201
|
Grandbastien MA. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:403-16. [DOI: 10.1016/j.bbagrm.2014.07.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
|
202
|
Xu Q, Xing S, Zhu C, Liu W, Fan Y, Wang Q, Song Z, Yang W, Luo F, Shang F, Kang L, Chen W, Yan J, Li J, Sang T. Population transcriptomics reveals a potentially positive role of expression diversity in adaptation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:284-99. [PMID: 25251542 DOI: 10.1111/jipb.12287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/19/2014] [Indexed: 05/27/2023]
Abstract
While it is widely accepted that genetic diversity determines the potential of adaptation, the role that gene expression variation plays in adaptation remains poorly known. Here we show that gene expression diversity could have played a positive role in the adaptation of Miscanthus lutarioriparius. RNA-seq was conducted for 80 individuals of the species, with half planted in the energy crop domestication site and the other half planted in the control site near native habitats. A leaf reference transcriptome consisting of 18,503 high-quality transcripts was obtained using a pipeline developed for de novo assembling with population RNA-seq data. The population structure and genetic diversity of M. lutarioriparius were estimated based on 30,609 genic single nucleotide polymorphisms. Population expression (Ep ) and expression diversity (Ed ) were defined to measure the average level and the magnitude of variation of a gene expression in the population, respectively. It was found that expression diversity increased while genetic diversity decreased after the species was transplanted from the native habitats to the harsh domestication site, especially for genes involved in abiotic stress resistance, histone methylation, and biomass synthesis under water limitation. The increased expression diversity could have enriched phenotypic variation directly subject to selections in the new environment.
Collapse
Affiliation(s)
- Qin Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat Commun 2015; 6:6386. [PMID: 25722057 PMCID: PMC4351625 DOI: 10.1038/ncomms7386] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/26/2015] [Indexed: 01/27/2023] Open
Abstract
Plant phenotypes respond to environmental change, an adaptive capacity that is at least partly transgenerational. However, epigenetic components of this interplay are difficult to measure. Depletion of the nuclear-encoded protein MSH1 causes dramatic and heritable changes in plant development, and here we show that crossing these altered plants with isogenic wild type produces epi-lines with heritable, enhanced growth vigour. Pericentromeric DNA hypermethylation occurs in a subset of msh1 mutants, indicative of heightened transposon repression, while enhanced growth epi-lines show large chromosomal segments of differential CG methylation, reflecting genome-wide reprogramming. When seedlings are treated with 5-azacytidine, root growth of epi-lines is restored to wild-type levels, implicating hypermethylation in enhanced growth. Grafts of wild-type floral stems to mutant rosettes produce progeny with enhanced growth and altered CG methylation strikingly similar to epi-lines, indicating a mobile signal when MSH1 is downregulated, and confirming the programmed nature of methylome and phenotype changes. Suppression of MutS HOMOLOGUE 1 (MSH1), a plant protein targeted to mitochondria and plastids, causes a variety of phenotypes. Here Virdi et al. show that MSH1 depletion in Arabidopsis results in heritable changes in nuclear DNA methylation, which can lead to enhanced growth vigour.
Collapse
|
204
|
FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proc Natl Acad Sci U S A 2015; 112:E901-10. [PMID: 25675495 DOI: 10.1073/pnas.1417623112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Floral induction is a crucial developmental step in higher plants. Florigen, a mobile floral activator that is synthesized in the leaf and transported to the shoot apex, was recently identified as a protein encoded by FLOWERING LOCUS T (FT) and its orthologs; the rice florigen is Heading date 3a (Hd3a) protein. The 14-3-3 proteins mediate the interaction of Hd3a with the transcription factor OsFD1 to form a ternary structure called the florigen activation complex on the promoter of OsMADS15, a rice APETALA1 ortholog. However, crucial information, including the spatiotemporal overlap among FT-like proteins and the components of florigen activation complex and downstream genes, remains unclear. Here, we confirm that Hd3a coexists, in the same regions of the rice shoot apex, with the other components of the florigen activation complex and its transcriptional targets. Unexpectedly, however, RNA-sequencing analysis of shoot apex from wild-type and RNA-interference plants depleted of florigen activity revealed that 4,379 transposable elements (TEs; 58% of all classifiable rice TEs) were expressed collectively in the vegetative and reproductive shoot apex. Furthermore, in the reproductive shoot apex, 214 TEs were silenced by florigen. Our results suggest a link between floral induction and regulation of TEs.
Collapse
|
205
|
Liu Y, Li D, Yan L, Huang H. The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex Actinidia chinensis. PLoS One 2015; 10:e0117596. [PMID: 25658107 PMCID: PMC4319829 DOI: 10.1371/journal.pone.0117596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022] Open
Abstract
Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.
Collapse
Affiliation(s)
- Yifei Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, Guangdong, P. R. China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, Hubei, P. R. China
| | - Ling Yan
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, Hubei, P. R. China
| | - Hongwen Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
206
|
Abstract
The genetic enhancement of wild animals and plants for characteristics that benefit human populations has been practiced for thousands of years, resulting in impressive improvements in commercially valuable species. Despite these benefits, genetic manipulations are rarely considered for noncommercial purposes, such as conservation and restoration initiatives. Over the last century, humans have driven global climate change through industrialization and the release of increasing amounts of CO2, resulting in shifts in ocean temperature, ocean chemistry, and sea level, as well as increasing frequency of storms, all of which can profoundly impact marine ecosystems. Coral reefs are highly diverse ecosystems that have suffered massive declines in health and abundance as a result of these and other direct anthropogenic disturbances. There is great concern that the high rates, magnitudes, and complexity of environmental change are overwhelming the intrinsic capacity of corals to adapt and survive. Although it is important to address the root causes of changing climate, it is also prudent to explore the potential to augment the capacity of reef organisms to tolerate stress and to facilitate recovery after disturbances. Here, we review the risks and benefits of the improvement of natural and commercial stocks in noncoral reef systems and advocate a series of experiments to determine the feasibility of developing coral stocks with enhanced stress tolerance through the acceleration of naturally occurring processes, an approach known as (human)-assisted evolution, while at the same time initiating a public dialogue on the risks and benefits of this approach.
