201
|
Zhou Q, Li C, Mishina K, Zhao J, Zhang J, Duan R, Ma X, Wang A, Meng Q, Komatsuda T, Chen G. Characterization and genetic mapping of the β-diketone deficient eceriferum-b barley mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1169-1178. [PMID: 28258370 DOI: 10.1007/s00122-017-2877-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient in the cuticular wax component 14,16-hentriacontanedione. The mutated gene maps to a 1.3-cM interval on chromosome 3HL flanked by the genes MLOC_10972 and MLOC_69561. The cuticular wax coating of leaves and stems in many grass species is responsible for the plants' glaucous appearance. A major component of the wax is a group of β-diketone compounds. The barley eceriferum-b.2 (cer-b.2) mutant produces glossy leaf sheaths and is deficient for the compound 14,16-hentriacontanedione. A linkage analysis based on 708 gametes allowed the gene responsible for the mutant phenotype to be mapped to a 1.3-cM interval on chromosome 3HL flanked by the two genes MLOC_10972 and _69561. The product of the wild type allele may represent a step in the β-diketone synthesis pathway.
Collapse
Affiliation(s)
- Qin Zhou
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Kohei Mishina
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Jiecai Zhao
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiwei Zhang
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruijun Duan
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, Qinghai, China
| | - Xiaoying Ma
- Department of Biology, South University of Science and Technology of China, Shenzhen, China
| | - Aidong Wang
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianxiang Meng
- Lanzhou Center for Oil and Gas Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Donggang west Road 382, Lanzhou, 730000, China
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Guoxiong Chen
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
202
|
Kim H, Choi D, Suh MC. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves. PLANT CELL REPORTS 2017; 36:815-827. [PMID: 28280927 DOI: 10.1007/s00299-017-2112-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 05/03/2023]
Abstract
An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dongsu Choi
- Department of Biology, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
203
|
Busta L, Jetter R. Structure and Biosynthesis of Branched Wax Compounds on Wild Type and Wax Biosynthesis Mutants of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:1059-1074. [PMID: 28407124 DOI: 10.1093/pcp/pcx051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/05/2017] [Indexed: 05/10/2023]
Abstract
The cuticle is a waxy composite that protects the aerial organs of land plans from non-stomatal water loss. The chemical make-up of the cuticular wax mixture plays a central role in defining the water barrier, but structure-function relationships have not been established so far, in part due to gaps in our understanding of wax structures and biosynthesis. While wax compounds with saturated, linear hydrocarbon tails have been investigated in detail, very little is known about compounds with modified aliphatic tails, which comprise substantial portions of some plant wax mixtures. This study aimed to investigate the structures, abundances and biosynthesis of branched compounds on the species for which wax biosynthesis is best understood: Arabidopsis thaliana. Microscale derivatization, mass spectral interpretation and organic synthesis identified homologous series of iso-alkanes and iso-alcohols on flowers and leaves, respectively. These comprised approximately 10-15% of wild type wax mixtures. The abundances of both branched wax constituents and accompanying unbranched compounds were reduced on the cer6, cer3 and cer1 mutants but not cer4, indicating that branched compounds are in part synthesized by the same machinery as unbranched compounds. In contrast, the abundances of unbranched, but not branched, wax constituents were reduced on the cer2 and cer26 mutants, suggesting that the pathways to both types of compounds deviate in later steps of chain elongation. Finally, the abundances of branched, but not unbranched, wax compounds were reduced on the cer16 mutant, and the (uncharacterized) CER16 protein may therefore be controlling the relative abundances of iso-alkanes and iso-alcohols on Arabidopsis surfaces.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada
- Center for Plant Science Innovation, 1901 Vine Street, Lincoln, NE, USA
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, University Boulevard, Vancouver, BC, Canada
| |
Collapse
|
204
|
Guo Y, Busta L, Jetter R. Cuticular wax coverage and composition differ among organs of Taraxacum officinale. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:372-379. [PMID: 28432976 DOI: 10.1016/j.plaphy.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 05/25/2023]
Abstract
Primary plant surfaces are coated with hydrophobic cuticular waxes to minimize non-stomatal water loss. Wax compositions differ greatly between plant species and, in the few species studied systematically so far, also between organs, tissues, and developmental stages. However, the wax mixtures of more species in diverse plant families must be investigated to assess overall wax variability, and ultimately to correlate organ-specific composition with local water barrier properties. Here, we present comprehensive analyses of the waxes covering five organs of Taraxacum officinale (dandelion), to help close a gap in our understanding of wax chemistry in the Asteraceae family. First, novel wax constituents of the petal wax were identified as C25 6,8- and 8,10-ketols as well as C27 6,8- and 8,10-ketols. Nine other component classes (fatty acids, primary alcohols, esters, aldehydes, alkanes, triterpenols, triterpene acetates, sterols, and tocopherols) were detected in the wax mixtures covering leaves, peduncles, and petals, as well as fruit beaks and pappi. Wax coverages varied from 5 μg/cm2 on peduncles to 37 μg/cm2 on petals. Alcohols predominated in leaf wax, while both alcohols and alkanes were found in similar amounts on peduncles and petals, and mainly alkanes on the fruit beaks and pappi. Chain length distributions within the wax compound classes were similar between organs, centered around C26 for fatty acids, alcohols, and aldehydes, and C29 for alkanes. However, the quantities of homologs with longer chain lengths varied substantially between organs, reaching well beyond C30 on all surfaces except leaves, suggesting differences in elongation enzymes determining the alkyl chain structures. The detailed wax profiles presented here will serve as basis for future investigations into wax biosynthesis in the Asteraceae and into wax functions on different dandelion organs.
Collapse
Affiliation(s)
- Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Lucas Busta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
205
|
Liu Z, Fang Z, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Sun P, Tang J, Liu D, Zhang Z, Yang L. Fine-Mapping and Analysis of Cgl1, a Gene Conferring Glossy Trait in Cabbage ( Brassica oleracea L. var. capitata). FRONTIERS IN PLANT SCIENCE 2017; 8:239. [PMID: 28265282 PMCID: PMC5316545 DOI: 10.3389/fpls.2017.00239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Cuticular waxes covering the outer plant surface impart a whitish appearance. Wax-less cabbage mutant shows glossy in leaf surface and plays important roles in riching cabbage germplasm resources and breeding brilliant green cabbage. This is the first report describing the characterization and fine-mapping of a wax biosynthesis gene using a novel glossy Brassica oleracea mutant. In the present paper, we identified a glossy cabbage mutant (line10Q-961) with a brilliant green phenotype. Genetic analyses indicated that the glossy trait was controlled by a single recessive gene. Preliminary mapping results using an F2 population containing 189 recessive individuals revealed that the Cgl1 gene was located at the end of chromosome C08. Several new markers closely linked to the target gene were designed according to the cabbage reference genome sequence. Another population of 1,172 recessive F2 individuals was used to fine-map the Cgl1 gene to a 188.7-kb interval between the C08SSR61 simple sequence repeat marker and the end of chromosome C08. There were 33 genes located in this region. According to gene annotation and homology analyses, the Bol018504 gene, which is a homolog of CER1 in Arabidopsis thaliana, was the most likely candidate for the Cgl1 gene. Its coding and promoter regions were sequenced, which indicated that the RNA splice site was altered because of a 2,722-bp insertion in the first intron of Bol018504 in the glossy mutant. Based on the FGENESH 2.6 prediction and sequence alignments, the PLN02869 domain, which controls fatty aldehyde decarbonylase activity, was absent from the Bol018504 gene of the 10Q-961 glossy mutant. We inferred that the inserted sequence in Bol018504 may result in the glossy cabbage mutant. This study represents the first step toward the characterization of cuticular wax biosynthesis in B. oleracea, and may contribute to the breeding of new cabbage varieties exhibiting a brilliant green phenotype.
Collapse
Affiliation(s)
- Zezhou Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Peitian Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Dongming Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhenxian Zhang
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
206
|
Jiao Y, Burow G, Gladman N, Acosta-Martinez V, Chen J, Burke J, Ware D, Xin Z. Efficient Identification of Causal Mutations through Sequencing of Bulked F 2 from Two Allelic Bloomless Mutants of Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2017; 8:2267. [PMID: 29379518 PMCID: PMC5771210 DOI: 10.3389/fpls.2017.02267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/27/2017] [Indexed: 05/04/2023]
Abstract
Sorghum (Sorghum bicolor Moench, L.) plant accumulates copious layers of epi-cuticular wax (EW) on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghum's drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1) and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS) treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.
