All rats (except the control group) were tested for the passive avoidance reaction, 24 h after the last drug injection. For histological analysis, hippocampal sections were stained with cresyl violet; synaptogenesis biochemical markers were determined by immunoblotting. Apelin-13 alleviated scopolamine-induced passive avoidance memory impairment and neuronal loss in the rats' hippocampus (P<0.001). The reduction observed in mean concentrations of hippocampal synaptic proteins (including neurexin1, neuroligin, and postsynaptic density protein 95) in scopolamine-treated animals was attenuated by apelin-13 treatment. The results demonstrated that apelin-13 can protect against passive avoidance memory deficiency, and neuronal loss, induced by scopolamine in male rats. Further experimental and clinical studies are required to confirm its therapeutic potential in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Gazmeh
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Azhir
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), Gorgan, Iran.
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), Gorgan, Iran
| | - Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Behnamedin Jameie
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
203
|
Cooke J, Molloy CJ, Cáceres ASJ, Dinneen T, Bourgeron T, Murphy D, Gallagher L, Loth E. The Synaptic Gene Study: Design and Methodology to Identify Neurocognitive Markers in Phelan-McDermid Syndrome and NRXN1 Deletions. Front Neurosci 2022; 16:806990. [PMID: 35250452 PMCID: PMC8894872 DOI: 10.3389/fnins.2022.806990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 11/26/2022] Open
Abstract
Synaptic gene conditions, i.e., “synaptopathies,” involve disruption to genes expressed at the synapse and account for between 0.5 and 2% of autism cases. They provide a unique entry point to understanding the molecular and biological mechanisms underpinning autism-related phenotypes. Phelan-McDermid Syndrome (PMS, also known as 22q13 deletion syndrome) and NRXN1 deletions (NRXN1ds) are two synaptopathies associated with autism and related neurodevelopmental disorders (NDDs). PMS often incorporates disruption to the SHANK3 gene, implicated in excitatory postsynaptic scaffolding, whereas the NRXN1 gene encodes neurexin-1, a presynaptic cell adhesion protein; both are implicated in trans-synaptic signaling in the brain. Around 70% of individuals with PMS and 43–70% of those with NRXN1ds receive a diagnosis of autism, suggesting that alterations in synaptic development may play a crucial role in explaining the aetiology of autism. However, a substantial amount of heterogeneity exists between conditions. Most individuals with PMS have moderate to profound intellectual disability (ID), while those with NRXN1ds have no ID to severe ID. Speech abnormalities are common to both, although appear more severe in PMS. Very little is currently known about the neurocognitive underpinnings of phenotypic presentations in PMS and NRXN1ds. The Synaptic Gene (SynaG) study adopts a gene-first approach and comprehensively assesses these two syndromic forms of autism. The study compliments preclinical efforts within AIMS-2-TRIALS focused on SHANK3 and NRXN1. The aims of the study are to (1) establish the frequency of autism diagnosis and features in individuals with PMS and NRXN1ds, (2) to compare the clinical profile of PMS, NRXN1ds, and individuals with ‘idiopathic’ autism (iASD), (3) to identify mechanistic biomarkers that may account for autistic features and/or heterogeneity in clinical profiles, and (4) investigate the impact of second or multiple genetic hits on heterogeneity in clinical profiles. In the current paper we describe our methodology for phenotyping the sample and our planned comparisons, with information on the necessary adaptations made during the global COVID-19 pandemic. We also describe the demographics of the data collected thus far, including 25 PMS, 36 NRXN1ds, 33 iASD, and 52 NTD participants, and present an interim analysis of autistic features and adaptive functioning.
Collapse
Affiliation(s)
- Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- *Correspondence: Jennifer Cooke,
| | - Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Antonia San José Cáceres
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Fundación para la Investigación Biomédica del Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Madrid, Spain
| | - Thomas Dinneen
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Declan Murphy
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Eva Loth,
| |
Collapse
|
204
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
205
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
206
|
Linlin Z, Ciai L, Yanhong S, Huizhong G, Yongchun L, Zhen Y, Shan X, Fengying G, Ying L, Jingjun L, Qin F. A Multi-Target and Multi-Channel Mechanism of Action for Jiawei Yinhuo Tang in the Treatment of Social Communication Disorders in Autism: Network Pharmacology and Molecular Docking Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4093138. [PMID: 35178102 PMCID: PMC8846994 DOI: 10.1155/2022/4093138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with complex pathogenesis. Currently, the pathogenesis of ASD is not fully understood. Moreover, current treatments do not effectively alleviate the primary symptoms of ASD social disorder (SCDA). Jiawei Yinhuo Tang (JWYHT) is an improved version of the classic prescription Yinhuo Tang. Although this medication has been shown to improve social behavior in ASD patients, the mechanism by which it works remains unknown. METHODS In this study, network pharmacology bioinformatics analysis was used to identify the key targets, biological functions, and signal pathways of JWYHT in SCDA. Then, molecular docking and molecular dynamic simulation were used to validate the activity and stability of the active ingredient and the target protein during the binding process. RESULTS The analysis identified 157 key targets and 9 core targets of JWYHT (including proto-oncogene (FOS), caspase 3 (CASP3), mitogen-activated protein kinase-3 (MAPK3), interleukin-6 (IL6), mitogen-activated protein kinase-1 (MAPK1), tumor necrosis factor (TNF), mitogen-activated protein kinase-8 (MAPK8), AKT serine/threonine kinase 1 (AKT1), and 5-hydroxytryptamine receptor 1B (5HT1B)) in SCDA. In addition, the Kyoto Encyclopedia of Gene and Genome results, as well as the staggering network analyses, revealed 20 biological processes and 20 signal pathways targeted by JWYHT in SCDA. Finally, molecular docking analysis was used to determine the binding activity of the main active components of JWYHT to the key targets. The binding activity and stability of methyl arachidonate and MAPK8 were demonstrated using molecular dynamics simulation. CONCLUSION This study demonstrates that JWYHT regulates neuronal development, synaptic transmission, intestinal and cerebral inflammatory response, and other processes in SCDA.
Collapse
Affiliation(s)
- Zhang Linlin
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Lai Ciai
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Su Yanhong
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Gan Huizhong
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Li Yongchun
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Yang Zhen
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Xu Shan
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Gong Fengying
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Lv Ying
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Li Jingjun
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Fan Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
207
|
Sando R, Ho ML, Liu X, Südhof TC. Engineered synaptic tools reveal localized cAMP signaling in synapse assembly. J Cell Biol 2022; 221:e202109111. [PMID: 34913963 PMCID: PMC8685283 DOI: 10.1083/jcb.202109111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological mechanisms driving synapse formation are elusive. Although numerous signals are known to regulate synapses, it remains unclear which signaling mechanisms organize initial synapse assembly. Here, we describe new tools, referred to as "SynTAMs" for synaptic targeting molecules, that enable localized perturbations of cAMP signaling in developing postsynaptic specializations. We show that locally restricted suppression of postsynaptic cAMP levels or of cAMP-dependent protein-kinase activity severely impairs excitatory synapse formation without affecting neuronal maturation, dendritic arborization, or inhibitory synapse formation. In vivo, suppression of postsynaptic cAMP signaling in CA1 neurons prevented formation of both Schaffer-collateral and entorhinal-CA1/temporoammonic-path synapses, suggesting a general principle. Retrograde trans-synaptic rabies virus tracing revealed that postsynaptic cAMP signaling is required for continuous replacement of synapses throughout life. Given that postsynaptic latrophilin adhesion-GPCRs drive synapse formation and produce cAMP, we suggest that spatially restricted postsynaptic cAMP signals organize assembly of postsynaptic specializations during synapse formation.
