201
|
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012; 6:80-92. [PMID: 22728672 DOI: 10.4161/fly.19695] [Citation(s) in RCA: 7878] [Impact Index Per Article: 606.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.
Collapse
Affiliation(s)
- Pablo Cingolani
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Wang CIA, Lewis RJ. Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochem Pharmacol 2012; 85:153-62. [PMID: 22975406 DOI: 10.1016/j.bcp.2012.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/23/2022]
Abstract
Their ubiquitous nature, wide cellular distribution and versatile molecular recognition and signalling help make G-protein binding receptors (GPCRs) the most important class of membrane proteins in clinical medicine, accounting for ∼40% of all current therapeutics. A large percentage of current drugs target the endogenous ligand binding (orthosteric) site, which are structurally and evolutionarily conserved, particularly among members of the same GPCR subfamily. With the recent advances in GPCR X-ray crystallography, new opportunities for developing novel subtype selective drugs have emerged. Given the increasing recognition that the extracellular surface conformation changes in response to ligand binding, it is likely that all GPCRs possess an allosteric site(s) capable of regulating GPCR signalling. Allosteric sites are less structurally conserved than their corresponding orthosteric site and thus provide new opportunities for the development of more selective drugs. Constitutive oligomerisation (dimerisation) identified in many of the GPCRs investigated, adds another dimension to the structural and functional complexity of GPCRs. In this review, we compare 60 crystal structures of nine GPCR subtypes (rhodopsin, ß₂-AR, ß₁-AR, A(2a)-AR, CXCR4, D₃R, H₁R, M₂R, M₃R) across four subfamilies of Class A GPCRs, and discuss mechanisms involved in receptor activation and potential allosteric binding sites across the highly variable extracellular surface of these GPCRs. This analysis has identified a new extracellular salt bridge (ESB-2) that might be exploited in the design of allosteric modulators.
Collapse
Affiliation(s)
- Ching-I Anderson Wang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072 Australia
| | | |
Collapse
|
203
|
Choi WT, Kumar S, Madani N, Han X, Tian S, Dong CZ, Liu D, Duggineni S, Yuan J, Sodroski JG, Huang Z, An J. A novel synthetic bivalent ligand to probe chemokine receptor CXCR4 dimerization and inhibit HIV-1 entry. Biochemistry 2012; 51:7078-86. [PMID: 22897429 DOI: 10.1021/bi2016712] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemokine receptor CXCR4 is one of two principal coreceptors for the entry of HIV-1 into target cells. CXCR4 is known to form homodimers. We previously demonstrated that the amino terminus of viral macrophage protein II (vMIP-II) is the major determinant for CXCR4 recognition, and that V1 peptide derived from the N-terminus of vMIP-II (1-21 residues) showed significant CXCR4 binding. Interestingly, an all-d-amino acid analogue of V1 peptide, DV1 peptide, displayed an even higher binding affinity and strong antiviral activity in inhibiting the replication of CXCR4-dependent HIV-1 strains. In this study, we synthetically linked two DV1 peptides with the formation of a disulfide bond between the two cysteine residues present in the peptide sequence to generate a dimeric molecule potentially capable of interacting with two CXCR4 receptors. DV1 dimer exhibited enhanced binding affinity and antiviral activity compared with those of DV1 monomer. Ligand binding site mapping experiments showed that DV1 dimer overlaps with HIV-1 gp120 on CXCR4 binding sites, including several transmembrane (TM) residues located close to the extracellular side and the N-terminus of CXCR4. This finding was supported by the molecular modeling of CXCR4 dimer-DV1 dimer interaction based on the crystal structure of CXCR4, which showed that DV1 dimer is capable of interacting with the CXCR4 dimeric structure by allowing the N-terminus of each DV1 monomer to reach into the binding pocket of CXCR4 monomer. The development of this bivalent ligand provides a tool for further probing the functions of CXCR4 dimerization and studying CXCR4 heterodimerization with other receptors.
Collapse
Affiliation(s)
- Won-Tak Choi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Johnstone EKM, Pfleger KDG. Receptor-Heteromer Investigation Technology and its application using BRET. Front Endocrinol (Lausanne) 2012; 3:101. [PMID: 22936924 PMCID: PMC3424490 DOI: 10.3389/fendo.2012.00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/04/2012] [Indexed: 01/08/2023] Open
Abstract
Receptor heteromerization has the potential to alter every facet of receptor functioning, leading to new pharmacological profiles with increased signaling diversity and regulation from that of the monomeric receptor, or indeed receptor homomer. An understanding of the molecular consequences of receptor heteromerization will provide new insights into the physiology and pathology mediated by receptors, expanding the possibilities for pharmacological discovery. Particularly advantageous approaches to investigate novel heteromer pharmacology utilize cell-based assay technologies that assess ligand-dependent functional responses specific to the receptor heteromer. Importantly, this allows for differentiation of heteromer-specific pharmacology from pharmacology associated with the co-expressed receptor monomers and homomers. The Receptor-Heteromer Investigation Technology (Receptor-HIT) successfully employs a proximity-based reporter system, such as bioluminescence resonance energy transfer (BRET), in a configuration that enables determination of such heteromer-specific pharmacology. Therefore, Receptor-HIT provides a simple, robust and versatile approach for investigating the elusive "biochemical fingerprint" of receptor heteromers.
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Laboratory for Molecular Endocrinology – GPCRs, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western AustraliaPerth, WA, Australia
| | - Kevin D. G. Pfleger
- Laboratory for Molecular Endocrinology – GPCRs, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western AustraliaPerth, WA, Australia
- Dimerix Bioscience Pty LtdPerth, WA, Australia
| |
Collapse
|
205
|
Kobayashi S, Matsuo R, Sadamoto H, Watanabe S, Ito E. Excitatory effects of GABA on procerebrum neurons in a slug. J Neurophysiol 2012; 108:989-98. [DOI: 10.1152/jn.01137.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classical neurotransmitters, such as glutamate and γ-aminobutyric acid (GABA), often have different actions on invertebrate neurons from those reported for vertebrate neurons. In the terrestrial mollusk Limax, glutamate was found to function as an inhibitory transmitter in the procerebrum (PC), but it has not yet been clarified how GABA acts in the PC. We thus examined what effects GABA exerts on PC neurons in the present study. For this purpose, we first applied GABA to isolated PC preparations and recorded postsynaptic currents and potentials in PC neurons. The GABA application reduced the amplitude of inhibitory postsynaptic currents and depolarization-induced outward currents recorded in nonbursting neurons and increased the number of spontaneous spikes of nonbursting neurons. However, direct GABA-induced currents were not observed in either bursting or nonbursting neurons. These results suggest a potential direct effect of GABA on outward currents resulting in enhanced excitability of PC neurons. Next, we measured the change in [Ca2+]i in cultured PC neurons by application of GABA. The GABA application increased spontaneous Ca2+ events in cultured neurons. These Ca2+ events were ascribable to the influx of extracellular Ca2+. We then confirmed the presence of GABA and GABA receptors in the PC. The GABA-like immunoreactivity was observed in the neuropil layers of the PC, and the mRNAs for both GABAA and GABAB receptors were expressed in the PC. In particular, GABAB receptor mRNA, rather than GABAA, was found to be more abundantly expressed in the PC. These results suggest that GABA functions as an excitatory modulator for PC neurons via mainly GABAB receptors.