Collapse
Affiliation(s)
- Yinping Jiao
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Gloria Burow
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - Nicholas Gladman
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - Veronica Acosta-Martinez
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - Junping Chen
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - John Burke
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- USDA-ARS NAA Plant, Soil and Nutrition Laboratory Research Unit, Cornell University, Ithaca, NY, United States
- *Correspondence: Doreen Ware
| | - Zhanguo Xin
- Cropping Systems Research Laboratory, Agricultural Research Service (USDA), Lubbock, TX, United States
- Zhanguo Xin
| |
Collapse
|
207
|
Jacq A, Pernot C, Martinez Y, Domergue F, Payré B, Jamet E, Burlat V, Pacquit VB. The Arabidopsis Lipid Transfer Protein 2 (AtLTP2) Is Involved in Cuticle-Cell Wall Interface Integrity and in Etiolated Hypocotyl Permeability. FRONTIERS IN PLANT SCIENCE 2017; 8:263. [PMID: 28289427 PMCID: PMC5326792 DOI: 10.3389/fpls.2017.00263] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/13/2017] [Indexed: 05/07/2023]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) belong to a complex multigenic family implicated in diverse physiological processes. However, their function and mode of action remain unclear probably because of functional redundancy. Among the different roles proposed for nsLTPs, it has long been suggested that they could transport cuticular precursor across the cell wall during the formation of the cuticle, which constitutes the first physical barrier for plant interactions with their aerial environment. Here, we took advantage of the Arabidopsis thaliana etiolated hypocotyl model in which AtLTP2 was previously identified as the unique and abundant nsLTP member in the cell wall proteome, to investigate its function. AtLTP2 expression was restricted to epidermal cells of aerial organs, in agreement with the place of cuticle deposition. Furthermore, transient AtLTP2-TagRFP over-expression in Nicotiana benthamiana leaf epidermal cells resulted in its localization to the cell wall, as expected, but surprisingly also to the plastids, indicating an original dual trafficking for a nsLTP. Remarkably, in etiolated hypocotyls, the atltp2-1 mutant displayed modifications in cuticle permeability together with a disorganized ultra-structure at the cuticle-cell wall interface completely recovered in complemented lines, whereas only slight differences in cuticular composition were observed. Thus, AtLTP2 may not play the historical purported nsLTP shuttling role across the cell wall, but we rather hypothesize that AtLTP2 could play a major structural role by maintaining the integrity of the adhesion between the mainly hydrophobic cuticle and the hydrophilic underlying cell wall. Altogether, these results gave new insights into nsLTP functions.
Collapse
Affiliation(s)
- Adélaïde Jacq
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS)Castanet-Tolosan, France
| | - Clémentine Pernot
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS)Castanet-Tolosan, France
| | - Yves Martinez
- Plateforme Imagerie-Microscopie, Fédération de Recherche FR3450–Agrobiosciences, Interactions et Biodiversité, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Université Paul Sabatier (UPS)Castanet-Tolosan, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS Université de Bordeaux–INRA Bordeaux AquitaineVillenave d’Ornon, France
| | - Bruno Payré
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, Toulouse III, Université Paul Sabatier (UPS)Toulouse, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS)Castanet-Tolosan, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS)Castanet-Tolosan, France
| | - Valérie B. Pacquit
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS)Castanet-Tolosan, France
- *Correspondence: Valérie B. Pacquit,
| |
Collapse
|
208
|
Xue D, Zhang X, Lu X, Chen G, Chen ZH. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:621. [PMID: 28503179 PMCID: PMC5408081 DOI: 10.3389/fpls.2017.00621] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/06/2017] [Indexed: 05/05/2023]
Abstract
Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.
Collapse
Affiliation(s)
- Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
- *Correspondence: Dawei Xue, Zhong-Hua Chen,
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Xueli Lu
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, RichmondNSW, Australia
- *Correspondence: Dawei Xue, Zhong-Hua Chen,
| |
Collapse
|
209
|
Xu L, Zeisler V, Schreiber L, Gao J, Hu K, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis. FRONTIERS IN PLANT SCIENCE 2017; 8:68. [PMID: 28184233 PMCID: PMC5266714 DOI: 10.3389/fpls.2017.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/12/2017] [Indexed: 05/08/2023]
Abstract
The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Liping Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Viktoria Zeisler
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Bin Yi
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
210
|
Li P, Cao W, Fang H, Xu S, Yin S, Zhang Y, Lin D, Wang J, Chen Y, Xu C, Yang Z. Transcriptomic Profiling of the Maize ( Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:290. [PMID: 28298920 PMCID: PMC5331654 DOI: 10.3389/fpls.2017.00290] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/17/2017] [Indexed: 05/18/2023]
Abstract
Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize (Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chenwu Xu
- *Correspondence: Zefeng Yang, Chenwu Xu,
| | | |
Collapse
|
211
|
Wang C, Zhao C, Hu L, Chen H. Calculated Mechanism of Cyanobacterial Aldehyde-Deformylating Oxygenase: Asymmetric Aldehyde Activation by a Symmetric Diiron Cofactor. J Phys Chem Lett 2016; 7:4427-4432. [PMID: 27775357 DOI: 10.1021/acs.jpclett.6b02061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyanobacterial aldehyde-deformylating oxygenase (cADO) is a nonheme diiron enzyme that catalyzes the conversion of aldehyde to alk(a/e)ne, an important transformation in biofuel research. In this work, we report a highly desired computational study for probing the mechanism of cADO. By combining our QM/MM results with the available 57Fe Mössbauer spectroscopic data, the gained detailed structural information suggests construction of asymmetry from the symmetric diiron cofactor in an aldehyde substrate and O2 activation. His160, one of the two iron-coordinate histidine residues in cADO, plays a pivotal role in this asymmetric aldehyde activation process by unprecedented reversible dissociation from the diiron cofactor, a behavior unknown in any other nonheme dinuclear or mononuclear enzymes. The revealed intrinsically asymmetric interactions of the substrate/O2 with the symmetric cofactor in cADO are inspirational for exploring diiron subsite resolution in other nonheme diiron enzymes.
Collapse
Affiliation(s)
- Chao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Chongyang Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Lianrui Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| |
Collapse
|
212
|
Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, Perera MA, Hrmova M, Borisjuk N, Lopato S. Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5363-5380. [PMID: 27489236 PMCID: PMC5049387 DOI: 10.1093/jxb/erw298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A plant cuticle forms a hydrophobic layer covering plant organs, and plays an important role in plant development and protection from environmental stresses. We examined epicuticular structure, composition, and a MYB-based regulatory network in two Australian wheat cultivars, RAC875 and Kukri, with contrasting cuticle appearance (glaucousness) and drought tolerance. Metabolomics and microscopic analyses of epicuticular waxes revealed that the content of β-diketones was the major compositional and structural difference between RAC875 and Kukri. The content of β-diketones remained the same while those of alkanes and primary alcohols were increased by drought in both cultivars, suggesting that the interplay of all components rather than a single one defines the difference in drought tolerance between cultivars. Six wheat genes encoding MYB transcription factors (TFs) were cloned; four of them were regulated in flag leaves of both cultivars by rapid dehydration and/or slowly developing cyclic drought. The involvement of selected MYB TFs in the regulation of cuticle biosynthesis was confirmed by a transient expression assay in wheat cell culture, using the promoters of wheat genes encoding cuticle biosynthesis-related enzymes and the SHINE1 (SHN1) TF. Two functional MYB-responsive elements, specifically recognized by TaMYB74 but not by other MYB TFs, were localized in the TdSHN1 promoter. Protein structural determinants underlying the binding specificity of TaMYB74 for functional DNA cis-elements were defined, using 3D protein molecular modelling. A scheme, linking drought-induced expression of the investigated TFs with downstream genes that participate in the synthesis of cuticle components, is proposed.
Collapse
Affiliation(s)
- Huihui Bi
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sukanya Luang
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Yuan Li
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Natalia Bazanova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sarah Morran
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Zhihong Song
- W.M.Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA
| | - M Ann Perera
- W.M.Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Nikolai Borisjuk
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
213
|
Park CS, Go YS, Suh MC. Cuticular wax biosynthesis is positively regulated by WRINKLED4, an AP2/ERF-type transcription factor, in Arabidopsis stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:257-270. [PMID: 27337244 DOI: 10.1111/tpj.13248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/06/2023]
Abstract
The aerial surfaces of terrestrial plants are covered by a cuticular wax layer, which protects the plants from environmental stresses such as desiccation, high irradiance, and UV radiation. Cuticular wax deposition is regulated in an organ-specific manner; Arabidopsis stems have more than 10-fold higher wax loads than leaves. In this study, we found that WRINKLED4 (WRI4), encoding an AP2/ERF (ethylene-responsive factor) transcription factor (TF), is predominantly expressed in stem epidermis, is upregulated by salt stress, and is involved in activating cuticular wax biosynthesis in Arabidopsis stems. WRI4 harbors a transcriptional activation domain at its N-terminus, and fluorescent signals from a WRI4:eYFP construct were localized to the nuclei of tobacco leaf protoplasts. Deposition of epicuticular wax crystals on stems was reduced in wri4-1 and wri4-3 knockout mutants. Total wax loads were reduced by ~28% in wri4 stems but were not altered in wri4 siliques or leaves compared to the wild type. The levels of 29-carbon long alkanes, ketones, and secondary alcohols, which are the most abundant components of stem waxes, were significantly reduced in wri4 stems relative to the wild type. A transactivation assay in tobacco protoplasts and a chromatin immunoprecipitation (ChIP) assay showed that the expression of long-chain acyl-CoA synthetase1 (LACS1), β-ketoacyl CoA reductase1 (KCR1), PASTICCINO2 (PAS2), trans-2,3-enoyl-CoA reductase (ECR), and bifunctional wax synthase/acyl-CoA: diacylglycerol acyltransferase (WSD1) is positively regulated by direct binding of WRI4 to their promoters. Taken together, these results suggest that WRI4 is a transcriptional activator that specifically controls cuticular wax biosynthesis in Arabidopsis stems.