Collapse
|
207
|
Kooke R, Johannes F, Wardenaar R, Becker F, Etcheverry M, Colot V, Vreugdenhil D, Keurentjes JJB. Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. THE PLANT CELL 2015; 27:337-48. [PMID: 25670769 PMCID: PMC4456930 DOI: 10.1105/tpc.114.133025] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/14/2015] [Accepted: 01/30/2015] [Indexed: 05/18/2023]
Abstract
Epigenetics is receiving growing attention in the plant science community. Epigenetic modifications are thought to play a particularly important role in fluctuating environments. It is hypothesized that epigenetics contributes to plant phenotypic plasticity because epigenetic modifications, in contrast to DNA sequence variation, are more likely to be reversible. The population of decrease in DNA methylation 1-2 (ddm1-2)-derived epigenetic recombinant inbred lines (epiRILs) in Arabidopsis thaliana is well suited for studying this hypothesis, as DNA methylation differences are maximized and DNA sequence variation is minimized. Here, we report on the extensive heritable epigenetic variation in plant growth and morphology in neutral and saline conditions detected among the epiRILs. Plant performance, in terms of branching and leaf area, was both reduced and enhanced by different quantitative trait loci (QTLs) in the ddm1-2 inherited epigenotypes. The variation in plasticity associated significantly with certain genomic regions in which the ddm1-2 inherited epigenotypes caused an increased sensitivity to environmental changes, probably due to impaired genetic regulation in the epiRILs. Many of the QTLs for morphology and plasticity overlapped, suggesting major pleiotropic effects. These findings indicate that epigenetics contributes substantially to variation in plant growth, morphology, and plasticity, especially under stress conditions.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Centre for Biosystem Genomics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Frank Johannes
- Groningen Bioinformatics Centre, University of Groningen, 9747 AG Groningen, The Netherlands
| | - René Wardenaar
- Groningen Bioinformatics Centre, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Frank Becker
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Mathilde Etcheverry
- Ecole Normale Supérieure, Institut de Biologie, Centre National de la Recherche Scientifique UMR8197, Institut National de la Santé et de la Recherche Médicale U1024, Paris F-75005, France
| | - Vincent Colot
- Ecole Normale Supérieure, Institut de Biologie, Centre National de la Recherche Scientifique UMR8197, Institut National de la Santé et de la Recherche Médicale U1024, Paris F-75005, France
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Centre for Biosystem Genomics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands Centre for Biosystem Genomics, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
208
|
Hagmann J, Becker C, Müller J, Stegle O, Meyer RC, Wang G, Schneeberger K, Fitz J, Altmann T, Bergelson J, Borgwardt K, Weigel D. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet 2015; 11:e1004920. [PMID: 25569172 PMCID: PMC4287485 DOI: 10.1371/journal.pgen.1004920] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 01/17/2023] Open
Abstract
There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana, numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. Methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates mostly in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence. It continues to be hotly debated to what extent environmentally induced epigenetic change is stably inherited and thereby contributes to short-term adaptation. It has been shown before that natural Arabidopsis thaliana lines differ substantially in their methylation profiles. How much of this is independent of genetic changes remains, however, unclear, especially given that there is very little conservation of methylation between species, simply because the methylated sequences themselves, mostly repeats, are not conserved over millions of years. On the other hand, there is no doubt that artificially induced epialleles can contribute to phenotypic variation. To investigate whether epigenetic differentiation, at least in the short term, proceeds very differently from genetic variation, and whether genome-wide epigenetic fingerprints can be used to uncover local adaptation, we have taken advantage of a near-clonal North American A. thaliana population that has diverged under natural conditions for at least a century. We found that both patterns and rates of methylome variation were in many aspects similar to those of lines grown in stable environments, which suggests that environment-induced changes are only minor contributors to durable genome-wide heritable epigenetic variation.
Collapse
Affiliation(s)
- Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jonas Müller
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Stegle
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Developmental Biology and Max Planck Institute for Intelligent Systems, Tübingen, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rhonda C. Meyer
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Joffrey Fitz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Thomas Altmann
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Karsten Borgwardt
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Developmental Biology and Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Center for Bioinformatics (ZBIT), Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
209
|
Migicovsky Z, Kovalchuk I. Transgenerational inheritance of epigenetic response to cold in Arabidopsis thaliana. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
210
|
Kim JM, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:114. [PMID: 25784920 PMCID: PMC4345800 DOI: 10.3389/fpls.2015.00114] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 05/11/2023]
Abstract
Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Taku Sasaki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Motoaki Seki, Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan e-mail:
| |
Collapse
|
211
|
Colicchio JM, Monnahan PJ, Kelly JK, Hileman LC. Gene expression plasticity resulting from parental leaf damage in Mimulus guttatus. THE NEW PHYTOLOGIST 2015; 205:894-906. [PMID: 25297849 DOI: 10.1111/nph.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Leaf trichome density in Mimulus guttatus can be altered by the parental environment. In this study, we compared global gene expression patterns in progeny of damaged and control plants. Significant differences in gene expression probably explain the observed trichome response, and identify additional responsive pathways. Using whole transcriptome RNA sequencing, we estimated differential gene expression between isogenic seedlings whose parents had, or had not, been subject to leaf damage. We identified over 900 genes that were differentially expressed in response to parental wounding. These genes clustered into groups involved in cell wall and cell membrane development, stress response pathways, and secondary metabolism. Gene expression is modified as a consequence of the parental environment in a targeted way that probably alters multiple developmental pathways, and may increase progeny fitness if they experience environments similar to that of their parents.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
212
|
Iwasaki M. Chromatin resetting mechanisms preventing transgenerational inheritance of epigenetic states. FRONTIERS IN PLANT SCIENCE 2015; 6:380. [PMID: 26074941 PMCID: PMC4444735 DOI: 10.3389/fpls.2015.00380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/12/2015] [Indexed: 05/10/2023]
Abstract
Epigenetic regulation can be altered by environmental cues including abiotic and biotic stresses. In most cases, environmentally-induced epigenetic changes are transient, but in some cases they are maintained for extensive periods of time and may even be transmitted to the next generation. However, the underlying mechanisms of transgenerational transmission of environmentally-induced epigenetic states remain largely unknown. Such traits can be adaptive, but also can have negative consequences if the parentally inherited epigenetic memory interferes with canonical environmental responses of the progeny. This review highlights recent insights into the mechanisms preventing transgenerational transmission of environmentally-induced epigenetic states in plants, which resemble those of germline reprogramming in mammals.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- *Correspondence: Mayumi Iwasaki, The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK,
| |
Collapse
|
213
|
Eichten SR, Springer NM. Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress. FRONTIERS IN PLANT SCIENCE 2015; 6:308. [PMID: 25999972 PMCID: PMC4422006 DOI: 10.3389/fpls.2015.00308] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/17/2015] [Indexed: 05/22/2023]
Abstract
DNA methylation is a chromatin modification that is sometimes associated with epigenetic regulation of gene expression. As DNA methylation can be reversible at some loci, it is possible that methylation patterns may change within an organism that is subjected to environmental stress. In order to assess the effects of abiotic stress on DNA methylation patterns in maize (Zea mays), seeding plants were subjected to heat, cold, and UV stress treatments. Tissue was later collected from individual adult plants that had been subjected to stress or control treatments and used to perform DNA methylation profiling to determine whether there were consistent changes in DNA methylation triggered by specific stress treatments. DNA methylation profiling was performed by immunoprecipitation of methylated DNA followed by microarray hybridization to allow for quantitative estimates of DNA methylation abundance throughout the low-copy portion of the maize genome. By comparing the DNA methylation profiles of each individual plant to the average of the control plants it was possible to identify regions of the genome with variable DNA methylation. However, we did not find evidence of consistent DNA methylation changes resulting from the stress treatments used in this study. Instead, the data suggest that there is a low-rate of stochastic variation that is present in both control and stressed plants.