Collapse
Affiliation(s)
- Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Milan Lyndie Ho
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
208
|
Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method. Life (Basel) 2022; 12:life12020228. [PMID: 35207515 PMCID: PMC8877019 DOI: 10.3390/life12020228] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
The heart is an essential organ in the human body. It contains various types of cells, such as cardiomyocytes, mesothelial cells, endothelial cells, and fibroblasts. The interactions between these cells determine the vital functions of the heart. Therefore, identifying the different cell types and revealing the expression rules in these cell types are crucial. In this study, multiple machine learning methods were used to analyze the heart single-cell profiles with 11 different heart cell types. The single-cell profiles were first analyzed via light gradient boosting machine method to evaluate the importance of gene features on the profiling dataset, and a ranking feature list was produced. This feature list was then brought into the incremental feature selection method to identify the best features and build the optimal classifiers. The results suggested that the best decision tree (DT) and random forest classification models achieved the highest weighted F1 scores of 0.957 and 0.981, respectively. The selected features, such as NPPA, LAMA2, DLC1, and the classification rules extracted from the optimal DT classifier played a crucial role in cardiac structure and function in recent research and enrichment analysis. In particular, some lncRNAs (LINC02019, NEAT1) were found to be quite important for the recognition of different cardiac cell types. In summary, these findings provide a solid academic foundation for the development of molecular diagnostics and biomarker discovery for cardiac diseases.
Collapse
|
209
|
Ferdos S, Brockhaus J, Missler M, Rohlmann A. Deletion of β-Neurexins in Mice Alters the Distribution of Dense-Core Vesicles in Presynapses of Hippocampal and Cerebellar Neurons. Front Neuroanat 2022; 15:757017. [PMID: 35173587 PMCID: PMC8841415 DOI: 10.3389/fnana.2021.757017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Communication between neurons through synapses includes the release of neurotransmitter-containing synaptic vesicles (SVs) and of neuromodulator-containing dense-core vesicles (DCVs). Neurexins (Nrxns), a polymorphic family of cell surface molecules encoded by three genes in vertebrates (Nrxn1–3), have been proposed as essential presynaptic organizers and as candidates for cell type-specific or even synapse-specific regulation of synaptic vesicle exocytosis. However, it remains unknown whether Nrxns also regulate DCVs. Here, we report that at least β-neurexins (β-Nrxns), an extracellularly smaller Nrxn variant, are involved in the distribution of presynaptic DCVs. We found that conditional deletion of all three β-Nrxn isoforms in mice by lentivirus-mediated Cre recombinase expression in primary hippocampal neurons reduces the number of ultrastructurally identified DCVs in presynaptic boutons. Consistently, colabeling against marker proteins revealed a diminished population of chromogranin A- (ChrgA-) positive DCVs in synapses and axons of β-Nrxn-deficient neurons. Moreover, we validated the impaired DCV distribution in cerebellar brain tissue from constitutive β-Nrxn knockout (β-TKO) mice, where DCVs are normally abundant and β-Nrxn isoforms are prominently expressed. Finally, we observed that the ultrastructure and marker proteins of the Golgi apparatus, responsible for packaging neuropeptides into DCVs, seem unchanged. In conclusion, based on the validation from the two deletion strategies in conditional and constitutive KO mice, two neuronal populations from the hippocampus and cerebellum, and two experimental protocols in cultured neurons and in the brain tissue, this study presented morphological evidence that the number of DCVs at synapses is altered in the absence of β-Nrxns. Our results therefore point to an unexpected contribution of β-Nrxns to the organization of neuropeptide and neuromodulator function, in addition to their more established role in synaptic vesicle release.
Collapse
|
210
|
Kim J, Kim S, Kim H, Hwang IW, Bae S, Karki S, Kim D, Ogelman R, Bang G, Kim JY, Kajander T, Um JW, Oh WC, Ko J. MDGA1 negatively regulates amyloid precursor protein-mediated synapse inhibition in the hippocampus. Proc Natl Acad Sci U S A 2022. [PMID: 35074912 DOI: 10.1073/pnas.2115326119/suppl_file/pnas.2115326119.sd01.xlsx] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.
Collapse
Affiliation(s)
- Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Sungwon Bae
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Sudeep Karki
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Roberto Ogelman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 305-732, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 305-732, Korea
| | - Tommi Kajander
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045;
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
211
|
Kim J, Kim S, Kim H, Hwang IW, Bae S, Karki S, Kim D, Ogelman R, Bang G, Kim JY, Kajander T, Um JW, Oh WC, Ko J. MDGA1 negatively regulates amyloid precursor protein-mediated synapse inhibition in the hippocampus. Proc Natl Acad Sci U S A 2022; 119:e2115326119. [PMID: 35074912 PMCID: PMC8795569 DOI: 10.1073/pnas.2115326119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022] Open
Abstract
Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.
Collapse
Affiliation(s)
- Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Sungwon Bae
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Sudeep Karki
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Roberto Ogelman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 305-732, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 305-732, Korea
| | - Tommi Kajander
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045;
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
212
|
Xia D, Zhang X, Deng D, Ma X, Masri S, Wang J, Bao S, Hu S, Zhou Q. Long-Term Enhancement of NMDA Receptor Function in Inhibitory Neurons Preferentially Modulates Potassium Channels and Cell Adhesion Molecules. Front Pharmacol 2022; 12:796179. [PMID: 35058780 PMCID: PMC8764260 DOI: 10.3389/fphar.2021.796179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Effectively enhancing the activity of inhibitory neurons has great therapeutic potentials since their reduced function/activity has significant contributions to pathology in various brain diseases. We showed previously that NMDAR positive allosteric modulator GNE-8324 and M-8324 selectively increase NMDAR activity on the inhibitory neurons and elevates their activity in vitro and in vivo. Here we examined the impact of long-term administering M-8324 on the functions and transcriptional profiling of parvalbumin-containing neurons in two representative brain regions, primary auditory cortex (Au1) and prelimbic prefrontal cortex (PrL-PFC). We found small changes in key electrophysiological parameters and RNA levels of neurotransmitter receptors, Na+ and Ca2+ channels. In contrast, large differences in cell adhesion molecules and K+ channels were found between Au1 and PrL-PFC in drug-naïve mice, and differences in cell adhesion molecules became much smaller after M-8324 treatment. There was also minor impact of M-8324 on cell cycle and apoptosis, suggesting a fine safety profile.
Collapse
Affiliation(s)
- Dan Xia
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xinyang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Di Deng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China.,International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Samer Masri
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Jianzheng Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
213
|
Abstract
Knowledge of the biology of ionotropic glutamate receptors (iGluRs) is a prerequisite for any student of the neurosciences. But yet, half a century ago, the situation was quite different. There was fierce debate on whether simple amino acids, such as l-glutamic acid (L-Glu), should even be considered as putative neurotransmitter candidates that drive excitatory synaptic signaling in the vertebrate brain. Organic chemist, Jeff Watkins, and physiologist, Dick Evans, were amongst the pioneering scientists who shed light on these tribulations. By combining their technical expertise, they performed foundational work that explained that the actions of L-Glu were, in fact, mediated by a family of ion-channels that they named NMDA-, AMPA- and kainate-selective iGluRs. To celebrate and reflect upon their seminal work, Neuropharmacology has commissioned a series of issues that are dedicated to each member of the Glutamate receptor superfamily that includes both ionotropic and metabotropic classes. This issue brings together nine timely reviews from researchers whose work has brought renewed focus on AMPA receptors (AMPARs), the predominant neurotransmitter receptor at central synapses. Together with the larger collection of papers on other GluR family members, these issues highlight that the excitement, passion, and clarity that Watkins and Evans brought to the study of iGluRs is unlikely to fade as we move into a new era on this most interesting of ion-channel families.
