201
|
Spisni E, Turroni S, Alvisi P, Spigarelli R, Azzinnari D, Ayala D, Imbesi V, Valerii MC. Nutraceuticals in the Modulation of the Intestinal Microbiota: Current Status and Future Directions. Front Pharmacol 2022; 13:841782. [PMID: 35370685 PMCID: PMC8971809 DOI: 10.3389/fphar.2022.841782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Pharmaceutical interest in the human intestinal microbiota has increased considerably, because of the increasing number of studies linking the human intestinal microbial ecology to an increasing number of non-communicable diseases. Many efforts at modulating the gut microbiota have been made using probiotics, prebiotics and recently postbiotics. However, there are other, still little-explored opportunities from a pharmaceutical point of view, which appear promising to obtain modifications of the microbiota structure and functions. This review summarizes all in vitro, in vivo and clinical studies demonstrating the possibility to positively modulate the intestinal microbiota by using probiotics, prebiotics, postbiotics, essential oils, fungus and officinal plants. For the future, clinical studies investigating the ability to impact the intestinal microbiota especially by using fungus, officinal and aromatic plants or their extracts are required. This knowledge could lead to effective microbiome modulations that might support the pharmacological therapy of most non-communicable diseases in a near future.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Enzo Spisni,
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Alvisi
- Pediatric Gastroenterology Unit, Maggiore Hospital, Bologna, Italy
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Demetrio Azzinnari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Veronica Imbesi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
202
|
Wang Q, Guo M, Liu Y, Xu M, Shi L, Li X, Zhao J, Zhang H, Wang G, Chen W. Bifidobacterium breve and Bifidobacterium longum Attenuate Choline-Induced Plasma Trimethylamine N-Oxide Production by Modulating Gut Microbiota in Mice. Nutrients 2022; 14:nu14061222. [PMID: 35334879 PMCID: PMC8950610 DOI: 10.3390/nu14061222] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is the main cause of myocardial infarction and stroke, and the morbidity and mortality rates of cardiovascular disease are among the highest of any disease worldwide. Excessive plasma trimethylamine-N-oxide (TMAO), an intestinal metabolite, promotes the development of atherosclerosis. Therefore, effective measures for reducing plasma TMAO production can contribute to preventing atherosclerosis. Probiotics are living microorganisms that are beneficial to the human body, and some of them can attenuate plasma TMAO production. To explore the effects of probiotic supplementation on plasma TMAO in choline-fed mice, we intragastrically administered eight strains of Bifidobacterium breve and eight strains of Bifidobacterium longum to mice for 6 weeks. B. breve Bb4 and B. longum BL1 and BL7 significantly reduced plasma TMAO and plasma and cecal trimethylamine concentrations. However, hepatic flavin monooxygenase (FMO) activity, flavin-containing monooxygenase 3 (FMO3), farnesoid X receptor (FXR) protein expression and TMAO fractional excretion were not significantly affected by Bifidobacterium supplementation. The treatment of Bifidobacterium strains modulated the abundances of several genera such as Ruminococcaceae UCG-009, Ruminococcaceae UCG-010, which belong to the Firmicutes that has been reported with cut gene clusters, which may be related to the reduction in intestinal TMA and plasma TMAO. Additionally, a reduction in Ruminococcaceae indicates a reduction in circulating glucose and lipids, which may be another pathway by which Bifidobacterium strains reduce the risk of atherosclerosis. The effect of Bifidobacterium strains on Bacteroides also suggests a relationship between the abundance of this genus and TMA concentrations in the gut. Therefore, the mechanism underlying these changes might be gut microbiota regulation. These Bifidobacterium strains may have therapeutic potential for alleviating TMAO-related diseases.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Liu
- KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai 200062, China
| | - Mengshu Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuting Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
203
|
Tian X, Jiang H, Cai B, Feng H, Wang X, Yu G. Comparative Proteomic Analysis of Fucosylated Glycoproteins Produced by Bacteroides thetaiotaomicron Under Different Polysaccharide Nutrition Conditions. Front Microbiol 2022; 13:826942. [PMID: 35308349 PMCID: PMC8931616 DOI: 10.3389/fmicb.2022.826942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteroides thetaiotaomicron, one of the most eminent representative gut commensal Bacteroides species, is able to use the L-fucose in host-derived and dietary polysaccharides to modify its capsular polysaccharides and glycoproteins through a mammalian-like salvage metabolic pathway. This process is essential for the colonization of the bacteria and for symbiosis with the host. However, despite the importance of fucosylated proteins (FGPs) in B. thetaiotaomicron, their types, distribution, and functions remain unclear. In this study, the effects of different polysaccharide (corn starch, mucin, and fucoidan) nutrition conditions on newly synthesized FGPs expressions and fucosylation are investigated using a chemical biological method based on metabolic labeling and bioorthogonal reaction. According to the results of label-free quantification, 559 FGPs (205 downregulated and 354 upregulated) are affected by the dietary conditions. Of these differentially expressed proteins, 65 proteins show extremely sensitive to polysaccharide nutrition conditions (FGPs fold change/global protein fold change ≥2.0 or ≤0.5). Specifically, the fucosylation of the chondroitin sulfate ABC enzyme, Sus proteins, and cationic efflux system proteins varies significantly upon the addition of mucin, corn starch, or fucoidan. Moreover, these polysaccharides can trigger an appreciable increase in the fucosylation level of the two-component system and ammonium transport proteins. These results highlight the efficiency of the combined metabolic glycan labeling and bio-orthogonal reaction in enriching the intestinal Bacteroides glycoproteins. Moreover, it emphasizes the sensitivity of Bacteroides fucosylation to polysaccharide nutrition conditions, which allows for the regulation of bacterial growth.
Collapse
Affiliation(s)
- Xiao Tian
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Binbin Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Huxin Feng
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xuan Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
204
|
Sobh M, Montroy J, Daham Z, Sibbald S, Lalu M, Stintzi A, Mack D, Fergusson DA. Tolerability and SCFA production after resistant starch supplementation in humans: a systematic review of randomized controlled studies. Am J Clin Nutr 2022; 115:608-618. [PMID: 34871343 DOI: 10.1093/ajcn/nqab402] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistant starches (RSs) have been advocated as a dietary supplement to address microbiota dysbiosis. They are postulated to act through the production of SCFAs. Their clinical tolerability and effect on SCFA production has not been systematically evaluated. OBJECTIVES We conducted a systematic review of RS supplementation as an intervention in adults (healthy individuals and persons with medical conditions) participating in randomized controlled trials. The primary outcome was tolerability of RS supplementation, the secondary outcome was SCFA production. METHODS MEDLINE, Embase, and the Cochrane Central Register were searched. Articles were screened, and data extracted, independently and in duplicate. RESULTS A total of 39 trials met eligibility criteria, including a total of 2263 patients. Twenty-seven (69%) studies evaluated the impact of RS supplementation in healthy subjects whereas 12 (31%) studies included individuals with an underlying medical condition (e.g., obesity, prediabetes). Type 2 RS was most frequently investigated (29 studies). Of 12 studies performed in subjects with health conditions, 11 reported on tolerability. All studies showed that RS supplementation was tolerated; 9 of these studies used type 2 RS with doses of 20-40 g/d for >4 wk. Of 27 studies performed in healthy subjects, 20 reported on tolerability. In 14 studies, RS supplementation was tolerated, and the majority used type 2 RS with a dose between 20 and 40 g/d. Twenty-one (78%) studies reporting SCFAs used type 2 RS with a dose of 20-40 g/d for 1-4 wk. In 16 of 23 studies (70%), SCFA production was increased, in 7 studies there was no change in SCFA concentration before and after RS supplementation, and in 1 study SCFA concentration decreased. CONCLUSIONS Available evidence suggests that RS supplementation is tolerated in both healthy subjects and in those with an underlying medical condition. In addition, SCFA production was increased in most of the studies.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zeinab Daham
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephanie Sibbald
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Manoj Lalu
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David Mack
- Inflammatory Bowel Disease Centre, Children's Hospital of Eastern Ontario, CHEO Research Institute, Ottawa, Ontario, Canada.,Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
205
|
Liu Y, Tan ML, Zhu WJ, Cao YN, Peng LX, Yan ZY, Zhao G. In Vitro Effects of Tartary Buckwheat-Derived Nanovesicles on Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2616-2629. [PMID: 35167751 DOI: 10.1021/acs.jafc.1c07658] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Evidence suggests that plant-derived nanovesicles may play a significant role in human health. Tartary buckwheat has several physiological activities; however, its underlying health-promoting mechanism remains unclear. In this study, first, Tartary buckwheat-derived nanovesicles (TBDNs) were collected, their structures were analyzed, and microRNA sequencing was performed. Next, target prediction and functional verification were conducted. Finally, the effects of TBDNs on gut microbiota and short-chain fatty acid levels were evaluated. The average size of TBDNs was 141.8 nm diameter. Through the sequencing analyses, 129 microRNAs, including 11 novel microRNAs were identified. Target gene prediction showed that some microRNAs could target functional genes in Escherichia coli and Lactobacillus rhamnosus-related physiological processes. TBDNs significantly promoted the growth of E. coli and L. rhamnosus, enhanced the diversity of fecal microorganisms and increased the short-chain fatty acid levels. These findings provided a new nutritional perspective for Tartary buckwheat and were conducive to promote the development and utilization of Tartary buckwheat.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Mao-Ling Tan
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
206
|
Bendiks ZA, Guice J, Coulon D, Raggio AM, Page RC, Carvajal-Aldaz DG, Luo M, Welsh DA, Marx BD, Taylor CM, Husseneder C, Keenan MJ, Marco ML. Resistant starch type 2 and whole grain maize flours enrich different intestinal bacteria and metatranscriptomes. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
207
|
Abstract
The aim of this review is to provide an overview of how person-specific interactions between diet and the gut microbiota could play a role in affecting diet-induced weight loss responses. The highly person-specific gut microbiota, which is shaped by our diet, secretes digestive enzymes and molecules that affect digestion in the colon. Therefore, weight loss responses could in part depend on personal colonic fermentation responses, which affect energy extraction of food and production of microbial metabolites, such as short-chain fatty acids (SCFAs), which exert various effects on host metabolism. Colonic fermentation is the net result of the complex interplay between availability of dietary substrates, the functional capacity of the gut microbiome and environmental (abiotic) factors in the gut such as pH and transit time. While animal studies have demonstrated that the gut microbiota can causally affect obesity, causal and mechanistic evidence from human studies is still largely lacking. However, recent human studies have proposed that the baseline gut microbiota composition may predict diet-induced weight loss-responses. In particular, individuals characterised by high relative abundance of Prevotella have been found to lose more weight on diets rich in dietary fibre compared to individuals with low Prevotella abundance. Although harnessing of personal diet-microbiota interactions holds promise for more personalised nutrition and obesity management strategies to improve human health, there is currently insufficient evidence to unequivocally link the gut microbiota and weight loss in human subjects. To move the field forward, a greater understanding of the mechanistic underpinnings of personal diet-microbiota interactions is needed.