Collapse
Affiliation(s)
| | - Nathan M. Springer
- *Correspondence: Nathan M. Springer, Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 250 Biosciences Center, 1445 Gortner Ave., Saint Paul, MN 55108, USA
| |
Collapse
|
214
|
Liu J, Feng L, Li J, He Z. Genetic and epigenetic control of plant heat responses. FRONTIERS IN PLANT SCIENCE 2015; 6:267. [PMID: 25964789 PMCID: PMC4408840 DOI: 10.3389/fpls.2015.00267] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/03/2015] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27°C), high temperature (27-30°C) and extremely high temperature (37-42°C, also known as heat stress) for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of circadian clock and plant immunity by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damages. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.
Collapse
Affiliation(s)
- Junzhong Liu
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences – Chinese Academy of SciencesShanghai, China
| | - Lili Feng
- School of Life Science and Technology, ShanghaiTech UniversityShanghai, China
| | - Jianming Li
- Plant Signaling Laboratory, The Plant Stress Biology Center, Shanghai Institutes for Biological Sciences – Chinese Academy of SciencesShanghai, China
- *Correspondence: Zuhua He, National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences – Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China ; Jianming Li, Plant Signaling Laboratory, The Plant Stress Biology Center, Shanghai Institutes for Biological Sciences – Chinese Academy of Sciences, 3888 Chenhua Road, Songjiang District, Shanghai 201602, China
| | - Zuhua He
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences – Chinese Academy of SciencesShanghai, China
- *Correspondence: Zuhua He, National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences – Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China ; Jianming Li, Plant Signaling Laboratory, The Plant Stress Biology Center, Shanghai Institutes for Biological Sciences – Chinese Academy of Sciences, 3888 Chenhua Road, Songjiang District, Shanghai 201602, China
| |
Collapse
|
215
|
Kooke R, Keurentjes JJB. Epigenetic variation contributes to environmental adaptation of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2015; 10:e1057368. [PMID: 26237693 PMCID: PMC4883878 DOI: 10.1080/15592324.2015.1057368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 05/29/2023]
Abstract
Epigenetic variation is frequently observed in plants and direct relationships between differences in DNA methylation and phenotypic responses to changing environments have often been described. The identification of contributing genetic loci, however, was until recently hampered by the lack of suitable genome wide mapping resources that specifically segregate for epigenetic marks. The development of epi-RIL populations in the model species Arabidopsis thaliana has alleviated this obstacle, enabling the accurate genetic analysis of epigenetic variation. Comprehensive morphological phenotyping of a ddm1 derived epi-RIL population in different environments and subsequent epi-QTL mapping revealed a high number of epi-QTLs and pleiotropic effects of several DMRs on numerous traits. For a number of these epi-QTLs epistatic interactions could be observed, further adding to the complexity of epigenetic regulation. Moreover, linkage to epigenetic marks indicated a specific role for DNA-methylation variation, rather than TE transposition, in plastic responses to changing environments. These findings provide supportive evidence for a role of epigenetic regulation in evolutionary and adaptive processes.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Genetics; Wageningen University; Wageningen, The Netherlands
- Laboratory of Plant Physiology; Wageningen University; Wageningen, The Netherlands
- Centre for Biosystems Genomics; Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics; Wageningen University; Wageningen, The Netherlands
- Centre for Biosystems Genomics; Wageningen, The Netherlands
| |
Collapse
|
216
|
Li Z, Chen X, Li S, Wang Z. Effect of nickel chloride on Arabidopsis genomic DNA and methylation of 18S rDNA. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
217
|
Tricker PJ. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin. FRONTIERS IN PLANT SCIENCE 2015; 6:699. [PMID: 26442015 PMCID: PMC4561384 DOI: 10.3389/fpls.2015.00699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/21/2015] [Indexed: 05/06/2023]
Abstract
The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defense "priming" and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity's adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.
Collapse
Affiliation(s)
- Penny J. Tricker
- *Correspondence: Penny J. Tricker, Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Hartley Grove, Urrbrae, SA 5064, Australia,
| |
Collapse
|
218
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
219
|
Zhao W, Shi X, Li J, Guo W, Liu C, Chen X. Genetic, epigenetic, and HPLC fingerprint differentiation between natural and ex situ populations of Rhodiola sachalinensis from Changbai Mountain, China. PLoS One 2014; 9:e112869. [PMID: 25386983 PMCID: PMC4227887 DOI: 10.1371/journal.pone.0112869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/19/2014] [Indexed: 11/19/2022] Open
Abstract
Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.
Collapse
Affiliation(s)
- Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- Institute of Botany, Changbai Mountain Academy of Sciences, Erdao, Jilin, China
| | - Xiaozheng Shi
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Wei Guo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- Institute of Botany, Changbai Mountain Academy of Sciences, Erdao, Jilin, China
| | - Chengbai Liu
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Science, Jilin University, Changchun, Jilin, China
- School of Life Science, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
220
|
Kinoshita T, Seki M. Epigenetic memory for stress response and adaptation in plants. PLANT & CELL PHYSIOLOGY 2014; 55:1859-63. [PMID: 25298421 DOI: 10.1093/pcp/pcu125] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In contrast to the majority of animal species, plants are sessile organisms and are, therefore, constantly challenged by environmental perturbations. Over the past few decades, our knowledge of how plants perceive environmental stimuli has increased considerably, e.g. the mechanisms for transducing environmental stress stimuli into cellular signaling cascades and gene transcription networks. In addition, it has recently been shown that plants can remember past environmental events and can use these memories to aid responses when these events recur. In this mini review, we focus on recent progress in determination of the epigenetic mechanisms used by plants under various environmental stresses. Epigenetic mechanisms are now known to play a vital role in the control of gene expression through small RNAs, histone modifications and DNA methylation. These are inherited through mitotic cell divisions and, in some cases, can be transmitted to the next generation. They therefore offer a possible mechanism for stress memories in plants. Recent studies have yielded evidence indicating that epigenetic mechanisms are indeed essential for stress memories and adaptation in plants.
Collapse
Affiliation(s)
- Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa, 244-0813 Japan
| | - Motoaki Seki
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa, 244-0813 Japan Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
221
|
Anca IA, Fromentin J, Bui QT, Mhiri C, Grandbastien MA, Simon-Plas F. Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1533-40. [PMID: 25128785 DOI: 10.1016/j.jplph.2014.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 05/08/2023]
Abstract
Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation.
