201
|
Pizarro N, Kossatz E, González P, Gamero A, Veza E, Fernández C, Gabaldón T, de la Torre R, Robledo P. Sex-Specific Effects of Synbiotic Exposure in Mice on Addictive-Like Behavioral Alterations Induced by Chronic Alcohol Intake Are Associated With Changes in Specific Gut Bacterial Taxa and Brain Tryptophan Metabolism. Front Nutr 2021; 8:750333. [PMID: 34901109 PMCID: PMC8662823 DOI: 10.3389/fnut.2021.750333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol intake has been shown to disrupt gut microbiota homeostasis, but whether microbiota modulation could prevent behavioral alterations associated with chronic alcohol intake remains unknown. We investigated the effects of synbiotic dietary supplementation on the development of alcohol-related addictive behavior in female and male mice and evaluated whether these effects were associated with changes in bacterial species abundance, short-chain fatty acids, tryptophan metabolism, and neurotransmitter levels in the prefrontal cortex and hippocampus. Chronic intermittent exposure to alcohol during 20 days induced escalation of intake in both female and male mice. Following alcohol deprivation, relapse-like behavior was observed in both sexes, but anxiogenic and cognitive deficits were present only in females. Synbiotic treatment reduced escalation and relapse to alcohol intake in females and males. In addition, the anxiogenic-like state and cognitive deficits observed in females following alcohol deprivation were abolished in mice exposed to synbiotic. Alcohol-induced differential alterations in microbial diversity and abundance in both sexes. In females, synbiotic exposure abrogated the alterations provoked by alcohol in Prevotellaceae UCG-001 and Ruminococcaceae UCG-014 abundance. In males, synbiotic exposure restored the changes induced by alcohol in Akkermansia and Muribaculum uncultured bacterium abundance. Following alcohol withdrawal, tryptophan metabolites, noradrenaline, dopamine, and γ-aminobutyric acid concentrations in the prefrontal cortex and the hippocampus were correlated with bacterial abundance and behavioral alterations in a sex-dependent manner. These results suggested that a dietary intervention with a synbiotic to reduce gut dysbiosis during chronic alcohol intake may impact differently the gut-brain-axis in females and males.
Collapse
Affiliation(s)
- Nieves Pizarro
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Elk Kossatz
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Alba Gamero
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Emma Veza
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cristina Fernández
- Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.,Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| |
Collapse
|
202
|
Lin H, Zhao J, Liu Z, Liu Z, Lin Z. Efficacy of Panax ginseng supplementation on androgen deficiency rats via metabolomics and gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
203
|
Targeting the Gut Microbiome in Prader-Willi Syndrome. J Clin Med 2021; 10:jcm10225328. [PMID: 34830610 PMCID: PMC8625997 DOI: 10.3390/jcm10225328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Overwhelming evidence demonstrates an important role of the gut microbiome in the development of a wide range of diseases, including obesity, metabolic disorders, and mental health symptoms. Indeed, interventions targeting the gut microbiome are being actively investigated as a therapeutic strategy to tackle these diseases. Given that obesity and mental health symptoms are both hallmarks of Prader-Willi syndrome, targeting the gut microbiome may be a promising therapeutical strategy. Only a few studies have investigated the gut microbiome in the context of Prader-Willi syndrome and assessed the efficacy of probiotic supplementation as a therapeutic strategy for this disease. Here, we review the knowledge obtained to this date regarding the gut microbiome in individuals with Prader-Willi syndrome. The limited evidence available indicate that probiotic supplementation improves some metabolic and mental health aspects, however further studies are warranted to determine whether targeting the gut microbiome may constitute a safe and efficient strategy to treat individuals with Prader-Willi syndrome.
Collapse
|
204
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
205
|
Billington EO, Mahajan A, Benham JL, Raman M. Effects of probiotics on bone mineral density and bone turnover: A systematic review. Crit Rev Food Sci Nutr 2021:1-12. [PMID: 34748440 DOI: 10.1080/10408398.2021.1998760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Probiotic supplements have been shown to improve bone health in animal models, although it remains uncertain whether these beneficial effects extend to humans. We undertook a systematic review of the literature to determine the effects of probiotic interventions on skeletal outcomes in postmenopausal women. MEDLINE, EMBASE, CENTRAL, and the Cochrane Database of Systematic Reviews were searched from inception to October 2020 for controlled trials comparing the effects of probiotic-containing supplements with placebo on bone mineral density (BMD) or bone turnover markers. Risk of bias was assessed using the Cochrane Risk of Bias 2 Tool. Of 338 records identified, six randomized, placebo-controlled trials (n = 632) were eligible for inclusion. All studies assessed postmenopausal women for durations of 6-12 months; three were considered to be at high risk of bias. Four studies examined Lactobacillus-containing probiotics, one assessed a proprietary blend of lactic acid bacteria, and one evaluated Bacillus subtilis. Effects of probiotic interventions on BMD were inconsistent, with the majority of studies demonstrating no benefit at the spine or hip. Probiotic effects on bone turnover markers were similarly heterogeneous. High quality studies are needed to determine whether probiotic interventions have a role in maintaining bone health in humans.
Collapse
Affiliation(s)
- Emma O Billington
- Division of Endocrinology & Metabolism, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Amita Mahajan
- Division of Endocrinology & Metabolism, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jamie L Benham
- Division of Endocrinology & Metabolism, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maitreyi Raman
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
206
|
Sun P, Su L, Zhu H, Li X, Guo Y, Du X, Zhang L, Qin C. Gut Microbiota Regulation and Their Implication in the Development of Neurodegenerative Disease. Microorganisms 2021; 9:microorganisms9112281. [PMID: 34835406 PMCID: PMC8621510 DOI: 10.3390/microorganisms9112281] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, human gut microbiota have become one of the most promising areas of microorganism research; meanwhile, the inter-relation between the gut microbiota and various human diseases is a primary focus. As is demonstrated by the accumulating evidence, the gastrointestinal tract and central nervous system interact through the gut–brain axis, which includes neuronal, immune-mediated and metabolite-mediated pathways. Additionally, recent progress from both preclinical and clinical studies indicated that gut microbiota play a pivotal role in gut–brain interactions, whereas the imbalance of the gut microbiota composition may be associated with the pathogenesis of neurological diseases (particularly neurodegenerative diseases), the underlying mechanism of which is insufficiently studied. This review aims to highlight the relationship between gut microbiota and neurodegenerative diseases, and to contribute to our understanding of the function of gut microbiota in neurodegeneration, as well as their relevant mechanisms. Furthermore, we also discuss the current application and future prospects of microbiota-associated therapy, including probiotics and fecal microbiota transplantation (FMT), potentially shedding new light on the research of neurodegeneration.
Collapse
Affiliation(s)
- Peilin Sun
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Hua Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Yaxi Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Xiaopeng Du
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China; (P.S.); (L.S.); (H.Z.); (X.L.); (Y.G.); (X.D.); (L.Z.)
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China
- Correspondence: ; Tel.: +86-10-8777-8141
| |
Collapse
|
207
|
Unraveling the Microbiome of Necrotizing Enterocolitis: Insights in Novel Microbial and Metabolomic Biomarkers. Microbiol Spectr 2021; 9:e0117621. [PMID: 34704805 PMCID: PMC8549755 DOI: 10.1128/spectrum.01176-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is among the most relevant gastrointestinal diseases affecting mostly prematurely born infants with low birth weight. While intestinal dysbiosis has been proposed as one of the possible factors involved in NEC pathogenesis, the role of the gut microbiota remains poorly understood. In this study, the gut microbiota of preterm infants was explored to highlight differences in the composition between infants affected by NEC and infants prior to NEC development. A large-scale gut microbiome analysis was performed, including 47 shotgun sequencing data sets generated in the framework of this study, along with 124 retrieved from publicly available repositories. Meta-analysis led to the identification of preterm community state types (PT-CSTs), which recur in healthy controls and NEC infants. Such analyses revealed an overgrowth of a range of opportunistic microbial species accompanying the loss of gut microbial biodiversity in NEC subjects. Moreover, longitudinal insights into preterm infants prior to NEC development indicated Clostridium neonatale and Clostridium perfringens species as potential biomarkers for predictive early diagnosis of this disease. Furthermore, functional investigation of the enzymatic reaction profiles associated with pre-NEC condition suggested DL-lactate as a putative metabolic biomarker for early detection of NEC onset. IMPORTANCE Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease occurring predominantly in premature infants whose etiology is still not fully understood. In this study, the analysis of infant fecal samples through shotgun metagenomics approaches revealed a marked reduction of the intestinal (bio)diversity and an overgrowth of (opportunistic) pathogens associated with the NEC development. In particular, dissection of the infant’s gut microbiome before NEC diagnosis highlighted the potential involvement of Clostridium genus members in the progression of NEC. Remarkably, our analyses highlighted a gastrointestinal DL-lactate accumulation among NEC patients that might represent a novel potential functional biomarker for the early diagnosis of NEC.