Collapse
|
208
|
DeMartino P, Johnston EA, Petersen KS, Kris-Etherton PM, Cockburn DW. Additional Resistant Starch from One Potato Side Dish per Day Alters the Gut Microbiota but Not Fecal Short-Chain Fatty Acid Concentrations. Nutrients 2022; 14:nu14030721. [PMID: 35277080 PMCID: PMC8840755 DOI: 10.3390/nu14030721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
The composition of the gut microbiota and their metabolites are associated with cardiometabolic health and disease risk. Intake of dietary fibers, including resistant starch (RS), has been shown to favorably affect the health of the gut microbiome. The aim of this research was to measure changes in the gut microbiota and fecal short-chain fatty acids as part of a randomized, crossover supplemental feeding study. Fifty participants (68% female, aged 40 ± 13 years, BMI 24.5 ± 3.6 kg/m2) completed this study. Potato dishes (POT) contained more RS than refined grain dishes (REF) (POT: 1.31% wet basis (95% CI: 0.94, 1.71); REF: 0.73% wet basis (95% CI: 0.34, 1.14); p = 0.03). Overall, potato dish consumption decreased alpha diversity, but beta diversity was not impacted. Potato dish consumption was found to increase the abundance of Hungatella xylanolytica, as well as that of the butyrate producing Roseburia faecis, though fecal butyrate levels were unchanged. Intake of one potato-based side dish per day resulted in modest changes in gut microbiota composition and diversity, compared to isocaloric intake of refined grains in healthy adults. Studies examining foods naturally higher in RS are needed to understand microbiota changes in response to dietary intake of RS and associated health effects.
Collapse
Affiliation(s)
- Peter DeMartino
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA;
| | - Emily A. Johnston
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
| | - Darrell W. Cockburn
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA;
- Correspondence: ; Tel.: +1-814-863-2950
| |
Collapse
|
209
|
Tan H, Nie S. From universal recipes to customerised choices: Innovations, challenges and prospects of the polysaccharides-based food. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
210
|
Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W, Cao H. Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Lett 2022; 526:225-235. [PMID: 34843863 DOI: 10.1016/j.canlet.2021.11.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. It involves the complex interactions between genetic factors, environmental exposure, and gut microbiota. Specific changes in the gut microbiome and metabolome have been described in CRC, supporting the critical role of gut microbiota dysbiosis and microbiota-related metabolites in the tumorigenesis process. Short-chain fatty acids (SCFAs), the principal metabolites generated from the gut microbial fermentation of insoluble dietary fiber, can directly activate G-protein-coupled receptors (GPCRs), inhibit histone deacetylases (HDACs), and serve as energy substrates to connect dietary patterns and gut microbiota, thereby improving the intestinal health. A significantly lower abundance of SCFAs and SCFA-producing bacteria has been demonstrated in CRC, and the supplementation of SCFA-producing probiotics can inhibit intestinal tumor development. SCFAs-guided modulation in both mouse and human CRC models augmented their responses to chemotherapy and immunotherapy. This review briefly summarizes the complex crosstalk between SCFAs and CRC, which might inspire new approaches for the diagnosis, treatment and prevention of CRC on the basis of gut microbiota-derived metabolites SCFAs.
Collapse
Affiliation(s)
- Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
211
|
Li C, Hu Y. New definition of resistant starch types from the gut microbiota perspectives - a review. Crit Rev Food Sci Nutr 2022; 63:6412-6422. [PMID: 35075962 DOI: 10.1080/10408398.2022.2031101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current definition of resistant starch (RS) types is largely based on their interactions with digestive enzymes from human upper gastrointestinal tract. However, this is frequently inadequate to reflect their effects on the gut microbiota, which is an important mechanism for RS to fulfill its function to improve human health. Distinct shifts of gut microbiota compositions and alterations of fermented metabolites could be resulted by the consumption of RS from the same type. This review summarized these defects from the current definitions of RS types, while more importantly proposed pioneering concepts for new definitions of RS types from the gut microbiota perspectives. New RS types considered the aspects of RS fermentation rate, fermentation end products, specificity toward gut microbiota and shifts of gut microbiota caused by the consumption of RS. These definitions were depending on the known outcomes from RS-gut microbiota interactions. The application of new RS types in understanding the complex RS-gut microbiota interactions and promoting human health should be focused in the future.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
212
|
Bell KJ, Saad S, Tillett BJ, McGuire HM, Bordbar S, Yap YA, Nguyen LT, Wilkins MR, Corley S, Brodie S, Duong S, Wright CJ, Twigg S, de St Groth BF, Harrison LC, Mackay CR, Gurzov EN, Hamilton-Williams EE, Mariño E. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. MICROBIOME 2022; 10:9. [PMID: 35045871 PMCID: PMC8772108 DOI: 10.1186/s40168-021-01193-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) produced by the gut microbiota have beneficial anti-inflammatory and gut homeostasis effects and prevent type 1 diabetes (T1D) in mice. Reduced SCFA production indicates a loss of beneficial bacteria, commonly associated with chronic autoimmune and inflammatory diseases, including T1D and type 2 diabetes. Here, we addressed whether a metabolite-based dietary supplement has an impact on humans with T1D. We conducted a single-arm pilot-and-feasibility trial with high-amylose maize-resistant starch modified with acetate and butyrate (HAMSAB) to assess safety, while monitoring changes in the gut microbiota in alignment with modulation of the immune system status. RESULTS HAMSAB supplement was administered for 6 weeks with follow-up at 12 weeks in adults with long-standing T1D. Increased concentrations of SCFA acetate, propionate, and butyrate in stools and plasma were in concert with a shift in the composition and function of the gut microbiota. While glucose control and insulin requirements did not change, subjects with the highest SCFA concentrations exhibited the best glycemic control. Bifidobacterium longum, Bifidobacterium adolescentis, and vitamin B7 production correlated with lower HbA1c and basal insulin requirements. Circulating B and T cells developed a more regulatory phenotype post-intervention. CONCLUSION Changes in gut microbiota composition, function, and immune profile following 6 weeks of HAMSAB supplementation were associated with increased SCFAs in stools and plasma. The persistence of these effects suggests that targeting dietary SCFAs may be a mechanism to alter immune profiles, promote immune tolerance, and improve glycemic control for the treatment of T1D. TRIAL REGISTRATION ACTRN12618001391268. Registered 20 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375792 Video Abstract.
Collapse
Affiliation(s)
- Kirstine J Bell
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Bree J Tillett
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Helen M McGuire
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Sara Bordbar
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Yu Anne Yap
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Long T Nguyen
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Susan Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Shannon Brodie
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Sussan Duong
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Courtney J Wright
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Twigg
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Barbara Fazekas de St Groth
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070, Brussels, Belgium
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
213
|
De Filippis F, Esposito A, Ercolini D. Outlook on next-generation probiotics from the human gut. Cell Mol Life Sci 2022; 79:76. [PMID: 35043293 PMCID: PMC11073307 DOI: 10.1007/s00018-021-04080-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
Probiotics currently available on the market generally belong to a narrow range of microbial species. However, recent studies about the importance of the gut microbial commensals on human health highlighted that the gut microbiome is an unexplored reservoir of potentially beneficial microbes. For this reason, academic and industrial research is focused on identifying and testing novel microbial strains of gut origin for the development of next-generation probiotics. Although several of these are promising for the prevention and treatment of many chronic diseases, studies on human subjects are still scarce and approval from regulatory agencies is, therefore, rare. In addition, some issues need to be overcome before implementing their wide application on the market, such as the best methods for cultivation and storage of these oxygen-sensitive taxa. This review summarizes the most recent evidence related to NGPs and provides an outlook to the main issues that still limit their wide employment.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Alessia Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
214
|
Zhang Y, Zhou L, Xia J, Dong C, Luo X. Human Microbiome and Its Medical Applications. Front Mol Biosci 2022; 8:703585. [PMID: 35096962 PMCID: PMC8793671 DOI: 10.3389/fmolb.2021.703585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The commensal microbiome is essential for human health and is involved in many processes in the human body, such as the metabolism process and immune system activation. Emerging evidence implies that specific changes in the microbiome participate in the development of various diseases, including diabetes, liver diseases, tumors, and pathogen infections. Thus, intervention on the microbiome is becoming a novel and effective method to treat such diseases. Synthetic biology empowers researchers to create strains with unique and complex functions, making the use of engineered microbes for clinical applications attainable. The aim of this review is to summarize recent advances about the roles of the microbiome in certain diseases and the underlying mechanisms, as well as the use of engineered microbes in the prevention, detection, and treatment of various diseases.