Collapse
Affiliation(s)
- Iulia-Andra Anca
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Jérôme Fromentin
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Quynh Trang Bui
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA/AgroParisTech, INRA-Versailles, 78026 Versailles, France
| | - Corinne Mhiri
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA/AgroParisTech, INRA-Versailles, 78026 Versailles, France
| | - Marie-Angèle Grandbastien
- Institut Jean-Pierre Bourgin (IJPB), UMR 1318 INRA/AgroParisTech, INRA-Versailles, 78026 Versailles, France
| | - Françoise Simon-Plas
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France.
| |
Collapse
|
222
|
Huang J, Wang H, Liang W, Xie X, Guo G. Developmental expression of Arabidopsis methyltransferase genes MET1, DRM2, and CMT3. Mol Biol 2014. [DOI: 10.1134/s0026893314050057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
223
|
Cicatelli A, Baldantoni D, Iovieno P, Carotenuto M, Alfani A, De Feis I, Castiglione S. Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:1025-1035. [PMID: 25016108 DOI: 10.1016/j.scitotenv.2014.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
The use of compost for soil amendment is a promising agricultural practice environmentally and economically viable. In the framework of a wide research project designed to evaluate the effects of soil amendment with municipal solid waste compost in comparison with traditional mineral fertilization practices, 54 different cultivars (Cvs) of potatoes were AFLP (amplified fragment length polymorphism) molecularly fingerprinted. The seven most genetically biodiverse potato Cvs were used to establish an experimental field in southern Italy. The field area was divided into two portions fertilized with compost (20 Mg ha(-1)) or with ammonium sulphate (200 kg ha(-1)). No significant differences in productivity, organoleptic characteristics and element concentrations were observed between the potato tubers obtained with both kinds of soil fertilization, while the tubers grown on compost amended soil showed, on average, higher K concentrations with respect to those grown on mineral fertilised soil. cDNA-AFLP (complementary DNA-AFLP) and MSAP (methylation sensitive amplified polymorphism) analyses were carried out on both leaves and tubers of one selected Cv to estimate if any transcriptome alterations or epigenetic modifications were induced by the two kinds of fertilization, however no variations were detected. Chemical and biological soil qualities (i.e., microbial respiration, FDA hydrolysis, alkaline and acid phosphatase) were assessed on soil samples at the start of the experiment and at the end of potato crop cycle. No significant differences in soil pH and limited ones, in the available fraction of some trace elements, were observed; while conductivity was much higher for the compost amended portion of the experimental field. Microbial respiration, FDA hydrolysis and acid phosphatase activities were significantly increased by compost amendment, in comparison with mineral fertilization. Finally, a sensory panel of potato Cvs detected no significant differences among qualitative descriptors and among potatoes coming from the two differently fertilized soils.
Collapse
Affiliation(s)
- Angela Cicatelli
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA), Italy.
| | - Daniela Baldantoni
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA), Italy.
| | - Paola Iovieno
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per l'Orticoltura (CRA-ORT), Pontecagnano (SA), Italy.
| | - Maurizio Carotenuto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA), Italy.
| | - Anna Alfani
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA), Italy.
| | - Italia De Feis
- Istituto per Applicazioni della Matematica (CNR), Napoli, Italy.
| | - Stefano Castiglione
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano (SA), Italy.
| |
Collapse
|
224
|
Abstract
Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable 'cellular memory'. Here, we review selected examples of epigenetic memory in plants and briefly discuss underlying mechanisms.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
225
|
Sáez-Laguna E, Guevara MÁ, Díaz LM, Sánchez-Gómez D, Collada C, Aranda I, Cervera MT. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One 2014; 9:e103145. [PMID: 25084460 PMCID: PMC4118849 DOI: 10.1371/journal.pone.0103145] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/26/2014] [Indexed: 01/17/2023] Open
Abstract
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
Collapse
Affiliation(s)
- Enrique Sáez-Laguna
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - María-Ángeles Guevara
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Luis-Manuel Díaz
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - David Sánchez-Gómez
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Carmen Collada
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros de Montes (ETSIM), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ismael Aranda
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - María-Teresa Cervera
- Departamento de Ecología y Genética. Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (UPM), Madrid, Spain
- * E-mail:
| |
Collapse
|
226
|
Zhang W, Zhang T, Wu Y, Jiang J. Open Chromatin in Plant Genomes. Cytogenet Genome Res 2014; 143:18-27. [DOI: 10.1159/000362827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
227
|
Han SK, Wagner D. Role of chromatin in water stress responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2785-99. [PMID: 24302754 PMCID: PMC4110454 DOI: 10.1093/jxb/ert403] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth.
Collapse
Affiliation(s)
- Soon-Ki Han
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
228
|
El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. TRENDS IN PLANT SCIENCE 2014; 19:390-8. [PMID: 24491827 DOI: 10.1016/j.tplants.2014.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 05/23/2023]
Abstract
Plant growth and development are influenced by the genetic composition of the plant (G), the environment (E), and the interaction between them (G×E). To produce suitable genotypes for multiple environments, G×E should be accounted for and assessed in plant-breeding programs. Here, we review the genetic basis of G×E and its consequence for quantitative trait loci (QTL) mapping in biparental and genome-wide association (GWA) mapping populations. We also consider the implications of G×E for understanding plant fitness trade-offs and evolutionary ecology.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Marcos Malosetti
- Biometris - Applied Statistics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
229
|
Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci U S A 2014; 111:8547-52. [PMID: 24912148 DOI: 10.1073/pnas.1402275111] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Examples of transgenerational transmission of environmentally induced epigenetic traits remain rare and disputed. Abiotic stress can release the transcription of epigenetically suppressed transposons and, noticeably, this activation is only transient. Therefore, it is likely that mechanisms countering the mitotic and meiotic inheritance of stress-triggered chromatin changes must exist but are undefined. To reveal these mechanisms, we screened for Arabidopsis mutants impaired in the resetting of stress-induced loss of epigenetic silencing and found that two chromatin regulators, Decrease in DNA methylation1 (DDM1) and Morpheus' Molecule1 (MOM1), act redundantly to restore prestress state and thus erase "epigenetic stress memory". In ddm1 mutants, stress hyperactivates heterochromatic transcription and transcription persists longer than in the wild type. However, this newly acquired state is not transmitted to the progeny. Strikingly, although stress-induced transcription in mom1 mutants is as rapidly silenced as in wild type, in ddm1 mom1 double mutants, transcriptional signatures of stress are able to persist and are found in the progeny of plants stressed as small seedlings. Our results reveal an important, previously unidentified function of DDM1 and MOM1 in rapid resetting of stress induced epigenetic states, and therefore also in preventing their mitotic propagation and transgenerational inheritance.