Collapse
|
208
|
Toxic Effects of Indoxyl Sulfate on Osteoclastogenesis and Osteoblastogenesis. Int J Mol Sci 2021; 22:ijms222011265. [PMID: 34681927 PMCID: PMC8538618 DOI: 10.3390/ijms222011265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Uremic toxins, such as indoxyl sulfate (IS) and kynurenine, accumulate in the blood in the event of kidney failure and contribute to further bone damage. To maintain the homeostasis of the skeletal system, bone remodeling is a persistent process of bone formation and bone resorption that depends on a dynamic balance of osteoblasts and osteoclasts. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates the toxic effects of uremic toxins. IS is an endogenous AhR ligand and is metabolized from tryptophan. In osteoclastogenesis, IS affects the expression of the osteoclast precursor nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) through AhR signaling. It is possible to increase osteoclast differentiation with short-term and low-dose IS exposure and to decrease differentiation with long-term and/or high-dose IS exposure. Coincidentally, during osteoblastogenesis, through the AhR signaling pathway, IS inhibits the phosphorylation of ERK, and p38 reduces the expression of the transcription factor 2 (Runx2), disturbing osteoblastogenesis. The AhR antagonist resveratrol has a protective effect on the IS/AhR pathway. Therefore, it is necessary to understand the multifaceted role of AhR in CKD, as knowledge of these transcription signals could provide a safe and effective method to prevent and treat CKD mineral bone disease.
Collapse
|
209
|
Microbiota-gut-brain axis: A novel potential target of ketogenic diet for epilepsy. Curr Opin Pharmacol 2021; 61:36-41. [PMID: 34607252 DOI: 10.1016/j.coph.2021.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Ketogenic diet (KD) has been used to the control of seizure for 100 years because it was developed for the treatment of epilepsy in 1921. Based on current research on the microbiota-gut-brain axis to explore the new communication tool between gut bacteria and the brain and the progress of microbiota-gut-brain axis and KD for the treatment of epilepsy, the role of neurotransmitters adenosine and γ-aminobutyric acid in the epileptic brain, we propose that the balance between beneficial and harmful bacteria in the gut microbiota would be a promising target in the future to underlying the working mechanism of KD for epilepsy.
Collapse
|
210
|
Effect of microbiota metabolites on the progression of chronic hepatitis B virus infection. Hepatol Int 2021; 15:1053-1067. [PMID: 34596865 DOI: 10.1007/s12072-021-10230-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
Accumulating evidence shows that the intestinal microbiota is closely related to the pathophysiology and the disease progression of chronic hepatitis B virus (HBV) infection. The intestinal microbiota acts on the host through its metabolites. This review aimed to discuss the effects of gut microbiota metabolites on the disease progression of chronic HBV infection. A literature search on PubMed database and Wiley Online Library with pre-specified criteria yielded 96 unique results. After consensus by all authors, the contents from 86 original publications were extracted and included in this review. In liver disease with HBV infection, the intestinal microbiota changed in different stages and affected the production of bacterial metabolites. The abundance of bacteria producing short-chain fatty acids such as butyrate reduced, which was associated with bacterial translocation and the progression of liver disease. The intestinal microbiota-bile acid-host axis was destroyed, affecting the progression of the disease. Under the control of intestinal microbiota, tryptophan affected the gut-liver axis through three main metabolic pathways, among which the kynurenine pathway was closely related to the immune response of hepatitis B. The level of trimethylamine-N-oxide decreased in liver cancer with HBV infection and were used as a potential biomarker of liver cancer. Vitamin deficiencies, including those of vitamin D and vitamin A related to microbiota, were common and associated with survival. Hydrogen sulfide regulated by the intestinal microbiota was also closely related to the gut-liver axis. In liver disease with hepatitis B infection, the intestinal microbiota is imbalanced, and a variety of intestinal microbiota metabolites participate in the occurrence and development of the disease.
Collapse
|
211
|
Leclercq S, Schwarz M, Delzenne NM, Stärkel P, de Timary P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: a link with gut microbiota, peripheral inflammation and psychological symptoms. Transl Psychiatry 2021; 11:503. [PMID: 34599147 PMCID: PMC8486842 DOI: 10.1038/s41398-021-01610-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The gut-brain communication is mostly driven by the immune, metabolic and neural pathways which remained poorly explored in patients with alcohol use disorder (AUD). The metabolites arising from the tryptophan-kynurenine pathway have gained considerable attention since they are at the interface between intestinal bacteria, host immune response and brain functions. This study described the circulating levels of kynurenine metabolites in AUD patients, at the onset (T1) and end (T2) of a 3-week detoxification program, and tested correlations between those metabolites and inflammatory markers, the gut microbiota and the psychological symptoms. Increased concentration of the neurotoxic metabolite quinolinic acid (QUIN) and decreased levels of the neuroprotector metabolite kynurenic acid (KYNA) which both modulate glutamatergic neurotransmission were observed in AUD patients, particularly at T2. The inflammatory marker hsCRP was associated with several metabolic ratios of the kynurenine pathway. Tryptophan, KYNA and QUIN were correlated with depression, alcohol craving and reaction time, respectively. Analysis of gut microbiota revealed that bacteria known as short-chain fatty acid producers, as well as bacterial metabolites including butyrate and medium-chain fatty acids were associated with some metabolites of the tryptophan-kynurenine pathway. Targeting the glutamatergic neurotransmission through the modulation of the kynurenine pathway, by manipulating the gut microbiota, might represent an interesting alternative for modulating alcohol-related behavior.
Collapse
Affiliation(s)
- Sophie Leclercq
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium ,grid.7942.80000 0001 2294 713XMetabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Markus Schwarz
- grid.411095.80000 0004 0477 2585Institute of Laboratory Medicine, LMU Klinikum Munich, Munich, Germany
| | - Nathalie M. Delzenne
- grid.7942.80000 0001 2294 713XMetabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Peter Stärkel
- grid.7942.80000 0001 2294 713XLaboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium ,grid.48769.340000 0004 0461 6320Department of Hepatogastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium. .,Department of Adult Psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
212
|
Peralta-Marzal LN, Prince N, Bajic D, Roussin L, Naudon L, Rabot S, Garssen J, Kraneveld AD, Perez-Pardo P. The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. Int J Mol Sci 2021; 22:10052. [PMID: 34576216 PMCID: PMC8470471 DOI: 10.3390/ijms221810052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome-host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lucía N. Peralta-Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Naika Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Djordje Bajic
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA;
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Léa Roussin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Laurent Naudon
- CNRS, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Sylvie Rabot
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (L.R.); (S.R.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.P.); (J.G.); (A.D.K.)
| |
Collapse
|
213
|
Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications. J Clin Invest 2021; 131:143768. [PMID: 34523615 PMCID: PMC8439601 DOI: 10.1172/jci143768] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern research on gastrointestinal behavior has revealed it to be a highly complex bidirectional process in which the gut sends signals to the brain, via spinal and vagal visceral afferent pathways, and receives sympathetic and parasympathetic inputs. Concomitantly, the enteric nervous system within the bowel, which contains intrinsic primary afferent neurons, interneurons, and motor neurons, also senses the enteric environment and controls the detailed patterns of intestinal motility and secretion. The vast microbiome that is resident within the enteric lumen is yet another contributor, not only to gut behavior, but to the bidirectional signaling process, so that the existence of a microbiota-gut-brain "connectome" has become apparent. The interaction between the microbiota, the bowel, and the brain now appears to be neither a top-down nor a bottom-up process. Instead, it is an ongoing, tripartite conversation, the outline of which is beginning to emerge and is the subject of this Review. We emphasize aspects of the exponentially increasing knowledge of the microbiota-gut-brain "connectome" and focus attention on the roles that serotonin, Toll-like receptors, and macrophages play in signaling as exemplars of potentially generalizable mechanisms.
Collapse
Affiliation(s)
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
214
|
Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J 2021; 35:e21888. [PMID: 34473368 PMCID: PMC9292703 DOI: 10.1096/fj.202100702r] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Endogenous tryptophan metabolism pathways lead to the production of serotonin (5‐hydroxytryptamine; 5‐HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%–2%) are sequestered for 5‐HT production. Though often associated with the functioning of the central nervous system, significant production of 5‐HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5‐HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5‐HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5‐HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5‐HT and kynurenine pathways.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
215
|
Tudela H, Claus SP, Saleh M. Next Generation Microbiome Research: Identification of Keystone Species in the Metabolic Regulation of Host-Gut Microbiota Interplay. Front Cell Dev Biol 2021; 9:719072. [PMID: 34540837 PMCID: PMC8440917 DOI: 10.3389/fcell.2021.719072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The community of the diverse microorganisms residing in the gastrointestinal tract, known as the gut microbiota, is exceedingly being studied for its impact on health and disease. This community plays a major role in nutrient metabolism, maintenance of the intestinal epithelial barrier but also in local and systemic immunomodulation. A dysbiosis of the gut microbiota, characterized by an unbalanced microbial ecology, often leads to a loss of essential functions that may be associated with proinflammatory conditions. Specifically, some key microbes that are depleted in dysbiotic ecosystems, called keystone species, carry unique functions that are essential for the balance of the microbiota. In this review, we discuss current understanding of reported keystone species and their proposed functions in health. We also elaborate on current and future bioinformatics tools needed to identify missing functions in the gut carried by keystone species. We propose that the identification of such keystone species functions is a major step for the understanding of microbiome dynamics in disease and toward the development of microbiome-based therapeutics.