Collapse
|
214
|
Kim J, Park D, Seo NY, Yoon TH, Kim GH, Lee SH, Seo J, Um JW, Lee KJ, Ko J. LRRTM3 regulates activity-dependent synchronization of synapse properties in topographically connected hippocampal neural circuits. Proc Natl Acad Sci U S A 2022; 119:e2110196119. [PMID: 35022233 PMCID: PMC8784129 DOI: 10.1073/pnas.2110196119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.
Collapse
Affiliation(s)
- Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Na-Young Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Taek-Han Yoon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Gyu Hyun Kim
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Sang-Hoon Lee
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Brain Research Core Facilities, KBRI, Daegu 41062, Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kea Joo Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| |
Collapse
|
215
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
216
|
Zhang Z, Hou M, Ou H, Wang D, Li Z, Zhang H, Lu J. Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders. Front Endocrinol (Lausanne) 2022; 13:1067529. [PMID: 36479216 PMCID: PMC9719943 DOI: 10.3389/fendo.2022.1067529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The development of autism spectrum disorders (ASDs) involves both environmental factors such as maternal diabetes and genetic factors such as neuroligins (NLGNs). NLGN2 and NLGN3 are two members of NLGNs with distinct distributions and functions in synapse development and plasticity. The relationship between maternal diabetes and NLGNs, and the distinct working mechanisms of different NLGNs currently remain unclear. Here, we first analyzed the expression levels of NLGN2 and NLGN3 in a streptozotocin-induced ASD mouse model and different brain regions to reveal their differences and similarities. Then, cryogenic electron microscopy (cryo-EM) structures of human NLGN2 and NLGN3 were determined. The overall structures are similar to their homologs in previous reports. However, structural comparisons revealed the relative rotations of two protomers in the homodimers of NLGN2 and NLGN3. Taken together with the previously reported NLGN2-MDGA1 complex, we speculate that the distinct assembly adopted by NLGN2 and NLGN3 may affect their interactions with MDGAs. Our results provide structural insights into the potential distinct mechanisms of NLGN2 and NLGN3 implicated in the development of ASD.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mengzhuo Hou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huaxing Ou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Daping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhifang Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianping Lu, ; Huawei Zhang, ; Zhifang Li,
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianping Lu, ; Huawei Zhang, ; Zhifang Li,
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- *Correspondence: Jianping Lu, ; Huawei Zhang, ; Zhifang Li,
| |
Collapse
|
217
|
Oliver D, Ramachandran S, Philbrook A, Lambert CM, Nguyen KCQ, Hall DH, Francis MM. Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components. PLoS Genet 2022; 18:e1010016. [PMID: 35089924 PMCID: PMC8827443 DOI: 10.1371/journal.pgen.1010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.
Collapse
Affiliation(s)
- Devyn Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Alison Philbrook
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Christopher M. Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
218
|
Aurilio C, Pace MC, Sansone P, Giaccari LG, Coppolino F, Pota V, Barbarisi M. Multimodal analgesia in neurosurgery: a narrative review. Postgrad Med 2021; 134:267-276. [PMID: 34872428 DOI: 10.1080/00325481.2021.2015221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pain following brain surgery can compromise the result of surgery. Several pharmacological interventions have been used to prevent postoperative pain in adults undergoing brain surgery. Pain following craniotomy is considered to be moderate to severe during the first two post-operative days. Opioids have been historically the mainstay and are the current prominent strategy for pain treatment. They produce analgesia but may alter respiratory, cardiovascular, gastrointestinal, and neuroendocrine functions. All these side effects may affect the normal postoperative course of craniotomy by affecting neurological function and increasing intracranial pressure. Therefore, their use in neurosurgery is limited, and opioids are used in case of strict necessity or as rescue medication. In addition to opioids, drugs with differing mechanisms of actions target pain pathways, resulting in additive and/or synergistic effects. Some of these agents include acetaminophen/non-steroidal anti-inflammatory drugs (NSAIDs), alpha-2 agonists, NMDA receptor antagonists, gabapentinoids, and local anesthesia techniques. Multimodal analgesia should be a balance between adequate analgesia and less drug-induced sedation, respiratory depression, hypercapnia, nausea, and vomiting, which may increase intracranial pressure. Non-opioid analgesics can be an useful pharmacological alternative in multimodal regimes to manage post-craniotomy pain. This narrative review aims to outline the current clinical evidence of multimodal analgesia for post craniotomy pain control.
Collapse
Affiliation(s)
- Caterina Aurilio
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Gregorio Giaccari
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Coppolino
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Pota
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Manlio Barbarisi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
219
|
Wang CY, Trotter JH, Liakath-Ali K, Lee SJ, Liu X, Südhof TC. Molecular self-avoidance in synaptic neurexin complexes. SCIENCE ADVANCES 2021; 7:eabk1924. [PMID: 34919427 PMCID: PMC8682996 DOI: 10.1126/sciadv.abk1924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 05/30/2023]
Abstract
Synapses are thought to be organized by interactions of presynaptic neurexins with postsynaptic ligands, particularly with neuroligins and cerebellins. However, when a neuron forms adjacent pre- and postsynaptic specializations, as in dendrodendritic or axo-axonic synapses, nonfunctional cis neurexin/ligand interactions would be energetically favored. Here, we reveal an organizational principle for preventing synaptic cis interactions (“self-avoidance”). Using dendrodendritic synapses between mitral and granule cells in the olfactory bulb as a paradigm, we show that, owing to its higher binding affinity, cerebellin-1 blocks the cis interaction of neurexins with neuroligins, thereby enabling trans neurexin/neuroligin interaction. In mitral cells, ablating either cerebellin-1 or neuroligins severely impaired granule cell➔mitral cell synapses, as did overexpression of wild-type neurexins but not of mutant neurexins unable to bind to neuroligins. Our data uncover a molecular interaction network that organizes the self-avoidance of nonfunctional neurexin/ligand cis interactions, thus allowing assembly of physiological trans interactions.
Collapse
Affiliation(s)
- Cosmos Yuqi Wang
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Justin H. Trotter
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sung-Jin Lee
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xinran Liu
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
220
|
Eksi SE, Chitsazan A, Sayar Z, Thomas GV, Fields AJ, Kopp RP, Spellman PT, Adey AC. Epigenetic loss of heterogeneity from low to high grade localized prostate tumours. Nat Commun 2021; 12:7292. [PMID: 34911933 PMCID: PMC8674326 DOI: 10.1038/s41467-021-27615-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying precise molecular subtypes attributable to specific stages of localized prostate cancer has proven difficult due to high levels of heterogeneity. Bulk assays represent a population-average, which mask the heterogeneity that exists at the single-cell level. In this work, we sequence the accessible chromatin regions of 14,424 single-cells from 18 flash-frozen prostate tumours. We observe shared chromatin features among low-grade prostate cancer cells are lost in high-grade tumours. Despite this loss, high-grade tumours exhibit an enrichment for FOXA1, HOXB13 and CDX2 transcription factor binding sites, indicating a shared trans-regulatory programme. We identify two unique genes encoding neuronal adhesion molecules that are highly accessible in high-grade prostate tumours. We show NRXN1 and NLGN1 expression in epithelial, endothelial, immune and neuronal cells in prostate cancer using cyclic immunofluorescence. Our results provide a deeper understanding of the active gene regulatory networks in primary prostate tumours, critical for molecular stratification of the disease.