Collapse
|
230
|
Kissoudis C, van de Wiel C, Visser RGF, van der Linden G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. FRONTIERS IN PLANT SCIENCE 2014; 5:207. [PMID: 24904607 PMCID: PMC4032886 DOI: 10.3389/fpls.2014.00207] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/28/2014] [Indexed: 05/18/2023]
Abstract
Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.
Collapse
|
231
|
Norouzitallab P, Baruah K, Vandegehuchte M, Van Stappen G, Catania F, Bussche JV, Vanhaecke L, Sorgeloos P, Bossier P. Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic
Artemia
model. FASEB J 2014; 28:3552-63. [DOI: 10.1096/fj.14-252049] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Parisa Norouzitallab
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| | - Kartik Baruah
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| | - Michiel Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic EcologyGhent UniversityGhentBelgium
| | - Gilbert Van Stappen
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| | - Francesco Catania
- Institute for Evolution and Biodiversity, University of MünsterMünsterGermany
| | | | - Lynn Vanhaecke
- Laboratory of Chemical AnalysisGhent UniversityMerelbekeBelgium
| | - Patrick Sorgeloos
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| | - Peter Bossier
- Laboratory of AquacultureGhent UniversityGhentBelgium
- Artemia Reference CenterGhent UniversityGhentBelgium
| |
Collapse
|
232
|
Thiebaut F, Grativol C, Tanurdzic M, Carnavale-Bottino M, Vieira T, Motta MR, Rojas C, Vincentini R, Chabregas SM, Hemerly AS, Martienssen RA, Ferreira PCG. Differential sRNA regulation in leaves and roots of sugarcane under water depletion. PLoS One 2014; 9:e93822. [PMID: 24695493 PMCID: PMC3973653 DOI: 10.1371/journal.pone.0093822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
Plants have developed multiple regulatory mechanisms to respond and adapt to stress. Drought stress is one of the major constraints to agricultural productivity worldwide and recent reports have highlighted the importance of plant sRNA in the response and adaptation to water availability. In order to increase our understanding of the roles of sRNA in response to water depletion, cultivars of sugarcane were submitted to treatment of ceasing drip irrigation for 24 hours. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty-eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profiles of eight miRNA were verified in leaf samples from three biological replicates by stem-loop qRT-PCR assay using the cultivars: SP90-1638--sensitive cultivar--and SP83-2847 and SP83-5073--tolerant cultivars. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. Two leaf libraries from individual sugarcane cultivars with contrasting drought-tolerance properties were also analyzed. An enrichment of 22-nt sRNA species was observed in leaf libraries. 22-nt miRNA triggered siRNA production by cleavage of their targets in response to water depletion. A number of genes of the sRNA biogenesis pathway were down-regulated in tolerant genotypes and up-regulated in sensitive in response to water depletion treatment. Our analysis contributes to increase the knowledge on the roles of sRNA in sugarcane submitted to water depletion.
Collapse
Affiliation(s)
- Flávia Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clícia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, Brisbane St Lucia, Queensland, Australia
| | - Mariana Carnavale-Bottino
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tauan Vieira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Romeiro Motta
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristian Rojas
- Universidade Federal da INTEGRAÇÃO Latino-Americana, Foz do Iguaçu, Paraná, Brazil
| | - Renato Vincentini
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Sabrina Moutinho Chabregas
- Centro de Tecnologia Canavieira, Fazenda Santo Antônio – Laboratório de Biologia Molecular, Piracicaba, São Paulo, Brazil
| | - Adriana Silva Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert A. Martienssen
- Howard Hughes Medical Institute and Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Paulo Cavalcanti Gomes Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
233
|
Huang CF, Zhu JK. RNA Splicing Factors and RNA-Directed DNA Methylation. BIOLOGY 2014; 3:243-54. [PMID: 24833507 PMCID: PMC4085605 DOI: 10.3390/biology3020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/16/2022]
Abstract
RNA-directed histone and/or DNA modification is a conserved mechanism for the establishment of epigenetic marks from yeasts and plants to mammals. The heterochromation formation in yeast is mediated by RNAi-directed silencing mechanism, while the establishment of DNA methylation in plants is through the RNA-directed DNA methylation (RdDM) pathway. Recently, splicing factors are reported to be involved in both RNAi-directed heterochromatin formation in yeast and the RdDM pathway in plants. In yeast, splicing factors may provide a platform for facilitating the siRNA generation through an interaction with RDRC and thereby affect the heterochromatin formation, whereas in plants, various splicing factors seem to act at different steps in the RdDM pathway.
Collapse
Affiliation(s)
- Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
234
|
Folta A, Severing EI, Krauskopf J, van de Geest H, Verver J, Nap JP, Mlynarova L. Over-expression of Arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression. BMC PLANT BIOLOGY 2014; 14:76. [PMID: 24666886 PMCID: PMC3987066 DOI: 10.1186/1471-2229-14-76] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/17/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and for integrating these programs with the response to environmental signals. In this study, we report on the role of chromatin remodeling in Arabidopsis with respect to the variability of growth and gene expression in relationship to environmental conditions. RESULTS Already modest (2-fold) over-expression of the AtCHR23 ATPase gene in Arabidopsis results in overall reduced growth compared to the wild-type. Detailed analyses show that in the root, the reduction of growth is due to reduced cell elongation. The reduced-growth phenotype requires sufficient light and is magnified by applying deliberate abiotic (salt, osmotic) stress. In contrast, the knockout mutation of AtCHR23 does not lead to such visible phenotypic effects. In addition, we show that over-expression of AtCHR23 increases the variability of growth in populations of genetically identical plants. These data indicate that accurate and controlled expression of AtCHR23 contributes to the stability or robustness of growth. Detailed RNAseq analyses demonstrate that upon AtCHR23 over-expression also the variation of gene expression is increased in a subset of genes that associate with environmental stress. The larger variation of gene expression is confirmed in individual plants with the help of independent qRT-PCR analysis. CONCLUSIONS Over-expression of AtCHR23 gives Arabidopsis a phenotype that is markedly different from the growth arrest phenotype observed upon over-expression of AtCHR12, the paralog of AtCHR23, in response to abiotic stress. This demonstrates functional sub-specialization of highly similar ATPases in Arabidopsis. Over-expression of AtCHR23 increases the variability of growth among genetically identical individuals in a way that is consistent with increased variability of expression of a distinct subset of genes that associate with environmental stress. We propose that ATCHR23-mediated chromatin remodeling is a potential component of a buffer system in plants that protects against environmentally-induced phenotypic and transcriptional variation.