Collapse
Affiliation(s)
- Héloïse Tudela
- YSOPIA Bioscience, Bordeaux, France
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | | | - Maya Saleh
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
216
|
AKTAS B, ASLIM B. Neuropathy in COVID-19 associated with dysbiosis-related inflammation. Turk J Biol 2021; 45:390-403. [PMID: 34803442 PMCID: PMC8573843 DOI: 10.3906/biy-2105-53] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Although COVID-19 affects mainly lungs with a hyperactive and imbalanced immune response, gastrointestinal and neurological symptoms such as diarrhea and neuropathic pains have been described as well in patients with COVID-19. Studies indicate that gut-lung axis maintains host homeostasis and disease development with the association of immune system, and gut microbiota is involved in the COVID-19 severity in patients with extrapulmonary conditions. Gut microbiota dysbiosis impairs the gut permeability resulting in translocation of gut microbes and their metabolites into the circulatory system and induce systemic inflammation which, in turn, can affect distal organs such as the brain. Moreover, gut microbiota maintains the availability of tryptophan for kynurenine pathway, which is important for both central nervous and gastrointestinal system in regulating inflammation. SARS-CoV-2 infection disturbs the gut microbiota and leads to immune dysfunction with generalized inflammation. It has been known that cytokines and microbial products crossing the blood-brain barrier induce the neuroinflammation, which contributes to the pathophysiology of neurodegenerative diseases including neuropathies. Therefore, we believe that both gut-lung and gut-brain axes are involved in COVID-19 severity and extrapulmonary complications. Furthermore, gut microbial dysbiosis could be the reason of the neurologic complications seen in severe COVID-19 patients with the association of dysbiosis-related neuroinflammation. This review will provide valuable insights into the role of gut microbiota dysbiosis and dysbiosis-related inflammation on the neuropathy in COVID-19 patients and the disease severity.
Collapse
Affiliation(s)
- Busra AKTAS
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, BurdurTurkey
| | - Belma ASLIM
- Department of Biology, Faculty of Sciences, Gazi University, AnkaraTurkey
| |
Collapse
|
217
|
Yang F, Wei J, Shen M, Ding Y, Lu Y, Ishaq HM, Li D, Yan D, Wang Q, Zhang R. Integrated Analyses of the Gut Microbiota, Intestinal Permeability, and Serum Metabolome Phenotype in Rats with Alcohol Withdrawal Syndrome. Appl Environ Microbiol 2021; 87:e0083421. [PMID: 34190609 PMCID: PMC8388829 DOI: 10.1128/aem.00834-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
The etiology of alcohol dependence is not completely understood. Increasing evidence reveals that gut microbiota dysbiosis is associated with certain psychiatric disorders, including alcoholism, through the "microbiota-gut-brain" axis. The aims of this study were to evaluate the effect of alcohol abuse on the gut microbiota, intestinal permeability and serum metabolic profile and to determine whether alcohol-induced alterations in gut microbiota are correlated with gut permeability and serum metabolic phenotype changes. 16S rRNA gene high-throughput sequencing and nontarget metabolomics techniques were applied in an alcohol-dependent rat model in the present study. The results showed that alcohol intake altered the composition and structure of the colonic microbiota, especially the relative abundances of commensal microbes in the families Lachnospiraceae and Prevotellaceae, which were significantly decreased. Alcohol-dependent rats developed gut leakiness and a serum metabolic phenotype disorder. The valine, leucine and isoleucine biosynthesis pathways and arginine and proline metabolism pathways were obviously influenced by alcohol intake. Moreover, alcohol consumption disturbed the brain's neurotransmitter homeostasis. Regression analysis showed that alcohol-induced colonic microbiota dysbiosis was strongly associated with increased intestinal permeability and serum metabolic phenotype and neurotransmitter disorders. These results revealed that gut microbiota dysbiosis and serum metabolite alteration might be a cofactor for developing of alcohol dependence. IMPORTANCE Gut microbiota dysbiosis is associated with certain psychiatric disorders through the "microbiota-gut-brain" axis. Here, we revealed that alcohol consumption induced colonic microbiota dysbiosis, increased intestinal permeability, and altered the serum metabolic phenotype in rats, and there was a strong correlation between gut microbiota dysbiosis and serum metabolite disorders. Thus, gut microbiota dysbiosis and serum metabolite alteration may be a cofactor for development of alcohol dependence.
Collapse
Affiliation(s)
- Fan Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Jidong Wei
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mengke Shen
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Yating Ding
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Yufan Lu
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Duan Li
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Dong Yan
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Qi Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Ruiling Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
218
|
The role of a Mediterranean diet and physical activity in decreasing age-related inflammation through modulation of the gut microbiota composition. Br J Nutr 2021; 128:1299-1314. [PMID: 34423757 DOI: 10.1017/s0007114521003251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic inflammation is known to be a predominant factor in the development of many age-related conditions including CVD, type II diabetes and neurodegenerative diseases. Previous studies have demonstrated that during the ageing process there is an increase in inflammatory biomarkers, which may be partially brought about by detrimental changes in the gut microbiota. The Mediterranean diet (MedDiet) and physical activity (PA) are protective against inflammation and chronic disease, and emerging evidence has shown that these effects may be partially mediated through favourable changes in the gut microbiota. In this review, we have evaluated the published literature on the effect of a MedDiet and PA on the gut microbiota. We also discuss the relationship between the gut microbiota and inflammation with a focus on healthy ageing. While inconsistent study designs make forming definitive conclusions challenging, the current evidence suggests that both a MedDiet and PA are capable of modifying the gut microbiota in a way that is beneficial to host health. For example, the increases in the relative abundance of SCFA producing bacteria that are considered to possess anti-inflammatory properties. Modification of the gut microbiota through a MedDiet and PA presents as a potential method to attenuate age-related increases in inflammation, and additional studies utilising older individuals are needed to fill the knowledge gaps existing in current literature.
Collapse
|
219
|
Mo Y, Jie X, Wang L, Ji C, Gu Y, Lu Z, Liu X. Bupi Yishen formula attenuates kidney injury in 5/6 nephrectomized rats via the tryptophan-kynurenic acid-aryl hydrocarbon receptor pathway. BMC Complement Med Ther 2021; 21:207. [PMID: 34376166 PMCID: PMC8353787 DOI: 10.1186/s12906-021-03376-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bupi Yishen Formula (BYF), a patent traditional Chinese medicine (TCM) formulation, has been used in the clinical treatment of chronic kidney disease (CKD). However, the mechanism of action of BYF has not been fully elucidated. METHOD To investigate the variation in the metabolic profile in response to BYF treatment in a rat model of 5/6 nephrectomy (Nx), rats in the treatment groups received low- or high-dose BYF. At the end of the study, serum and kidney samples were collected for biochemical, pathological, and western blotting analysis. Metabolic changes in serum were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS The results showed that BYF treatment could reduce kidney injury, inhibit inflammation and improve renal function in a dose-dependent manner. In total, 405 and 195 metabolites were identified in negative and positive ion modes, respectively. Metabolic pathway enrichment analysis of differential metabolites based on the Kyoto Encyclopedia of Genes and Genomes database identified 35 metabolic pathways, 3 of which were related to tryptophan metabolism. High-dose BYF reduced the level of kynurenic acid (KA) by more than 50%, while increasing melatonin 25-fold and indole-3-acetic acid twofold. Expression levels of aryl hydrocarbon receptor (AhR), Cyp1A1, and CyP1B1 were significantly reduced in the kidney tissue of rats with high-dose BYF, compared to 5/6 Nx rats. CONCLUSION BYF has a reno-protective effect against 5/6 Nx-induced CKD, which may be mediated via inhibition of the tryptophan-KA-AhR pathway.