Collapse
Affiliation(s)
- Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA.
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR, 97209, USA.
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR, 97209, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Andrew J Fields
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Ryan P Kopp
- Department of Urology, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA.
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA.
| |
Collapse
|
221
|
Boxer EE, Seng C, Lukacsovich D, Kim J, Schwartz S, Kennedy MJ, Földy C, Aoto J. Neurexin-3 defines synapse- and sex-dependent diversity of GABAergic inhibition in ventral subiculum. Cell Rep 2021; 37:110098. [PMID: 34879268 PMCID: PMC8763380 DOI: 10.1016/j.celrep.2021.110098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
Ventral subiculum (vSUB) is integral to the regulation of stress and reward; however, the intrinsic connectivity and synaptic properties of the inhibitory local circuit are poorly understood. Neurexin-3 (Nrxn3) is highly expressed in hippocampal inhibitory neurons, but its function at inhibitory synapses has remained elusive. Using slice electrophysiology, imaging, and single-cell RNA sequencing, we identify multiple roles for Nrxn3 at GABAergic parvalbumin (PV) interneuron synapses made onto vSUB regular-spiking (RS) and burst-spiking (BS) principal neurons. Surprisingly, we find that intrinsic connectivity of vSUB and synaptic function of Nrxn3 in vSUB are sexually dimorphic. We reveal that PVs make preferential contact with RS neurons in male mice, but BS neurons in female mice. Furthermore, we determine that despite comparable Nrxn3 isoform expression in male and female PV neurons, Nrxn3 knockout impairs synapse density, postsynaptic strength, and inhibitory postsynaptic current (IPSC) amplitude at PV-RS synapses in males, but enhances presynaptic release and IPSC amplitude in females.
Collapse
Affiliation(s)
- Emma E Boxer
- University of Colorado Anschutz, Department of Pharmacology, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland
| | - JungMin Kim
- University of Colorado Anschutz, Department of Pharmacology, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Samantha Schwartz
- University of Colorado Anschutz, Department of Pharmacology, Aurora, CO 80045, USA
| | - Matthew J Kennedy
- University of Colorado Anschutz, Department of Pharmacology, Aurora, CO 80045, USA
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland
| | - Jason Aoto
- University of Colorado Anschutz, Department of Pharmacology, Aurora, CO 80045, USA.
| |
Collapse
|
222
|
Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Mol Psychiatry 2021; 26:7509-7521. [PMID: 34158618 PMCID: PMC8692491 DOI: 10.1038/s41380-021-01187-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Cerebellin-1 (Cbln1) and cerebellin-2 (Cbln2) are secreted glycoproteins that are expressed in distinct subsets of neurons throughout the brain. Cbln1 and Cbln2 simultaneously bind to presynaptic neurexins and postsynaptic GluD1 and GluD2, thereby forming trans-synaptic adhesion complexes. Genetic associations link cerebellins, neurexins and GluD's to neuropsychiatric disorders involving compulsive behaviors, such as Tourette syndrome, attention-deficit hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Extensive evidence implicates dysfunction of serotonergic signaling in these neuropsychiatric disorders. Here, we report that constitutive Cbln2 KO mice, but not Cbln1 KO mice, display robust compulsive behaviors, including stereotypic pattern running, marble burying, explosive jumping, and excessive nest building, and exhibit decreased brain serotonin levels. Strikingly, treatment of Cbln2 KO mice with the serotonin precursor 5-hydroxytryptophan or the serotonin reuptake-inhibitor fluoxetine alleviated compulsive behaviors. Conditional deletion of Cbln2 both from dorsal raphe neurons and from presynaptic neurons synapsing onto dorsal raphe neurons reproduced the compulsive behaviors of Cbln2 KO mice. Finally, injection of recombinant Cbln2 protein into the dorsal raphe of Cbln2 KO mice largely reversed their compulsive behaviors. Taken together, our results show that Cbln2 controls compulsive behaviors by regulating serotonergic circuits in the dorsal raphe.
Collapse
|
223
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
224
|
HillTau: A fast, compact abstraction for model reduction in biochemical signaling networks. PLoS Comput Biol 2021; 17:e1009621. [PMID: 34843454 PMCID: PMC8659295 DOI: 10.1371/journal.pcbi.1009621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/09/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022] Open
Abstract
Signaling networks mediate many aspects of cellular function. The conventional, mechanistically motivated approach to modeling such networks is through mass-action chemistry, which maps directly to biological entities and facilitates experimental tests and predictions. However such models are complex, need many parameters, and are computationally costly. Here we introduce the HillTau form for signaling models. HillTau retains the direct mapping to biological observables, but it uses far fewer parameters, and is 100 to over 1000 times faster than ODE-based methods. In the HillTau formalism, the steady-state concentration of signaling molecules is approximated by the Hill equation, and the dynamics by a time-course tau. We demonstrate its use in implementing several biochemical motifs, including association, inhibition, feedforward and feedback inhibition, bistability, oscillations, and a synaptic switch obeying the BCM rule. The major use-cases for HillTau are system abstraction, model reduction, scaffolds for data-driven optimization, and fast approximations to complex cellular signaling. Chemical signals mediate many computations in cells, from housekeeping functions in all cells to memory and pattern selectivity in neurons. These signals form complex networks of interactions. Computer models are a powerful way to study how such networks behave, but it is hard to get all the chemical details for typical models, and it is slow to run them with standard numerical approaches to chemical kinetics. We introduce HillTau as a simplified way to model complex chemical networks. HillTau models condense multiple reaction steps into single steps defined by a small number of parameters for activation and settling time. As a result the models are simple, easy to find values for, and they run quickly. Remarkably, they fit the full chemical formulations rather well. We illustrate the utility of HillTau for modeling several signaling network functions, and for fitting complicated signaling networks.
Collapse
|
225
|
Neuroligin-3 Regulates Excitatory Synaptic Transmission and EPSP-Spike Coupling in the Dentate Gyrus In Vivo. Mol Neurobiol 2021; 59:1098-1111. [PMID: 34845591 PMCID: PMC8857112 DOI: 10.1007/s12035-021-02663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022]
Abstract
Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins.
Collapse
|
226
|
Dagar S, Teng Z, Gottmann K. Transsynaptic N-Cadherin Adhesion Complexes Control Presynaptic Vesicle and Bulk Endocytosis at Physiological Temperature. Front Cell Neurosci 2021; 15:713693. [PMID: 34759800 PMCID: PMC8573734 DOI: 10.3389/fncel.2021.713693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
At mammalian glutamatergic synapses, most basic elements of synaptic transmission have been shown to be modulated by specific transsynaptic adhesion complexes. However, although crucial for synapse homeostasis, a physiological regulation of synaptic vesicle endocytosis by adhesion molecules has not been firmly established. The homophilic adhesion protein N-cadherin is localized at the peri-active zone, where the highly temperature-dependent endocytosis of vesicles occurs. Here, we demonstrate an important modulatory role of N-cadherin in endocytosis at near physiological temperature by synaptophysin-pHluorin imaging. Different modes of endocytosis including bulk endocytosis were dependent on N-cadherin expression and function. N-cadherin modulation might be mediated by actin filaments because actin polymerization ameliorated the knockout-induced endocytosis defect. Using super-resolution imaging, we found strong recruitment of N-cadherin to glutamatergic synapses upon massive vesicle release, which might in turn enhance vesicle endocytosis. This provides a novel, adhesion protein-mediated mechanism for efficient coupling of exo- and endocytosis.