Collapse
Affiliation(s)
- Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan; and
| | - Ryota Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan; and
| | - Hisayo Sadamoto
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan; and
| | - Satoshi Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan; and
| |
Collapse
|
206
|
Presynaptic GABA(B) receptors decrease neurotransmitter release in vestibular nuclei neurons during vestibular compensation. Neuroscience 2012; 223:333-54. [PMID: 22871524 DOI: 10.1016/j.neuroscience.2012.07.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/18/2012] [Accepted: 07/30/2012] [Indexed: 01/25/2023]
Abstract
Unilateral damage to the peripheral vestibular receptors precipitates a debilitating syndrome of oculomotor and balance deficits at rest, which extensively normalize during the first week after the lesion due to vestibular compensation. In vivo studies suggest that GABA(B) receptor activation facilitates recovery. However, the presynaptic or postsynaptic sites of action of GABA(B) receptors in vestibular nuclei neurons after lesions have not been determined. Accordingly, here presynaptic and postsynaptic GABA(B) receptor activity in principal cells of the tangential nucleus, a major avian vestibular nucleus, was investigated using patch-clamp recordings correlated with immunolabeling and confocal imaging of the GABA(B) receptor subunit-2 (GABA(B)R2) in controls and operated chickens shortly after unilateral vestibular ganglionectomy (UVG). Baclofen, a GABA(B) agonist, generated no postsynaptic currents in principal cells in controls, which correlated with weak GABA(B)R2 immunolabeling on principal cell surfaces. However, baclofen decreased miniature excitatory postsynaptic current (mEPSC) and GABAergic miniature inhibitory postsynaptic current (mIPSC) events in principal cells in controls, compensating and uncompensated chickens three days after UVG, indicating the presence of functional GABA(B) receptors on presynaptic terminals. Baclofen decreased GABAergic mIPSC frequency to the greatest extent in principal cells on the intact side of compensating chickens, with concurrent increases in GABA(B)R2 pixel brightness and percentage overlap in synaptotagmin 2-labeled terminals. In uncompensated chickens, baclofen decreased mEPSC frequency to the greatest extent in principal cells on the intact side, with concurrent increases in GABA(B)R2 pixel brightness and percentage overlap in synaptotagmin 1-labeled terminals. Altogether, these results revealed changes in presynaptic GABA(B) receptor function and expression which differed in compensating and uncompensated chickens shortly after UVG. This work supports an important role for GABA(B) autoreceptor-mediated inhibition in vestibular nuclei neurons on the intact side during early stages of vestibular compensation, and a role for GABA(B) heteroreceptor-mediated inhibition of glutamatergic terminals on the intact side in the failure to recover function.
Collapse
|
207
|
Salahpour A, Caron MG. Food for thought: the physiological relevance of ghrelin and dopamine D2 receptor heterodimerization in the regulation of appetite. Neuron 2012; 73:210-1. [PMID: 22284175 DOI: 10.1016/j.neuron.2012.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Establishing whether G protein-coupled receptors (GPCRs) form physiologically relevant functional homo- and heteroligomers in vivo has been a major biochemical challenge. In this issue of Neuron, Kern et al. (2012) investigate whether the anorexigenic effects of D2 dopamine receptors may be a direct consequence of allosteric modulation by Apo-ghrelin receptors.
Collapse
Affiliation(s)
- Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | | |
Collapse
|
208
|
Kern A, Albarran-Zeckler R, Walsh HE, Smith RG. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 2012; 73:317-32. [PMID: 22284186 DOI: 10.1016/j.neuron.2011.10.038] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2011] [Indexed: 12/25/2022]
Abstract
We identified subsets of neurons in the brain that coexpress the dopamine receptor subtype-2 (DRD2) and the ghrelin receptor (GHSR1a). Combination of FRET confocal microscopy and Tr-FRET established the presence of GHSR1a:DRD2 heteromers in hypothalamic neurons. To interrogate function, mice were treated with the selective DRD2 agonist cabergoline, which produced anorexia in wild-type and ghrelin⁻/⁻ mice; intriguingly, ghsr⁻/⁻ mice were refractory illustrating dependence on GHSR1a, but not ghrelin. Elucidation of mechanism showed that formation of GHSR1a:DRD2 heteromers allosterically modifies canonical DRD2 dopamine signaling resulting in Gβγ subunit-dependent mobilization of [Ca²⁺](i) independent of GHSR1a basal activity. By targeting the interaction between GHSR1a and DRD2 in wild-type mice with a highly selective GHSR1a antagonist (JMV2959) cabergoline-induced anorexia was blocked. Inhibiting dopamine signaling in subsets of neurons with a GHSR1a antagonist has profound therapeutic implications by providing enhanced selectivity because neurons expressing DRD2 alone would be unaffected.
Collapse
Affiliation(s)
- Andras Kern
- Department of Metabolism and Aging, The Scripps Research Institute-Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
209
|
Sushi domains confer distinct trafficking profiles on GABAB receptors. Proc Natl Acad Sci U S A 2012; 109:12171-6. [PMID: 22778417 DOI: 10.1073/pnas.1201660109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA(B) receptors mediate slow inhibitory neurotransmission in the brain and feature during excitatory synaptic plasticity, as well as various neurological conditions. These receptors are obligate heterodimers composed of GABA(B)R1 and R2 subunits. The two predominant R1 isoforms differ by the presence of two complement control protein modules or Sushi domains (SDs) in the N terminus of R1a. By using live imaging, with an α-bungarotoxin-binding site (BBS) and fluorophore-linked bungarotoxin, we studied how R2 stabilizes R1b subunits at the cell surface. Heterodimerization with R2 reduced the rate of internalization of R1b, compared with R1b homomers. However, R1aR2 heteromers exhibited increased cell surface stability compared with R1bR2 receptors in hippocampal neurons, suggesting that for receptors containing the R1a subunit, the SDs play an additional role in the surface stability of GABA(B) receptors. Both SDs were necessary to increase the stability of R1aR2 because single deletions caused the receptors to be internalized at the same rate and extent as R1bR2 receptors. Consistent with these findings, a chimera formed from the metabotropic glutamate receptor (mGluR)2 and the SDs from R1a increased the surface stability of mGluR2. These results suggest a role for SDs in stabilizing cell surface receptors that could impart different pre- and postsynaptic trafficking itineraries on GABA(B) receptors, thereby contributing to their physiological and pathological roles.