Collapse
Affiliation(s)
- Adam Folta
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Edouard I Severing
- Laboratory of Genetics, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Julian Krauskopf
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- Present address: Department of Toxigenomics, Maastricht University, Maastricht, The Netherlands
| | - Henri van de Geest
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan Verver
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jan-Peter Nap
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- Expertise Centre ALIFE, Institute for Life Science & Technology, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Ludmila Mlynarova
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
235
|
Rico L, Ogaya R, Barbeta A, Peñuelas J. Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:419-27. [PMID: 23889779 DOI: 10.1111/plb.12049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/11/2013] [Indexed: 05/22/2023]
Abstract
Rapid genetic changes in plants have been reported in response to current climate change. We assessed the capacity of trees in a natural forest to produce rapid acclimation responses based on epigenetic modifications. We analysed natural populations of Quercus ilex, the dominant tree species of Mediterranean forests, using the methylation-sensitive amplified polymorphism (MSAP) technique to assess patterns and levels of methylation in individuals from unstressed forest plots and from plots experimentally exposed to drought for 12 years at levels projected for the coming decades. The percentage of hypermethylated loci increased, and the percentage of fully methylated loci clearly decreased in plants exposed to drought. Multivariate analyses exploring the status of methylation at MSAP loci also showed clear differentiation depending on stress. The PCA scores for the MSAP profiles clearly separated the genetic from the epigenetic structure, and also significantly separated the samples within each group in response to drought. Changes in DNA methylation highlight the large capacity of plants to rapidly acclimate to changing environmental conditions, including trees with long life spans, and our results demonstrate those changes. These changes, although unable to prevent the decreased growth and higher mortality associated with this experimental drought, occurred together with a dampening in such decreases as the long-term treatment progressed.
Collapse
Affiliation(s)
- L Rico
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | | | | | | |
Collapse
|
236
|
Jarillo JA, Gaudin V, Hennig L, Köhler C, Piñeiro M. Plant chromatin warms up in Madrid: meeting summary of the 3rd European Workshop on Plant Chromatin 2013, Madrid, Spain. Epigenetics 2014; 9:644-52. [PMID: 24504145 DOI: 10.4161/epi.28094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), INIA-UPM; INIA, Campus de Montegancedo; Madrid, Spain
| | - Valérie Gaudin
- NRA; AgroParis Tech; UMR1318; Insitut Jean Pierre Bourgin; Versailles, France
| | - Lars Hennig
- Swedish University of Agricultural Sciences; Uppsala BioCenter; Uppsala, Sweden
| | - Claudia Köhler
- Swedish University of Agricultural Sciences; Uppsala BioCenter; Uppsala, Sweden
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), INIA-UPM; INIA, Campus de Montegancedo; Madrid, Spain
| |
Collapse
|
237
|
Ishiguro S, Ogasawara K, Fujino K, Sato Y, Kishima Y. Low temperature-responsive changes in the anther transcriptome's repeat sequences are indicative of stress sensitivity and pollen sterility in rice strains. PLANT PHYSIOLOGY 2014; 164:671-82. [PMID: 24376281 PMCID: PMC3912097 DOI: 10.1104/pp.113.230656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genome-wide transcriptome analyses using microarray probes containing genes and repeat sequences have been performed to examine responses to low temperatures in rice (Oryza sativa). We focused particularly on the rice anther at the booting stage, because a low temperature at this stage can result in pollen abortion. The five rice strains examined in this study showed different pollen fertilities due to a low-temperature treatment during the booting stage. The microarray analyses demonstrated that the low-temperature stress caused genome-wide changes in the transcriptional activities not only of genes but also of repeat sequences in the rice anther. The degree of the temperature-responsive changes varied among the five rice strains. Interestingly, the low-temperature-sensitive strains revealed more changes in the transcriptome when compared with the tolerant strains. The expression patterns of the repeat sequences, including miniature inverted-repeat transposable elements, transposons, and retrotransposons, were correlated with the pollen fertilities of the five strains, with the highest correlation coefficient being 0.979. Even in the low-temperature-sensitive strains, the transcriptomes displayed distinct expression patterns. The elements responding to the low temperatures were evenly distributed throughout the genome, and the major cis-motifs involved in temperature-responsive changes were undetectable from the upstream sequences in the corresponding repeats. The genome-wide responses of transcription to the temperature shift may be associated with chromatin dynamics, which facilitates environmental plasticity. A genome-wide analysis using repeat sequences suggested that stress tolerance could be conferred by insensitivity to the stimuli.
Collapse
|
238
|
Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B. Drought stress responses in crops. Funct Integr Genomics 2014; 14:11-22. [PMID: 24408129 DOI: 10.1007/s10142-013-0356-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 01/09/2023]
Abstract
Among the effects of impending climate change, drought will have a profound impact on crop productivity in the future. Response to drought stress has been studied widely, and the model plant Arabidopsis has guided the studies on crop plants with genome sequence information viz., rice, wheat, maize and sorghum. Since the value of functions of genes, dynamics of pathways and interaction of networks for drought tolerance in plants can only be judged by evidence from field performance, this mini-review provides a research update focussing on the current developments on the response to drought in crop plants. Studies in Arabidopsis provide the basis for interpreting the available information in a systems biology perspective. In particular, the elucidation of the mechanism of drought stress response in crops is considered from evidence-based outputs emerging from recent omic studies in crops.
Collapse
Affiliation(s)
- Arun K Shanker
- Division of Crop Sciences, Central Research Institute for Dryland Agriculture (CRIDA), Santoshnagar, Saidabad P.O, Hyderabad, 500-059, India,
| | | | | | | | | | | | | |
Collapse
|
239
|
Migicovsky Z, Yao Y, Kovalchuk I. Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e27971. [PMID: 24513700 PMCID: PMC4091214 DOI: 10.4161/psb.27971] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 05/19/2023]
Abstract
Exposure to heat stress causes physiological and epigenetic changes in plants, which may also be altered in the progeny. We compared the progeny of stressed and control Arabidopsis thaliana wild type and Dicer-like mutant dcl2, dcl3, and dcl4 plants for variations in physiology and molecular profile, including global genome methylation, mRNA levels, and histone modifications in the subset of differentially expressed genes at normal conditions and in response to heat stress. We found that the immediate progeny of heat-stressed plants had fewer, but larger leaves, and tended to bolt earlier. Transposon expression was elevated in the progeny of heat-stressed plants, and heat stress in the same generation tended to decrease global genome methylation. Progeny of stressed plants had increased expression of HSFA2, and reduction in MSH2, ROS1, and several SUVH genes. Gene expression positively correlated with permissive histone marks and negatively correlated with repressive marks. Overall, the progeny of heat stressed plants varied in both their physiology and epigenome and dcl2 and dcl3 mutants were partially deficient for these changes.