Collapse
Affiliation(s)
- Yenan Mo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Xina Jie
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Lixin Wang
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China
| | - Chunlan Ji
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Yueyu Gu
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China
| | - Zhaoyu Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China. .,Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China.
| | - Xusheng Liu
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China.
| |
Collapse
|
220
|
Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, Gomes-da-Costa S, Lane M, Sanches M, Diaz AP, Tseng PT, Lin PY, Berk M, Clarke G, O'Neil A, Jacka F, Stubbs B, Carvalho AF, Quevedo J, Soares JC, Fernandes BS. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Mol Psychiatry 2021; 26:4158-4178. [PMID: 33230205 DOI: 10.1038/s41380-020-00951-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022]
Abstract
The importance of tryptophan as a precursor for neuroactive compounds has long been acknowledged. The metabolism of tryptophan along the kynurenine pathway and its involvement in mental disorders is an emerging area in psychiatry. We performed a meta-analysis to examine the differences in kynurenine metabolites in major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). Electronic databases were searched for studies that assessed metabolites involved in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, quinolinic acid, 3-hydroxykynurenine, and their associate ratios) in people with MDD, SZ, or BD, compared to controls. We computed the difference in metabolite concentrations between people with MDD, BD, or SZ, and controls, presented as Hedges' g with 95% confidence intervals. A total of 101 studies with 10,912 participants were included. Tryptophan and kynurenine are decreased across MDD, BD, and SZ; kynurenic acid and the kynurenic acid to quinolinic acid ratio are decreased in mood disorders (i.e., MDD and BD), whereas kynurenic acid is not altered in SZ; kynurenic acid to 3-hydroxykynurenine ratio is decreased in MDD but not SZ. Kynurenic acid to kynurenine ratio is decreased in MDD and SZ, and the kynurenine to tryptophan ratio is increased in MDD and SZ. Our results suggest that there is a shift in the tryptophan metabolism from serotonin to the kynurenine pathway, across these psychiatric disorders. In addition, a differential pattern exists between mood disorders and SZ, with a preferential metabolism of kynurenine to the potentially neurotoxic quinolinic acid instead of the neuroprotective kynurenic acid in mood disorders but not in SZ.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Amelia J McGuinness
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Tetyana Rocks
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Jasmine Cleminson
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adam J Walker
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Susana Gomes-da-Costa
- Bipolar and Depression Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Melissa Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Marsal Sanches
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Alexandre P Diaz
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ping-Tao Tseng
- Institute of Biomedical Sciences and Prospect Clinic for Otorhinolaryngology & Neurology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - João Quevedo
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Brisa S Fernandes
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
221
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
222
|
Heinken A, Basile A, Hertel J, Thinnes C, Thiele I. Genome-Scale Metabolic Modeling of the Human Microbiome in the Era of Personalized Medicine. Annu Rev Microbiol 2021; 75:199-222. [PMID: 34314593 DOI: 10.1146/annurev-micro-060221-012134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human microbiome plays an important role in human health and disease. Meta-omics analyses provide indispensable data for linking changes in microbiome composition and function to disease etiology. Yet, the lack of a mechanistic understanding of, e.g., microbiome-metabolome links hampers the translation of these findings into effective, novel therapeutics. Here, we propose metabolic modeling of microbial communities through constraint-based reconstruction and analysis (COBRA) as a complementary approach to meta-omics analyses. First, we highlight the importance of microbial metabolism in cardiometabolic diseases, inflammatory bowel disease, colorectal cancer, Alzheimer disease, and Parkinson disease. Next, we demonstrate that microbial community modeling can stratify patients and controls, mechanistically link microbes with fecal metabolites altered in disease, and identify host pathways affected by the microbiome. Finally, we outline our vision for COBRA modeling combined with meta-omics analyses and multivariate statistical analyses to inform and guide clinical trials, yield testable hypotheses, and ultimately propose novel dietary and therapeutic interventions. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Almut Heinken
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland;
| | - Arianna Basile
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Johannes Hertel
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland; .,Department of Psychiatry and Psychotherapy, University of Greifswald, 17489 Greifswald, Germany
| | - Cyrille Thinnes
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland;
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, H91 TK33, Ireland; .,Division of Microbiology, National University of Ireland, Galway, H91 TK33, Ireland.,APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| |
Collapse
|
223
|
Fluorine-18-Labeled PET Radiotracers for Imaging Tryptophan Uptake and Metabolism: a Systematic Review. Mol Imaging Biol 2021; 22:805-819. [PMID: 31512038 DOI: 10.1007/s11307-019-01430-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Due to its metabolism via the serotonin and kynurenine pathways, tryptophan plays a key role in multiple disease processes including cancer. Imaging tryptophan uptake and metabolism in vivo can be achieved with tryptophan derivative positron emission tomography (PET) radiotracers. While human studies with such tracers have been confined to C-11-labeled compounds, preclinical development of F-18-labeled tryptophan-based radiotracers has surged in recent years. We performed a systematic review of studies reporting on such F-18-labeled tryptophan tracers to summarize and compare their biological characteristics and their potential for tumor imaging, with a particular focus on key enzymes of the kynurenine pathway (indoleamine 2,3-dioxygenase [IDO] and tryptophan 2,3-dioxygenase [TDO]), which play an important role in tumoral immune resistance. From a PubMed search, English language articles including data on the preparation and radiochemical and/or biological characteristics of F-18-labeled tryptophan derivative radiotracers were reviewed. A total of 19 original papers included data on 15 unique radiotracers, the majority of which were synthesized with an adequate radiochemical yield. Automated synthesis was reported for 1-(2-[18F]fluoroethyl)-L-tryptophan, the most extensively evaluated tracer thus far. Biodistribution studies showed high uptake in the pancreas, while the L-type amino acid transporter was the dominant transport mechanism for most of the reviewed tracers. Tracers tested for tumor uptake showed accumulation in tumor cell lines in vitro and in xenografts in vivo, often with favorable tumor-to-background uptake ratios in comparison with clinically used F-18-labeled radiotracers. Five tracers showed promise for imaging IDO activity, including 1-(2-[18F]fluoroethyl)-L-tryptophan and a F-18-labeled analog of alpha-[11C]methyl-L-tryptophan tested clinically in previous studies. Two radiotracers were metabolized by TDO but showed defluorination in vivo. In summary, most F-18-labeled tryptophan derivative PET tracers share common transport mechanisms and biodistribution characteristics. Several reported tracers could be candidates for further testing and validation toward PET imaging applications in a variety of human diseases.
Collapse
|
224
|
Lucerne KE, Osman A, Meckel KR, Kiraly DD. Contributions of neuroimmune and gut-brain signaling to vulnerability of developing substance use disorders. Neuropharmacology 2021; 192:108598. [PMID: 33965398 PMCID: PMC8220934 DOI: 10.1016/j.neuropharm.2021.108598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Epidemiology and clinical research indicate that only a subset of people who are exposed to drugs of abuse will go on to develop a substance use disorder. Numerous factors impact individual susceptibility to developing a substance use disorder, including intrinsic biological factors, environmental factors, and interpersonal/social factors. Given the extensive morbidity and mortality that is wrought as a consequence of substance use disorders, a substantial body of research has focused on understanding the risk factors that mediate the shift from initial drug use to pathological drug use. Understanding these risk factors provides a clear path for the development of risk mitigation strategies to help reduce the burden of substance use disorders in the population. Here we will review the rapidly growing body of literature that examines the importance of interactions between the peripheral immune system, the gut microbiome, and the central nervous system (CNS) in mediating the transition to pathological drug use. While these systems had long been viewed as distinct, there is growing evidence that there is bidirectional communication between both the immune system and the gut microbiome that drive changes in neural and behavioral plasticity relevant to substance use disorders. Further, both of these systems are highly sensitive to environmental perturbations and are implicated in numerous neuropsychiatric conditions. While the field of study examining these interactions in substance use disorders is in its relative infancy, clarifying the relationship between gut-immune-brain signaling and substance use disorders has potential to improve our understanding of individual propensity to developing addiction and yield important insight into potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aya Osman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine R Meckel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
225
|
Abstract
The gut microbiota is known to play a role in various disease states through inflammatory, immune and endocrinologic response. Parkinson's Disease is of particular interest as gastrointestinal involvement is one of the earlier features seen in this disease. This paper examines the relationship between gut microbiota and Parkinson's Disease, which has a growing body of literature. Inflammation caused by gut dysbiosis is thought to increase a-synuclein aggregation and worsen motor and neurologic symptoms of Parkinson's disease. We discuss potential treatment and supplementation to modify the microbiota. Some of these treatments require further research before recommendations can be made, such as cord blood transplant, antibiotic use, immunomodulation and fecal microbiota transplant. Other interventions, such as increasing dietary fiber, polyphenol and fermented food intake, can be made with few risks and may have some benefit for symptom relief and speed of disease progression.
Collapse
Affiliation(s)
- Amy Gallop
- Department of Psychiatry and Behavioral Neuroscience, 7547Saint Louis University, MO, USA
| | - James Weagley
- Division of Biological Sciences, 7548Washington University, Saint Louis, MO, USA
| | - Saif-Ur-Rahman Paracha
- Department of Psychiatry and Behavioral Neuroscience, 7547Saint Louis University, MO, USA
| | - George Grossberg
- Samuel W. Fordyce Professor and Director of Geriatric Psychiatry, Department of Psychiatry and Behavioral Neuroscience, 7547Saint Louis University, Saint Louis, MO, USA
| |
Collapse
|
226
|
Schaafsma A, Mallee L, van den Belt M, Floris E, Kortman G, Veldman J, van den Ende D, Kardinaal A. The Effect of A Whey-Protein and Galacto-Oligosaccharides Based Product on Parameters of Sleep Quality, Stress, and Gut Microbiota in Apparently Healthy Adults with Moderate Sleep Disturbances: A Randomized Controlled Cross-Over Study. Nutrients 2021; 13:nu13072204. [PMID: 34199006 PMCID: PMC8308271 DOI: 10.3390/nu13072204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
People experiencing sleep problems may benefit from nutrients supporting serotonin metabolism and stress reduction. We studied the effect of a dairy-based product (DP) containing protein, galacto-oligosaccharides, vitamins and minerals, on sleep quality, stress, and gut-microbiota. In a cross-over RCT (three weeks intervention; three weeks washout), adults (n = 70; 30–50 y) with sleep disturbances (Pittsburgh Sleep Quality Index (PSQI) ≥ 9) consumed products 1 h before bed-time. Sleep quality (PSQI) was measured weekly, stress at base- and end-line (Depression Anxiety Stress Scale and saliva cortisol). Fecal samples were collected in the 1st intervention period only. Compared to placebo (skimmed milk), PSQI was only lower at day 14 in the 2nd intervention period in intention-to-treat (ITT) (p = 0.017; n = 69) and per-protocol (PP) (p = 0.038; n = 64) analyses. Post-hoc analysis (modified-PP: n=47, with baseline PSQI ≥ 9, and endline day 14), however, showed a decrease in PSQI (−1.60 ± 2.53; p = 0.034). Early morning saliva cortisol decreased versus placebo (p = 0.045). Relative abundance of Bifidobacterium increased (p = 0.02). Redundancy analysis showed an inverse relationship between baseline microbiota composition and baseline PSQI (p = 0.046). Thus, although DP did not improve sleep quality in ITT and PP populations, it did in the modPP. DP reduced salivary cortisol and stimulated Bifidobacterium, which possibly is important for sleep improvement.