Collapse
Affiliation(s)
- Chan Song Park
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
214
|
Herman NA, Zhang W. Enzymes for fatty acid-based hydrocarbon biosynthesis. Curr Opin Chem Biol 2016; 35:22-28. [PMID: 27573483 DOI: 10.1016/j.cbpa.2016.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/08/2023]
Abstract
Surging energy consumption and environmental concerns have stimulated interest in the production of chemicals and fuels through sustainable and renewable approaches. Fatty acid-based hydrocarbons, such as alkanes and alkenes, are of particular interest to directly replace fossil fuels. Towards this effort, understanding of hydrocarbon-producing enzymes is the first indispensable step to bio-production of hydrocarbons. Here, we review recent advances in the discovery and mechanistic study of enzymes capable of converting fatty acid precursors into hydrocarbons, and provide perspectives on the future of this rapidly growing field.
Collapse
Affiliation(s)
- Nicolaus A Herman
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
215
|
Zhang Z, Cheng ZJ, Gan L, Zhang H, Wu FQ, Lin QB, Wang JL, Wang J, Guo XP, Zhang X, Zhao ZC, Lei CL, Zhu SS, Wang CM, Wan JM. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:35-45. [PMID: 27297988 DOI: 10.1016/j.plantsci.2016.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 05/11/2023]
Abstract
Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism.
Collapse
Affiliation(s)
- Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhi-Jun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fu-Qing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qi-Bing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiu-Lin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiu-Ping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhi-Chao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Cai-Lin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shan-Shan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chun-Ming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian-Min Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
216
|
Shitan N. Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 2016; 80:1283-93. [DOI: 10.1080/09168451.2016.1151344] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
217
|
Jakobson L, Lindgren LO, Verdier G, Laanemets K, Brosché M, Beisson F, Kollist H. BODYGUARD is required for the biosynthesis of cutin in Arabidopsis. THE NEW PHYTOLOGIST 2016; 211:614-26. [PMID: 26990896 DOI: 10.1111/nph.13924] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/04/2016] [Indexed: 05/23/2023]
Abstract
The cuticle plays a critical role in plant survival during extreme drought conditions. There are, however, surprisingly, many gaps in our understanding of cuticle biosynthesis. An Arabidopsis thaliana T-DNA mutant library was screened for mutants with enhanced transpiration using a simple condensation spot method. Five mutants, named cool breath (cb), were isolated. The cb5 mutant was found to be allelic to bodyguard (bdg), which is affected in an α/β-hydrolase fold protein important for cuticle structure. The analysis of cuticle components in cb5 (renamed as bdg-6) and another T-DNA mutant allele (bdg-7) revealed no impairment in wax synthesis, but a strong decrease in total cutin monomer load in young leaves and flowers. Root suberin content was also reduced. Overexpression of BDG increased total leaf cutin monomer content nearly four times by affecting preferentially C18 polyunsaturated ω-OH fatty acids and dicarboxylic acids. Whole-plant gas exchange analysis showed that bdg-6 had higher cuticular conductance and rate of transpiration; however, plant lines overexpressing BDG resembled the wild-type with regard to these characteristics. This study identifies BDG as an important component of the cutin biosynthesis machinery in Arabidopsis. We also show that, using BDG, cutin can be greatly modified without altering the cuticular water barrier properties and transpiration.
Collapse
Affiliation(s)
- Liina Jakobson
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Leif Ove Lindgren
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Gaëtan Verdier
- Department of Environmental Plant Biology and Microbiology, CEA-CNRS-Aix Marseille University, UMR 7265/LB3M, Cadarache CEA Research Center, F-13108, Saint-Paul-lez-Durance, France
| | - Kristiina Laanemets
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Viikinkaari 1, Helsinki, 00014, Finland
| | - Fred Beisson
- Department of Environmental Plant Biology and Microbiology, CEA-CNRS-Aix Marseille University, UMR 7265/LB3M, Cadarache CEA Research Center, F-13108, Saint-Paul-lez-Durance, France
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| |
Collapse
|
218
|
Sampangi-Ramaiah MH, Ravishankar KV, Seetharamaiah SK, Roy TK, Hunashikatti LR, Rekha A, Shilpa P. Barrier against water loss: relationship between epicuticular wax composition, gene expression and leaf water retention capacity in banana. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:492-501. [PMID: 32480479 DOI: 10.1071/fp15296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 02/11/2016] [Indexed: 06/11/2023]
Abstract
In the present study we examined 13 banana (Musa spp.) genotypes belonging to different genomic groups with respect to total leaf cuticular wax concentration, chemical composition, carbon chain length and their relationship with leaf water retention capacity (LWRC). A positive correlation between epicuticular wax content and LWRC clearly indicated that the cuticular wax plays an important role in maintaining banana leaf water content. The classification of hexane soluble cuticular wax components into different classes based on functional group and their association with LWRC showed that alcohol and ester compounds have a positive correlation. Further, the compounds with >C28 carbon chain length had a positive correlation with LWRC, indicating the role of longer carbon chain length in maintaining the water status of banana leaves. Also, the gene expression analysis showed higher expression of the wax biosynthetic genes FATB and KCS11 in higher wax load genotypes whereas lower expression was seen in low wax banana genotypes. Here, we report for the first time the compositional variations of cuticular wax in different banana genotypes, followed by their association with leaf water retention capacity. The results were also supported by variation in gene expression analysis of cuticular wax biosynthetic genes - FATB and KCS11.
Collapse
Affiliation(s)
- Megha H Sampangi-Ramaiah
- Division of Biotechnology, ICAR - Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru-560089, India
| | - Kundapura V Ravishankar
- Division of Biotechnology, ICAR - Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru-560089, India
| | - Shivashankar K Seetharamaiah
- Division of Plant Physiology and Biochemistry, ICAR - Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru-560089, India
| | - Tapas K Roy
- Division of Plant Physiology and Biochemistry, ICAR - Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru-560089, India
| | - Laxman R Hunashikatti
- Division of Plant Physiology and Biochemistry, ICAR - Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru-560089, India
| | - Ajitha Rekha
- Division of Fruit Crops, ICAR - Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru-560089, India
| | - Pandurangaiah Shilpa
- Division of Biotechnology, ICAR - Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru-560089, India
| |
Collapse
|
219
|
Cutinsomes and cuticle enzymes GPAT6 and DGAT2 seem to travel together from a lipotubuloid metabolon (LM) to extracellular matrix of O. umbellatum ovary epidermis. Micron 2016; 85:51-7. [DOI: 10.1016/j.micron.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022]
|
220
|
Xu Y, Wu H, Zhao M, Wu W, Xu Y, Gu D. Overexpression of the Transcription Factors GmSHN1 and GmSHN9 Differentially Regulates Wax and Cutin Biosynthesis, Alters Cuticle Properties, and Changes Leaf Phenotypes in Arabidopsis. Int J Mol Sci 2016; 17:E587. [PMID: 27110768 PMCID: PMC4849042 DOI: 10.3390/ijms17040587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/29/2016] [Accepted: 04/12/2016] [Indexed: 11/16/2022] Open
Abstract
SHINE (SHN/WIN) clade proteins, transcription factors of the plant-specific APETALA 2/ethylene-responsive element binding factor (AP2/ERF) family, have been proven to be involved in wax and cutin biosynthesis. Glycine max is an important economic crop, but its molecular mechanism of wax biosynthesis is rarely characterized. In this study, 10 homologs of Arabidopsis SHN genes were identified from soybean. These homologs were different in gene structures and organ expression patterns. Constitutive expression of each of the soybean SHN genes in Arabidopsis led to different leaf phenotypes, as well as different levels of glossiness on leaf surfaces. Overexpression of GmSHN1 and GmSHN9 in Arabidopsis exhibited 7.8-fold and 9.9-fold up-regulation of leaf cuticle wax productions, respectively. C31 and C29 alkanes contributed most to the increased wax contents. Total cutin contents of leaves were increased 11.4-fold in GmSHN1 overexpressors and 5.7-fold in GmSHN9 overexpressors, mainly through increasing C16:0 di-OH and dioic acids. GmSHN1 and GmSHN9 also altered leaf cuticle membrane ultrastructure and increased water loss rate in transgenic Arabidopsis plants. Transcript levels of many wax and cutin biosynthesis and leaf development related genes were altered in GmSHN1 and GmSHN9 overexpressors. Overall, these results suggest that GmSHN1 and GmSHN9 may differentially regulate the leaf development process as well as wax and cutin biosynthesis.