Collapse
Affiliation(s)
- Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zenghui Teng
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
227
|
Schizophrenia-associated LRRTM1 regulates cognitive behavior through controlling synaptic function in the mediodorsal thalamus. Mol Psychiatry 2021; 26:6912-6925. [PMID: 33981006 DOI: 10.1038/s41380-021-01146-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
Reduced activity of the mediodorsal thalamus (MD) and abnormal functional connectivity of the MD with the prefrontal cortex (PFC) cause cognitive deficits in schizophrenia. However, the molecular basis of MD hypofunction in schizophrenia is not known. Here, we identified leucine-rich-repeat transmembrane neuronal protein 1 (LRRTM1), a postsynaptic cell-adhesion molecule, as a key regulator of excitatory synaptic function and excitation-inhibition balance in the MD. LRRTM1 is strongly associated with schizophrenia and is highly expressed in the thalamus. Conditional deletion of Lrrtm1 in the MD in adult mice reduced excitatory synaptic function and caused a parallel reduction in the afferent synaptic activity of the PFC, which was reversed by the reintroduction of LRRTM1 in the MD. Our results indicate that chronic reduction of synaptic strength in the MD by targeted deletion of Lrrtm1 functionally disengages the MD from the PFC and may account for cognitive, social, and sensorimotor gating deficits, reminiscent of schizophrenia.
Collapse
|
228
|
Uchigashima M, Cheung A, Futai K. Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction. Front Mol Neurosci 2021; 14:749164. [PMID: 34690695 PMCID: PMC8526735 DOI: 10.3389/fnmol.2021.749164] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Amy Cheung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
229
|
Zhong Y, An L, Wang Y, Yang L, Cao Q. Functional abnormality in the sensorimotor system attributed to NRXN1 variants in boys with attention deficit hyperactivity disorder. Brain Imaging Behav 2021; 16:967-976. [PMID: 34687402 DOI: 10.1007/s11682-021-00579-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
Impaired sensorimotor circuits have been suggested in Attention-deficit/hyperactivity disorder (ADHD). NRXN1, highly expressed in cortex and cerebellum, was one of the candidate risk genes for ADHD, while its effects on sensorimotor circuits are unclear. In this content, we aimed to investigate the differential brain effects as functions of the cumulative genetic effects of NRXN1 variants in ADHD and healthy controls (HCs), identifying a potential pathway mapping from NRXN1, sensorimotor circuits, to ADHD. Magnetic resonance imaging, blood samples and clinical assessments were acquired from 53 male ADHD and 46 sex-matched HCs simultaneously. The effects of the cumulative genetic effects of NRXN1 variants valued by poly-variant risk score (PRS), on brain function was measured by resting-state functional connectivity (rs-FC) of cerebrocerebellar circuits. Mediation analyses were conducted to evaluate the association between NRXN1, functional abnormality, and ADHD diagnosis, as well as ADHD symptoms. The results were validated by bootstrapping and 10,000 times permutation tests. The rs-FC analyses demonstrated significant mediation models for ADHD diagnosis, and emphasized the involvement of cerebellum, middle cingulate gyrus and temporal gyrus, which are crucial parts of sensorimotor circuits. The current study suggested NRXN1 conferred risk for ADHD by regulating the function of sensorimotor circuits.
Collapse
Affiliation(s)
- Yuanxin Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China
| | - Li An
- Institute of Applied Psychology, Tianjin University, Tianjin, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China.
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Huayuan Bei Road 51, Haidian District, Beijing, 100191, China.
| |
Collapse
|
230
|
Sánchez-Hidalgo AC, Arias-Aragón F, Romero-Barragán MT, Martín-Cuevas C, Delgado-García JM, Martinez-Mir A, Scholl FG. Selective expression of the neurexin substrate for presenilin in the adult forebrain causes deficits in associative memory and presynaptic plasticity. Exp Neurol 2021; 347:113896. [PMID: 34662541 DOI: 10.1016/j.expneurol.2021.113896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 01/25/2023]
Abstract
Presenilins (PS) form the active subunit of the gamma-secretase complex, which mediates the proteolytic clearance of a broad variety of type-I plasma membrane proteins. Loss-of-function mutations in PSEN1/2 genes are the leading cause of familial Alzheimer's disease (fAD). However, the PS/gamma-secretase substrates relevant for the neuronal deficits associated with a loss of PS function are not completely known. The members of the neurexin (Nrxn) family of presynaptic plasma membrane proteins are candidates to mediate aspects of the synaptic and memory deficits associated with a loss of PS function. Previous work has shown that fAD-linked PS mutants or inactivation of PS by genetic and pharmacological approaches failed to clear Nrxn C-terminal fragments (NrxnCTF), leading to its abnormal accumulation at presynaptic terminals. Here, we generated transgenic mice that selectively recreate the presynaptic accumulation of NrxnCTF in adult forebrain neurons, leaving unaltered the function of PS/gamma-secretase complex towards other substrates. Behavioral characterization identified selective impairments in NrxnCTF mice, including decreased fear-conditioning memory. Electrophysiological recordings in medial prefrontal cortex-basolateral amygdala (mPFC-BLA) of behaving mice showed normal synaptic transmission and uncovered specific defects in synaptic facilitation. These data functionally link the accumulation of NrxnCTF with defects in associative memory and short-term synaptic plasticity, pointing at impaired clearance of NrxnCTF as a new mediator in AD.
Collapse
Affiliation(s)
- Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain.
| |
Collapse
|
231
|
Cupaioli FA, Fallerini C, Mencarelli MA, Perticaroli V, Filippini V, Mari F, Renieri A, Mezzelani A. Autism Spectrum Disorders: Analysis of Mobile Elements at 7q11.23 Williams-Beuren Region by Comparative Genomics. Genes (Basel) 2021; 12:genes12101605. [PMID: 34680999 PMCID: PMC8535890 DOI: 10.3390/genes12101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders, characterized by a deficit in social interaction and communication. Many genetic variants are associated with ASD, including duplication of 7q11.23 encompassing 26-28 genes. Symmetrically, the hemizygous deletion of 7q11.23 causes Williams-Beuren syndrome (WBS), a multisystem disorder characterized by "hyper-sociability" and communication skills. Interestingly, deletion of four non-exonic mobile elements (MEs) in the "canine WBS locus" were associated with the behavioral divergence between the wolf and the dog and dog sociability and domestication. We hypothesized that indel of these MEs could be involved in ASD, associated with its different phenotypes and useful as biomarkers for patient stratification and therapeutic design. Since these MEs are non-exonic they have never been discovered before. We searched the corresponding MEs and loci in humans by comparative genomics. Interestingly, they mapped on different but ASD related genes. The loci in individuals with phenotypically different autism and neurotypical controls were amplified by PCR. A sub-set of each amplicon was sequenced by Sanger. No variant resulted associated with ASD and neither specific phenotypes were found but novel small-scale insertions and SNPs were discovered. Since MEs are hyper-methylated and epigenetically modulate gene expression, further investigation in ASD is necessary.