Collapse
|
210
|
Herrick-Davis K, Grinde E, Lindsley T, Cowan A, Mazurkiewicz JE. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers. J Biol Chem 2012; 287:23604-14. [PMID: 22593582 PMCID: PMC3390635 DOI: 10.1074/jbc.m112.350249] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/05/2012] [Indexed: 11/06/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) are techniques with single molecule sensitivity that are well suited for examining the biophysical properties of protein complexes in living cells. In the present study, FCS and PCH were applied to determine the diffusion coefficient and oligomeric size of G-protein-coupled receptors. FCS was used to record fluctuations in fluorescence intensity arising from fluorescence-tagged 5-hydroxytryptamine 2C (5-HT(2C)) receptors diffusing within the plasma membrane of HEK293 cells and rat hippocampal neurons. Autocorrelation analysis yielded diffusion coefficients ranging from 0.8 to 1.2 μm(2)/s for fluorescence-tagged receptors. Because the molecular brightness of a fluorescent protein is directly proportional to the number of fluorescent proteins traveling together within a protein complex, it can be used to determine the oligomeric size of the protein complex. FCS and PCH analysis of fluorescence-tagged 5-HT(2C) receptors provided molecular brightness values that were twice that of GFP and YFP monomeric controls, similar to a dimeric GFP control, and unaltered by 5-HT. Bimolecular fluorescence complementation of the N- and C-terminal halves of YFP attached to 5-HT(2C) receptors was observed in endoplasmic reticulum/Golgi and plasma membranes with a brightness equal to monomeric YFP. When GFP-tagged 5-HT(2C) receptors were co-expressed with a large excess of untagged, non-fluorescent 5-HT(2C) receptors, the molecular brightness was reduced by half. PCH analysis of the FCS data were best described by a one-component dimer model without monomers or tetramers. Therefore, it is concluded that 5-HT(2C) receptors freely diffusing within the plasma membrane are dimeric.
Collapse
MESH Headings
- Animals
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Diffusion/drug effects
- Endoplasmic Reticulum/metabolism
- Fluorescence
- Golgi Apparatus/metabolism
- Green Fluorescent Proteins/chemistry
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Hippocampus/cytology
- Humans
- Luminescent Proteins/chemistry
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Mutation
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Protein Multimerization
- Protein Transport/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2C/chemistry
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin/pharmacology
- Spectrometry, Fluorescence/methods
- Transfection
Collapse
Affiliation(s)
- Katharine Herrick-Davis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
211
|
Baloucoune GA, Chun L, Zhang W, Xu C, Huang S, Sun Q, Wang Y, Tu H, Liu J. GABAB receptor subunit GB1 at the cell surface independently activates ERK1/2 through IGF-1R transactivation. PLoS One 2012; 7:e39698. [PMID: 22761875 PMCID: PMC3386256 DOI: 10.1371/journal.pone.0039698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/29/2012] [Indexed: 12/24/2022] Open
Abstract
Background Functional GABAB receptor is believed to require hetero-dimerization between GABAB1 (GB1) and GABAB2 (GB2) subunits. The GB1 extracellular domain is required for ligand binding, and the GB2 trans-membrane domain is responsible for coupling to G proteins. Atypical GABAB receptor responses observed in GB2-deficient mice suggested that GB1 may have activity in the absence of GB2. However the underlying mechanisms remain poorly characterized. Methodology/Principal Findings Here, by using cells overexpressing a GB1 mutant (GB1asa) with the ability to translocate to the cell surface in the absence of GB2, we show that GABAB receptor agonists, such as GABA and Baclofen, can induce ERK1/2 phosphorylation in the absence of GB2. Furthermore, we demonstrate that GB1asa induces ERK1/2 phosphorylation through Gi/o proteins and PLC dependent IGF-1R transactivation. Conclusions/Significance Our data suggest that GB1 may form a functional receptor at the cell surface in the absence of GB2.
Collapse
Affiliation(s)
- Guillaume A. Baloucoune
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Chun
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhang
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chanjuan Xu
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siluo Huang
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Sun
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Wang
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haijun Tu
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Liu
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
212
|
Impairment of GABAB receptor dimer by endogenous 14-3-3ζ in chronic pain conditions. EMBO J 2012; 31:3239-51. [PMID: 22692127 DOI: 10.1038/emboj.2012.161] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/07/2012] [Indexed: 11/09/2022] Open
Abstract
In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). However, the regulation of GABAB dimerization, and more generally of GPCR oligomerization, remains largely unknown. We propose a novel mechanism for inhibition of GPCR activity through de-dimerization in pathological conditions. We show here that 14-3-3ζ, a GABAB1-binding protein, dissociates the GABAB heterodimer, resulting in the impairment of GABAB signalling in spinal neurons. In the dorsal spinal cord of neuropathic rats, 14-3-3ζ is overexpressed and weakens GABAB inhibition. Using anti-14-3-3ζ siRNA or competing peptides disrupts 14-3-3ζ/GABAB1 interaction and restores functional GABAB heterodimers in the dorsal horn. Importantly, both strategies greatly enhance the anti-nociceptive effect of intrathecal Baclofen in neuropathic rats. Taken together, our data provide the first example of endogenous regulation of a GPCR oligomeric state and demonstrate its functional impact on the pathophysiological process of neuropathic pain sensitization.
Collapse
|
213
|
Geng Y, Xiong D, Mosyak L, Malito DL, Kniazeff J, Chen Y, Burmakina S, Quick M, Bush M, Javitch JA, Pin JP, Fan QR. Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2. Nat Neurosci 2012; 15:970-8. [PMID: 22660477 PMCID: PMC3374333 DOI: 10.1038/nn.3133] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/10/2012] [Indexed: 11/08/2022]
Abstract
Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA(B) receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA(B) receptor has been implicated in several neurological disorders. GABA(B) receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimeric interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA(B) receptor that is unique to the GABAergic system.