Collapse
Affiliation(s)
- Yangming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Linguang Zhou
- Department of Pharmacy, Peking University International Hospital, Beijing, China
| | - Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ce Dong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Xiaozhou Luo,
| |
Collapse
|
215
|
Heras VL, Melgar S, MacSharry J, Gahan CG. The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annu Rev Food Sci Technol 2022; 13:489-512. [DOI: 10.1146/annurev-food-052720-011032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet exerts a major influence upon host immune function and the gastrointestinal microbiota. Although components of the human diet (including carbohydrates, fats, and proteins) are essential sources of nutrition for the host, they also influence immune function directly through interaction with innate and cell-mediated immune regulatory mechanisms. Regulation of the microbiota community structure also provides a mechanism by which food components influence host immune regulatory processes. Here, we consider the complex interplay between components of the modern (Western) diet, the microbiota, and host immunity in the context of obesity and metabolic disease, inflammatory bowel disease, and infection. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vanessa Las Heras
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John MacSharry
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
216
|
D'Amico F, Barone M, Tavella T, Rampelli S, Brigidi P, Turroni S. Host microbiomes in tumor precision medicine: how far are we? Curr Med Chem 2022; 29:3202-3230. [PMID: 34986765 DOI: 10.2174/0929867329666220105121754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
The human gut microbiome has received a crescendo of attention in recent years, due to the countless influences on human pathophysiology, including cancer. Research on cancer and anticancer therapy is constantly looking for new hints to improve the response to therapy while reducing the risk of relapse. In this scenario, the gut microbiome and the plethora of microbial-derived metabolites are considered a new opening in the development of innovative anticancer treatments for a better prognosis. This narrative review summarizes the current knowledge on the role of the gut microbiome in the onset and progression of cancer, as well as in response to chemo-immunotherapy. Recent findings regarding the tumor microbiome and its implications for clinical practice are also commented on. Current microbiome-based intervention strategies (i.e., prebiotics, probiotics, live biotherapeutics and fecal microbiota transplantation) are then discussed, along with key shortcomings, including a lack of long-term safety information in patients who are already severely compromised by standard treatments. The implementation of bioinformatic tools applied to microbiomics and other omics data, such as machine learning, has an enormous potential to push research in the field, enabling the prediction of health risk and therapeutic outcomes, for a truly personalized precision medicine.
Collapse
Affiliation(s)
- Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiome Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
217
|
Alam MJ, Puppala V, Uppulapu SK, Das B, Banerjee SK. Human microbiome and cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:231-279. [DOI: 10.1016/bs.pmbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
218
|
Clavel T, Horz H, Segata N, Vehreschild M. Next steps after 15 stimulating years of human gut microbiome research. Microb Biotechnol 2022; 15:164-175. [PMID: 34818454 PMCID: PMC8719818 DOI: 10.1111/1751-7915.13970] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022] Open
Abstract
Gut microbiome research has bloomed over the past 15 years. We have learnt a lot about the complex microbial communities that colonize our intestine. Promising avenues of research and microbiome-based applications are being implemented, with the goal of sustaining host health and applying personalized disease management strategies. Despite this exciting outlook, many fundamental questions about enteric microbial ecosystems remain to be answered. Organizational measures will also need to be taken to optimize the outcome of discoveries happening at an extremely rapid pace. This article highlights our own view of the field and perspectives for the next 15 years.
Collapse
Affiliation(s)
- Thomas Clavel
- Functional Microbiome Research GroupInstitute of Medical MicrobiologyRWTH University HospitalAachenGermany
| | - Hans‐Peter Horz
- Phage Biology Research GroupInstitute of Medical MicrobiologyRWTH University HospitalAachenGermany
| | | | - Maria Vehreschild
- Department of Internal Medicine, Infectious DiseasesUniversity Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
219
|
Abstract
The prevalence of overweight and obesity has reached epidemic proportions globally over the past few decades. The search for new management approaches continues and among them, targeting the gut microbiota can be envisioned. To date, numerous data showed the involvement of the gut microbes in the regulation and control of host metabolism. There are also increasing evidences highlighting the interactions between environmental factors, intrinsic factors, gut microbiota, and metabolic diseases. Diet emerges as the most relevant factor influencing the gut microbiome. Eating habits, as well as short-term consumption of specific diets, alter the gut microbiota composition. Moreover, nutritional disorders are associated with changes of the gut microbiota composition and/or function, as shown in obesity or type 2 diabetic patients versus healthy lean subjects. Targeting the gut microbiota for improving metabolic health appears as a new approach to manage obesity and cardio-metabolic risk. In this review, we have detailed the results of human interventions targeting the gut microbiome by prebiotic supplementation, prebiotics being defined as "substrates that are selectively utilized by the host microorganisms conferring a health benefit." If the potential benefit of this approach is obvious in preclinical models, the efficacy of prebiotics in humans is less reproducible. The inter-individual variability of response to dietary intervention can be dependent on the gut microbiota and we summarized the basal gut microbiota characteristics driving the metabolic response to dieting, prebiotic and dietary fiber intervention in the context of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
220
|
A Synbiotic Formulation Comprising Bacillus subtilis DSM 32315 and L-Alanyl-L-Glutamine Improves Intestinal Butyrate Levels and Lipid Metabolism in Healthy Humans. Nutrients 2021; 14:nu14010143. [PMID: 35011015 PMCID: PMC8747176 DOI: 10.3390/nu14010143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is a crucial modulator of health effects elicited by food components, with SCFA (short chain fatty acids), especially butyrate, acting as important mediators thereof. We therefore developed a nutritional synbiotic composition targeted at shifting microbiome composition and activity towards butyrate production. An intestinal screening model was applied to identify probiotic Bacillus strains plus various amino acids and peptides with suitable effects on microbial butyrate producers and levels. A pilot study was performed to test if the synbiotic formulation could improve fecal butyrate levels in healthy humans. A combination of Bacillus subtilis DSM (Number of German Collection of Microorganisms and Cell Cultures) 32315 plus L-alanyl-L-glutamine resulted in distinctly increased levels of butyrate and butyrate-producing taxa (Clostridium group XIVa, e.g., Faecalibacterium prausnitzii), both in vitro and in humans. Moreover, circulating lipid parameters (LDL-, and total cholesterol and LDL/HDL cholesterol ratio) were significantly decreased and further metabolic effects such as glucose-modulation were observed. Fasting levels of PYY (Peptide YY) and GLP-1 (Glucagon-like Peptide 1) were significantly reduced. In conclusion, our study indicates that this synbiotic composition may provide an effective and safe tool for stimulation of intestinal butyrate production with effects on e.g., lipid and glucose homeostasis. Further investigations in larger cohorts are warranted to confirm and expand these findings.
Collapse
|
221
|
Turroni S, Benítez-Páez A. Editorial: Remodeling Composition and Function of Microbiome by Dietary Strategies - Functional Foods Perspective. Front Nutr 2021; 8:811102. [PMID: 34917644 PMCID: PMC8669149 DOI: 10.3389/fnut.2021.811102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alfonso Benítez-Páez
- Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center (CIPF), Valencia, Spain
| |
Collapse
|
222
|
Chang D, Ma Z, Li X, Hu X. Structural modification and dynamic in vitro fermentation profiles of precooked pea starch as affected by different drying methods. Food Funct 2021; 12:12706-12723. [PMID: 34846401 DOI: 10.1039/d1fo02094c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pea starch was pre-cooked before being subjected to different drying treatments including oven-drying, infrared-drying, microwave-drying and freeze-drying. Different dried pea starch samples were then anaerobically fermented by human gut microbiota. Their structural features, morphological changes, the synthesis of short-chain fatty acids, as well as the microbiological responses during the 24 h in vitro human fecal fermentation were determined. Oven-dried pea starch (ODPS) displayed relatively stronger fluorescence intensity on the confocal laser scanning microscopic images, which was in qualitative agreement with its significantly highest crystallinities obtained from X-ray diffractogram (XRD) and 13C cross-polarization magic angle spinning (13C CP/MAS) NMR. The obtained results demonstrated that the significant differences in structural and morphological features observed for these four dried starch samples originate from different evaporation patterns of water molecules. Changes in R1047/1022 and R995/1022 during in vitro colonic fermentation corresponded well with the transition in relative crystallinity obtained from XRD and 13C CP/MAS NMR measurements, suggesting an increase in the molecular order upon starch utilization by the gut bacteria. The correlation analysis indicated that the dried starch with higher degree of short-range ordered structure was beneficial for the growth of Firmicutes, whereas starch substrate with a relatively loose granular structure would be beneficial for the growth of Bacteroides. The significantly highest operational taxonomic unit level of Bifidobacterium species after the fermentation of ODPS corresponded well with its highest propionate and butyrate concentration. The results obtained are expected to help food processors to tailor the drying method during the manufacture of processed starch samples with desirable structural features and prebiotic properties.