Collapse
Affiliation(s)
- Anne Schaafsma
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (L.M.); (J.V.)
- Correspondence: ; Tel.: +31-653241313
| | - Leonard Mallee
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (L.M.); (J.V.)
| | - Maartje van den Belt
- NIZO, Nutrition & Health, 6710 BA Ede, The Netherlands; (M.v.d.B.); (E.F.); (G.K.); (A.K.)
| | - Esther Floris
- NIZO, Nutrition & Health, 6710 BA Ede, The Netherlands; (M.v.d.B.); (E.F.); (G.K.); (A.K.)
| | - Guus Kortman
- NIZO, Nutrition & Health, 6710 BA Ede, The Netherlands; (M.v.d.B.); (E.F.); (G.K.); (A.K.)
| | - Jouke Veldman
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (L.M.); (J.V.)
| | | | - Alwine Kardinaal
- NIZO, Nutrition & Health, 6710 BA Ede, The Netherlands; (M.v.d.B.); (E.F.); (G.K.); (A.K.)
| |
Collapse
|
227
|
Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Luo Y, Huang S, Xiao T, Liu S, Li X, Shang D, Wen Y. Comprehensive Bibliometric Analysis of the Kynurenine Pathway in Mood Disorders: Focus on Gut Microbiota Research. Front Pharmacol 2021; 12:687757. [PMID: 34239441 PMCID: PMC8258344 DOI: 10.3389/fphar.2021.687757] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Emerging evidence implicates the dysregulated kynurenine pathway (KP), an immune-inflammatory pathway, in the pathophysiology of mood disorders (MD), including depression and bipolar disorder characterized by a low-grade chronic pro-inflammatory state. The metabolites of the KP, an important part of the microbiota-gut-brain axis, serve as immune system modulators linking the gut microbiota (GM) with the host central nervous system. Aim: This bibliometric analysis aimed to provide a first glimpse into the KP in MD, with a focus on GM research in this field, to guide future research and promote the development of this field. Methods: Publications relating to the KP in MD between the years 2000 and 2020 were retrieved from the Scopus and Web of Science Core Collection (WoSCC), and analyzed in CiteSpace (5.7 R5W), biblioshiny (using R-Studio), and VOSviewer (1.6.16). Results: In total, 1,064 and 948 documents were extracted from the Scopus and WoSCC databases, respectively. The publications have shown rapid growth since 2006, partly owing to the largest research hotspot appearing since then, “quinolinic acid.” All the top five most relevant journals were in the neuropsychiatry field, such as Brain Behavior and Immunity. The United States and Innsbruck Medical University were the most influential country and institute, respectively. Journal co-citation analysis showed a strong tendency toward co-citation of research in the psychiatry field. Reference co-citation analysis revealed that the top four most important research focuses were “kynurenine pathway,” “psychoneuroimmunology,” “indoleamine 2,3-dioxygenase,” and “proinflammatory cytokines,” and the most recent focus was “gut-brain axis,” thus indicating the role of the KP in bridging the GM and the host immune system, and together reflecting the field’s research foundations. Overlap analysis between the thematic map of keywords and the keyword burst analysis revealed that the topics “Alzheimer’s disease,” “prefrontal cortex,” and “acid,” were research frontiers. Conclusion: This comprehensive bibliometric study provides an updated perspective on research associated with the KP in MD, with a focus on the current status of GM research in this field. This perspective may benefit researchers in choosing suitable journals and collaborators, and aid in the further understanding of the field’s hotspots and frontiers, thus facilitating future research.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yayan Luo
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
228
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
229
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
230
|
Bastiaanssen TFS, Cussotto S, Claesson MJ, Clarke G, Dinan TG, Cryan JF. Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder. Harv Rev Psychiatry 2021; 28:26-39. [PMID: 31913980 PMCID: PMC7012351 DOI: 10.1097/hrp.0000000000000243] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microorganisms can be found in virtually any environment. In humans, the largest collection of microorganisms is found in the gut ecosystem. The adult gut microbiome consists of more genes than its human host and typically spans more than 60 genera from across the taxonomic tree. In addition, the gut contains the largest number of neurons in the body, after the brain. In recent years, it has become clear that the gut microbiome is in communication with the brain, through the gut-brain axis. A growing body of literature shows that the gut microbiome plays a shaping role in a variety of psychiatric disorders, including major depressive disorder (MDD). In this review, the interplay between the microbiome and MDD is discussed in three facets. First, we discuss factors that affect the onset/development of MDD that also greatly impinge on the composition of the gut microbiota-especially diet and stressful life events. We then examine the interplay between the microbiota and MDD. We examine evidence suggesting that the microbiota is altered in MDD, and we discuss why the microbiota should be considered during MDD treatment. Finally, we look toward the future and examine how the microbiota might become a therapeutic target for MDD. This review is intended to introduce those familiar with the neurological and psychiatric aspects of MDD to the microbiome and its potential role in the disorder. Although research is in its very early days, with much yet to be the understood, the microbiome is offering new avenues for developing potentially novel strategies for managing MDD.
Collapse
|
231
|
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Front Aging Neurosci 2021; 13:650047. [PMID: 34122039 PMCID: PMC8193064 DOI: 10.3389/fnagi.2021.650047] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disease, characterized by a decline in cognitive function and neuronal loss, and is caused by several factors. Numerous clinical and experimental studies have suggested the involvement of gut microbiota dysbiosis in patients with AD. The altered gut microbiota can influence brain function and behavior through the microbiota-gut-brain axis via various pathways such as increased amyloid-β deposits and tau phosphorylation, neuroinflammation, metabolic dysfunctions, and chronic oxidative stress. With no current effective therapy to cure AD, gut microbiota modulation may be a promising therapeutic option to prevent or delay the onset of AD or counteract its progression. Our present review summarizes the alterations in the gut microbiota in patients with AD, the pathogenetic roles and mechanisms of gut microbiota in AD, and gut microbiota-targeted therapies for AD. Understanding the roles and mechanisms between gut microbiota and AD will help decipher the pathogenesis of AD from novel perspectives and shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruilai Jiang
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|
232
|
Hou Y, Xu L, Song S, Fan W, Wu Q, Tong X, Yan H. Oral Administration of Brain Protein Combined With Probiotics Induces Immune Tolerance Through the Tryptophan Pathway. Front Mol Neurosci 2021; 14:634631. [PMID: 34122006 PMCID: PMC8192843 DOI: 10.3389/fnmol.2021.634631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Excessive inflammation leads to secondary immune damage after traumatic brain injury (TBI). The intestinal mucosa is a key component of immune tolerance due to gut-brain axis regulation, but the curative effect is not optimal. Intestinal dysfunction impairs the establishment of immune tolerance in patients with TBI. Therefore, we orally administered brain protein (BP) combined with probiotics to induce immune tolerance and explored the mechanism by which the homeostasis of the microbiota contributes to the enhancement of curative effects by BPs. Herein, we demonstrated that patients with TBI and surgical brain injury (SBI) models of rats had obvious dysbiosis. Notably, the intestinal barrier, proinflammatory cytokines, and activation of microglia demonstrated that excessive inflammatory damage was better controlled in the combined group (oral administration of BP combined with probiotics) than in the BP group (oral administration of BP). Fundamentally, tandem mass tag (TMT)-based quantitative proteomics analysis revealed that BP and probiotics preferentially affect Try-related pathways. A series of experiments further confirmed that Indoleamine 2,3 dioxygenase (IDO)/Kynurenine (Kyn)/Aryl hydrocarbon receptor (AhR) expression was high in the BP group, while Tryptophan hydroxylase 1(TpH1)/5-hydroxytryptamine (5-HT) only changed in the combined group. This study suggests that probiotics can enhance the efficacy of oral BP-induced immune tolerance through the Try pathway.