Collapse
|
240
|
Meharg C, Khan B, Norton G, Deacon C, Johnson D, Reinhardt R, Huettel B, Meharg AA. Trait-directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass, Holcus lanatus. THE NEW PHYTOLOGIST 2014; 201:144-154. [PMID: 24102375 DOI: 10.1111/nph.12491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/12/2013] [Indexed: 05/03/2023]
Abstract
The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate tolerance in wild grass Holcus lanatus genotypes screened from the same habitat. De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide polymorphism (SNP) calling were conducted on RNA extracted from H. lanatus. Roche 454 sequencing data were assembled into c. 22,000 isotigs, and paired-end Illumina reads for phosphorus-starved (P-) and phosphorus-treated (P+) genovars of tolerant (T) and nontolerant (N) phenotypes were mapped to this reference transcriptome. Heatmaps of the gene expression data showed strong clustering of each P+/P- treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P- treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA-binding protein and transposable elements. A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP profiles, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.
Collapse
Affiliation(s)
- Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast, BT9 5BN, UK
| | - Bayezid Khan
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Gareth Norton
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Claire Deacon
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - David Johnson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Richard Reinhardt
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast, BT9 5BN, UK
| |
Collapse
|
241
|
Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays). Genetics 2013; 196:653-66. [PMID: 24374354 DOI: 10.1534/genetics.113.160515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context.
Collapse
|
242
|
Mochida K, Shinozaki K. Unlocking Triticeae genomics to sustainably feed the future. PLANT & CELL PHYSIOLOGY 2013; 54:1931-50. [PMID: 24204022 PMCID: PMC3856857 DOI: 10.1093/pcp/pct163] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 05/23/2023]
Abstract
The tribe Triticeae includes the major crops wheat and barley. Within the last few years, the whole genomes of four Triticeae species-barley, wheat, Tausch's goatgrass (Aegilops tauschii) and wild einkorn wheat (Triticum urartu)-have been sequenced. The availability of these genomic resources for Triticeae plants and innovative analytical applications using next-generation sequencing technologies are helping to revitalize our approaches in genetic work and to accelerate improvement of the Triticeae crops. Comparative genomics and integration of genomic resources from Triticeae plants and the model grass Brachypodium distachyon are aiding the discovery of new genes and functional analyses of genes in Triticeae crops. Innovative approaches and tools such as analysis of next-generation populations, evolutionary genomics and systems approaches with mathematical modeling are new strategies that will help us discover alleles for adaptive traits to future agronomic environments. In this review, we provide an update on genomic tools for use with Triticeae plants and Brachypodium and describe emerging approaches toward crop improvements in Triticeae.
Collapse
Affiliation(s)
- Keiichi Mochida
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuo Shinozaki
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
243
|
Mitra J, Xu G, Wang B, Li M, Deng X. Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system. FRONTIERS IN PLANT SCIENCE 2013; 4:446. [PMID: 24273545 PMCID: PMC3824148 DOI: 10.3389/fpls.2013.00446] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/17/2013] [Indexed: 05/18/2023]
Abstract
Vegetative tissues of Boea hygrometrica, a member of the Gesneriaceae family, can tolerate severe water loss to desiccated state and fully recover upon rehydration. Unlike many other so called "resurrection plants," the detached leaves of B. hygrometrica also possess the same level of capacity for desiccation tolerance (DT) as that of whole plant. B. hygrometrica is distributed widely from the tropics to northern temperate regions in East Asia and grows vigorously in areas around limestone rocks, where dehydration occurs frequently, rapidly, and profoundly. The properties of detached B. hygrometrica leaves and relative ease of culture have made it a useful system to study the adaptive mechanisms of DT. Extensive studies have been conducted to identify the physiological, cellular, and molecular mechanisms underlying DT in the last decade, including specific responses to water stress, such as cell wall folding and pigment-protein complex stabilizing in desiccated leaves. In this review, the insight into the structural, physiological, and biochemical, and molecular alterations that accompany the acquisition of DT in B. hygrometrica is described. Finally a future perspective is proposed, with an emphasis on the emerging regulatory roles of retroelements and histone modifications in the acquisition of DT, and the need of establishment of genome sequence database and high throughput techniques to identify novel regulators for fully understanding of the matrix of DT.
Collapse
Affiliation(s)
- Jayeeta Mitra
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Guanghui Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Bo Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Meijing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
244
|
Kujur A, Saxena MS, Bajaj D, Laxmi, Parida SK. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. J Biosci 2013; 38:971-87. [DOI: 10.1007/s12038-013-9388-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
245
|
Mutations in EDM2 selectively affect silencing states of transposons and induce plant developmental plasticity. Sci Rep 2013; 3:1701. [PMID: 23609044 PMCID: PMC3632883 DOI: 10.1038/srep01701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/08/2013] [Indexed: 11/08/2022] Open
Abstract
We previously reported on the A. thaliana gene EDM2, which is required for several developmental processes and race-specific immunity. Although EDM2 encodes a nuclear protein with features commonly observed in epigenetic factors, its role in chromatin silencing remains unknown. Here we demonstrate that silencing states of several transposons in edm2 mutants are altered. Levels of their transcripts anti-correlate with those of the repressive epigenetic marks H3K27me1, H3K9me2, and DNA-methylation at CHG sites. In addition, double mutant analysis revealed epistasis between EDM2 and the major histone H3K9-methyltransferase gene KRYPTONITE/SUVH4 in the control of H3K9me2 and CHG methylation. Moreover, we found that the expressivity of several mutant edm2 phenotypes exhibits stochastic variation reminiscent of mutants of known epigenetic modifiers. We propose that EDM2 affects the expression of transposons and developmentally important genes by modulating levels of repressive chromatin marks in a locus dependent manner.
Collapse
|
246
|
Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. Int J Mol Sci 2013; 14:20478-91. [PMID: 24129180 PMCID: PMC3821626 DOI: 10.3390/ijms141020478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023] Open
Abstract
Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.