Collapse
Affiliation(s)
- Danni Chang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| |
Collapse
|
223
|
Houttu V, Boulund U, Nicolaou M, Holleboom AG, Grefhorst A, Galenkamp H, van den Born BJ, Zwinderman K, Nieuwdorp M. Physical Activity and Dietary Composition Relate to Differences in Gut Microbial Patterns in a Multi-Ethnic Cohort-The HELIUS Study. Metabolites 2021; 11:metabo11120858. [PMID: 34940616 PMCID: PMC8707449 DOI: 10.3390/metabo11120858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Physical activity (PA) at recommended levels contributes to the prevention of non-communicable diseases, such as atherosclerotic cardiovascular disease (asCVD) and type 2 diabetes mellitus (T2DM). Since the composition of the gut microbiota is strongly intertwined with dietary intake, the specific effect of exercise on the gut microbiota is not known. Moreover, multiple other factors, such as ethnicity, influence the composition of the gut microbiota, and this may be derived by distinct diet as well as PA patterns. Here we aim to untangle the associations between PA and the gut microbiota in a sample (n = 1334) from the Healthy Life In an Urban Setting (HELIUS) multi-ethnic cohort. The associations of different food groups and gut microbiota were also analyzed. PA was monitored using subjective (n = 1309) and objective (n = 162) methods, and dietary intake was assessed with ethnic-specific food frequency questionnaire (FFQ). The gut microbiota was profiled using 16S rRNA gene amplicon sequencing, and the functional composition was generated with the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2). Associations were assessed using multivariable and machine learning models. In this cohort, a distinct gut microbiota composition was associated with meeting the Dutch PA norm as well as with dietary intake, e.g., grains. PA related parameters such as muscle strength and calf circumference correlated with gut microbiota diversity. Furthermore, gut microbial functionality differed between active and sedentary groups. Differential representation of ethnicities in active and sedentary groups in both monitor methods hampered the detection of ethnic-specific effects. In conclusion, both PA and dietary intake were associated with gut microbiota composition in our multi-ethnic cohort. Future studies should further elucidate the role of ethnicity and diet in this association.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Adriaan Georgius Holleboom
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Bert-Jan van den Born
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Koos Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-5665-737
| |
Collapse
|
224
|
Wolter M, Grant ET, Boudaud M, Steimle A, Pereira GV, Martens EC, Desai MS. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:885-902. [PMID: 34580480 DOI: 10.1038/s41575-021-00512-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases, including inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, have distinct clinical presentations but share underlying patterns of gut microbiome perturbation and intestinal barrier dysfunction. Their potentially common microbial drivers advocate for treatment strategies aimed at restoring appropriate microbiome function, but individual variation in host factors makes a uniform approach unlikely. In this Perspective, we consolidate knowledge on diet-microbiome interactions in local inflammation, gut microbiota imbalance and host immune dysregulation. By understanding and incorporating the effects of individual dietary components on microbial metabolic output and host physiology, we examine the potential for diet-based therapies for autoimmune disease prevention and treatment. We also discuss tools targeting the gut microbiome, such as faecal microbiota transplantation, probiotics and orthogonal niche engineering, which could be optimized using custom dietary interventions. These approaches highlight paths towards leveraging diet for precise engineering of the gut microbiome at a time of increasing autoimmune disease.
Collapse
Affiliation(s)
- Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Eric C Martens
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg. .,Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
225
|
Hu Y, Li C, Hou Y. Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review. Food Funct 2021; 12:11154-11164. [PMID: 34694313 DOI: 10.1039/d1fo02416g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Liver glycogen α particles in diabetic patients are fragile relative to those in healthy individuals, and restoring these fragile glycogen particles to a normal state shows potential to contribute to the remission of diabetes. Resistant starch (RS) is beneficial for diabetes management through its interactions with the gut microbiota. However, its effects on glycogen fragility are not fully understood. This review aims to summarize the recent understanding of the interactions between RS and the human gut microbiota and the possible connections to liver glycogen biosynthesis to elucidate its role in the development of glycogen fragility. RS might regulate glycogen fragility in diabetes by modulating the postprandial glycemic response and glycogen biosynthesis pathways. Before RS can be applied to repair fragile glycogen, more work should be done to better understand in vivo RS structures and identify the factor binding glycogen β particles together. This review contains important information on the connections between glycogen fragility and RS-gut microbiota interactions, which could help to better understand the health benefits of RS consumption.
Collapse
Affiliation(s)
- Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
226
|
Zhou Q, Fu X, Dhital S, Zhai H, Huang Q, Zhang B. In vitro fecal fermentation outcomes of starch-lipid complexes depend on starch assembles more than lipid type. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
227
|
Liu Y, Chandran Matheyambath A, Ivusic Polic I, LaPointe G. Differential fermentation of raw and processed high-amylose and waxy maize starches in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
228
|
Liu L, Li Q, Yang Y, Guo A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front Vet Sci 2021; 8:736739. [PMID: 34733901 PMCID: PMC8558227 DOI: 10.3389/fvets.2021.736739] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites generated by bacterial fermentation of dietary fiber (DF) in the hindgut. SCFAs are mainly composed of acetate, propionate and butyrate. Many studies have shown that SCFAs play a significant role in the regulation of intestinal health in poultry. SCFAs are primarily absorbed from the intestine and used by enterocytes as a key substrate for energy production. SCFAs can also inhibit the invasion and colonization of pathogens by lowering the intestinal pH. Additionally, butyrate inhibits the expression of nitric oxide synthase (NOS), which encodes inducible nitric oxide synthase (iNOS) in intestinal cells via the PPAR-γ pathway. This pathway causes significant reduction of iNOS and nitrate, and inhibits the proliferation of Enterobacteriaceae to maintain overall intestinal homeostasis. SCFAs can enhance the immune response by stimulating cytokine production (e.g. TNF-α, IL-2, IL-6, and IL-10) in the immune cells of the host. Similarly, it has been established that SCFAs promote the differentiation of T cells into T regulatory cells (Tregs) and expansion by binding to receptors, such as Toll-like receptors (TLR) and G protein-coupled receptors (GPRs), on immune cells. SCFAs have been shown to repair intestinal mucosa and alleviate intestinal inflammation by activating GPRs, inhibiting histone deacetylases (HDACs), and downregulating the expression of pro-inflammatory factor genes. Butyrate improves tight-junction-dependent intestinal barrier function by promoting tight junction (TJ) assembly. In recent years, the demand for banning antibiotics has increased in poultry production. Therefore, it is extremely important to maintain the intestinal health and sustainable production of poultry. Taking nutrition strategies is important to regulate SCFA production by supplementing dietary fiber and prebiotics, SCFA-producing bacteria (SPB), and additives in poultry diet. However, excessive SCFAs will lead to the enteritis in poultry production. There may be an optimal level and proportion of SCFAs in poultry intestine, which benefits to gut health of poultry. This review summarizes the biological functions of SCFAs and their role in gut health, as well as nutritional strategies to regulate SCFA production in the poultry gut.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co., Ltd., Kunming, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
229
|
Al-Awadi A, Grove J, Taylor M, Valdes A, Vijay A, Bawden S, Gowland P, Aithal G. Effects of an isoenergetic low Glycaemic Index (GI) diet on liver fat accumulation and gut microbiota composition in patients with non-alcoholic fatty liver disease (NAFLD): a study protocol of an efficacy mechanism evaluation. BMJ Open 2021; 11:e045802. [PMID: 34620653 PMCID: PMC8499287 DOI: 10.1136/bmjopen-2020-045802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION A Low Glycaemic Index (LGI) diet is a proposed lifestyle intervention in non-alcoholic fatty liver diseases (NAFLD) which is designed to reduce circulating blood glucose levels, hepatic glucose influx, insulin resistance and de novo lipogenesis. A significant reduction in liver fat content through following a 1-week LGI diet has been reported in healthy volunteers. Changes in dietary fat and carbohydrates have also been shown to alter gut microbiota composition and lead to hepatic steatosis through the gut-liver axis. There are no available trials examining the effects of an LGI diet on liver fat accumulation in patients with NAFLD; nor has the impact of consuming an LGI diet on gut microbiota composition been studied in this population. The aim of this trial is to investigate the effects of LGI diet consumption on liver fat content and its effects on gut microbiota composition in participants with NAFLD compared with a High Glycaemic Index (HGI) control diet. METHODS AND ANALYSIS A 2×2 cross-over randomised mechanistic dietary trial will allocate 16 participants with NAFLD to a 2-week either HGI or LGI diet followed by a 4-week wash-out period and then the LGI or HGI diet, alternative to that followed in the first 2 weeks. Baseline and postintervention (four visits) outcome measures will be collected to assess liver fat content (using MRI/S and controlled attenuation parameter-FibroScan), gut microbiota composition (using 16S RNA analysis) and blood biomarkers including glycaemic, insulinaemic, liver, lipid and haematological profiles, gut hormones levels and short-chain fatty acids. ETHICS AND DISSEMINATION Study protocol has been approved by the ethics committees of The University of Nottingham and East Midlands Nottingham-2 Research Ethics Committee (REC reference 19/EM/0291). Data from this trial will be used as part of a Philosophy Doctorate thesis. Publications will be in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04415632.