Collapse
Affiliation(s)
- Yongxin Hou
- School of Medical, Nankai University, Tianjin, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Sirong Song
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Weijia Fan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
233
|
Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 2021; 42:219-258. [PMID: 33704446 PMCID: PMC8348944 DOI: 10.1210/endrev/bnaa034] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/08/2023]
Abstract
In May 2014, the National Institutes of Health (NIH) stated its intent to "require applicants to consider sex as a biological variable (SABV) in the design and analysis of NIH-funded research involving animals and cells." Since then, proposed research plans that include animals routinely state that both sexes/genders will be used; however, in many instances, researchers and reviewers are at a loss about the issue of sex differences. Moreover, the terms sex and gender are used interchangeably by many researchers, further complicating the issue. In addition, the sex or gender of the researcher might influence study outcomes, especially those concerning behavioral studies, in both animals and humans. The act of observation may change the outcome (the "observer effect") and any experimental manipulation, no matter how well-controlled, is subject to it. This is nowhere more applicable than in physiology and behavior. The sex of established cultured cell lines is another issue, in addition to aneuploidy; chromosomal numbers can change as cells are passaged. Additionally, culture medium contains steroids, growth hormone, and insulin that might influence expression of various genes. These issues often are not taken into account, determined, or even considered. Issues pertaining to the "sex" of cultured cells are beyond the scope of this Statement. However, we will discuss the factors that influence sex and gender in both basic research (that using animal models) and clinical research (that involving human subjects), as well as in some areas of science where sex differences are routinely studied. Sex differences in baseline physiology and associated mechanisms form the foundation for understanding sex differences in diseases pathology, treatments, and outcomes. The purpose of this Statement is to highlight lessons learned, caveats, and what to consider when evaluating data pertaining to sex differences, using 3 areas of research as examples; it is not intended to serve as a guideline for research design.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Walter L Miller
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institutes of Mental Health, Intramural Research Program, Bethesda, MD, USA
| | - Ragini Verma
- Diffusion and Connectomics In Precision Healthcare Research (DiCIPHR) lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
234
|
Galmiche M, Achamrah N, Déchelotte P, Ribet D, Breton J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr Rev 2021; 80:381-391. [PMID: 34010427 DOI: 10.1093/nutrit/nuab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by low food intake, severe body weight loss, intense fear of gaining weight, and dysmorphophobia. This chronic disease is associated with both psychiatric and somatic comorbidities. Over the years, clinical studies have accumulated evidence that viral or bacterial infections may promote the onset of eating disorders such as AN. This review aims to describe how infections and the subsequent immune responses affect food intake regulation in the short term and also how these processes may lead to long-term intestinal disorders, including gut barrier disruption and gut microbiota dysbiosis, even after the clearance of the pathogens. We discuss in particular how infection-mediated intestinal dysbiosis may promote the onset of several AN symptoms and comorbidities, including appetite dysregulation, functional gastrointestinal disorders, and mood disorders.
Collapse
Affiliation(s)
- Marie Galmiche
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Najate Achamrah
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Pierre Déchelotte
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - David Ribet
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Jonathan Breton
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| |
Collapse
|
235
|
Otaka M, Kikuchi-Hayakawa H, Ogura J, Ishikawa H, Yomogida Y, Ota M, Hidese S, Ishida I, Aida M, Matsuda K, Kawai M, Yoshida S, Kunugi H. Effect of Lacticaseibacillus paracasei Strain Shirota on Improvement in Depressive Symptoms, and Its Association with Abundance of Actinobacteria in Gut Microbiota. Microorganisms 2021; 9:microorganisms9051026. [PMID: 34068832 PMCID: PMC8150707 DOI: 10.3390/microorganisms9051026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported lower counts of lactobacilli and Bifidobacterium in the gut microbiota of patients with major depressive disorder (MDD), compared with healthy controls. This prompted us to investigate the possible efficacy of a probiotic strain, Lacticaseibacillus paracasei strain Shirota (LcS; basonym, Lactobacillus casei strain Shirota; daily intake of 8.0 × 1010 colony-forming units), in alleviating depressive symptoms. A single-arm trial was conducted on 18 eligible patients with MDD or bipolar disorder (BD) (14 females and 4 males; 15 MDD and 3 BD), assessing changes in psychiatric symptoms, the gut microbiota, and biological markers for intestinal permeability and inflammation, over a 12-week intervention period. Depression severity, evaluated by the Hamilton Depression Rating Scale, was significantly alleviated after LcS treatment. The intervention-associated reduction of depressive symptoms was associated with the gut microbiota, and more pronounced when Bifidobacterium and the Atopobium clusters of the Actinobacteria phylum were maintained at higher counts. No significant changes were observed in the intestinal permeability or inflammation markers. Although it was difficult to estimate the extent of the effect of LcS treatment alone, the results indicated that it was beneficial to alleviate depressive symptoms, partly through its association with abundance of Actinobacteria in the gut microbiota.
Collapse
Affiliation(s)
- Machiko Otaka
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Hiroko Kikuchi-Hayakawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Jun Ogura
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Hiroshi Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Yukihito Yomogida
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Miho Ota
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Shinsuke Hidese
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Ikki Ishida
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Masanori Aida
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Kazunori Matsuda
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Mitsuhisa Kawai
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Sumiko Yoshida
- National Centre of Neurology and Psychiatry, Department of Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan;
| | - Hiroshi Kunugi
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
- Department of Psychiatry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- Correspondence:
| |
Collapse
|
236
|
Some CSF Kynurenine Pathway Intermediates Associated with Disease Evolution in Amyotrophic Lateral Sclerosis. Biomolecules 2021; 11:biom11050691. [PMID: 34063031 PMCID: PMC8147980 DOI: 10.3390/biom11050691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the kynurenine pathway (KP) and amino acids profile, using mass spectrometry, in the cerebrospinal fluid (CSF) of 42 amyotrophic lateral sclerosis (ALS) patients at the diagnosis and 40 controls to detect early disorders of these pathways. Diagnostic and predictive ability (based on weight loss, forced vital capacity, ALS Functional Rating Scale-Revised evolution over 12 months, and survival time) of these metabolites were evaluated using univariate followed by supervised multivariate analysis. The multivariate model between ALS and controls was not significant but highlighted some KP metabolites (kynurenine (KYN), kynurenic acid (KYNA), 3-Hydroxynurenine (3-HK)/KYNA ratio), and amino acids (Lysine, asparagine) as involved in the discrimination between groups (accuracy 62%). It revealed a probable KP impairment toward neurotoxicity in ALS patients and in bulbar forms. Regarding the prognostic effect of metabolites, 12 were commonly discriminant for at least 3 of 4 disease evolution criteria. This investigation was crucial as it did not show significant changes in CSF concentrations of amino acids and KP intermediates in early ALS evolution. However, trends of KP modifications suggest further exploration. The unclear kinetics of neuroinflammation linked to KP support the interest in exploring these pathways during disease evolution through a longitudinal strategy.
Collapse
|
237
|
Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021; 160:1486-1501. [PMID: 33493503 PMCID: PMC8634751 DOI: 10.1053/j.gastro.2020.10.066] [Citation(s) in RCA: 383] [Impact Index Per Article: 127.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain axis plays an important role in maintaining homeostasis. Many intrinsic and extrinsic factors influence signaling along this axis, modulating the function of both the enteric and central nervous systems. More recently the role of the microbiome as an important factor in modulating gut-brain signaling has emerged and the concept of a microbiota-gut-brain axis has been established. In this review, we highlight the role of this axis in modulating enteric and central nervous system function and how this may impact disorders such as irritable bowel syndrome and disorders of mood and affect. We examine the overlapping biological constructs that underpin these disorders with a special emphasis on the neurotransmitter serotonin, which plays a key role in both the gastrointestinal tract and in the brain. Overall, it is clear that although animal studies have shown much promise, more progress is necessary before these findings can be translated for diagnostic and therapeutic benefit in patient populations.
Collapse
Affiliation(s)
- Kara G. Margolis
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY,Corresponding author:
| | - John F. Cryan
- Department of Anatomy & Neuroscience, University College Cork, Ireland, APC Microbiome Ireland, University College Cork, Ireland
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vachte and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
238
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
239
|
Ghorbani M, Rajandas H, Parimannan S, Stephen Joseph GB, Tew MM, Ramly SS, Muhamad Rasat MA, Lee SY. Understanding the role of gut microbiota in the pathogenesis of schizophrenia. Psychiatr Genet 2021; 31:39-49. [PMID: 33252574 DOI: 10.1097/ypg.0000000000000270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Schizophrenia is a chronic mental disorder with marked symptoms of hallucination, delusion, and impaired cognitive behaviors. Although multidimensional factors have been associated with the development of schizophrenia, the principal cause of the disorder remains debatable. Microbiome involvement in the etiology of schizophrenia has been widely researched due to the advancement in sequencing technologies. This review describes the contribution of the gut microbiome in the development of schizophrenia that is facilitated by the gut-brain axis. The gut microbiota is connected to the gut-brain axis via several pathways and mechanisms, that are discussed in this review. The role of the oral microbiota, probiotics and prebiotics in shaping the gut microbiota are also highlighted. Lastly, future perspectives for microbiome research in schizophrenia are addressed.