Collapse
Affiliation(s)
- Yangyang Xu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hanying Wu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Mingming Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wang Wu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yinong Xu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Dan Gu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
221
|
Paris F, Krzyżaniak Y, Gauvrit C, Jamois F, Domergue F, Joubès J, Ferrières V, Adrian M, Legentil L, Daire X, Trouvelot S. An ethoxylated surfactant enhances the penetration of the sulfated laminarin through leaf cuticle and stomata, leading to increased induced resistance against grapevine downy mildew. PHYSIOLOGIA PLANTARUM 2016; 156:338-50. [PMID: 26456072 DOI: 10.1111/ppl.12394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 05/22/2023]
Abstract
Some β-1,3-glucans and particularly sulfated laminarin (PS3) are known as resistance inducers (RIs) in grapevine against the downy mildew. However, their efficacy in vineyard is still often too low, which might be caused by a limited penetration through the leaf cuticle following spray application. We used (14) C-sucrose uptake experiments with grapevine leaves in order to select a surfactant as saccharide penetration enhancer. Our results showed that although sucrose foliar uptake was low, it was strongly enhanced by Dehscofix CO125 (DE), a highly ethoxylated surfactant. Fluorescent saccharides were then produced and laser scanning microscopy was used to analyze their foliar diffusion pattern in Arabidopsis thaliana and grapevine. Interestingly, sucrose and PS3 were seemingly able to penetrate the leaf cuticle only when formulated with DE. Diffusion could preferentially occur via stomata, anticlinal cell walls and trichomes. In grapevine, PS3 penetration rate was much higher on the stomateous abaxial surface of the leaf than on the adaxial surface. Finally, using DE allowed a higher level of downy mildew control by PS3, which corroborated diffusion observations. Our results have practical consequences for the improvement of treatments with saccharidic inducers on grape. That is, formulation of such RIs plays a critical role for their cuticular diffusion and consequently their efficacy. Also, spray application should preferentially target the abaxial surface of the leaves in order to maximize their penetration.
Collapse
Affiliation(s)
- Franck Paris
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Rennes, France
- Université européenne de Bretagne, Rennes, France
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, Dijon, France
| | | | | | - Frank Jamois
- Laboratoires Goëmar, S.A.S.-Parc technopolitain Atalante, Saint-Malo, France
| | - Frédéric Domergue
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, Bordeaux, France
- CNRS, UMR 5200, Laboratoire de Biogenèse Membranaire, Bordeaux, France
| | - Jérôme Joubès
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, Bordeaux, France
- CNRS, UMR 5200, Laboratoire de Biogenèse Membranaire, Bordeaux, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Rennes, France
- Université européenne de Bretagne, Rennes, France
| | - Marielle Adrian
- Université de Bourgogne, UMR 1347 Agroécologie, ERL CNRS 6300, Dijon, France
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Rennes, France
- Université européenne de Bretagne, Rennes, France
| | - Xavier Daire
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, Dijon, France
| | - Sophie Trouvelot
- Université de Bourgogne, UMR 1347 Agroécologie, ERL CNRS 6300, Dijon, France
| |
Collapse
|
222
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
223
|
Busta L, Budke JM, Jetter R. Identification of β-hydroxy fatty acid esters and primary, secondary-alkanediol esters in cuticular waxes of the moss Funaria hygrometrica. PHYTOCHEMISTRY 2016; 121:38-49. [PMID: 26553812 DOI: 10.1016/j.phytochem.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/08/2015] [Accepted: 10/27/2015] [Indexed: 05/29/2023]
Abstract
The plant cuticle, a multi-layered membrane that covers plant aerial surfaces to prevent desiccation, consists of the structural polymer cutin and surface-sealing waxes. Cuticular waxes are complex mixtures of ubiquitous, typically monofunctional fatty acid derivatives and taxon-specific, frequently bifunctional specialty compounds. To further our understanding of the chemical diversity of specialty compounds, the waxes on the aerial structures of the leafy gametophyte, sporophyte capsule, and calyptra of the moss Funaria hygrometrica were surveyed. Respective moss surfaces were extracted, and resulting lipid mixtures were analyzed by gas chromatography-mass spectrometry (GC-MS). The extracts contained ubiquitous wax compound classes along with two prominent, unidentified classes of compounds that exhibited some characteristics of bifunctional structures. Microscale transformations led to derivatives with characteristic MS fragmentation patterns suggesting possible structures for these compounds. To confirm the tentative structure assignments, one compound in each of the suspected homologous series was synthesized. Based on GC-MS comparison with the authentic standards, the first series of compounds was identified as containing esters formed by β-hydroxy fatty acids and wax alcohols, with ester chain lengths varying from C42 to C50 and the most prominent homolog being C46. The second series consisted of fatty acid esters of 1,7-alkanediols, linked via the primary hydroxyl group, with ester chain lengths C40-C52 also dominated by the C46 homolog. The β-hydroxy acid esters were restricted to the sporophyte capsule, and the diol esters to the leafy gametophyte and calyptra. Based on their homolog and isomer distributions, and the presence of free 1,7-triacontanediol, possible biosynthetic reactions leading to these compounds are discussed.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Jessica M Budke
- Department of Plant Biology, University of California - Davis, One Shields Ave., Davis, CA 95616, USA
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
224
|
Abstract
Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
225
|
Laila R, Robin AHK, Yang K, Park JI, Suh MC, Kim J, Nou IS. Developmental and Genotypic Variation in Leaf Wax Content and Composition, and in Expression of Wax Biosynthetic Genes in Brassica oleracea var. capitata. FRONTIERS IN PLANT SCIENCE 2016; 7:1972. [PMID: 28119701 PMCID: PMC5220014 DOI: 10.3389/fpls.2016.01972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/12/2016] [Indexed: 05/09/2023]
Abstract
Cuticular waxes act as a protective barrier against environmental stresses. In the present study, we investigated developmental and genotypic variation in wax formation of cabbage lines, with a view to understand the related morphology, genetics and biochemistry. Our studies revealed that the relative expression levels of wax biosynthetic genes in the first-formed leaf of the highest-wax line remained constantly higher but were decreased in other genotypes with leaf aging. Similarly, the expression of most of the tested genes exhibited decrease from the inner leaves to the outer leaves of 5-month-old cabbage heads in the low-wax lines in contrast to the highest-wax line. In 10-week-old plants, expression of wax biosynthetic genes followed a quadratic function and was generally increased in the early developing leaves but substantially decreased at the older leaves. The waxy compounds in all cabbage lines were predominately C29-alkane, -secondary alcohol, and -ketone. Its deposition was increased with leaf age in 5-month-old plants. The high-wax lines had dense, prominent and larger crystals on the leaf surface compared to low-wax lines under scanning electron microscopy. Principal component analysis revealed that the higher expression of LTP2 genes in the lowest-wax line and the higher expression of CER3 gene in the highest-wax line were probably associated with the comparatively lower and higher wax content in those two lines, respectively. This study furthers our understanding of the relationships between the expression of wax biosynthetic genes and the wax deposition in cabbage lines. Highlight: In cabbage, expression of wax-biosynthetic genes was generally decreased in older and senescing leaves, while wax deposition was increased with leaf aging, and C29-hydrocarbon was predominant in the wax crystals.
Collapse
Affiliation(s)
- Rawnak Laila
- Department of Horticulture, Sunchon National UniversitySuncheon, South Korea
| | | | - Kiwoung Yang
- Department of Horticulture, Sunchon National UniversitySuncheon, South Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National UniversitySuncheon, South Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National UniversitySuncheon, South Korea
- *Correspondence: Ill-Sup Nou,
| |
Collapse
|
226
|
Abstract
A gene family encoding six members of acyl-CoA-binding proteins (ACBP) exists in Arabidopsis and they are designated as AtACBP1-AtACBP6. They have been observed to play pivotal roles in plant lipid metabolism, consistent to the abilities of recombinant AtACBP in binding different medium- and long-chain acyl-CoA esters in vitro. While AtACBP1 and AtACBP2 are membrane-associated proteins with ankyrin repeats and AtACBP3 contains a signaling peptide for targeting to the apoplast, AtACBP4, AtACBP5 and AtACBP6 represent the cytosolic forms in the AtACBP family. They were verified to be subcellularly localized in the cytosol using diverse experimental methods, including cell fractionation followed by western blot analysis, immunoelectron microscopy and confocal laser-scanning microscopy using autofluorescence-tagged fusions. AtACBP4 (73.2 kDa) and AtACBP5 (70.1 kDa) are the largest, while AtACBP6 (10.4 kDa) is the smallest. Their binding affinities to oleoyl-CoA esters suggested that they can potentially transfer oleoyl-CoA esters from the plastids to the endoplasmic reticulum, facilitating the subsequent biosynthesis of non-plastidial membrane lipids in Arabidopsis. Recent studies on ACBP, extended from a dicot (Arabidopsis) to a monocot, revealed that six ACBP are also encoded in rice (Oryza sativa). Interestingly, three small rice ACBP (OsACBP1, OsACBP2 and OsACBP3) are present in the cytosol in comparison to one (AtACBP6) in Arabidopsis. In this review, the combinatory and distinct roles of the cytosolic AtACBP are discussed, including their functions in pollen and seed development, light-dependent regulation and substrate affinities to acyl-CoA esters.