Collapse
Affiliation(s)
- Francesca Anna Cupaioli
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | | | - Valentina Perticaroli
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Virginia Filippini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
- Correspondence:
| |
Collapse
|
232
|
Zhang Z, Gibson JR, Huber KM. Experience-dependent weakening of callosal synaptic connections in the absence of postsynaptic FMRP. eLife 2021; 10:71555. [PMID: 34617509 PMCID: PMC8526058 DOI: 10.7554/elife.71555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Reduced structural and functional interhemispheric connectivity correlates with the severity of Autism Spectrum Disorder (ASD) behaviors in humans. Little is known of how ASD-risk genes regulate callosal connectivity. Here, we show that Fmr1, whose loss-of-function leads to Fragile X Syndrome (FXS), cell autonomously promotes maturation of callosal excitatory synapses between somatosensory barrel cortices in mice. Postnatal, cell-autonomous deletion of Fmr1 in postsynaptic Layer (L) 2/3 or L5 neurons results in a selective weakening of AMPA receptor- (R), but not NMDA receptor-, mediated callosal synaptic function, indicative of immature synapses. Sensory deprivation by contralateral whisker trimming normalizes callosal input strength, suggesting that experience-driven activity of postsynaptic Fmr1 KO L2/3 neurons weakens callosal synapses. In contrast to callosal inputs, synapses originating from local L4 and L2/3 circuits are normal, revealing an input-specific role for postsynaptic Fmr1 in regulation of synaptic connectivity within local and callosal neocortical circuits. These results suggest direct cell autonomous and postnatal roles for FMRP in development of specific cortical circuits and suggest a synaptic basis for long-range functional underconnectivity observed in FXS patients.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neuroscience, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
233
|
Jiang Y, Fu X, Zhang Y, Wang SF, Zhu H, Wang WK, Zhang L, Wu P, Wong CCL, Li J, Ma J, Guan JS, Huang Y, Hui J. Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complex in mouse models. Nat Commun 2021; 12:5767. [PMID: 34599184 PMCID: PMC8486766 DOI: 10.1038/s41467-021-26084-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurological disorder and a leading cause of intellectual disability in young females. RTT is mainly caused by mutations found in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Despite extensive studies, the molecular mechanism underlying RTT pathogenesis is still poorly understood. Here, we report MeCP2 as a key subunit of a higher-order multiunit protein complex Rbfox/LASR. Defective MeCP2 in RTT mouse models disrupts the assembly of the MeCP2/Rbfox/LASR complex, leading to reduced binding of Rbfox proteins to target pre-mRNAs and aberrant splicing of Nrxns and Nlgn1 critical for synaptic plasticity. We further show that MeCP2 disease mutants display defective condensate properties and fail to promote phase-separated condensates with Rbfox proteins in vitro and in cultured cells. These data link an impaired function of MeCP2 with disease mutation in splicing control to its defective properties in mediating the higher-order assembly of the MeCP2/Rbfox/LASR complex. MeCP2 mutations can cause Rett syndrome, a severe childhood neurological disorder. Here the authors show that MeCP2 mediates the higher-order assembly of a large splicing complex Rbfox/LASR, which is disrupted in the mouse models of Rett syndrome.
Collapse
Affiliation(s)
- Yan Jiang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 201602, Shanghai, China
| | - Yuhan Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.,Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Shen-Fei Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Hong Zhu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wei-Kang Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Catherine C L Wong
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China.,Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China.
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
234
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
235
|
Shibata M, Pattabiraman K, Muchnik SK, Kaur N, Morozov YM, Cheng X, Waxman SG, Sestan N. Hominini-specific regulation of CBLN2 increases prefrontal spinogenesis. Nature 2021; 598:489-494. [PMID: 34599306 PMCID: PMC9018127 DOI: 10.1038/s41586-021-03952-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The similarities and differences between nervous systems of various species result from developmental constraints and specific adaptations1-4. Comparative analyses of the prefrontal cortex (PFC), a cerebral cortex region involved in higher-order cognition and complex social behaviours, have identified true and potential human-specific structural and molecular specializations4-8, such as an exaggerated PFC-enriched anterior-posterior dendritic spine density gradient5. These changes are probably mediated by divergence in spatiotemporal gene regulation9-17, which is particularly prominent in the midfetal human cortex15,18-20. Here we analysed human and macaque transcriptomic data15,20 and identified a transient PFC-enriched and laminar-specific upregulation of cerebellin 2 (CBLN2), a neurexin (NRXN) and glutamate receptor-δ GRID/GluD-associated synaptic organizer21-27, during midfetal development that coincided with the initiation of synaptogenesis. Moreover, we found that species differences in level of expression and laminar distribution of CBLN2 are, at least in part, due to Hominini-specific deletions containing SOX5-binding sites within a retinoic acid-responsive CBLN2 enhancer. In situ genetic humanization of the mouse Cbln2 enhancer drives increased and ectopic laminar Cbln2 expression and promotes PFC dendritic spine formation. These findings suggest a genetic and molecular basis for the anterior-posterior cortical gradient and disproportionate increase in the Hominini PFC of dendritic spines and a developmental mechanism that may link dysfunction of the NRXN-GRID-CBLN2 complex to the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Kartik Pattabiraman
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
| | - Sydney K Muchnik
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Navjot Kaur
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Child Study Center, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
236
|
Cuttler K, Hassan M, Carr J, Cloete R, Bardien S. Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders. Open Biol 2021; 11:210091. [PMID: 34610269 PMCID: PMC8492176 DOI: 10.1098/rsob.210091] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders. There is a clear link between neurexins and neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. However, multiple expression studies have also shown changes in neurexin expression in several neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Therefore, this review highlights the potential importance of neurexins in brain disorders and the importance of doing more targeted studies on these genes and proteins.
Collapse
Affiliation(s)
- Katelyn Cuttler
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maryam Hassan
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| |
Collapse
|
237
|
Roundhill EA, Chicon-Bosch M, Jeys L, Parry M, Rankin KS, Droop A, Burchill SA. RNA sequencing and functional studies of patient-derived cells reveal that neurexin-1 and regulators of this pathway are associated with poor outcomes in Ewing sarcoma. Cell Oncol (Dordr) 2021; 44:1065-1085. [PMID: 34403115 PMCID: PMC8516792 DOI: 10.1007/s13402-021-00619-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE The development of biomarkers and molecularly targeted therapies for patients with Ewing sarcoma (ES) in order to minimise morbidity and improve outcome is urgently needed. Here, we set out to isolate and characterise patient-derived ES primary cell cultures and daughter cancer stem-like cells (CSCs) to identify biomarkers of high-risk disease and candidate therapeutic targets. METHODS Thirty-two patient-derived primary cultures were established from treatment-naïve tumours and primary ES-CSCs isolated from these cultures using functional methods. By RNA-sequencing we analysed the transcriptome of ES patient-derived cells (n = 24) and ES-CSCs (n = 11) to identify the most abundant and differentially expressed genes (DEGs). Expression of the top DEG(s) in ES-CSCs compared to ES cells was validated at both RNA and protein levels. The functional and prognostic potential of the most significant gene (neurexin-1) was investigated using knock-down studies and immunohistochemistry of two independent tumour cohorts. RESULTS ES-CSCs were isolated from all primary cell cultures, consistent with the premise that ES is a CSC driven cancer. Transcriptional profiling confirmed that these cells were of mesenchymal origin, revealed novel cell surface targets for therapy that regulate cell-extracellular matrix interactions and identified candidate drivers of progression and relapse. High expression of neurexin-1 and low levels of regulators of its activity, APBA1 and NLGN4X, were associated with poor event-free and overall survival rates. Knock-down of neurexin-1 decreased viable cell numbers and spheroid formation. CONCLUSIONS Genes that regulate extracellular interactions, including neurexin-1, are candidate therapeutic targets in ES. High levels of neurexin-1 at diagnosis are associated with poor outcome and identify patients with localised disease that will relapse. These patients could benefit from more intensive or novel treatment modalities. The prognostic significance of neurexin-1 should be validated independently.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Child
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Prognosis
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sequence Analysis, RNA/methods
- Transcriptome/genetics
- Tumor Cells, Cultured
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Mariona Chicon-Bosch
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Lee Jeys
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Michael Parry
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Susan Ann Burchill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
238
|
Singh A, Allen D, Fracassi A, Tumurbaatar B, Natarajan C, Scaduto P, Woltjer R, Kayed R, Limon A, Krishnan B, Taglialatela G. Functional Integrity of Synapses in the Central Nervous System of Cognitively Intact Individuals with High Alzheimer's Disease Neuropathology Is Associated with Absence of Synaptic Tau Oligomers. J Alzheimers Dis 2021; 78:1661-1678. [PMID: 33185603 PMCID: PMC7836055 DOI: 10.3233/jad-200716] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Certain individuals, here referred to as Non-Demented with Alzheimer Neuropathology (NDAN), do not show overt neurodegeneration (N-) and remain cognitively intact despite the presence of plaques (A+) and tangles (T+) that would normally be consistent with fully symptomatic Alzheimer's disease (AD). OBJECTIVE The existence of NDAN (A + T+N-) subjects suggests that the human brain utilizes intrinsic mechanisms that can naturally evade cognitive decline normally associated with the symptomatic stages of AD (A + T+N+). Deciphering the underlying mechanisms would prove relevant to develop complementing therapeutics to prevent progression of AD-related cognitive decline. METHODS Previously, we have reported that NDAN present with preserved neurogenesis and synaptic integrity paralleled by absence of amyloid oligomers at synapses. Using postmortem brain samples from age-matched control subjects, demented AD patients and NDAN individuals, we performed immunofluorescence, western blots, micro transplantation of synaptic membranes in Xenopus oocytes followed by twin electrode voltage clamp electrophysiology and fluorescence assisted single synaptosome-long term potentiation studies. RESULTS We report decreased tau oligomers at synapses in the brains of NDAN subjects. Furthermore, using novel approaches we report, for the first time, that such absence of tau oligomers at synapses is associated with synaptic functional integrity in NDAN subjects as compared to demented AD patients. CONCLUSION Overall, these results give further credence to tau oligomers as primary actors of synaptic destruction underscoring cognitive demise in AD and support their targeting as a viable therapeutic strategy for AD and related tauopathies.