Collapse
Affiliation(s)
- Yong Geng
- Department of Pharmacology, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
McQuail JA, Bañuelos C, LaSarge CL, Nicolle MM, Bizon JL. GABA(B) receptor GTP-binding is decreased in the prefrontal cortex but not the hippocampus of aged rats. Neurobiol Aging 2012; 33:1124.e1-12. [PMID: 22169202 PMCID: PMC3310948 DOI: 10.1016/j.neurobiolaging.2011.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022]
Abstract
Gamma aminobutyric acid (GABA)(B) receptors (GABA(B)Rs) have been linked to a wide range of physiological and cognitive processes and are of interest for treating a number of neurodegenerative and psychiatric disorders. As many of these diseases are associated with advanced age, it is important to understand how the normal aging process impacts GABA(B)R expression and signaling. Thus, we investigated GABA(B)R expression and function in the prefrontal cortex (PFC) and hippocampus of young and aged rats characterized in a spatial learning task. Baclofen-stimulated GTP-binding and GABA(B)R1 and GABA(B)R2 proteins were reduced in the prefrontal cortex of aged rats but these reductions were not associated with spatial learning abilities. In contrast, hippocampal GTP-binding was comparable between young and aged rats but reduced hippocampal GABA(B)R1 expression was observed in aged rats with spatial learning impairment. These data demonstrate marked regional differences in GABA(B)R complexes in the adult and aged brain and could have implications for both understanding the role of GABAergic processes in normal brain function and the development of putative interventions that target this system.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Program in Neuroscience, Graduate School of Arts & Sciences, Wake Forest University, Winston-Salem, NC 27157
| | - Cristina Bañuelos
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32611
| | - Candi L. LaSarge
- Department of Anesthesia, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Michelle M. Nicolle
- Program in Neuroscience, Graduate School of Arts & Sciences, Wake Forest University, Winston-Salem, NC 27157
- Department of Internal Medicine, Section of Gerontology, Wake Forest University, Winston-Salem, NC 27157
- Department of Physiology & Pharmacology, School of Medicine, Wake Forest University, Winston-Salem, NC 27157
| | - Jennifer L. Bizon
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
215
|
Jin XT, Paré JF, Smith Y. GABA transporter subtype 1 and GABA transporter subtype 3 modulate glutamatergic transmission via activation of presynaptic GABA(B) receptors in the rat globus pallidus. Eur J Neurosci 2012; 36:2482-92. [PMID: 22616751 DOI: 10.1111/j.1460-9568.2012.08147.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intra-pallidal application of γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) or GABA transporter subtype 3 (GAT-3) transporter blockers [1-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) or 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP 5114)] reduces the activity of pallidal neurons in monkey. This effect could be mediated through the activation of presynaptic GABA(B) heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporter (GAT) blockade. To test this hypothesis, we applied the whole-cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory postsynaptic currents (eEPSCs) in the presence of gabazine, a GABA(A) receptor antagonist, in rat globus pallidus slice preparations. Under the condition of postsynaptic GABA(B) receptor blockade by the intra-cellular application of N-(2,6-dimethylphenylcarbamoylmethyl)-triethylammonium bromide (OX314), bath application of SKF 89976A (10 μM) or SNAP 5114 (10 μM) decreased the amplitude of eEPSCs, without a significant effect on its holding current and whole cell input resistance. The inhibitory effect of GAT blockade on eEPSCs was blocked by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid, a GABA(B) receptor antagonist. The paired-pulse ratio of eEPSCs was increased, whereas the frequency, but not the amplitude, of miniature excitatory postsynaptic currents was reduced in the presence of either GAT blocker, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through the activation of presynaptic GABA(B) heteroreceptors following GAT-1 or GAT-3 blockade. In conclusion, our findings demonstrate that presynaptic GABA(B) heteroreceptors in putative glutamatergic subthalamic afferents to the globus pallidus are sensitive to increases in extracellular GABA induced by GAT inactivation, thereby suggesting that GAT blockade represents a potential mechanism by which overactive subthalamopallidal activity may be reduced in parkinsonism.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
216
|
Kanatsu Y, Chen NH, Mitoma J, Nakagawa T, Hirabayashi Y, Higashi H. Gangliosides stimulate bradykinin B2 receptors to promote calmodulin kinase II-mediated neuronal differentiation. J Biochem 2012; 152:63-72. [DOI: 10.1093/jb/mvs055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
217
|
Ribeiro AF, Correia D, Torres AA, Boas GRV, Rueda AVL, Camarini R, Chiavegatto S, Boerngen-Lacerda R, Brunialti-Godard AL. A transcriptional study in mice with different ethanol-drinking profiles: possible involvement of the GABA(B) receptor. Pharmacol Biochem Behav 2012; 102:224-32. [PMID: 22579910 DOI: 10.1016/j.pbb.2012.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/24/2012] [Accepted: 04/29/2012] [Indexed: 12/15/2022]
Abstract
Previous studies have suggested that γ-aminobutyric acid-B (GABA(B)) receptor agonists effectively reduce ethanol intake. The quantification using real-time polymerase chain reaction of Gabbr1 and Gabbr2 mRNA from the prefrontal cortex, hypothalamus, hippocampus, and striatum in mice exposed to an animal model of the addiction developed in our laboratory was performed to evaluate the involvement of the GABA(B) receptor in ethanol consumption. We used outbred, Swiss mice exposed to a three-bottle free-choice model (water, 5% v/v ethanol, and 10% v/v ethanol) that consisted of four phases: acquisition (AC), withdrawal (W), reexposure (RE), and quinine-adulteration (AD). Based on individual ethanol intake, the mice were classified into three groups: "addicted" (A group; preference for ethanol and persistent consumption during all phases), "heavy" (H group; preference for ethanol and a reduction in ethanol intake in the AD phase compared to AC phase), and "light" (L group; preference for water during all phases). In the prefrontal cortex in the A group, we found high Gabbr1 and Gabbr2 transcription levels, with significantly higher Gabbr1 transcription levels compared with the C (ethanol-naive control mice), L, and H groups. In the hippocampus in the A group, Gabbr2 mRNA levels were significantly lower compared with the C, L, and H groups. In the striatum, we found a significant increase in Gabbr1 transcription levels compared with the C, L, and H groups. No differences in Gabbr1 or Gabbr2 transcription levels were observed in the hypothalamus among groups. In summary, Gabbr1 and Gabbr2 transcription levels were altered in cerebral areas related to drug taking only in mice behaviorally classified as "addicted" drinkers, suggesting that these genes may contribute to high and persistent ethanol consumption.