Collapse
|
227
|
Xia K, Ou X, Gao C, Tang H, Jia Y, Deng R, Xu X, Zhang M. OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. PLANT, CELL & ENVIRONMENT 2015; 38:2662-73. [PMID: 26012744 DOI: 10.1111/pce.12576] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/18/2023]
Abstract
Cuticular wax forms a hydrophobic layer covering aerial plant organs and acting as a protective barrier against biotic and abiotic stresses. Compared with well-known wax biosynthetic pathway, molecular regulation of wax biosynthesis is less known. Here, we show that rice OsWS1, a member of the membrane-bound O-acyl transferase gene family, involved in wax biosynthesis and was regulated by an osa-miR1848. OsWS1-tagged green fluorescent protein localized to the endoplasmic reticulum (ER). Compared with wild-type rice, OsWS1 overexpression plants displayed a 3% increase in total wax, especially a 35% increase in very long-chain fatty acids, denser wax papillae around the stoma, more cuticular wax crystals formed on leaf and stem surfaces, pollen coats were thicker and more seedlings survived after water-deficit treatment. In contrast, OsWS1-RNAi and osa-miR1848 overexpression plants exhibited opposing changes. Gene expression analysis showed that overexpression of osa-miR1848 down-regulated OsWS1 transcripts; furthermore, expression profiles of OsWS1 and osa-miR1848 were inversely correlated in the leaf, panicle and stem, and upon water-deficit treatment. These results suggest that OsWS1 is regulated by osa-miR1848 and participates in cuticular wax formation.
Collapse
Affiliation(s)
- Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaojin Ou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Biology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunzhi Gao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Biology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadan Tang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Biology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxia Jia
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Rufang Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinlan Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
228
|
Zhang Z, Wei W, Zhu H, Challa GS, Bi C, Trick HN, Li W. W3 Is a New Wax Locus That Is Essential for Biosynthesis of β-Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat. PLoS One 2015; 10:e0140524. [PMID: 26468648 PMCID: PMC4607432 DOI: 10.1371/journal.pone.0140524] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022] Open
Abstract
The cuticle plays important roles in plant development, growth and defense against biotic and abiotic attacks. Crystallized epicuticular wax, the outermost layer of cuticle, is visible as white-bluish glaucousness. In crops like barley and wheat, glaucousness is trait of adaption to the dry and hot cultivation conditions, and hentriacontane-14,16-dione (β-diketone) and its hydroxy derivatives are the major and unique components of cuticular wax in the upper parts of adult plants. But their biosynthetic pathway and physiological role largely remain unknown. In the present research, we identified a novel wax mutant in wheat cultivar Bobwhite. The mutation is not allelic to the known wax production gene loci W1 and W2, and designated as W3 accordingly. Genetic analysis localized W3 on chromosome arm 2BS. The w3 mutation reduced 99% of β-diketones, which account for 63.3% of the total wax load of the wild-type. W3 is necessary for β-diketone synthesis, but has a different effect on β-diketone hydroxylation because the hydroxy-β-diketones to β-diketone ratio increased 11-fold in the w3 mutant. Loss of β-diketones caused failure to form glaucousness and significant increase of cuticle permeability in terms of water loss and chlorophyll efflux in the w3 mutant. Transcription of 23 cuticle genes from five functional groups was altered in the w3 mutant, 19 down-regulated and four up-regulated, suggesting a possibility that W3 encodes a transcription regulator coordinating expression of cuticle genes. Biosynthesis of β-diketones in wheat and their implications in glaucousness formation and drought and heat tolerance were discussed.
Collapse
Affiliation(s)
- Zhengzhi Zhang
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, 57007, United States of America
| | - Wenjie Wei
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, 57007, United States of America
| | - Huilan Zhu
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, 57007, United States of America
| | - Ghana S. Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, 57007, United States of America
| | - Caili Bi
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, United States of America
| | - Harold N. Trick
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, 66506, United States of America
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, 57007, United States of America
- * E-mail:
| |
Collapse
|
229
|
Ma X, Wang P, Zhou S, Sun Y, Liu N, Li X, Hou Y. De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii. BMC Genomics 2015; 16:753. [PMID: 26444539 PMCID: PMC4594960 DOI: 10.1186/s12864-015-1873-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/21/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cynanchum komarovii Al Iljinski is a xerophytic plant species widely distributing in the severely adverse environment of the deserts in northwest China. At present, the detailed transcriptomic and genomic data for C. komarovii are still insufficient in public databases. RESULTS To investigate changes of drought-responsive genes and explore the mechanisms of drought tolerance in C. komarovii, approximately 27.5 GB sequencing data were obtained using Illumina sequencing technology. After de novo assembly 148,715 unigenes were generated with an average length of 604 bp. Among these unigenes, 85,106 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. The results showed that a great number of unigenes were significantly affected by drought stress. We identified 3134 unigenes as reliable differentially expressed genes (DEGs). During drought stress, the regulatory genes were involved in signaling transduction pathways and in controlling the expression of functional genes. Moreover, C. komarovii activated many functional genes that directly protected against stress and improved tolerance to adapt drought condition. Importantly, the DEGs were involved in biosynthesis, export, and regulation of plant cuticle, suggesting that plant cuticle may play a vital role in response to drought stress and the accumulation of cuticle may allow C. komarovii to improve the tolerance to drought stress. CONCLUSION This is the first large-scale reference sequence data of C. komarovii, which enlarge the genomic resources of this species. Our comprehensive transcriptome analysis will provide a valuable resource for further investigation into the molecular adaptation of desert plants under drought condition and facilitate the exploration of drought-tolerant candidate genes.
Collapse
Affiliation(s)
- Xiaowen Ma
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Ping Wang
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Sihong Zhou
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yun Sun
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Nana Liu
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Xiaoning Li
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yuxia Hou
- College of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
230
|
Zhong J, Preston JC. Bridging the gaps: evolution and development of perianth fusion. THE NEW PHYTOLOGIST 2015; 208:330-335. [PMID: 26094556 DOI: 10.1111/nph.13517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
One of the most striking innovations in flower development is the congenital or postgenital union of petals (sympetaly) which has enabled dramatic specialization in flower structure and possibly accelerated speciation rates. Sympetalous flowers exhibit extraordinary variation in development, including the degree and timing of fusion, and fusion with other floral organs. Different axes of corolla tube complexity can be disentangled at the developmental level, with most variation being explained by differences in coordinated growth between interconnected and lobed regions of neighboring petal primordia, and between lower and upper portions of the corolla tube, defined by the stamen insertion boundary. Genetically, inter- and intra-specific variation in the degree of petal fusion is controlled by various inputs from genes that affect organ boundary and lateral growth, signaling between different cell types, and production of the cuticle. It is thus hypothesized that the evolution and diversification of fused petals, at least within the megadiverse Asteridae clade of core eudicots, have occurred through the modification of a conserved genetic pathway previously involved in free petal development.
Collapse
Affiliation(s)
- Jinshun Zhong
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
231
|
Liu Y, Li X, Chen G, Li M, Liu M, Liu D. Epidermal Micromorphology and Mesophyll Structure of Populus euphratica Heteromorphic Leaves at Different Development Stages. PLoS One 2015; 10:e0137701. [PMID: 26356300 PMCID: PMC4565707 DOI: 10.1371/journal.pone.0137701] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves.
Collapse
Affiliation(s)
- Yubing Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Xinrong Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Guoxiong Chen
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Mengmeng Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Meiling Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Dan Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
232
|
La Rocca N, Manzotti PS, Cavaiuolo M, Barbante A, Dalla Vecchia F, Gabotti D, Gendrot G, Horner DS, Krstajic J, Persico M, Rascio N, Rogowsky P, Scarafoni A, Consonni G. The maize fused leaves1 (fdl1) gene controls organ separation in the embryo and seedling shoot and promotes coleoptile opening. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5753-67. [PMID: 26093144 PMCID: PMC4566974 DOI: 10.1093/jxb/erv278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The fdl1-1 mutation, caused by an Enhancer/Suppressor mutator (En/Spm) element insertion located in the third exon of the gene, identifies a novel gene encoding ZmMYB94, a transcription factor of the R2R3-MYB subfamily. The fdl1 gene was isolated through co-segregation analysis, whereas proof of gene identity was obtained using an RNAi strategy that conferred less severe, but clearly recognizable specific mutant traits on seedlings. Fdl1 is involved in the regulation of cuticle deposition in young seedlings as well as in the establishment of a regular pattern of epicuticular wax deposition on the epidermis of young leaves. Lack of Fdl1 action also correlates with developmental defects, such as delayed germination and seedling growth, abnormal coleoptile opening and presence of curly leaves showing areas of fusion between the coleoptile and the first leaf or between the first and the second leaf. The expression profile of ZmMYB94 mRNA-determined by quantitative RT-PCR-overlaps the pattern of mutant phenotypic expression and is confined to a narrow developmental window. High expression was observed in the embryo, in the seedling coleoptile and in the first two leaves, whereas RNA level, as well as phenotypic defects, decreases at the third leaf stage. Interestingly several of the Arabidopsis MYB genes most closely related to ZmMYB94 are also involved in the activation of cuticular wax biosynthesis, suggesting deep conservation of regulatory processes related to cuticular wax deposition between monocots and dicots.