Collapse
Affiliation(s)
- Ayush Singh
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Dyron Allen
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Batbayar Tumurbaatar
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Chandramouli Natarajan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Pietro Scaduto
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA,Correspondence to: Giulio Taglialatela, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 1679; Fax: +1 409 772 0015; E-mail: . and Balaji Krishnan, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 8069; Fax: +1 409 772 0015; E-mail:
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA,Correspondence to: Giulio Taglialatela, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 1679; Fax: +1 409 772 0015; E-mail: . and Balaji Krishnan, PhD, Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB Galveston, TX, USA. Tel.: +1 409 772 8069; Fax: +1 409 772 0015; E-mail:
| |
Collapse
|
239
|
Lie E, Yeo Y, Lee EJ, Shin W, Kim K, Han KA, Yang E, Choi TY, Bae M, Lee S, Um SM, Choi SY, Kim H, Ko J, Kim E. SALM4 negatively regulates NMDA receptor function and fear memory consolidation. Commun Biol 2021; 4:1138. [PMID: 34588597 PMCID: PMC8481232 DOI: 10.1038/s42003-021-02656-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).
Collapse
Affiliation(s)
- Eunkyung Lie
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.255168.d0000 0001 0671 5021Department of Chemistry, Dongguk University, Seoul, 04620 Korea
| | - Yeji Yeo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Eun-Jae Lee
- grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| | - Wangyong Shin
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyungdeok Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyung Ah Han
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Esther Yang
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Tae-Yong Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Mihyun Bae
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Suho Lee
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Seung Min Um
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Se-Young Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Hyun Kim
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Jaewon Ko
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Eunjoon Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| |
Collapse
|
240
|
Liouta K, Chabbert J, Benquet S, Tessier B, Studer V, Sainlos M, De Wit J, Thoumine O, Chamma I. Role of regulatory C-terminal motifs in synaptic confinement of LRRTM2. Biol Cell 2021; 113:492-506. [PMID: 34498765 DOI: 10.1111/boc.202100026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Leucine Rich Repeat Transmembrane proteins (LRRTMs) are neuronal cell adhesion molecules involved in synapse development and plasticity. LRRTM2 is the most synaptogenic isoform of the family, and its expression is strongly restricted to excitatory synapses in mature neurons. However, the mechanisms by which LRRTM2 is trafficked and stabilized at synapses remain unknown. Here, we examine the role of LRRTM2 intracellular domain on its membrane expression and stabilization at excitatory synapses, using a knock-down strategy combined to single molecule tracking and super-resolution dSTORM microscopy. We show that LRRTM2 operates an important shift in mobility after synaptogenesis in hippocampal neurons. Knock-down of LRRTM2 during synapse formation reduced excitatory synapse density in mature neurons. Deletion of LRRTM2 C-terminal domain abolished the compartmentalization of LRRTM2 in dendrites and disrupted its synaptic enrichment. Furtheremore, we show that LRRTM2 diffusion is increased in the absence of its intracellular domain, and that the protein is more dispersed at synapses. Surprisingly, LRRTM2 confinement at synapses was strongly dependent on a YxxC motif in the C-terminal domain, but was independent of the PDZ-like binding motif ECEV. Finally, the nanoscale organization of LRRTM2 at excitatory synapses depended on its C-terminal domain, with involvement of both the PDZ-binding and YxxC motifs. Altogether, these results demonstrate that LRRTM2 trafficking and enrichment at excitatory synapses are dependent on its intracellular domain.
Collapse
Affiliation(s)
- Konstantina Liouta
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julia Chabbert
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Sebastien Benquet
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Béatrice Tessier
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Vincent Studer
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Matthieu Sainlos
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Joris De Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Ingrid Chamma
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| |
Collapse
|
241
|
Law E, Li Y, Kahraman O, Haselwandter CA. Stochastic self-assembly of reaction-diffusion patterns in synaptic membranes. Phys Rev E 2021; 104:014403. [PMID: 34412234 DOI: 10.1103/physreve.104.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Synaptic receptor and scaffold molecules self-assemble into membrane protein domains, which play an important role in signal transmission across chemical synapses. Experiment and theory have shown that the formation of receptor-scaffold domains of the characteristic size observed in nerve cells can be understood from the receptor and scaffold reaction and diffusion processes suggested by experiments. We employ here kinetic Monte Carlo (KMC) simulations to explore the self-assembly of synaptic receptor-scaffold domains in a stochastic lattice model of receptor and scaffold reaction-diffusion dynamics. For reaction and diffusion rates within the ranges of values suggested by experiments we find, in agreement with previous mean-field calculations, self-assembly of receptor-scaffold domains of a size similar to that observed in experiments. Comparisons between the results of our KMC simulations and mean-field solutions suggest that the intrinsic noise associated with receptor and scaffold reaction and diffusion processes accelerates the self-assembly of receptor-scaffold domains, and confers increased robustness to domain formation. In agreement with experimental observations, our KMC simulations yield a prevalence of scaffolds over receptors in receptor-scaffold domains. Our KMC simulations show that receptor and scaffold reaction-diffusion dynamics can inherently give rise to plasticity in the overall properties of receptor-scaffold domains, which may be utilized by nerve cells to regulate the receptor number at chemical synapses.