Collapse
Affiliation(s)
- Andrea Frozino Ribeiro
- Department of General Biology, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Somvanshi RK, Kumar U. Pathophysiology of GPCR Homo- and Heterodimerization: Special Emphasis on Somatostatin Receptors. Pharmaceuticals (Basel) 2012; 5:417-46. [PMID: 24281555 PMCID: PMC3763651 DOI: 10.3390/ph5050417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are cell surface proteins responsible for translating >80% of extracellular reception to intracellular signals. The extracellular information in the form of neurotransmitters, peptides, ions, odorants etc is converted to intracellular signals via a wide variety of effector molecules activating distinct downstream signaling pathways. All GPCRs share common structural features including an extracellular N-terminal, seven-transmembrane domains (TMs) linked by extracellular/intracellular loops and the C-terminal tail. Recent studies have shown that most GPCRs function as dimers (homo- and/or heterodimers) or even higher order of oligomers. Protein-protein interaction among GPCRs and other receptor proteins play a critical role in the modulation of receptor pharmacology and functions. Although ~50% of the current drugs available in the market target GPCRs, still many GPCRs remain unexplored as potential therapeutic targets, opening immense possibility to discover the role of GPCRs in pathophysiological conditions. This review explores the existing information and future possibilities of GPCRs as tools in clinical pharmacology and is specifically focused for the role of somatostatin receptors (SSTRs) in pathophysiology of diseases and as the potential candidate for drug discovery.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
219
|
Benke D, Zemoura K, Maier PJ. Modulation of cell surface GABA(B) receptors by desensitization, trafficking and regulated degradation. World J Biol Chem 2012; 3:61-72. [PMID: 22558486 PMCID: PMC3342575 DOI: 10.4331/wjbc.v3.i4.61] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 02/05/2023] Open
Abstract
Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system, and mediates its effects via two classes of receptors: the GABA(A) and GABA(B) receptors. GABA(A) receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission. GABA(B) receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission. The extent of inhibitory neurotransmission is determined by a variety of factors, such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g., phosphorylation), as well as by the number of receptors present in the plasma membrane available for signal transduction. The level of GABA(B) receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation. In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA(B) receptors in the plasma membrane, and thereby signaling strength.
Collapse
Affiliation(s)
- Dietmar Benke
- Dietmar Benke, Khaled Zemoura, Patrick J Maier, Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
220
|
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012; 6:80-92. [PMID: 22728672 DOI: 10.4161/fly] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.
Collapse
Affiliation(s)
- Pablo Cingolani
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012. [PMID: 22728672 DOI: 10.1101/2021.03.09.21252822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.
Collapse
Affiliation(s)
- Pablo Cingolani
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Tang XL, Wang Y, Li DL, Luo J, Liu MY. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin 2012; 33:363-71. [PMID: 22367282 DOI: 10.1038/aps.2011.210] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The superfamily of G protein-coupled receptors (GPCRs) includes at least 800 seven-transmembrane receptors that participate in diverse physiological and pathological functions. GPCRs are the most successful targets of modern medicine, and approximately 36% of marketed pharmaceuticals target human GPCRs. However, the endogenous ligands of more than 140 GPCRs remain unidentified, leaving the natural functions of those GPCRs in doubt. These are the so-called orphan GPCRs, a great source of drug targets. This review focuses on the signaling transduction pathways of the adhesion GPCR family, the LGR subfamily, and the PSGR subfamily, and their potential functions in immunology, development, and cancers. In this review, we present the current approaches and difficulties of orphan GPCR deorphanization and characterization.
Collapse
|
223
|
Abstract
The G-protein-coupled receptors (GPCRs) are one of the largest super families of cell-surface receptors and play crucial roles in virtually every organ system. One particular family of GPCRs, the class C GPCRs, is distinguished by a characteristically large extracellular domain and constitutive dimerization. The structure and activation mechanism of this family result in potentially unique ligand recognition sites, thereby offering a variety of possibilities by which receptor activity might be modulated using novel compounds. In the present article, we aim to provide an overview of the exact sites and structural features involved in ligand recognition of the class C GPCRs. Furthermore, we demonstrate the precise steps that occur during the receptor activation process, which underlie the possibilities by which receptor function may be altered by different approaches. Finally, we use four typical family members to illustrate orthosteric and allosteric sites with representative ligands and their corresponding therapeutic potential.
Collapse
|
224
|
Yuan Y, Arnatt CK, Li G, Haney KM, Ding D, Jacob JC, Selley DE, Zhang Y. Design and synthesis of a bivalent ligand to explore the putative heterodimerization of the mu opioid receptor and the chemokine receptor CCR5. Org Biomol Chem 2012; 10:2633-46. [PMID: 22354464 DOI: 10.1039/c2ob06801j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bivalent ligand approach has been utilized not only to study the underlying mechanism of G protein-coupled receptors dimerization and/or oligomerization, but also to enhance ligand affinity and/or selectivity for potential treatment of a variety of diseases by targeting this process. Substance abuse and addiction have made both the prevention and the treatment of human immunodeficiency virus (HIV) infection more difficult to tackle. Morphine, a mu opioid receptor (MOR) agonist, can accelerate HIV infection through up-regulating the expression of the chemokine receptor CCR5, a well-known co-receptor for HIV invasion to the host cells and this has been extensively studied. Meanwhile, two research groups have described the putative MOR-CCR5 heterodimers in their independent studies. The purpose of this paper is to report the design and synthesis of a bivalent ligand to explore the biological and pharmacological process of the putative MOR-CCR5 dimerization phenomenon. The developed bivalent ligand thus contains two distinct pharmacophores linked through a spacer; ideally one of which will interact with the MOR and the other with the CCR5. Naltrexone and Maraviroc were selected as the pharmacophores to generate such a bivalent probe. The overall reaction route to prepare this bivalent ligand was convergent and efficient, and involved sixteen steps with moderate to good yields. The preliminary biological characterization showed that the bivalent compound 1 retained the pharmacological characteristics of both pharmacophores towards the MOR and the CCR5 respectively with relatively lower binding affinity, which tentatively validated our original molecular design.