Collapse
Affiliation(s)
- Nicoletta La Rocca
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Priscilla S Manzotti
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Produzione, Territorio, Energia Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Marina Cavaiuolo
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Produzione, Territorio, Energia Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Alessandra Barbante
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Produzione, Territorio, Energia Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Francesca Dalla Vecchia
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Damiano Gabotti
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Produzione, Territorio, Energia Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Ghislaine Gendrot
- Université de Lyon, ENS de Lyon, INRA, CNRS, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - David S Horner
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Jelena Krstajic
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Produzione, Territorio, Energia Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Martina Persico
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Produzione, Territorio, Energia Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Nicoletta Rascio
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Peter Rogowsky
- Université de Lyon, ENS de Lyon, INRA, CNRS, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Alessio Scarafoni
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy Dipartimento di Scienze Agrarie e Ambientali (DISAA), Produzione, Territorio, Energia Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy Université de Lyon, ENS de Lyon, INRA, CNRS, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Produzione, Territorio, Energia Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
233
|
Borland AM, Wullschleger SD, Weston DJ, Hartwell J, Tuskan GA, Yang X, Cushman JC. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. PLANT, CELL & ENVIRONMENT 2015; 38:1833-49. [PMID: 25366937 DOI: 10.1111/pce.12479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 05/20/2023]
Abstract
Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.
Collapse
Affiliation(s)
- Anne M Borland
- School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - Stan D Wullschleger
- Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| | - David J Weston
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - James Hartwell
- Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gerald A Tuskan
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - Xiaohan Yang
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA
| |
Collapse
|
234
|
Liu D, Yang L, Zheng Q, Wang Y, Wang M, Zhuang X, Wu Q, Liu C, Liu S, Liu Y. Analysis of cuticular wax constituents and genes that contribute to the formation of 'glossy Newhall', a spontaneous bud mutant from the wild-type 'Newhall' navel orange. PLANT MOLECULAR BIOLOGY 2015; 88:573-90. [PMID: 26177912 DOI: 10.1007/s11103-015-0343-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/06/2015] [Indexed: 05/19/2023]
Abstract
Navel orange (Citrus sinensis [L.] Osbeck) fruit surfaces contain substantial quantities of cuticular waxes, which have important eco-physiological roles, such as water retention and pathogen defense. The wax constituents of ripe navel orange have been studied in various reports, while the wax changes occurring during fruit development and the molecular mechanism underlying their biosynthesis/export have not been investigated. Recently, we reported a spontaneous bud mutant from the wild-type (WT) 'Newhall' Navel orange. This mutant displayed unusual glossy fruit peels and was named 'glossy Newhall' (MT). In this study, we compared the developmental profiles of the epicuticular and intracuticular waxes on the WT and MT fruit surfaces. The formation of epicuticular wax crystals on the navel orange surface was shown to be dependent on the accumulation of high amounts of aliphatic wax components with trace amounts of terpenoids. In sharp contrast, the underlying intracuticular wax layers have relatively low concentrations of aliphatic wax components but high concentrations of cyclic wax compounds, especially terpenoids at the late fruit developmental stages. Our work also showed that many genes that are involved in wax biosynthesis and export pathways were down-regulated in MT fruit peels, leading to a decrease in aliphatic wax component amounts and the loss of epicuticular wax crystals, ultimately causing the glossy phenotype of MT fruits.
Collapse
Affiliation(s)
- Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Fu WJ, Chi Z, Ma ZC, Zhou HX, Liu GL, Lee CF, Chi ZM. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol 2015; 99:7481-94. [PMID: 26231137 DOI: 10.1007/s00253-015-6840-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 12/11/2022]
Abstract
It is generally regarded that the petroleum cannot be renewable. However, in recent years, it has been found that many marine cyanobacteria, some eubacteria, engineered Escherichia coli, some endophytic fungi, engineered yeasts, some marine yeasts, plants, and insects can synthesize hydrocarbons with different carbon lengths. If the organisms, especially some native microorganisms and engineered bacteria and yeasts, can synthesize and secret a large amount of hydrocarbons within a short period, alkanes in the petroleum can be renewable. It has been documented that there are eight pathways for hydrocarbon biosynthesis in different organisms. Unfortunately, most of native microorganisms, engineered E. coli and engineered yeasts, only synthesize a small amount of intracellular and extracellular hydrocarbons. Recently, Aureobasidium pullulans var. melanogenum isolated from a mangrove ecosystem has been found to be able to synthesize and secret over 21.5 g/l long-chain hydrocarbons with a yield of 0.275 g/g glucose and a productivity of 0.193 g/l/h within 5 days. The yeast may have highly potential applications in alkane production.
Collapse
Affiliation(s)
- Wen-Juan Fu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
236
|
Kajiyama T, Fujii A, Arikawa K, Habu T, Mochizuki N, Nagatani A, Kambara H. Position-Specific Gene Expression Analysis Using a Microgram Dissection Method Combined with On-Bead cDNA Library Construction. PLANT & CELL PHYSIOLOGY 2015; 56:1320-1328. [PMID: 26092972 DOI: 10.1093/pcp/pcv078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Gene expression analysis is a key technology that is used to understand living systems. Multicellular organisms, including plants, are composed of various tissues and cell types, each of which exhibits a unique gene expression pattern. However, because of their rigid cell walls, plant cells are difficult to isolate from the whole plant. Although laser dissection has been used to circumvent this problem, the plant sample needs to be fixed beforehand, which presents several problems. In the present study, we developed an alternative method to conduct highly reliable gene expression profiling. First, we assembled a dissection apparatus that used a narrow, sharpened needle to dissect out a microsample of fresh plant tissue (0.1-0.2 mm on each side) automatically from a target site within a short time frame. Then, we optimized a protocol to synthesize a high-quality cDNA library on magnetic beads using a single microsample. The cDNA library was amplified and subjected to high-throughput sequencing. In this way, a stable and reliable system was developed to conduct gene expression profiling in small regions of a plant. The system was used to analyze the gene expression patterns at successive 50 µm intervals in the shoot apex of a 4-day-old Arabidopsis seedling. Clustering analysis of the data demonstrated that two small, adjacent domains, the shoot apical meristem and the leaf primordia, were clearly distinguishable. This system should be broadly applicable in the investigation of the spatial organization of gene expression in various contexts.
Collapse
Affiliation(s)
| | - Akihiko Fujii
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601, Japan
| | - Kouji Arikawa
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601, Japan
| | - Toru Habu
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601, Japan
| | | | - Akira Nagatani
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideki Kambara
- Central Research Laboratory, Hitachi, Ltd., Tokyo, 185-8601, Japan
| |
Collapse
|
237
|
Molecular Mechanisms Underlying Hull-Caryopsis Adhesion/Separation Revealed by Comparative Transcriptomic Analysis of Covered/Naked Barley (Hordeum vulgare L.). Int J Mol Sci 2015; 16:14181-93. [PMID: 26110389 PMCID: PMC4490547 DOI: 10.3390/ijms160614181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 12/31/2022] Open
Abstract
The covered/naked caryopsis trait of barley is an important agronomic trait because it is directly linked to dietary use. The formation of covered/naked caryopsis is controlled by an NUD transcription factor, which is involved in pericarp cuticle development. However, the molecular mechanism underlying this trait remains so far largely unknown. In this study, comparative transcriptomes of grains three weeks after anthesis of Tibetan Hulless barley landrace Dulihuang and covered barley Morex were analyzed using RNA-seq technique. A total of 4031 differentially expressed genes (DEGs) were identified. The Nud gene was overexpressed in Morex, with trace expression in Dulihuang. Among seventeen cuticle related DEGs, sixteen were down regulated and one up regulated in Morex. These results suggest that the Nud gene in covered caryopsis might down regulate cuticle related genes, which may cause a permeable cuticle over pericarp, leading to a hull-caryopsis organ fusion. A functional cuticle covering the pericarp of naked caryopsis might be the result of deletion or low expression level of the Nud gene. The functional cuticle defines a perfect boundary to separate the caryopsis from the hull in naked barley.