Collapse
Affiliation(s)
- Amina Al-Awadi
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Al-Sabah Hospital, Ministry of Health, Civil Service Commission, Kuwait City, Kuwait
| | - Jane Grove
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Moira Taylor
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ana Valdes
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Stephen Bawden
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny Gowland
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Guruprasad Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
230
|
Zhao Q, Hou D, Fu Y, Xue Y, Guan X, Shen Q. Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice. Nutrients 2021; 13:nu13093240. [PMID: 34579118 PMCID: PMC8466346 DOI: 10.3390/nu13093240] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Adzuki bean consumption has many health benefits, but its effects on obesity and regulating gut microbiota imbalances induced by a high-fat diet (HFD) have not been thoroughly studied. Mice were fed a low-fat diet, a HFD, and a HFD supplemented with 15% adzuki bean (HFD-AB) for 12 weeks. Adzuki bean supplementation significantly reduced obesity, lipid accumulation, and serum lipid and lipopolysaccharide (LPS) levels induced by HFD. It also mitigated liver function damage and hepatic steatosis. In particular, adzuki bean supplementation improved glucose homeostasis by increasing insulin sensitivity. In addition, it significantly reversed HFD-induced gut microbiota imbalances. Adzuki bean significantly reduced the ratio of Firmicutes/Bacteroidetes (F/B); enriched the occurrence of Bifidobacterium, Prevotellaceae, Ruminococcus_1, norank_f_Muribaculaceae, Alloprevotella, Muribaculum, Turicibacter, Lachnospiraceae_NK4A136_group, and Lachnoclostridium; and returned HFD-dependent taxa (Desulfovibrionaceae, Bilophila, Ruminiclostridium_9, Blautia, and Ruminiclostridium) back to normal status. PICRUSt2 analysis showed that the changes in gut microbiota induced by adzuki bean supplementation may be associated with the metabolism of carbohydrates, lipids, sulfur, and cysteine and methionine; and LPS biosynthesis; and valine, leucine, and isoleucine degradation.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-6273-7524
| |
Collapse
|
231
|
Opeyemi OM, Rogers MB, Firek BA, Janesko-Feldman K, Vagni V, Mullett SJ, Wendell SG, Nelson BP, New LA, Mariño E, Kochanek PM, Bayır H, Clark RS, Morowitz MJ, Simon DW. Sustained Dysbiosis and Decreased Fecal Short-Chain Fatty Acids after Traumatic Brain Injury and Impact on Neurologic Outcome. J Neurotrauma 2021; 38:2610-2621. [PMID: 33957773 PMCID: PMC8403202 DOI: 10.1089/neu.2020.7506] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) alters microbial populations present in the gut, which may impact healing and tissue recovery. However, the duration and impact of these changes on outcome from TBI are unknown. Short-chain fatty acids (SCFAs), produced by bacterial fermentation of dietary fiber, are important signaling molecules in the microbiota gut-brain axis. We hypothesized that TBI would lead to a sustained reduction in SCFA producing bacteria, fecal SCFAs concentration, and administration of soluble SCFAs would improve functional outcome after TBI. Adult mice (n = 10) had the controlled cortical impact (CCI) model of TBI performed (6 m/sec, 2-mm depth, 50-msec dwell). Stool samples were collected serially until 28 days after CCI and analyzed for SCFA concentration by high-performance liquid chromatography-mass spectrometry/mass spectrometry and microbiome analyzed by 16S gene sequencing. In a separate experiment, mice (n = 10/group) were randomized 2 weeks before CCI to standard drinking water or water supplemented with the SCFAs acetate (67.5 mM), propionate (25.9 mM), and butyrate (40 mM). Morris water maze performance was assessed on post-injury Days 14-19. Alpha diversity remained stable until 72 h, at which point a decline in diversity was observed without recovery out to 28 days. The taxonomic composition of post-TBI fecal samples demonstrated depletion of bacteria from Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae families, and enrichment of bacteria from the Verrucomicrobiaceae family. Analysis from paired fecal samples revealed a reduction in total SCFAs at 24 h and 28 days after TBI. Acetate, the most abundant SCFA detected in the fecal samples, was reduced at 7 days and 28 days after TBI. SCFA administration improved spatial learning after TBI versus standard drinking water. In conclusion, TBI is associated with reduced richness and diversity of commensal microbiota in the gut and a reduction in SCFAs detected in stool. Supplementation of soluble SCFAs improves spatial learning after TBI.
Collapse
Affiliation(s)
| | - Matthew B. Rogers
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian A. Firek
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vincent Vagni
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brittany P. Nelson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee Ann New
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eliana Mariño
- Department of Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Microbiome and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
232
|
Li C, Hu Y. Align resistant starch structures from plant-based foods with human gut microbiome for personalized health promotion. Crit Rev Food Sci Nutr 2021; 63:2509-2520. [PMID: 34515592 DOI: 10.1080/10408398.2021.1976722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistant starch (RS) is beneficial for human health through its interactions with gut microbiota. However, the alignment between RS structures with gut microbiota profile and consequentially health benefits remain elusive. This review summarizes current understanding of RS complex structures and their interactions with the gut microbiota, aiming to highlight the possibility of manipulating RS structures for a targeted and predictable gut microbiota shift for human health in a personalized way. Current definition of RS types is strongly associated with starch digestion behaviors in small intestine, which does not precisely reflect their interactions with human gut microbiota. Distinct alterations of gut microbiota could be associated with the same RS type. The principles to describe the specificity of different RS structural characteristics in terms of aligning with human gut microbiota shift was proposed in this review, which could result in new definitions of RS types from the microbial perspectives. To consider the highly variable personal features, a machine-learning algorithm to integrate different personalized factors and better understand the complex interaction between RS and gut microbiota and its effects on individual health was explained. This review contains important information to bring interactions between RS and gut microbiota to translational practice.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
233
|
Cione E, Fazio A, Curcio R, Tucci P, Lauria G, Cappello AR, Dolce V. Resistant Starches and Non-Communicable Disease: A Focus on Mediterranean Diet. Foods 2021; 10:foods10092062. [PMID: 34574171 PMCID: PMC8471366 DOI: 10.3390/foods10092062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023] Open
Abstract
Resistant starch (RS) is the starch fraction that eludes digestion in the small intestine. RS is classified into five subtypes (RS1-RS5), some of which occur naturally in plant-derived foods, whereas the others may be produced by several processing conditions. The different RS subtypes are widely found in processed foods, but their physiological effects depend on their structural characteristics. In the present study, foods, nutrition and biochemistry are summarized in order to assess the type and content of RS in foods belonging to the Mediterranean Diet (MeD). Then, the benefits of RS consumption on health are discussed, focusing on their capability to enhance glycemic control. RS enters the large bowel intestine, where it is fermented by the microbiome leading to the synthesis of short-chain fatty acids as major end products, which in turn have systemic health effects besides the in situ one. It is hoped that this review will help to understand the pros of RS consumption as an ingredient of MeD food. Consequently, new future research directions could be explored for developing advanced dietary strategies to prevent non-communicable diseases, including colon cancer.
Collapse
|
234
|
Asnicar F, Leeming ER, Dimidi E, Mazidi M, Franks PW, Al Khatib H, Valdes AM, Davies R, Bakker E, Francis L, Chan A, Gibson R, Hadjigeorgiou G, Wolf J, Spector TD, Segata N, Berry SE. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut 2021; 70:1665-1674. [PMID: 33722860 PMCID: PMC8349893 DOI: 10.1136/gutjnl-2020-323877] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Gut transit time is a key modulator of host-microbiome interactions, yet this is often overlooked, partly because reliable methods are typically expensive or burdensome. The aim of this single-arm, single-blinded intervention study is to assess (1) the relationship between gut transit time and the human gut microbiome, and (2) the utility of the 'blue dye' method as an inexpensive and scalable technique to measure transit time. METHODS We assessed interactions between the taxonomic and functional potential profiles of the gut microbiome (profiled via shotgun metagenomic sequencing), gut transit time (measured via the blue dye method), cardiometabolic health and diet in 863 healthy individuals from the PREDICT 1 study. RESULTS We found that gut microbiome taxonomic composition can accurately discriminate between gut transit time classes (0.82 area under the receiver operating characteristic curve) and longer gut transit time is linked with specific microbial species such as Akkermansia muciniphila, Bacteroides spp and Alistipes spp (false discovery rate-adjusted p values <0.01). The blue dye measure of gut transit time had the strongest association with the gut microbiome over typical transit time proxies such as stool consistency and frequency. CONCLUSIONS Gut transit time, measured via the blue dye method, is a more informative marker of gut microbiome function than traditional measures of stool consistency and frequency. The blue dye method can be applied in large-scale epidemiological studies to advance diet-microbiome-health research. Clinical trial registry website https://clinicaltrials.gov/ct2/show/NCT03479866 and trial number NCT03479866.