Collapse
Affiliation(s)
- Everest Law
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Yiwei Li
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
242
|
Transcriptome programs involved in the development and structure of the cerebellum. Cell Mol Life Sci 2021; 78:6431-6451. [PMID: 34406416 PMCID: PMC8558292 DOI: 10.1007/s00018-021-03911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
In the past two decades, mounting evidence has modified the classical view of the cerebellum as a brain region specifically involved in the modulation of motor functions. Indeed, clinical studies and engineered mouse models have highlighted cerebellar circuits implicated in cognitive functions and behavior. Furthermore, it is now clear that insults occurring in specific time windows of cerebellar development can affect cognitive performance later in life and are associated with neurological syndromes, such as Autism Spectrum Disorder. Despite its almost homogenous cytoarchitecture, how cerebellar circuits form and function is not completely elucidated yet. Notably, the apparently simple neuronal organization of the cerebellum, in which Purkinje cells represent the only output, hides an elevated functional diversity even within the same neuronal population. Such complexity is the result of the integration of intrinsic morphogenetic programs and extracellular cues from the surrounding environment, which impact on the regulation of the transcriptome of cerebellar neurons. In this review, we briefly summarize key features of the development and structure of the cerebellum before focusing on the pathways involved in the acquisition of the cerebellar neuron identity. We focus on gene expression and mRNA processing programs, including mRNA methylation, trafficking and splicing, that are set in motion during cerebellar development and participate to its physiology. These programs are likely to add new layers of complexity and versatility that are fundamental for the adaptability of cerebellar neurons.
Collapse
|
243
|
Tan CX, Eroglu C. Cell adhesion molecules regulating astrocyte-neuron interactions. Curr Opin Neurobiol 2021; 69:170-177. [PMID: 33957433 PMCID: PMC8387342 DOI: 10.1016/j.conb.2021.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
A tripartite synapse comprises a neuronal presynaptic axon and a postsynaptic dendrite, which are closely ensheathed by a perisynaptic astrocyte process. Through their structural and functional association with thousands of neuronal synapses, astrocytes regulate synapse formation and function. Recent work revealed a diverse range of cell adhesion-based mechanisms that mediate astrocyte-synapse interactions at tripartite synapses. Here, we will review some of these findings unveiling a highly dynamic bidirectional signaling between astrocytes and synapses, which orchestrates astrocyte morphological maturation and synapse development. Moreover, we will discuss the roles of these newly discovered molecular pathways in brain physiology and function both in health and disease.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA; Duke Institute for Brain Sciences, Durham, NC, 27710, USA; Regeneration Next Initiative, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
244
|
Fukata Y, Hirano Y, Miyazaki Y, Yokoi N, Fukata M. Trans-synaptic LGI1–ADAM22–MAGUK in AMPA and NMDA receptor regulation. Neuropharmacology 2021; 194:108628. [DOI: 10.1016/j.neuropharm.2021.108628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
|
245
|
Ramsey AM, Tang AH, LeGates TA, Gou XZ, Carbone BE, Thompson SM, Biederer T, Blanpied TA. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. SCIENCE ADVANCES 2021; 7:7/34/eabf3126. [PMID: 34417170 PMCID: PMC8378824 DOI: 10.1126/sciadv.abf3126] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors (AMPARs), we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale declustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function and support the novel concept that adhesion molecules acutely position receptors to dynamically control synaptic strength.
Collapse
Affiliation(s)
- Austin M Ramsey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tara A LeGates
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Beatrice E Carbone
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
246
|
Kamimura K. Roles of Glypican and Heparan Sulfate at the Synapses. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2017.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Keisuke Kamimura
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
247
|
Kamimura K. Roles of Glypican and Heparan Sulfate at the Synapses. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2017.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Keisuke Kamimura
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
248
|
Development of neuronal circuits: From synaptogenesis to synapse plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2021; 173:43-53. [PMID: 32958189 DOI: 10.1016/b978-0-444-64150-2.00005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Optimal brain function critically hinges on the remarkably precise interconnections made among millions of neurons. These specialized interconnected neuronal junctions, termed synapses, are used for neuronal communication, whence the presynaptic neurons releases a specific neurotransmitter, which then binds to the appropriate protein receptor on the membrane of the postsynaptic neuron, activating and eliciting a response in this connected neuron. In this chapter, we discuss how synapses form and are modified as the brain matures. Genetic programs control most of the wiring in the brain, from allowing axons to choose where to target their synapses, to determining synapse identity. However, the final map of neuronal connectivity in the brain crucially relies on incoming sensory information during early childhood to strengthen and refine the preexisting synapses thus allowing both nature and nurture to shape the final structure and function of the nervous system (Fig. 5.1). Finally, we discuss how advances in the knowledge of basic mechanisms governing synapse formation and plasticity can shed light on the pathophysiology of neurodevelopmental disorders.
Collapse
|
249
|
Park J, Farris S. Spatiotemporal Regulation of Transcript Isoform Expression in the Hippocampus. Front Mol Neurosci 2021; 14:694234. [PMID: 34305526 PMCID: PMC8295539 DOI: 10.3389/fnmol.2021.694234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development and plasticity of hippocampal neurons require specific RNA isoforms to be expressed in the right place at the right time. Precise spatiotemporal transcript regulation requires the incorporation of essential regulatory RNA sequences into expressed isoforms. In this review, we describe several RNA processing strategies utilized by hippocampal neurons to regulate the spatiotemporal expression of genes critical to development and plasticity. The works described here demonstrate how the hippocampus is an ideal investigative model for uncovering alternate isoform-specific mechanisms that restrict the expression of transcripts in space and time.
Collapse
Affiliation(s)
- Joun Park
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States
| | - Shannon Farris
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
250
|
Miller-Fleming TW, Cuentas-Condori A, Manning L, Palumbos S, Richmond JE, Miller DM. Transcriptional Control of Parallel-Acting Pathways That Remove Specific Presynaptic Proteins in Remodeling Neurons. J Neurosci 2021; 41:5849-5866. [PMID: 34045310 PMCID: PMC8265810 DOI: 10.1523/jneurosci.0893-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Synapses are actively dismantled to mediate circuit refinement, but the developmental pathways that regulate synaptic disassembly are largely unknown. We have previously shown that the epithelial sodium channel ENaC/UNC-8 triggers an activity-dependent mechanism that drives the removal of presynaptic proteins liprin-α/SYD-2, Synaptobrevin/SNB-1, RAB-3, and Endophilin/UNC-57 in remodeling GABAergic neurons in Caenorhabditis elegans (Miller-Fleming et al., 2016). Here, we report that the conserved transcription factor Iroquois/IRX-1 regulates UNC-8 expression as well as an additional pathway, independent of UNC-8, that functions in parallel to dismantle functional presynaptic terminals. We show that the additional IRX-1-regulated pathway is selectively required for the removal of the presynaptic proteins, Munc13/UNC-13 and ELKS, which normally mediate synaptic vesicle (SV) fusion and neurotransmitter release. Our findings are notable because they highlight the key role of transcriptional regulation in synapse elimination during development and reveal parallel-acting pathways that coordinate synaptic disassembly by removing specific active zone proteins.SIGNIFICANCE STATEMENT Synaptic pruning is a conserved feature of developing neural circuits but the mechanisms that dismantle the presynaptic apparatus are largely unknown. We have determined that synaptic disassembly is orchestrated by parallel-acting mechanisms that target distinct components of the active zone. Thus, our finding suggests that synaptic disassembly is not accomplished by en masse destruction but depends on mechanisms that dismantle the structure in an organized process.
Collapse
Affiliation(s)
| | - Andrea Cuentas-Condori
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37212
| | - Laura Manning
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Sierra Palumbos
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37212
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - David M Miller
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37212
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37212
| |
Collapse
|