Collapse
|
238
|
Quilichini TD, Grienenberger E, Douglas CJ. The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. PHYTOCHEMISTRY 2015; 113:170-82. [PMID: 24906292 DOI: 10.1016/j.phytochem.2014.05.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The formation of the durable outer pollen wall, largely composed of sporopollenin, is essential for the protection of the male gametophyte and plant reproduction. Despite its apparent strict conservation amongst land plants, the composition of sporopollenin and the biosynthetic pathway(s) yielding this recalcitrant biopolymer remain elusive. Recent molecular genetic studies in Arabidopsis thaliana (Arabidopsis) and rice have, however, identified key genes involved in sporopollenin formation, allowing a better understanding of the biochemistry and cell biology underlying sporopollenin biosynthesis and pollen wall development. Herein, current knowledge of the biochemical composition of the outer pollen wall is reviewed, with an emphasis on enzymes with characterized biochemical activities in sporopollenin and pollen coat biosynthesis. The tapetum, which forms the innermost sporophytic cell layer of the anther and envelops developing pollen, plays an essential role in sporopollenin and pollen coat formation. Recent studies show that several tapetum-expressed genes encode enzymes that metabolize fatty acid derived compounds to form putative sporopollenin precursors, including tetraketides derived from fatty acyl-CoA starter molecules, but analysis of mutants defective in pollen wall development indicate that other components are also incorporated into sporopollenin. Also highlighted are the many uncertainties remaining in the development of a sporopollenin-fortified pollen wall, particularly in relation to the mechanisms of sporopollenin precursor transport and assembly into the patterned form of the pollen wall. A working model for sporopollenin biosynthesis is proposed based on the data obtained largely from studies of Arabidopsis, and future challenges to complete our understanding of pollen wall biology are outlined.
Collapse
Affiliation(s)
- Teagen D Quilichini
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Etienne Grienenberger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
239
|
|
240
|
Lee K, Nah SY, Kim ES. Micromorphology and development of the epicuticular structure on the epidermal cell of ginseng leaves. J Ginseng Res 2015; 39:135-40. [PMID: 26045686 PMCID: PMC4452526 DOI: 10.1016/j.jgr.2014.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A leaf cuticle has different structures and functions as a barrier to water loss and as protection from various environmental stressors. METHODS Leaves of Panax ginseng were examined by scanning electron microscopy and transmission electron microscopy to investigate the characteristics and development of the epicuticular structure. RESULTS Along the epidermal wall surface, the uniformly protuberant fine structure was on the adaxial surface of the cuticle. This epicuticular structure was highly wrinkled and radially extended to the marginal region of epidermal cells. The cuticle at the protuberant positions maintained the same thickness. The density of the wall matrix under the structures was also similar to that of the other wall region. By contrast, none of this structure was distributed on the abaxial surface, except in the region of the stoma. During the early developmental phase of the epicuticular structure, small vesicles appeared on wall-cuticle interface in the peripheral wall of epidermal cells. Some electron-opaque vesicles adjacent to the cuticle were fused and formed the cuticle layer, whereas electron-translucent vesicles contacted each other and progressively increased in size within the epidermal wall. CONCLUSION The outwardly projected cuticle and epidermal cell wall (i.e., an epicuticular wrinkle) acts as a major barrier to block out sunlight in ginseng leaves. The small vesicles in the peripheral region of epidermal cells may suppress the cuticle and parts of epidermal wall, push it upward, and consequently contribute to the formation of the epicuticular structure.
Collapse
Affiliation(s)
- Kyounghwan Lee
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Seung-Yeol Nah
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Eun-Soo Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
- Korea Hemp Institute, Konkuk University, Seoul, Korea
| |
Collapse
|
241
|
Lee SB, Suh MC. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. PLANT CELL REPORTS 2015; 34:557-72. [PMID: 25693495 DOI: 10.1007/s00299-015-1772-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 05/03/2023]
Abstract
The aerial parts of plants are covered with a cuticle, a hydrophobic layer consisting of cutin polyester and cuticular waxes that protects them from various environmental stresses. Cuticular waxes mainly comprise very long chain fatty acids and their derivatives such as aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters that are also important raw materials for the production of lubricants, adhesives, cosmetics, and biofuels. The major function of cuticular waxes is to control non-stomatal water loss and gas exchange. In recent years, the in planta roles of many genes involved in cuticular wax biosynthesis have been characterized not only from model organisms like Arabidopsis thaliana and saltwater cress (Eutrema salsugineum), but also crop plants including maize, rice, wheat, tomato, petunia, Medicago sativa, Medicago truncatula, rapeseed, and Camelina sativa through genetic, biochemical, molecular, genomic, and cell biological approaches. In this review, we discuss recent advances in the understanding of the biological functions of genes involved in cuticular wax biosynthesis, transport, and regulation of wax deposition from Arabidopsis and crop species, provide information on cuticular wax amounts and composition in various organs of nine representative plant species, and suggest the important issues that need to be investigated in this field of study.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | | |
Collapse
|
242
|
Lee J, Yang K, Lee M, Kim S, Kim J, Lim S, Kang GH, Min SR, Kim SJ, Park SU, Jang YS, Lim SS, Kim H. Differentiated cuticular wax content and expression patterns of cuticular wax biosynthetic genes in bloomed and bloomless broccoli (Brassica oleracea var. italica). Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
243
|
Zhou X, Li L, Xiang J, Gao G, Xu F, Liu A, Zhang X, Peng Y, Chen X, Wan X. OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. PLoS One 2015; 10:e116676. [PMID: 25555239 PMCID: PMC4282203 DOI: 10.1371/journal.pone.0116676] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022] Open
Abstract
Cuticular wax covers aerial organs of plants and functions as the outermost barrier against non-stomatal water loss. We reported here the functional characterization of the Glossy1(GL1)-homologous gene OsGL1-3 in rice using overexpression and RNAi transgenic rice plants. OsGL1-3 gene was ubiquitously expressed at different level in rice plants except root and its expression was up-regulated under ABA and PEG treatments. The transient expression of OsGL1-3–GFP fusion protein indicated that OsGL1-3 is mainly localized in the plasma membrane. Compared to the wild type, overexpression rice plants exhibited stunted growth, more wax crystallization on leaf surface, and significantly increased total cuticular wax load due to the prominent changes of C30–C32 aldehydes and C30 primary alcohols. While the RNAi knockdown mutant of OsGL1-3 exhibited no significant difference in plant height, but less wax crystallization and decreased total cuticular wax accumulation on leaf surface. All these evidences, together with the effects of OsGL1-3 on the expression of some wax synthesis related genes, suggest that OsGL1-3 is involved in cuticular wax biosynthesis. Overexpression of OsGL1-3 decreased chlorophyll leaching and water loss rate whereas increased tolerance to water deficit at both seedling and late-tillering stages, suggesting an important role of OsGL1-3 in drought tolerance.
Collapse
Affiliation(s)
- Xiaoyun Zhou
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Linzhi Li
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jianhua Xiang
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China
| | - Guofu Gao
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- Research Institute of Science and Technology Information, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Faxi Xu
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ailing Liu
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xianwen Zhang
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yan Peng
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Xinbo Chen
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- * E-mail: (XC); (XW)
| | - Xiangyuan Wan
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- State Key laboratory of Main Crop Germplasm Innovation, Beijing, China
- * E-mail: (XC); (XW)
| |
Collapse
|
244
|
Lee SB, Suh MC. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:48-60. [PMID: 25305760 DOI: 10.1093/pcp/pcu142] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aerial parts of all land plants are covered with hydrophobic cuticular wax layers that act as the first barrier against the environment. The MYB94 transcription factor gene is expressed in abundance in aerial organs and shows a higher expression in the stem epidermis than within the stem. When seedlings were subjected to various treatments, the expression of the MYB94 transcription factor gene was observed to increase approximately 9-fold under drought, 8-fold for ABA treatment and 4-fold for separate NaCl and mannitol treatments. MYB94 harbors the transcriptional activation domain at its C-terminus, and fluorescent signals from MYB94:enhanced yellow fluorescent protein (eYFP) were observed in the nucleus of tobacco epidermis and in transgenic Arabidopsis roots. The total wax loads increased by approximately 2-fold in the leaves of the MYB94-overexpressing (MYB94 OX) lines, as compared with those of the wild type (WT). MYB94 activates the expression of WSD1, KCS2/DAISY, CER2, FAR3 and ECR genes by binding directly to their gene promoters. An increase in the accumulation of cuticular wax was observed to reduce the rate of cuticular transpiration in the leaves of MYB94 OX lines, under drought stress conditions. Taken together, a R2R3-type MYB94 transcription factor activates Arabidopsis cuticular wax biosynthesis and might be important in plant response to environmental stress, including drought.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| |
Collapse
|
245
|
Lee SB, Kim H, Kim RJ, Suh MC. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. PLANT CELL REPORTS 2014; 33:1535-46. [PMID: 24880908 DOI: 10.1007/s00299-014-1636-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 05/03/2023]
Abstract
Camelina has been highlighted as an emerging oilseed crop. Transgenic Camelina plants overexpressing Arabidopsis MYB96 exhibited drought resistance by activating expression of Camelina wax biosynthetic genes and accumulating wax load. Camelina (Camelina sativa L.) is an oilseed crop in the Brassicaeae family with potential to expand biofuel production to marginal land. The aerial portion of all land plants is covered with cuticular wax to protect them from desiccation. In this study, the Arabidopsis MYB96 gene was overexpressed in Camelina under the control of the CaMV35S promoter. Transgenic Camelina plants overexpressing Arabidopsis MYB96 exhibited normal growth and development and enhanced tolerance to drought. Deposition of epicuticular wax crystals and total wax loads increased significantly on the surfaces of transgenic leaves compared with that of non-transgenic plants. The levels of alkanes and primary alcohols prominently increased in transgenic Camelina plants relative to non-transgenic plants. Cuticular transpiration occurred more slowly in transgenic leaves than that in non-transgenic plants. Genome-wide identification of Camelina wax biosynthetic genes enabled us to determine that the expression levels of CsKCS2, CsKCS6, CsKCR1-1, CsKCR1-2, CsECR, and CsMAH1 were approximately two to sevenfold higher in transgenic Camelina leaves than those in non-transgenic leaves. These results indicate that MYB96-mediated transcriptional regulation of wax biosynthetic genes is an approach applicable to generating drought-resistant transgenic crops. Transgenic Camelina plants with enhanced drought tolerance could be cultivated on marginal land to produce renewable biofuels and biomaterials.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | |
Collapse
|
246
|
Waugh MW, Marsh ENG. Solvent isotope effects on alkane formation by cyanobacterial aldehyde deformylating oxygenase and their mechanistic implications. Biochemistry 2014; 53:5537-43. [PMID: 25142631 PMCID: PMC4151702 DOI: 10.1021/bi5005766] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction catalyzed by cyanobacterial aldehyde deformylating oxygenase is of interest both because of its potential application to the production of biofuels and because of the highly unusual nature of the deformylation reaction it catalyzes. Whereas the proton in the product alkane derives ultimately from the solvent, the identity of the proton donor in the active site remains unclear. To investigate the proton transfer step, solvent isotope effect (SIE) studies were undertaken. The rate of alkane formation was found to be maximal at pH 6.8 and to be the same in D2O or H2O within experimental error, implying that proton transfer is not a kinetically significant step. However, when the ratio of protium to deuterium in the product alkane was measured as a function of the mole fraction of D2O, a (D2O)SIEobs of 2.19 ± 0.02 was observed. The SIE was invariant with the mole fraction of D2O, indicating the involvement of a single protic site in the reaction. We interpret this SIE as most likely arising from a reactant state equilibrium isotope effect on a proton donor with an inverse fractionation factor, for which Φ = 0.45. These observations are consistent with an iron-bound water molecule being the proton donor to the alkane in the reaction.