Collapse
Affiliation(s)
- Francesco Asnicar
- Department Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Emily R Leeming
- Twins Research and Epidemiology, King's College London, London, UK
| | - Eirini Dimidi
- Diabetes and Nutritional Sciences Division, King's College London, London, UK
| | - Mohsen Mazidi
- Twins Research and Epidemiology, King's College London, London, UK
| | - Paul W Franks
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Haya Al Khatib
- Diabetes and Nutritional Sciences Division, King's College London, London, UK,Zoe Global, London, UK
| | - Ana M Valdes
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals Trust and the University of Nottingham, Nottingham, UK
| | | | | | | | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rachel Gibson
- Diabetes and Nutritional Sciences Division, King's College London, London, UK
| | | | | | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Trentino-Alto Adige, Italy
| | - Sarah E Berry
- Diabetes and Nutritional Sciences Division, King's College London, London, UK
| |
Collapse
|
235
|
Romero Marcia AD, Yao T, Chen MH, Oles RE, Lindemann SR. Fine Carbohydrate Structure of Dietary Resistant Glucans Governs the Structure and Function of Human Gut Microbiota. Nutrients 2021; 13:nu13092924. [PMID: 34578800 PMCID: PMC8467459 DOI: 10.3390/nu13092924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
Increased dietary fiber consumption has been shown to increase human gut microbial diversity, but the mechanisms driving this effect remain unclear. One possible explanation is that microbes are able to divide metabolic labor in consumption of complex carbohydrates, which are composed of diverse glycosidic linkages that require specific cognate enzymes for degradation. However, as naturally derived fibers vary in both sugar composition and linkage structure, it is challenging to separate out the impact of each of these variables. We hypothesized that fine differences in carbohydrate linkage structure would govern microbial community structure and function independently of variation in glycosyl residue composition. To test this hypothesis, we fermented commercially available soluble resistant glucans, which are uniformly composed of glucose linked in different structural arrangements, in vitro with fecal inocula from each of three individuals. We measured metabolic outputs (pH, gas, and short-chain fatty acid production) and community structure via 16S rRNA amplicon sequencing. We determined that community metabolic outputs from identical glucans were highly individual, emerging from divergent initial microbiome structures. However, specific operational taxonomic units (OTUs) responded similarly in growth responses across individuals’ microbiota, though in context-dependent ways; these data suggested that certain taxa were more efficient in competing for some structures than others. Together, these data support the hypothesis that variation in linkage structure, independent of sugar composition, governs compositional and functional responses of microbiota.
Collapse
Affiliation(s)
- Arianna D. Romero Marcia
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
| | - Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
| | - Ming-Hsu Chen
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
| | - Renee E. Oles
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
| | - Stephen R. Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-9207
| |
Collapse
|
236
|
Significance of the Gut Microbiome for Viral Diarrheal and Extra-Intestinal Diseases. Viruses 2021; 13:v13081601. [PMID: 34452466 PMCID: PMC8402659 DOI: 10.3390/v13081601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the mammalian gut microbiome is very important for the health and disease of the host. Significant correlations of particular gut microbiota with host immune responsiveness and various infectious and noninfectious host conditions, such as chronic enteric infections, type 2 diabetes, obesity, asthma, and neurological diseases, have been uncovered. Recently, research has moved on to exploring the causalities of such relationships. The metabolites of gut microbiota and those of the host are considered in a ‘holobiontic’ way. It turns out that the host’s diet is a major determinant of the composition of the gut microbiome and its metabolites. Animal models of bacterial and viral intestinal infections have been developed to explore the interrelationships of diet, gut microbiome, and health/disease phenotypes of the host. Dietary fibers can act as prebiotics, and certain bacterial species support the host’s wellbeing as probiotics. In cases of Clostridioides difficile-associated antibiotic-resistant chronic diarrhea, transplantation of fecal microbiomes has sometimes cured the disease. Future research will concentrate on the definition of microbial/host/diet interrelationships which will inform rationales for improving host conditions, in particular in relation to optimization of immune responses to childhood vaccines.
Collapse
|
237
|
Ultrafine Jujube Powder Enhances the Infiltration of Immune Cells during Anti-PD-L1 Treatment against Murine Colon Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13163987. [PMID: 34439144 PMCID: PMC8394940 DOI: 10.3390/cancers13163987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary While modulating gut microbiota using dietary intervention with natural nutrients has proven to be effective in improving the response rate of immune checkpoint inhibitors (ICIs), the underpinning mechanism is poorly understood. This work demonstrates that the oral administration of ultrafine jujube powder (JP) let to a significant alteration of gut microbiota, an increased abundance of Clostridiales, including Ruminococcaceae and Lachnospiraceae, an elevated SCFA production, an intensified infiltration of CD8+ T cells to the tumor microenvironment, and a greatly improved response of anti-PD-L1 treatment against murine colon adenocarcinoma. Moreover, the size of the JP particles had a significant impact on the abovementioned attributes. The present study demonstrates that dietary intervention with nutrients is highly effective in modulating the gut microbiota for an improved immune checkpoint blockage therapy. Abstract Whereas dietary intervention with natural nutrients plays an important role in activating the immune response and holds unprecedented application potential, the underpinning mechanism is poorly understood. The present work was dedicated to comprehensively examine the effects of ultrafine jujube powder (JP) on the gut microbiota and, consequentially, the effects associated with the response rate to anti-PD-L1 treatment against murine colon adenocarcinoma. A murine colon adenocarcinoma model with anti-PD-L1 immunotherapy was established to evaluate how dietary interventions affect the microbiota. In vitro and in vivo experiments confirmed the role of SCFAs in the immune response. Oral administration of JP greatly improves the response of anti-PD-L1 treatment against murine colon adenocarcinoma. Such an improvement is associated with the alteration of gut microbiota which leads to an increased abundance of Clostridiales, including Ruminococcaceae and Lachnospiraceae, an elevated SCFA production, and an intensified infiltration of CD8+ T cells to the tumor microenvironment. This work demonstrates that JP is particularly effective in modulating the gut microbiota for an improved immune checkpoint blockage therapy by boosting cytotoxic CD8+ T cells in tumor-infiltrating lymphocytes. The experimental findings of the present study are helpful for the development of dietary intervention methods for cancer immunotherapy using natural nutrients.
Collapse
|
238
|
Teng NMY, Price CA, McKee AM, Hall LJ, Robinson SD. Exploring the impact of gut microbiota and diet on breast cancer risk and progression. Int J Cancer 2021; 149:494-504. [PMID: 33521932 PMCID: PMC8650995 DOI: 10.1002/ijc.33496] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
There is emerging evidence that resident microbiota communities, that is, the microbiota, play a key role in cancer outcomes and anticancer responses. Although this has been relatively well studied in colorectal cancer and melanoma, other cancers, such as breast cancer (BrCa), have been largely overlooked to date. Importantly, many of the environmental factors associated with BrCa incidence and progression are also known to impact the microbiota, for example, diet and antibiotics. Here, we explore BrCa risk factors from large epidemiology studies and microbiota associations, and more recent studies that have directly profiled BrCa patients' gut microbiotas. We also discuss how in vivo studies have begun to unravel the immune mechanisms whereby the microbiota may influence BrCa responses, and finally we examine how diet and specific nutrients are also linked to BrCa outcomes. We also consider future research avenues and important considerations with respect to study design and implementation, and we highlight some of the important unresolved questions, which currently limit our overall understanding of the mechanisms underpinning microbiota-BrCa responses.
Collapse
Affiliation(s)
- Nancy M. Y. Teng
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
| | - Christopher A. Price
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
| | - Alastair M. McKee
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
| | - Lindsay J. Hall
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
- Norwich Medical SchoolUniversity of East Anglia, Norwich Research ParkNorwichUK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL‐Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Stephen D. Robinson
- Gut Microbes & HealthQuadram Institute Bioscience, Norwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
239
|
Li X, Lei S, Liu L, Zhang Y, Zheng B, Zeng H. Synergistic effect of lotus seed resistant starch and short-chain fatty acids on mice fecal microbiota in vitro. Int J Biol Macromol 2021; 183:2272-2281. [PMID: 34097970 DOI: 10.1016/j.ijbiomac.2021.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate the synergistic effect of lotus seed resistant starch (LRS) and short-chain fatty acids (SCFAs) on mice fecal bacterial flora and the contents of SCFAs in vitro. Following 24 h of fermentation, 16S rRNA analysis revealed several differences in the fecal microbiota community structure among primal bacteria (PB), LRS and different SCFAs combined with LRS groups (SCFAs-LRS). The LRS group increased the relative abundance of Lactobacillus, Allobaculum, Clostridium, Bacteroides and Prevotella. Among the SCFAs-LRS group, AA-LRS increased the relative abundance of Prevotella, and Bacillus. PA-LRS increased abundance of Sphingomonas and the BA-LRS group significantly increased the relative abundance of Rhizobiales, Brucellaceae and Ochrobactrum. Meanwhile, propionic acid and BA productions significantly increased in the BA-LRS group. The SCFAs-LRS group elicited a beneficial effect on the fecal microbiota by increasing production of SCFAs. We highlight the fact that the combination of LRS and SCFA can increase the contents of SCFAs produced by mice fecal microbiota. In short, the combination of LRS and SCFA can influence intestinal flora by promoting the growth of beneficial bacteria and can serve as new prebiotics for promoting health and disease management.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
240
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
241
|
Vijay A, Astbury S, Panayiotis L, Marques FZ, Spector TD, Menni C, Valdes AM. Dietary Interventions Reduce Traditional and Novel Cardiovascular Risk Markers by Altering the Gut Microbiome and Their Metabolites. Front Cardiovasc Med 2021; 8:691564. [PMID: 34336953 PMCID: PMC8319029 DOI: 10.3389/fcvm.2021.691564] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aims: The current study investigates the role of diet in mediating the gut microbiome-cardiovascular association which has not yet been explored in humans. Methods and Results: Using a two-arm dietary intervention study in healthy participants (N = 70), we assessed the effects of omega-3 and fibre supplementation on gut microbiome composition and short-chain fatty acid (SCFA) production. We then investigated how changes in gut microbiome composition correlated with changes in traditional cardiovascular risk factors (cholesterol, triglycerides, blood pressure), cytokines, and novel validated markers such as GlycA and ceramides, previously linked to CVD incidence and mortality. Both interventions resulted in significant drops in blood pressure, cholesterol, proinflammatory cytokines, GlycA and ceramides (all P < 0.05). Decreases in the atherogenic low-density lipoprotein triglyceride fraction, in total serum cholesterol were correlated with increases in butyric acid-production [β(SE) = −0.58 (0.06), P < 0.001; −0.53 (0.04), P < 0.001] and nominally associated with increases in some butyrogenic bacteria. Drops in GlycA were linked to increases in Bifidobacterium [β(SE) = −0.32 (0.04), P = 0.02] and other SCFAs including acetic acid [β(SE) = −0.28 (0.04), P = 0.02] and propionic acid [β(SE) = −0.3 (0.04), P = 0.02]. Additionally, we report for the first-time reductions in specific ceramide ratios that have been shown to predict CVD mortality and major adverse cardiovascular events such as d18:1/16:0, d18:0/24:0, and d18:1/24:1 which were associated with the reduction in the abundance in Colinsella and increases in Bifidobacteriuim and Coprococcus 3 and SCFAs (all P < 0.05). Conclusion: Overall, these findings support the potential of using simple dietary interventions to alter validated biomarkers linked to cardiovascular risk via the gut microbiome composition and its metabolic functions.