Collapse
|
247
|
Rahavi SMR, Kovalchuk I. Changes in homologous recombination frequency in Arabidopsis thaliana plants exposed to stress depend on time of exposure during development and on duration of stress exposure. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:479-88. [PMID: 24431516 PMCID: PMC3781278 DOI: 10.1007/s12298-013-0197-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the past, we showed that exposure to abiotic and biotic stresses changes the homologous recombination frequency (HRF) in somatic tissue and in the progeny. In current work we planned to answer the following question: do stress intensity/duration and time during exposure influence changes in somatic HRF and transgenerational changes in HRF? Here, we tested the effects of exposure to UV-C, cold and heat on HRF at 7, 14, 21 and 28 days post germination (dpg). We found that exposure at 14 and 21 dpg resulted in a higher increase in HRF as compared to exposure at 7 dpg; longer exposure to UV-C resulted in a higher frequency of HR, whereas prolonged exposure to cold or heat, especially at later developmental stages, had almost no effect on somatic HRF. Exposure at 7 dpg had a positive effect on somatic growth of plants; plants exposed to stress at this age had larger leaves. The analysis of HRF in the progeny showed that the progeny of plants exposed to stress at 7 dpg had an increase in somatic HRF and showed larger sizes of recombination spots on leaves. The progeny of plants exposed to UV-C at 7 dpg and the progeny of plants exposed to cold or heat at 28 dpg had larger leaves as compared to control plants. To summarize, our experiments showed that changes in somatic and transgenerational HRF depend on the type of stress plants are exposed to, time of exposure during development and the duration of exposure.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada
| |
Collapse
|
248
|
Verbruggen N, Hanikenne M, Clemens S. A more complete picture of metal hyperaccumulation through next-generation sequencing technologies. FRONTIERS IN PLANT SCIENCE 2013; 4:388. [PMID: 24098304 PMCID: PMC3787545 DOI: 10.3389/fpls.2013.00388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/11/2013] [Indexed: 05/04/2023]
Abstract
The mechanistic understanding of metal hyperaccumulation has benefitted immensely from the use of molecular genetics tools developed for Arabidopsis thaliana. The revolution in DNA sequencing will enable even greater strides in the near future, this time not restricted to the family Brassicaceae. Reference genomes are within reach for many ecologically interesting species including heterozygous outbreeders. They will allow deep RNA-seq transcriptome studies and the re-sequencing of contrasting individuals to unravel the genetic basis of phenotypic variation. Cell-type specific transcriptome analyses, which will be essential for the dissection of metal translocation pathways in hyperaccumulators, can be achieved through the combination of RNA-seq and translatome approaches. Affordable high-resolution genotyping of many individuals enables the elucidation of quantitative trait loci in intra- and interspecific crosses as well as through genome-wide association mapping across large panels of accessions. Furthermore, genome-wide scans have the power to detect loci under recent selection. Together these approaches will lead to a detailed understanding of the evolutionary path towards the emergence of hyperaccumulation traits.
Collapse
Affiliation(s)
- Nathalie Verbruggen
- Plant Physiology and Molecular Genetics, Bioengineering School, Faculty of Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering, Department of Life Sciences, University of LiègeLiège, Belgium
- PhytoSYSTEMS, University of LiègeLiège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology, University of BayreuthBayreuth, Germany
- Bayreuth Center for Molecular Biosciences, University of BayreuthBayreuth, Germany
| |
Collapse
|
249
|
Huang CF, Miki D, Tang K, Zhou HR, Zheng Z, Chen W, Ma ZY, Yang L, Zhang H, Liu R, He XJ, Zhu JK. A Pre-mRNA-splicing factor is required for RNA-directed DNA methylation in Arabidopsis. PLoS Genet 2013; 9:e1003779. [PMID: 24068953 PMCID: PMC3772050 DOI: 10.1371/journal.pgen.1003779] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/25/2013] [Indexed: 12/16/2022] Open
Abstract
Cytosine DNA methylation is a stable epigenetic mark that is frequently associated with the silencing of genes and transposable elements (TEs). In Arabidopsis, the establishment of DNA methylation is through the RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification and characterization of RDM16, a new factor in the RdDM pathway. Mutation of RDM16 reduced the DNA methylation levels and partially released the silencing of a reporter gene as well as some endogenous genomic loci in the DNA demethylase ros1-1 mutant background. The rdm16 mutant had morphological defects and was hypersensitive to salt stress and abscisic acid (ABA). Map-based cloning and complementation test led to the identification of RDM16, which encodes a pre-mRNA-splicing factor 3, a component of the U4/U6 snRNP. RNA-seq analysis showed that 308 intron retention events occurred in rdm16, confirming that RDM16 is involved in pre-mRNA splicing in planta. RNA-seq and mRNA expression analysis also revealed that the RDM16 mutation did not affect the pre-mRNA splicing of known RdDM genes, suggesting that RDM16 might be directly involved in RdDM. Small RNA expression analysis on loci showing RDM16-dependent DNA methylation suggested that unlike the previously reported putative splicing factor mutants, rdm16 did not affect small RNA levels; instead, the rdm16 mutation caused a decrease in the levels of Pol V transcripts. ChIP assays revealed that RDM16 was enriched at some Pol V target loci. Our results suggest that RDM16 regulates DNA methylation through influencing Pol V transcript levels. Finally, our genome-wide DNA methylation analysis indicated that RDM16 regulates the overall methylation of TEs and gene-surrounding regions, and preferentially targets Pol IV-dependent DNA methylation loci and the ROS1 target loci. Our work thus contributes to the understanding of RdDM and its interactions with active DNA demethylation. Both plants and animals utilize cytosine DNA methylation as an important epigenetic mark to suppress transposable elements (TEs), repeat sequences and genes, which is crucial for the genome integrity and development. In plants, de novo DNA methylation can be mediated by the RNA-directed DNA methylation (RdDM) pathway. Plants have also evolved a pathway for active DNA demethylation that is initiated by the ROS1 subfamily of 5-methylcytosine DNA glycosylases, to counteract the RdDM pathway to prevent undesirable silencing. In this study, we identified RDM16, a new factor in the RdDM pathway. We show that RDM16 is a pre-mRNA splicing factor and its function in the regulation of DNA methylation and gene silencing is not through influencing siRNA levels or the expression or splicing of genes encoding known RdDM components, but likely through affecting Pol V transcripts. We also show that RDM16 preferentially affects ROS1 target loci. Together, our findings contribute to the understanding of RdDM and its interactions with ROS1-mediated DNA demethylation.
Collapse
Affiliation(s)
- Chao-Feng Huang
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Hao-Ran Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Zhimin Zheng
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Chen
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Ze-Yang Ma
- National Institute of Biological Sciences, Beijing, China
| | - Lan Yang
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
250
|
Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Epigenetic mechanisms of plant stress responses and adaptation. PLANT CELL REPORTS 2013; 32:1151-9. [PMID: 23719757 DOI: 10.1007/s00299-013-1462-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 05/20/2023]
Abstract
Epigenetics has become one of the hottest topics of research in plant functional genomics since it appears promising in deciphering and imparting stress-adaptive potential in crops and other plant species. Recently, numerous studies have provided new insights into the epigenetic control of stress adaptation. Epigenetic control of stress-induced phenotypic response of plants involves gene regulation. Growing evidence suggest that methylation of DNA in response to stress leads to the variation in phenotype. Transposon mobility, siRNA-mediated methylation and host methyltransferase activation have been implicated in this process. This review presents the current status of epigenetics of plant stress responses with a view to use this knowledge towards engineering plants for stress tolerance.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | | | | | | | | |
Collapse
|