Collapse
Affiliation(s)
- Matthew W Waugh
- Department of Chemistry and ‡Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
247
|
Guschina IA, Everard JD, Kinney AJ, Quant PA, Harwood JL. Studies on the regulation of lipid biosynthesis in plants: application of control analysis to soybean. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:1488-500. [PMID: 24565795 DOI: 10.1016/j.bbamem.2014.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 01/13/2023]
Abstract
Although there is much knowledge of the enzymology (and genes coding the proteins) of lipid biosynthesis in higher plants, relatively little attention has been paid to regulation. We have demonstrated the important role for cholinephosphate cytidylyltransferase in the biosynthesis of the major extra-plastidic membrane lipid, phosphatidylcholine. We followed this work by applying control analysis to light-induced fatty acid synthesis. This was the first such application to lipid synthesis in any organism. The data showed that acetyl-CoA carboxylase was very important, exerting about half of the total control. We then applied metabolic control analysis to lipid accumulation in important oil crops - oilpalm, olive, and rapeseed. Recent data with soybean show that the block of fatty acid biosynthesis reactions exerts somewhat more control (63%) than lipid assembly although both are clearly very important. These results suggest that gene stacks, targeting both parts of the overall lipid synthesis pathway will be needed to increase significantly oil yields in soybean. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
| | - John D Everard
- DuPont Agricultural Biotechnology, P.O. Box 80353, Wilmington, DE 19880, USA
| | - Anthony J Kinney
- DuPont Agricultural Biotechnology, P.O. Box 80353, Wilmington, DE 19880, USA
| | - Patti A Quant
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
248
|
Wang J, Li W, Wang W. Fine mapping and metabolic and physiological characterization of the glume glaucousness inhibitor locus Iw3 derived from wild wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:831-41. [PMID: 24522723 DOI: 10.1007/s00122-014-2260-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/03/2014] [Indexed: 05/08/2023]
Abstract
This research provided the first view of metabolic and physiological effect of a tissue-specific glaucousness inhibitor in wheat and laid foundation for map-based cloning of the Iw3 locus. Cuticular wax constitutes the outermost layer of plant skin, and its composition greatly impacts plant appearance and plant-environment interaction. Epicuticular wax in the upper part of adult wheat plants can form the glaucousness, which is associated with drought tolerance. In this research, we characterized a glume-specific glaucousness inhibitor, Iw3, by fine mapping, physiological, and molecular approaches. Iw3 inhibits glaucousness formation by altering wax composition. Compared to the wild type, Iw3 eliminated β-diketone, reduced 47 % primary alcohols, but increased aldehyde 400-fold and alkanes fivefold, which led to 30 % reduction of total glume wax load. Loss of the glaucousness increased cuticle permeability, suggesting an important role in drought sensitivity. Genetically, the glaucousness-inhibiting effect by Iw3 is partially dominant in a dosage-dependent manner. We localized the Iw3 locus within a 0.13-cM interval delimited by marker loci Xpsp3000 and XWL3096. Of the 53 wax genes assayed, we detected transcription changes in nine genes by Iw3, downregulation of Cer4-1 and upregulation of other five Cer4 and three KCS homologs. All these results provided initial insights into Iw3-mediated regulation of wax metabolism and paved way for in-depth characterization of the Iw3 locus and the glaucousness-related β-diketone pathway.
Collapse
Affiliation(s)
- Jing Wang
- College of Agronomy, Northwestern A&F University, Yangling, 712100, Shaanxi, China
| | | | | |
Collapse
|
249
|
Pulsifer IP, Lowe C, Narayaran SA, Busuttil AS, Vishwanath SJ, Domergue F, Rowland O. Acyl-lipid thioesterase1-4 from Arabidopsis thaliana form a novel family of fatty acyl-acyl carrier protein thioesterases with divergent expression patterns and substrate specificities. PLANT MOLECULAR BIOLOGY 2014; 84:549-63. [PMID: 24214063 DOI: 10.1007/s11103-013-0151-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/23/2013] [Indexed: 05/21/2023]
Abstract
Hydrolysis of fatty acyl thioester bonds by thioesterases to produce free fatty acids is important for dictating the diversity of lipid metabolites produced in plants. We have characterized a four-member family of fatty acyl thioesterases from Arabidopsis thaliana, which we have called acyl-lipid thioesterase1 (ALT1), ALT2, ALT3, and ALT4. The ALTs belong to the Hotdog fold superfamily of thioesterases. ALT-like genes are present in diverse plant taxa, including dicots, monocots, lycophytes, and microalgae. The four Arabidopsis ALT genes were found to have distinct gene expression profiles with respect to each other. ALT1 was expressed specifically in stem epidermal cells and flower petals. ALT2 was expressed specifically in root endodermal and peridermal cells as well as in stem lateral organ boundary cells. ALT3 was ubiquitously expressed in aerial and root tissues and at much higher levels than the other ALTs. ALT4 expression was restricted to anthers. All four proteins were localized in plastids via an N-terminal targeting sequence of about 48 amino acids. When expressed in Escherichia coli, the ALT proteins used endogenous fatty acyl-acyl carrier protein substrates to generate fatty acids that varied in chain length (C6-C18), degree of saturation (saturated and monounsaturated), and oxidation state (fully reduced and β-ketofatty acids). Despite their high amino acid sequence identities, each enzyme produced a different profile of lipids in E. coli. The biological roles of these proteins are unknown, but they potentially generate volatile lipid metabolites that have previously not been reported in Arabidopsis.
Collapse
Affiliation(s)
- Ian P Pulsifer
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | | | | | | | | | | |
Collapse
|
250
|
Szymanski J, Brotman Y, Willmitzer L, Cuadros-Inostroza Á. Linking gene expression and membrane lipid composition of Arabidopsis. THE PLANT CELL 2014; 26:915-28. [PMID: 24642935 PMCID: PMC4001401 DOI: 10.1105/tpc.113.118919] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/27/2014] [Accepted: 02/17/2014] [Indexed: 05/20/2023]
Abstract
Glycerolipid metabolism of plants responds dynamically to changes in light intensity and temperature, leading to the modification of membrane lipid composition to ensure optimal biochemical and physical properties in the new environment. Although multiple posttranscriptional regulatory mechanisms have been reported to be involved in the process, the contribution of transcriptional regulation remains largely unknown. Here, we present an integrative analysis of transcriptomic and lipidomic data, revealing large-scale coordination between gene expression and changes in glycerolipid levels during the Arabidopsis thaliana response to light and temperature stimuli. Using a multivariate regression technique called O2PLS, we show that the gene expression response is strictly coordinated at the biochemical pathway level and occurs in parallel with changes of specific glycerolipid pools. Five interesting candidate genes were chosen for further analysis from a larger set of candidates identified based on their close association with various groups of glycerolipids. Lipidomic analysis of knockout mutant lines of these five genes showed a significant relationship between the coordination of transcripts and glycerolipid levels in a changing environment and the effects of single gene perturbations.
Collapse
|