Collapse
Affiliation(s)
- Amrita Vijay
- School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Twin Research, King's College London, London, United Kingdom
| | - Stuart Astbury
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Louca Panayiotis
- Department of Twin Research, King's College London, London, United Kingdom
| | - Francine Z Marques
- Hypertension Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.,Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Tim D Spector
- Department of Twin Research, King's College London, London, United Kingdom
| | - Cristina Menni
- Department of Twin Research, King's College London, London, United Kingdom
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Twin Research, King's College London, London, United Kingdom
| |
Collapse
|
242
|
Dietary Fiber Hierarchical Specificity: the Missing Link for Predictable and Strong Shifts in Gut Bacterial Communities. mBio 2021; 12:e0102821. [PMID: 34182773 PMCID: PMC8262931 DOI: 10.1128/mbio.01028-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Most dietary fibers used to shape the gut microbiota present different and unpredictable responses, presumably due to the diverse microbial communities of people. Recently, we proposed that fibers can be classified in a hierarchical way where fibers of high specificity (i.e., structurally complex and utilized by a narrow group of gut bacteria) could have more similar interindividual responses than those of low specificity (i.e., structurally simple and utilized by many gut bacteria). To test this hypothesis, we evaluated microbiota fermentation of fibers tentatively classified as low (fructooligosaccharides), low-to-intermediate (type 2 resistant starch), intermediate (pectin), and high (insoluble β-1,3-glucan) specificity, utilizing fecal inoculum from distinct subjects, regarding interindividual similarity/dissimilarity in fiber responses. Individual shifts in target bacteria (as determined by linear discriminant analysis) confirmed that divergent fiber responses occur when utilizing both of the low-specificity dietary fibers, but fibers of intermediate and high specificity lead to more similar responses across subjects in support of targeted bacteria. The high-specificity insoluble β-glucan promoted a large increase of the target bacteria (from 0.3 to 16.5% average for Anaerostipes sp. and 2.5 to 17.9% average for Bacteroides uniformis), which were associated with increases in ratios of related metabolites (butyrate and propionate, respectively) in every microbial community in which these bacteria were present. Also, high-specificity dietary fibers promoted more dramatic changes in microbial community structure than low-specificity ones relative to the initial microbial communities.
Collapse
|
243
|
Healey GR, Tsai K, Schick A, Lisko DJ, Cook L, Vallance BA, Jacobson K. Prebiotic Enriched Exclusive Enteral Nutrition Suppresses Colitis via Gut Microbiome Modulation and Expansion of Anti-inflammatory T Cells in a Mouse Model of Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:1251-1266. [PMID: 34214707 PMCID: PMC8453203 DOI: 10.1016/j.jcmgh.2021.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Exclusive enteral nutrition (EEN) is used to treat pediatric Crohn's disease (CD), but therapeutic benefits are variable, and EEN can lead to microbial dysbiosis. Because of reported lower efficacy EEN is not routinely used to treat pediatric ulcerative colitis (UC). Inulin-type fructans (IN) beneficially modulate the gut microbiome and promote expansion of anti-inflammatory immune cells. We hypothesized that enriching EEN with IN (EEN IN) would enhance treatment efficacy. To test this, we examined the effects of EEN IN on colitis development, the gut microbiome, and CD4+ T cells using an adoptive T-cell transfer model of colitis. METHODS TCR-β deficient (-/-) mice were randomized to 1 of 4 groups: (1) Control, (2) Chow, (3) EEN, and (4) EEN IN, and naive CD4+ T cells were adoptively transferred into groups 2-4, after which mice were monitored for 5 weeks before experimental endpoint. RESULTS Mice fed EEN IN showed greater colitis protection, with colonic shortening, goblet cell, and crypt density loss reduced compared with EEN fed mice and reduced disease activity and immune cell infiltration compared with chow fed mice, and less crypt hyperplasia and higher survival compared with both groups. EEN IN mice had less deterioration in the colonic mucus layer and had increased levels of Foxp3+IL-10+ and Rorγt+IL-22+ and reduced levels of Tbet+IFNγ+ and Tbet+TNF+ CD4+ T cells. EEN IN also led to higher butyrate concentrations, Bifidobacterium spp. and Anaerostipes caccae relative abundance, and lower [Clostridium] innocuum group spp. and Escherichia-Shigella spp. relative abundance. CONCLUSIONS The EEN IN group showed reduced colitis development as compared with the chow and EEN groups. This highlights the potential benefits of EEN IN as a novel induction therapy for pediatric CD and UC patients.
Collapse
Affiliation(s)
- Genelle R. Healey
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Gut4Health Microbiome Core Facility, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Kevin Tsai
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alana Schick
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Gut4Health Microbiome Core Facility, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Daniel J. Lisko
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Cook
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A. Vallance
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Gut4Health Microbiome Core Facility, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada,Division of Gastroenterology, Hepatology and Nutrition, BC Children’s Hospital, Vancouver, Canada,Correspondence Address correspondence to: Bruce A. Vallance, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada. Phone: (604) 875-2345 ext 5112.
| | - Kevan Jacobson
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada,Division of Gastroenterology, Hepatology and Nutrition, BC Children’s Hospital, Vancouver, Canada,Kevan Jacobson, MBBCh, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada. Phone: (604) 875-2332 ext 1.
| |
Collapse
|
244
|
Steimle A, Neumann M, Grant ET, Turner JD, Desai MS. Concentrated Raw Fibers Enhance the Fiber-Degrading Capacity of a Synthetic Human Gut Microbiome. Int J Mol Sci 2021; 22:ijms22136855. [PMID: 34202227 PMCID: PMC8267693 DOI: 10.3390/ijms22136855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
The consumption of prebiotic fibers to modulate the human gut microbiome is a promising strategy to positively impact health. Nevertheless, given the compositional complexity of the microbiome and its inter-individual variances, generalized recommendations on the source or amount of fiber supplements remain vague. This problem is further compounded by availability of tractable in vitro and in vivo models to validate certain fibers. We employed a gnotobiotic mouse model containing a 14-member synthetic human gut microbiome (SM) in vivo, characterized a priori for their ability to metabolize a collection of fibers in vitro. This SM contains 14 different strains belonging to five distinct phyla. Since soluble purified fibers have been a common subject of studies, we specifically investigated the effects of dietary concentrated raw fibers (CRFs)—containing fibers from pea, oat, psyllium, wheat and apple—on the compositional and functional alterations in the SM. We demonstrate that, compared to a fiber-free diet, CRF supplementation increased the abundance of fiber-degraders, namely Eubacterium rectale, Roseburia intestinalis and Bacteroides ovatus and decreased the abundance of the mucin-degrader Akkermansia muciniphila. These results were corroborated by a general increase of bacterial fiber-degrading α-glucosidase enzyme activity. Overall, our results highlight the ability of CRFs to enhance the microbial fiber-degrading capacity.
Collapse
Affiliation(s)
- Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; (A.S.); (M.N.); (E.T.G.); (J.D.T.)
| | - Mareike Neumann
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; (A.S.); (M.N.); (E.T.G.); (J.D.T.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Erica T. Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; (A.S.); (M.N.); (E.T.G.); (J.D.T.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Jonathan D. Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; (A.S.); (M.N.); (E.T.G.); (J.D.T.)
| | - Mahesh S. Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; (A.S.); (M.N.); (E.T.G.); (J.D.T.)