Collapse
Affiliation(s)
- Mahin Ghorbani
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Heera Rajandas
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Sivachandran Parimannan
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Gerard Benedict Stephen Joseph
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| | - Mei Mei Tew
- Clinical Research Centre (CRC), Hospital Sultanah Bahiyah, Alor Setar
| | - Siti Salwa Ramly
- Psychiatry and Mental Health Department, Hospital Sultan Abdul Halim, Sungai Petani
| | | | - Su Yin Lee
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University
| |
Collapse
|
240
|
Berding K, Carbia C, Cryan JF. Going with the grain: Fiber, cognition, and the microbiota-gut-brain-axis. Exp Biol Med (Maywood) 2021; 246:796-811. [PMID: 33641478 PMCID: PMC8719029 DOI: 10.1177/1535370221995785] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
Healthy dietary intake has been acknowledged for decades as one of the main contributors to health. More recently, the field of nutritional psychiatry has progressed our understanding regarding the importance of nutrition in supporting mental health and cognitive function. Thereby, individual nutrients, including omega-3 fatty acids and polyphenols, have been recognized to be key drivers in this relationship. With the progress in appreciating the influence of dietary fiber on health, increasingly research is focusing on deciphering its role in brain processes. However, while the importance of dietary fiber in gastrointestinal and metabolic health is well established, leading to the development of associated health claims, the evidence is not conclusive enough to support similar claims regarding cognitive function. Albeit the increasing knowledge of the impact of dietary fiber on mental health, only a few human studies have begun to shed light onto the underexplored connection between dietary fiber and cognition. Moreover, the microbiota-gut-brain axis has emerged as a key conduit for the effects of nutrition on the brain, especially fibers, that are acted on by specific bacteria to produce a variety of health-promoting metabolites. These metabolites (including short chain fatty acids) as well as the vagus nerve, the immune system, gut hormones, or the kynurenine pathway have been proposed as underlying mechanisms of the microbiota-brain crosstalk. In this minireview, we summarize the evidence available from human studies on the association between dietary fiber intake and cognitive function. We provide an overview of potential underlying mechanisms and discuss remaining questions that need to be answered in future studies. While this field is moving at a fast pace and holds promise for future important discoveries, especially data from human cohorts are required to further our understanding and drive the development of public health recommendations regarding dietary fiber in brain health.
Collapse
Affiliation(s)
- Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
241
|
Marsilio I, Caputi V, Latorre E, Cerantola S, Paquola A, Alcalde AI, Mesonero JE, O'Mahony SM, Bertazzo A, Giaroni C, Giron MC. Oxidized phospholipids affect small intestine neuromuscular transmission and serotonergic pathways in juvenile mice. Neurogastroenterol Motil 2021; 33:e14036. [PMID: 33222337 DOI: 10.1111/nmo.14036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxidized phospholipid derivatives (OxPAPCs) act as bacterial lipopolysaccharide (LPS)-like damage-associated molecular patterns. OxPAPCs dose-dependently exert pro- or anti-inflammatory effects by interacting with several cellular receptors, mainly Toll-like receptors 2 and 4. It is currently unknown whether OxPAPCs may affect enteric nervous system (ENS) functional and structural integrity. METHODS Juvenile (3 weeks old) male C57Bl/6 mice were treated intraperitoneally with OxPAPCs, twice daily for 3 days. Changes in small intestinal contractility were evaluated by isometric neuromuscular responses to receptor and non-receptor-mediated stimuli. Alterations in ENS integrity and serotonergic pathways were assessed by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (LMMPs). Tissue levels of serotonin (5-HT), tryptophan, and kynurenine were measured by HPLC coupled to UV/fluorescent detection. KEY RESULTS OxPAPC treatment induced enteric gliosis, loss of myenteric plexus neurons, and excitatory hypercontractility, and reduced nitrergic neurotransmission with no changes in nNOS+ neurons. Interestingly, these changes were associated with a higher functional response to 5-HT, altered immunoreactivity of 5-HT receptors and serotonin transporter (SERT) together with a marked decrease in 5-HT levels, shifting tryptophan metabolism toward kynurenine production. CONCLUSIONS AND INFERENCES OxPAPC treatment disrupted structural and functional integrity of the ENS, affecting serotoninergic tone and 5-HT tissue levels toward a higher kynurenine content during adolescence, suggesting that changes in intestinal lipid metabolism toward oxidation can affect serotoninergic pathways, potentially increasing the risk of developing functional gastrointestinal disorders during critical stages of development.
Collapse
Affiliation(s)
- Ilaria Marsilio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eva Latorre
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,San Camillo Hospital, Treviso, Italy
| | - Andrea Paquola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ana I Alcalde
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - José E Mesonero
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
242
|
A biological framework for emotional dysregulation in alcohol misuse: from gut to brain. Mol Psychiatry 2021; 26:1098-1118. [PMID: 33288871 DOI: 10.1038/s41380-020-00970-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) has been associated with impairments in social and emotional cognition that play a crucial role in the development and maintenance of addiction. Repeated alcohol intoxications trigger inflammatory processes and sensitise the immune system. In addition, emerging data point to perturbations in the gut microbiome as a key regulator of the inflammatory cascade in AUD. Inflammation and social cognition are potent modulators of one another. At the same time, accumulating evidence implicates the gut microbiome in shaping emotional and social cognition, suggesting the possibility of a common underlying loop of crucial importance for addiction. Here we propose an integrative microbiome neuro-immuno-affective framework of how emotional dysregulation and alcohol-related microbiome dysbiosis could accelerate the cycle of addiction. We outline the overlapping effects of chronic alcohol use, inflammation and microbiome alterations on the fronto-limbic circuitry as a convergence hub for emotional dysregulation. We discuss the interdependent relationship of social cognition, immunity and the microbiome in relation to alcohol misuse- from binge drinking to addiction. In addition, we emphasise adolescence as a sensitive period for the confluence of alcohol harmful effects and emotional dysregulation in the developing gut-brain axis.
Collapse
|
243
|
Balogh L, Tanaka M, Török N, Vécsei L, Taguchi S. Crosstalk between Existential Phenomenological Psychotherapy and Neurological Sciences in Mood and Anxiety Disorders. Biomedicines 2021; 9:biomedicines9040340. [PMID: 33801765 PMCID: PMC8066576 DOI: 10.3390/biomedicines9040340] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Psychotherapy is a comprehensive biological treatment modifying complex underlying cognitive, emotional, behavioral, and regulatory responses in the brain, leading patients with mental illness to a new interpretation of the sense of self and others. Psychotherapy is an art of science integrated with psychology and/or philosophy. Neurological sciences study the neurological basis of cognition, memory, and behavior as well as the impact of neurological damage and disease on these functions, and their treatment. Both psychotherapy and neurological sciences deal with the brain; nevertheless, they continue to stay polarized. Existential phenomenological psychotherapy (EPP) has been in the forefront of meaning-centered counseling for almost a century. The phenomenological approach in psychotherapy originated in the works of Martin Heidegger, Ludwig Binswanger, Medard Boss, and Viktor Frankl, and it has been committed to accounting for the existential possibilities and limitations of one's life. EPP provides philosophically rich interpretations and empowers counseling techniques to assist mentally suffering individuals by finding meaning and purpose to life. The approach has proven to be effective in treating mood and anxiety disorders. This narrative review article demonstrates the development of EPP, the therapeutic methodology, evidence-based accounts of its curative techniques, current understanding of mood and anxiety disorders in neurological sciences, and a possible converging path to translate and integrate meaning-centered psychotherapy and neuroscience, concluding that the EPP may potentially play a synergistic role with the currently prevailing medication-based approaches for the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Lehel Balogh
- Center for Applied Ethics and Philosophy, Hokkaido University, North 10, West 7, Kita-ku, Sapporo 060-0810, Japan
- Correspondence: ; Tel.: +81-80-8906-4263
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Shigeru Taguchi
- Faculty of Humanities and Human Sciences & Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
244
|
Dietary restrictions modulate the gut microbiota: Implications for health and disease. Nutr Res 2021; 89:10-22. [PMID: 33878569 DOI: 10.1016/j.nutres.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The health benefits of carefully restricting the energy intake in a strategic manner whilst avoiding malnutrition are widely discussed. In the recent years, the great impact of the gut microbiota on its host has been clarified more and more. Since the gut microbiota produces a number of metabolites and molecules that can affect host metabolism, modulating it with dietary restriction can influence the health and the progression of disease of its host on various levels. This review comprises 15 studies investigating the effect of different variants of fasting and caloric restriction on the gastrointestinal microbiome and its metabolites. The data suggest that changing the gut microbiota composition by dietary restriction has the potential to positively influence the progression of several diseases such as obesity, diabetes, neurological diseases or inflammatory bowel disease. Finally, the relevance of the findings for clinical practice is evaluated and approaches for future research are proposed.
Collapse
|
245
|
Tryptophan Metabolism and Gut-Brain Homeostasis. Int J Mol Sci 2021; 22:ijms22062973. [PMID: 33804088 PMCID: PMC8000752 DOI: 10.3390/ijms22062973] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Tryptophan is an essential amino acid critical for protein synthesis in humans that has emerged as a key player in the microbiota-gut-brain axis. It is the only precursor for the neurotransmitter serotonin, which is vital for the processing of emotional regulation, hunger, sleep, and pain, as well as colonic motility and secretory activity in the gut. Tryptophan catabolites from the kynurenine degradation pathway also modulate neural activity and are active in the systemic inflammatory cascade. Additionally, tryptophan and its metabolites support the development of the central and enteric nervous systems. Accordingly, dysregulation of tryptophan metabolites plays a central role in the pathogenesis of many neurologic and psychiatric disorders. Gut microbes influence tryptophan metabolism directly and indirectly, with corresponding changes in behavior and cognition. The gut microbiome has thus garnered much attention as a therapeutic target for both neurologic and psychiatric disorders where tryptophan and its metabolites play a prominent role. In this review, we will touch upon some of these features and their involvement in health and disease.