Collapse
Affiliation(s)
- Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Jiang X, Su L, Zhang Q, He C, Zhang Z, Yi P, Liu J. GABAB receptor complex as a potential target for tumor therapy. J Histochem Cytochem 2012; 60:269-79. [PMID: 22266766 DOI: 10.1369/0022155412438105] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system. Metabotropic GABA(B) receptors are heterodimeric G-protein-coupled receptors (GPCRs) consisting of GABA(B1) and GABA(B2) subunits. The intracellular C-terminal domains of GABA(B) receptors are involved in heterodimerization, oligomerization, and association with other proteins, which results in a large receptor complex. Multiple splice variants of the GABA(B1) subunit have been identified in which GABA(B1a) and GABA(B1b) are the most abundant isoforms in the nervous system. Isoforms GABA(B1c) through GABA(B1n) are minor isoforms and are detectable only at mRNA levels. Some of the minor isoforms have been detected in peripheral tissues and encode putative soluble proteins with C-terminal truncations. Interestingly, increased expression of GABA(B) receptors has been detected in several human cancer cells and tissues. Moreover, GABA(B) receptor agonist baclofen inhibited tumor growth in rat models. GABA(B) receptor activation not only induces suppressing the proliferation and migration of various human tumor cells but also results in inactivation of CREB (cAMP-responsive element binding protein) and ERK in tumor cells. Their structural complexity makes it possible to disrupt the functions of GABA(B) receptors in various ways, raising GABA(B) receptor diversity as a potential therapeutic target in some human cancers.
Collapse
Affiliation(s)
- Xinnong Jiang
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
226
|
Tadagaki K, Jockers R, Kamal M. History and biological significance of GPCR heteromerization in the neuroendocrine system. Neuroendocrinology 2012; 95:223-31. [PMID: 22156565 DOI: 10.1159/000330000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/07/2011] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute a large family of seven transmembrane proteins that regulate major cellular functions. The important role of GPCRs in the neuroendocrine system is outlined by the great interest of pharmaceutical companies in developing new drugs targeting these receptors. GPCRs exist as monomers, but can also be organized in oligomeric structures composed of either homo- or heteromers. GPCR heteromerization may play an important role in modulating and fine-tuning GPCR function and signaling. The literature reports many examples of GPCR heteromers in vitro raising the question of the physiological relevance of these complexes in tissues. Considerable efforts are currently being directed towards conclusive evidence for the existence of GPCRs heteromers in vivo, a crucial step for the validation of the concept of GPCR heteromerization and future drug development. The present review will give a brief history of GPCR oligomerization and emphasize the importance and physiological relevance of GPCR heteromerization by discussing key examples of GPCR couples.
Collapse
Affiliation(s)
- Kenjiro Tadagaki
- Inserm, U1016, Institut Cochin, CNRS UMR 8104, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|
227
|
Mainland J, Matsunami H. RAMP like proteins : RTP and REEP family of proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 744:75-86. [PMID: 22434109 DOI: 10.1007/978-1-4614-2364-5_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian odorant receptors (ORs) are typically retained in the endoplasmic reticulum (ER) when expressed in heterologous cells. The RTP (Receptor-Transporting Protein) and REEP (Receptor Expression Enhancing Protein) family of proteins were first identified as partners for ORs, promoting cell-surface expression and leading to functional responses in heterologous cell systems. Like RAMPs, the RTP and REEP proteins appear to partner with GPCRs to promote cell-surface expression. Unlike RAMPs, they do not appear to alter the pharmacology of the partner receptor.
Collapse
Affiliation(s)
- Joel Mainland
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
228
|
Shirvani H, Gätà G, Marullo S. Regulated GPCR trafficking to the plasma membrane: general issues and the CCR5 chemokine receptor example. Subcell Biochem 2012; 63:97-111. [PMID: 23161135 DOI: 10.1007/978-94-007-4765-4_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The regulated export of nascent G protein coupled receptors (GPCRs) from intracellular stores is an emerging concept with important implications in cell biology and pharmacology. This phenomenon requires a complex network of interactions between GPCRs with either chaperones and escort proteins or gatekeepers, which are respectively involved in the progression of GPCRs along the biosynthetic pathway to the plasma membrane or in their retention in intracellular compartments. The regulated export of GPCRs is also controlled by external stimuli and might represent an adaptive mechanism to specific physiological constraints, such as the sustained activation of the CCR5 chemokine receptor in the context of chemotaxis.
Collapse
Affiliation(s)
- Hamasseh Shirvani
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), 27 rue du Fg. St. Jacques, 75014, Paris, France
| | | | | |
Collapse
|
229
|
Rediger A, Piechowski CL, Habegger K, Grüters A, Krude H, Tschöp MH, Kleinau G, Biebermann H. MC4R dimerization in the paraventricular nucleus and GHSR/MC3R heterodimerization in the arcuate nucleus: is there relevance for body weight regulation? Neuroendocrinology 2012; 95:277-88. [PMID: 22327910 DOI: 10.1159/000334903] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/06/2011] [Indexed: 01/21/2023]
Abstract
The worldwide obesity epidemic is increasing, yet at this time, no long-acting and specific pharmaceutical therapies are available. Peripheral hormonal signals communicate metabolic status to the hypothalamus by activating their corresponding receptors in the arcuate nucleus (ARC). In this brain region, a variety of G protein-coupled receptors (GPCRs) are expressed that are potentially involved in weight regulation, but so far, the detailed function of most hypothalamic GPCRs is only partially understood. An important and underappreciated feature of GPCRs is the capacity for regulation via di- and heterodimerization. Increasing evidence implicates that heterodimerization of GPCRs results in profound functional consequences. Recently, we could demonstrate that interaction of the melanocortin 3 receptor (MC3R) and the growth hormone secretagogue receptor (GHSR)-1a results in a modulation of function in both receptors. Although the physiological role of GPCR-GPCR interaction in the hypothalamus is yet to be elucidated, this concept promises new avenues for investigation and understanding of hypothalamic functions dependent on GPCR signaling. Since GPCRs are important targets for drugs to combat many diseases, identification of heterodimers may be a prerequisite for highly specific drugs. Therefore, a detailed understanding of the mechanisms and their involvement in weight regulation is necessary. Fundamental to this understanding is the interplay of GPCR-GPCR in the hypothalamic nuclei in energy metabolism. In this review, we summarize the current knowledge on melanocortin receptors and GHSR-1a in hypothalamic weight regulation, especially as they pertain to possible drug targets. Furthermore, we include available evidence for the participation and significance of GPCR dimerization.