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
245
|
Designer fibre meals sway human gut microbes. Nature 2021; 595:32-34. [PMID: 34163080 DOI: 10.1038/d41586-021-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
246
|
Ma W, Nguyen LH, Song M, Wang DD, Franzosa EA, Cao Y, Joshi A, Drew DA, Mehta R, Ivey KL, Strate LL, Giovannucci EL, Izard J, Garrett W, Rimm EB, Huttenhower C, Chan AT. Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Med 2021; 13:102. [PMID: 34140026 PMCID: PMC8212460 DOI: 10.1186/s13073-021-00921-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A higher intake of dietary fiber is associated with a decreased risk of chronic inflammatory diseases such as cardiovascular disease and inflammatory bowel disease. This may function in part due to abrogation of chronic systemic inflammation induced by factors such as dysbiotic gut communities. Data regarding the detailed influences of long-term and recent intake of differing dietary fiber sources on the human gut microbiome are lacking. METHODS In a cohort of 307 generally healthy men, we examined gut microbiomes, profiled by shotgun metagenomic and metatranscriptomic sequencing, and long-term and recent dietary fiber intake in relation to plasma levels of C-reactive protein (CRP), an established biomarker for chronic inflammation. Data were analyzed using multivariate linear mixed models. RESULTS We found that inflammation-associated gut microbial configurations corresponded with higher CRP levels. A greater intake of dietary fiber was associated with shifts in gut microbiome composition, particularly Clostridiales, and their potential for carbohydrate utilization via polysaccharide degradation. This was particularly true for fruit fiber sources (i.e., pectin). Most striking, fiber intake was associated with significantly greater CRP reduction in individuals without substantial Prevotella copri carriage in the gut, whereas those with P. copri carriage maintained stable CRP levels regardless of fiber intake. CONCLUSIONS Our findings offer human evidence supporting a fiber-gut microbiota interaction, as well as a potential specific mechanism by which gut-mediated systemic inflammation may be mitigated.
Collapse
Affiliation(s)
- Wenjie Ma
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dong D Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Amit Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raaj Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kerry L Ivey
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Lisa L Strate
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, USA
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacques Izard
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Wendy Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eric B Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
247
|
Ruthes AC, Cantu-Jungles TM, Cordeiro LMC, Iacomini M. Prebiotic potential of mushroom d-glucans: implications of physicochemical properties and structural features. Carbohydr Polym 2021; 262:117940. [PMID: 33838817 DOI: 10.1016/j.carbpol.2021.117940] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Mushroom d-glucans are recognized as dietary fibers and as biologically active natural polysaccharides, with the advantages of being quite inexpensive for production, tolerable, and having a range of possible structures and physicochemical properties. The prebiotic potential of mushroom d-glucans has been explored in recent years, but the relationship between their various structural features and activity is poorly understood. This review focuses on comprehensively evaluating the prebiotic potential of mushroom d-glucans in face of their structural variations. Overall, mushroom d-glucans provide a unique set of different structures and physicochemical properties with prebiotic potential, where linkage type and solubility degree seem to be associated with prebiotic activity outcomes. The understanding of the effects of distinct structures and physicochemical properties in mushroom d-glucans on the gut microbiota contributes to the design and selection of new prebiotics in a more predictable way.
Collapse
Affiliation(s)
- Andrea Caroline Ruthes
- Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Thaísa Moro Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
248
|
Alfilasari N, Sirivongpaisal P, Wichienchot S. Gut Health Function of Instant Dehydrated Rice Sticks Substituted with Resistant Starch Types 2 and 4. Curr Microbiol 2021; 78:3010-3019. [PMID: 34115195 DOI: 10.1007/s00284-021-02564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to analyze the effects of instant dehydrated rice sticks (IDRS) which were substituted with resistant starch (RS) types 2 and 4 whose gut health function targets gut microbiota. IDRS are a type of rice noodles that were developed by two formulations. The first formulation had substitution of rice flour with 20% RS type 2 and 0.15% carboxymethyl cellulose (CMC) (RSc-2), and the second formulation had 25% RS type 4 and 0.15% CMC (RSc-4). RSc-2 and RSc-4 were investigated for gut health function by human fecal fermentation in a pH-controlled batch culture. The results of gut microbiota enumeration by fluorescent in situ hybridization confirmed that significantly (P < 0.05) higher numbers of bifidobacteria were obtained with RSc-2 (10.06 ± 0.09 log cells/mL) and RSc-4 (10.00 ± 0.06 log cells/mL) compared to the control (100% rice flour formula) at 24 h fermentation. Additionally, the prebiotic indexes of RSc-2 and RSc-4 were 3.8 and 2.8 -fold higher than that of the control at 24 h fermentation. The short-chained fatty acids, acetic, propionic and butyric acid were analyzed by gas chromatography-flame ionization detector. The butyric acids were significantly (P < 0.05) higher with RSc-2 (43.56 ± 0.01 mM) and RSc-4 (43.63 ± 0.07 mM) compared to the control at 24 h. Thus, RSc-2 and RSc-4 showed butyrogenic, bifidogenic and prebiotic potential to support gut health and could aid in prevention of colon cancer.
Collapse
Affiliation(s)
- Nisa Alfilasari
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Piyarat Sirivongpaisal
- Center of Excellence in Functional Foods and Gastronomy, Food Science and Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Santad Wichienchot
- Center of Excellence in Functional Foods and Gastronomy, Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
249
|
Perez-Muñoz ME, Sugden S, Harmsen HJM, 't Hart BA, Laman JD, Walter J. Nutritional and ecological perspectives of the interrelationships between diet and the gut microbiome in multiple sclerosis: Insights from marmosets. iScience 2021; 24:102709. [PMID: 34296070 PMCID: PMC8282968 DOI: 10.1016/j.isci.2021.102709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis, have shown potential links between diet components, microbiome composition, and modulation of immune responses. In this review, we reanalyze and discuss findings in an outbred marmoset EAE model in which a yogurt-based dietary supplement decreased disease frequency and severity. We show that although diet has detectable effects on the fecal microbiome, microbiome changes are more strongly associated with the EAE development. Using an ecological framework, we further show that the dominant factors influencing the gut microbiota were marmoset sibling pair and experimental time point. These findings emphasize challenges in assigning cause-and-effect relationships in studies of diet-microbiome-host interactions and differentiating the diet effects from other environmental, stochastic, and host-related factors. We advocate for animal experiments to be designed to allow causal inferences of the microbiota's role in pathology while considering the complex ecological processes that shape microbial communities.
Collapse
Affiliation(s)
- Maria Elisa Perez-Muñoz
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700AE, The Netherlands
| | - Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen 9700AE, Groningen, The Netherlands.,Department Anatomy and Neuroscience, Amsterdam University Medical Center, Amsterdam 1081HV, The Netherlands
| | - Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen 9700AE, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9700AE, The Netherlands
| | - Jens Walter
- Department of Agricultural, Nutritional and Food Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.,APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork - National University of Ireland, Cork T12 YT20, Ireland
| |
Collapse
|
250
|
Han X, Lei X, Yang X, Shen J, Zheng L, Jin C, Cao Y, Yao J. A Metagenomic Insight Into the Hindgut Microbiota and Their Metabolites for Dairy Goats Fed Different Rumen Degradable Starch. Front Microbiol 2021; 12:651631. [PMID: 34163442 PMCID: PMC8216219 DOI: 10.3389/fmicb.2021.651631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
High starch diets have been proven to increase the risk of hindgut acidosis in high-yielding dairy animals. As an effective measurement of dietary carbohydrate for ruminants, studies on rumen degradable starch (RDS) and the effects on the gut microbiota diversity of carbohydrate-active enzymes (CAZymes), and Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology functional categories are helpful to understand the mechanisms between gut microbiota and carbohydrate metabolism in dairy goats. A total of 18 lactating goats (45.8 ± 1.54 kg) were randomly divided equally into three dietary treatments with low dietary RDS concentrations of 20.52% (LRDS), medium RDS of 22.15% (MRDS), and high RDS of 24.88% (HRDS) on a DM basis for 5 weeks. Compared with the LRDS and MRDS groups, HRDS increased acetate molar proportion in the cecum. For the HRDS group, the abundance of family Ruminococcaceae and genus Ruminococcaceae UCG-010 were significantly increased in the cecum. For the LRDS group, the butyrate molar proportion and the abundance of butyrate producer family Bacteroidale_S24-7, family Lachnospiraceae, and genus Bacteroidale_S24-7_group were significantly increased in the cecum. Based on the BugBase phenotypic prediction, the microbial oxidative stress tolerant and decreased potentially pathogenic in the LRDS group were increased in the cecum compared with the HRDS group. A metagenomic study on cecal bacteria revealed that dietary RDS level could affect carbohydrate metabolism by increasing the glycoside hydrolase 95 (GH95) family and cellulase enzyme (EC 3.2.1.4) in the HRDS group; increasing the GH13_20 family and isoamylase enzyme (EC 3.2.1.68) in the LRDS group. PROBIO probiotics database showed the relative gene abundance of cecal probiotics significantly decreased in the HRDS group. Furthermore, goats fed the HRDS diet had a lower protein expression of Muc2, and greater expression RNA of interleukin-1β and secretory immunoglobulin A in cecal mucosa than did goats fed the LRDS diet. Combined with the information from previous results from rumen, dietary RDS level altered the degradation position of carbohydrates in the gastrointestinal (GI) tract and increased the relative abundance of gene encoded enzymes degrading cellulose in the HRDS group in the cecum of dairy goats. This study revealed that the HRDS diet could bring disturbances to the microbial communities network containing taxa of the Lachnospiraceae and Ruminococcaceae and damage the mucus layer and inflammation in the cecum of dairy goats.
Collapse
Affiliation(s)
- Xiaoying Han
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinjian Lei
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuexin Yang
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jing Shen
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lixin Zheng
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chunjia Jin
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangchun Cao
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- Country College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|