Collapse
|
246
|
Li C, Pi G, Li F. The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:579323. [PMID: 33777828 PMCID: PMC7994858 DOI: 10.3389/fcimb.2021.579323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Intestinal flora located within the intestinal tract comprises a large number of cells, which are referred to as the second gene pool of the human body and form a complex symbiotic relationship with the host. The knowledge of the complex interaction between the intestinal flora and various life activities of the host is a novel and rapidly expanding field. Recently, many studies are being conducted on the relationship between the intestinal flora and bone homeostasis and indicate that the intestinal flora can regulate bone homeostasis via the host immune, metabolic, and endocrine systems. What’s more, based on several clinical and preclinical pieces of evidence, changing the composition and function of the host intestinal flora through the application of probiotics, prebiotics, and fecal microbiota transplantation is being considered to be a potential novel target for the regulation of bone homeostasis. Here, we searched relevant literature and reviewed the role of the intestinal flora in the regulation of bone homeostasis and its modulating interventions.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
247
|
Melnikov M, Sviridova A, Rogovskii V, Oleskin A, Boziki M, Bakirtzis C, Kesidou E, Grigoriadis N, Boykо A. Serotoninergic system targeting in multiple sclerosis: the prospective for pathogenetic therapy. Mult Scler Relat Disord 2021; 51:102888. [PMID: 33756440 DOI: 10.1016/j.msard.2021.102888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine) (5-HT) is a neurotransmitter, which mediates neuropsychological functions of the central nervous system (CNS). Recent studies have shown the modulatory effect of 5-HT on gut microbiota functions, which play an essential role in developing CNS inflammatory diseases. Finally, 5-HT is a direct mediator of neuroimmune interaction. The article reviews the literature data on the role of 5-HT in the regulation of neuroinflammation in multiple sclerosis (MS). The influence of 5-HT and selective serotonin reuptake inhibitors (SSRIs) on experimental autoimmune encephalomyelitis (EAE) and MS pathogenesis, as well as the therapeutic potential of serotoninergic drugs as a pathogenetic therapy of MS, are discussed.
Collapse
Affiliation(s)
- Mikhail Melnikov
- Department of Neuroimmunology, Federal Center of Brain research and Neurotechnology of the Federal Medical-Biological Agency of Russia; Department of Neurology, Neurosurgery and Medical Genetics and Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - Anastasiya Sviridova
- Department of Neuroimmunology, Federal Center of Brain research and Neurotechnology of the Federal Medical-Biological Agency of Russia; Department of Neurology, Neurosurgery and Medical Genetics and Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir Rogovskii
- Department of Neuroimmunology, Federal Center of Brain research and Neurotechnology of the Federal Medical-Biological Agency of Russia; Department of Neurology, Neurosurgery and Medical Genetics and Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander Oleskin
- General Ecology and Hydrobiology Department, School of Biology, Moscow State University, Moscow, Russia
| | - Marina Boziki
- 2nd Neurological University Department, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Christos Bakirtzis
- 2nd Neurological University Department, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Evangelia Kesidou
- 2nd Neurological University Department, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Neurological University Department, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Alexey Boykо
- Department of Neuroimmunology, Federal Center of Brain research and Neurotechnology of the Federal Medical-Biological Agency of Russia; Department of Neurology, Neurosurgery and Medical Genetics and Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
248
|
Narasimhan H, Ren CC, Deshpande S, Sylvia KE. Young at Gut-Turning Back the Clock with the Gut Microbiome. Microorganisms 2021; 9:microorganisms9030555. [PMID: 33800340 PMCID: PMC8001982 DOI: 10.3390/microorganisms9030555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Over the past century, we have witnessed an increase in life-expectancy due to public health measures; however, we have also seen an increase in susceptibility to chronic disease and frailty. Microbiome dysfunction may be linked to many of the conditions that increase in prevalence with age, including type 2 diabetes, cardiovascular disease, Alzheimer's disease, and cancer, suggesting the need for further research on these connections. Moreover, because both non-modifiable (e.g., age, sex, genetics) and environmental (e.g., diet, infection) factors can influence the microbiome, there are vast opportunities for the use of interventions related to the microbiome to promote lifespan and healthspan in aging populations. To understand the mechanisms mediating many of the interventions discussed in this review, we also provide an overview of the gut microbiome's relationships with the immune system, aging, and the brain. Importantly, we explore how inflammageing (low-grade chronic inflammation that often develops with age), systemic inflammation, and senescent cells may arise from and relate to the gut microbiome. Furthermore, we explore in detail the complex gut-brain axis and the evidence surrounding how gut dysbiosis may be implicated in several age-associated neurodegenerative diseases. We also examine current research on potential interventions for healthspan and lifespan as they relate to the changes taking place in the microbiome during aging; and we begin to explore how the reduction in senescent cells and senescence-associated secretory phenotype (SASP) interplay with the microbiome during the aging process and highlight avenues for further research in this area.
Collapse
Affiliation(s)
| | - Clarissa C. Ren
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - Kristyn E. Sylvia
- The Society for Cardiovascular Angiography and Interventions, Washington, DC 20036, USA
- Correspondence: ; Tel.: +1-774-226-6214
| |
Collapse
|
249
|
Lee JG, Cho HJ, Jeong YM, Lee JS. Genetic Approaches Using Zebrafish to Study the Microbiota-Gut-Brain Axis in Neurological Disorders. Cells 2021; 10:cells10030566. [PMID: 33807650 PMCID: PMC8002147 DOI: 10.3390/cells10030566] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of the host, its dysfunction has been strongly implicated in neurological disorders, where intestinal dysbiosis and derived metabolites cause barrier permeability defects and elicit local inflammation of the gastrointestinal tract, concomitant with increased pro-inflammatory cytokines, mobilization and infiltration of immune cells into the brain, and the dysregulated activation of the vagus nerve, culminating in neuroinflammation and neuronal dysfunction of the brain and behavioral abnormalities. In this topical review, we summarize recent findings in human and animal models regarding the roles of the MGBA in physiological and neuropathological conditions, and discuss the molecular, genetic, and neurobehavioral characteristics of zebrafish as an animal model to study the MGBA. The exploitation of zebrafish as an amenable genetic model combined with in vivo imaging capabilities and gnotobiotic approaches at the whole organism level may reveal novel mechanistic insights into microbiota-gut-brain interactions, especially in the context of neurological disorders such as autism spectrum disorder and Alzheimer's disease.
Collapse
Affiliation(s)
- Jae-Geun Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Cho
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
| | - Yun-Mi Jeong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
- Correspondence: ; Tel.: +82-42-860-4643
| |
Collapse
|
250
|
Ma SR, Yu JB, Fu J, Pan LB, Yu H, Han P, Zhang ZW, Peng R, Xu H, Wang Y. Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways. Molecules 2021; 26:molecules26051377. [PMID: 33806510 PMCID: PMC7961820 DOI: 10.3390/molecules26051377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
It has been reported that monoamine neurotransmitters can be produced by gut microbiota, and that several related metabolites of amino acids in these pathways are associated with nervous system (NVS) diseases. Herein, we focused on three pathways, namely, phenylalanine (Phe), tryptophan (Trp), and glutamic acid (Glu), and established an underivatized liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the quantification of nineteen monoamine neurotransmitters and related metabolites in the gut microbiota. The neurotransmitters and related metabolites included Phe, tyrosine (Tyr), l-dopa (Dopa), dopamine (DA), 3-methoxytyramine, Trp, hydroxytryptophan, 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), kynurenine (KN), kynurenic acid (KYNA), melatonin, tryptamine (TA), indole-3-lactic acid (ILA), indole-3-acetic acid (IAA), indolyl-3-propionic acid (IPA), Glu, gamma-aminobutyric acid (GABA), and acetylcholine (Ach). A fluoro-phenyl bonded column was used for separation, and the mobile phase consisted of methanol:acetonitrile (1:1) and water, with 0.2% formic acid in both phases. The compounds exhibited symmetric peak shapes and sufficient sensitivity under a total analysis time of 8.5 min. The method was fully validated with acceptable linearity, accuracy, precision, matrix effect, extraction recovery, and stability. The results showed that neurotransmitters, such as Dopa, DA, 5-HT, GABA, and Ach, were present in the gut microbiota. The metabolic pathway of Trp was disordered under depression, with lower levels of 5-HT, 5-HIAA, KN, KYNA, TA, ILA, IAA, IPA, and Glu, and a higher ratio of KYNA/KN. In addition, some first-line NVS drugs, such as sertraline, imipramine, and chlorpromazine, showed regulatory potential on these pathways in the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Wang
- Correspondence: ; Tel./Fax: +86-10-6316-5238
| |
Collapse
|