Collapse
MESH Headings
- Animals
- Appetite Regulation/physiology
- Arcuate Nucleus of Hypothalamus/anatomy & histology
- Arcuate Nucleus of Hypothalamus/metabolism
- Arcuate Nucleus of Hypothalamus/physiology
- Body Weight/physiology
- Humans
- Models, Biological
- Paraventricular Hypothalamic Nucleus/anatomy & histology
- Paraventricular Hypothalamic Nucleus/metabolism
- Paraventricular Hypothalamic Nucleus/physiology
- Protein Multimerization/physiology
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 3/physiology
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Melanocortin, Type 4/physiology
- Receptors, Ghrelin/metabolism
- Receptors, Ghrelin/physiology
Collapse
Affiliation(s)
- Anne Rediger
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
231
|
Paris-Robidas S, Brochu E, Sintes M, Emond V, Bousquet M, Vandal M, Pilote M, Tremblay C, Di Paolo T, Rajput AH, Rajput A, Calon F. Defective dentate nucleus GABA receptors in essential tremor. ACTA ACUST UNITED AC 2011; 135:105-16. [PMID: 22120148 DOI: 10.1093/brain/awr301] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The development of new treatments for essential tremor, the most frequent movement disorder, is limited by a poor understanding of its pathophysiology and the relative paucity of clinicopathological studies. Here, we report a post-mortem decrease in GABA(A) (35% reduction) and GABA(B) (22-31% reduction) receptors in the dentate nucleus of the cerebellum from individuals with essential tremor, compared with controls or individuals with Parkinson's disease, as assessed by receptor-binding autoradiography. Concentrations of GABA(B) receptors in the dentate nucleus were inversely correlated with the duration of essential tremor symptoms (r(2) = 0.44, P < 0.05), suggesting that the loss of GABA(B) receptors follows the progression of the disease. In situ hybridization experiments also revealed a diminution of GABA(B(1a+b)) receptor messenger RNA in essential tremor (↓27%). In contrast, no significant changes of GABA(A) and GABA(B) receptors (protein and messenger RNA), GluN2B receptors, cytochrome oxidase-1 or GABA concentrations were detected in molecular or granular layers of the cerebellar cortex. It is proposed that a decrease in GABA receptors in the dentate nucleus results in disinhibition of cerebellar pacemaker output activity, propagating along the cerebello-thalamo-cortical pathways to generate tremors. Correction of such defective cerebellar GABAergic drive could have a therapeutic effect in essential tremor.
Collapse
|
232
|
Fernández-Alacid L, Watanabe M, Molnár E, Wickman K, Luján R. Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur J Neurosci 2011; 34:1724-36. [PMID: 22098295 DOI: 10.1111/j.1460-9568.2011.07886.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
G protein-gated inwardly-rectifying K(+) (GIRK/family 3 of inwardly-rectifying K(+) ) channels are coupled to neurotransmitter action and can play important roles in modulating neuronal excitability. We investigated the temporal and spatial expression of GIRK1, GIRK2 and GIRK3 subunits in the developing and adult brain of mice and rats using biochemical, immunohistochemical and immunoelectron microscopic techniques. At all ages analysed, the overall distribution patterns of GIRK1-3 were very similar, with high expression levels in the neocortex, cerebellum, hippocampus and thalamus. Focusing on the hippocampus, histoblotting and immunohistochemistry showed that GIRK1-3 protein levels increased with age, and this was accompanied by a shift in the subcellular localization of the subunits. Early in development (postnatal day 5), GIRK subunits were predominantly localized to the endoplasmic reticulum in the pyramidal cells, but by postnatal day 60 they were mostly found along the plasma membrane. During development, GIRK1 and GIRK2 were found primarily at postsynaptic sites, whereas GIRK3 was predominantly detected at presynaptic sites. In addition, GIRK1 and GIRK2 expression on the spine plasma membrane showed identical proximal-to-distal gradients that differed from GIRK3 distribution. Furthermore, although GIRK1 was never found within the postsynaptic density (PSD), the level of GIRK2 in the PSD progressively increased and GIRK3 did not change in the PSD during development. Together, these findings shed new light on the developmental regulation and subcellular diversity of neuronal GIRK channels, and support the contention that distinct subpopulations of GIRK channels exert separable influences on neuronal excitability. The ability to selectively target specific subpopulations of GIRK channels may prove effective in the treatment of disorders of excitability.
Collapse
Affiliation(s)
- Laura Fernández-Alacid
- Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | | | |
Collapse
|
233
|
Teitler M, Klein MT. A new approach for studying GPCR dimers: drug-induced inactivation and reactivation to reveal GPCR dimer function in vitro, in primary culture, and in vivo. Pharmacol Ther 2011; 133:205-17. [PMID: 22119169 DOI: 10.1016/j.pharmthera.2011.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 10/29/2011] [Indexed: 12/28/2022]
Abstract
GPCRs are a major family of homologous proteins and are key mediators of the effects of numerous endogenous neurotransmitters, hormones, cytokines, therapeutic drugs, and drugs-of-abuse. Despite the enormous amount of research on the pharmacological and biochemical properties of GPCRs, the question as to whether they exist as monomers, dimers, or higher order structures in the body is unanswered. The GPCR dimer field has been dominated by techniques involving recombinant cell lines expressing mutant receptors, often involving the solubilization of the receptors. These techniques cannot be applied in vivo or even to primary cell cultures. This review will focus on a novel approach to exploring the functional properties of homodimers. Studies of the 5-HT(7) and 5-HT(2A) serotonin receptors have revealed that binding of a pseudo-irreversible antagonist ("inactivator") to one of the orthosteric sites of a homodimer abolishes all receptor activity, and subsequent binding of a competitive antagonist to the orthosteric site of the second protomer releases the inactivator, allowing the receptor to return to an active state. This approach demonstrates allosteric crosstalk between protomers of native GPCR homodimers, indicating that GPCRs do exist and function as homodimers in both recombinant cells and rat primary astrocytes. This technique can be applied universally using intact recombinant or primary cells in culture, membrane homogenate preparations and, potentially, in vivo. The data obtained using the 5-HT(7) and 5-HT(2A) receptors are strongly supportive of a GPCR homodimer structure, with little evidence of monomer involvement in the function of these receptors.
Collapse
Affiliation(s)
- Milt Teitler
- Center for Neuropharmacology & Neuroscience, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| | | |
Collapse
|
234
|
Vischer HF, Watts AO, Nijmeijer S, Leurs R. G protein-coupled receptors: walking hand-in-hand, talking hand-in-hand? Br J Pharmacol 2011; 163:246-60. [PMID: 21244374 DOI: 10.1111/j.1476-5381.2011.01229.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Most cells express a panel of different G protein-coupled receptors (GPCRs) allowing them to respond to at least a corresponding variety of extracellular ligands. In order to come to an integrative well-balanced functional response these ligand-receptor pairs can often cross-regulate each other. Although most GPCRs are fully capable to induce intracellular signalling upon agonist binding on their own, many GPCRs, if not all, appear to exist and function in homomeric and/or heteromeric assemblies for at least some time. Such heteromeric organization offers unique allosteric control of receptor pharmacology and function between the protomers and might even unmask 'new' features. However, it is important to realize that some functional consequences that are proposed to originate from heteromeric receptor interactions may also be observed due to intracellular crosstalk between signalling pathways of non-associated GPCRs.
Collapse
Affiliation(s)
- Henry F Vischer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
235
|
Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses. J Neurosci 2011; 31:12523-32. [PMID: 21880914 DOI: 10.1523/jneurosci.1527-11.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Presynaptic inhibition via G-protein-coupled receptors (GPCRs) and voltage-gated Ca(2+) channels constitutes a widespread regulatory mechanism of synaptic strength. Yet, the mechanism of intermolecular coupling underlying GPCR-mediated signaling at central synapses remains unresolved. Using FRET spectroscopy, we provide evidence for formation of spatially restricted (<100 Å) complexes between GABA(B) receptors composed of GB(1a)/GB(2) subunits, Gα(o)β(1)γ(2) G-protein heterotrimer, and Ca(V)2.2 channels in hippocampal boutons. GABA release was not required for the assembly but for structural reorganization of the precoupled complex. Unexpectedly, GB(1a) deletion disrupted intermolecular associations within the complex. The GB(1a) proximal C-terminal domain was essential for association of the receptor, Ca(V)2.2 and Gβγ, but was dispensable for agonist-induced receptor activation and cAMP inhibition. Functionally, boutons lacking this complex-formation domain displayed impaired presynaptic inhibition of Ca(2+) transients and synaptic vesicle release. Thus, compartmentalization of the GABA(B1a) receptor, Gβγ, and Ca(V)2.2 channel in a signaling complex is required for presynaptic inhibition at hippocampal synapses.
Collapse
|
236
|
Sleep-deprivation induces changes in GABA(B) and mGlu receptor expression and has consequences for synaptic long-term depression. PLoS One 2011; 6:e24933. [PMID: 21980366 PMCID: PMC3182263 DOI: 10.1371/journal.pone.0024933] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 08/24/2011] [Indexed: 12/30/2022] Open
Abstract
Long term depression (LTD) in the CA1 region of the hippocampus, induced with a 20-Hz, 30 s tetanus to Schaffer collaterals, is enhanced in sleep-deprived (SD) rats. In the present study, we investigated the role of metabotropic glutamate receptors (mGluRs), γ-aminobutyric acid (GABA) B receptors (GABA(B)-Rs) and N-methyl-D-aspartic acid receptors (NMDARs) in the LTD of the population excitatory postsynaptic potential (pEPSP). The requirement of Ca(2+) from L- and T-type voltage-gated calcium channels (VGCCs) and intracellular stores was also studied. Results indicate that mGluRs, a release of Ca(2+) from intracellular stores and GABA(B)-Rs are required for LTD. Interestingly, while mGlu1Rs seem to be involved in both short-term depression and LTD, mGlu5Rs appear to participate mostly in LTD. CGP 55845, a GABA(B)-R antagonist, partially suppressed LTD in normally sleeping (NS) rats, while completely blocking LTD in SD rats. Moreover, GS-39783, a positive allosteric modulator for GABA(B)-R, suppressed the pEPSP in SD, but not NS rats. Since both mGluRs and GABA(B)-Rs seem to be involved in the LTD, especially in SD rats, we examined if the receptor expression pattern and/or dimerization changed, using immunohistochemical, co-localization and co-immunoprecipitation techniques. Sleep-deprivation induced an increase in the expression of GABA(B)-R1 and mGlu1αR in the CA1 region of the hippocampus. In addition, co-localization and heterodimerization between mGlu1αR/GABA(B)-R1 and mGlu1αR/GABA(B)-R2 is enhanced in SD rats. Taken together, our findings present a novel form of LTD sensitive to the activation of mGluRs and GABA(B)-Rs, and reveal, for the first time, that sleep-deprivation induces alterations in the expression and dimerization of these receptors.
Collapse
|
237
|
Halai R, Callaghan B, Daly NL, Clark RJ, Adams DJ, Craik DJ. Effects of Cyclization on Stability, Structure, and Activity of α-Conotoxin RgIA at the α9α10 Nicotinic Acetylcholine Receptor and GABAB Receptor. J Med Chem 2011; 54:6984-92. [DOI: 10.1021/jm201060r] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Brid Callaghan
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | | | | | - David J. Adams
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | | |
Collapse
|
238
|
Sano T, Kim YJ, Oshima E, Shimizu C, Kiyonari H, Abe T, Higashi H, Yamada K, Hirabayashi Y. Comparative characterization of GPRC5B and GPRC5C LacZ knockin mice; behavioral abnormalities in GPRC5B-deficient mice. Biochem Biophys Res Commun 2011; 412:460-5. [DOI: 10.1016/j.bbrc.2011.07.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 11/15/2022]
|
239
|
Xi B, Chen J, Yang L, Wang W, Fu M, Wang C. GABBR1 gene polymorphism(G1465A)isassociated with temporal lobe epilepsy. Epilepsy Res 2011; 96:58-63. [PMID: 21621395 DOI: 10.1016/j.eplepsyres.2011.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/11/2011] [Accepted: 04/29/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE γ-Aminobutyric acid B receptor 1(GABBR1) gene G1465A polymorphism has been considered as a potential risk factor for the development of temporal lobe epilepsy (TLE). However, the results were inconsistent. In this study, we performed a meta-analysis to assess the association between GABBR1 G1465A polymorphism and the risk of TLE. METHODS Biomedical literature databases including PubMed, ISI web of science and Embase were searched. The studies evaluating the association between GABBR1 G1465A polymorphism and TLE were included. Pooled odds ratio (OR) and 95%CI confidence interval (CI) were calculated using fixed- or random-effects model. KEY FINDINGS Seven studies (1011 cases and 2184 controls) met the inclusion criteria and were included in the meta-analysis. The overall result showed that the association between GABBR1 G1465A polymorphism was statistically significant (OR=5.381, 95%CI: 1.726, 16.776, P=0.004). Subgroup analysis showed that the effect estimate was higher in the studies with high quality score (OR=14.220, 95%CI: 6.933, 29.169, P=0.000) than that in the studies with low quality score (OR=1.158, 95%CI: 0.325, 4.123, P=0.821). SIGNIFICANCE The present meta-analysis suggests that GABBR1 G1465A polymorphism is associated with the risk of TLE. The role of GABBR1 G1465A polymorphism in the development of TLE merits further investigation.
Collapse
Affiliation(s)
- Bo Xi
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
240
|
Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol 2011; 80:416-25. [PMID: 21670104 PMCID: PMC3164335 DOI: 10.1124/mol.111.073304] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/10/2011] [Indexed: 01/11/2023] Open
Abstract
The ability of dopamine receptors to interact with other receptor subtypes may provide mechanisms for modulating dopamine-related functions and behaviors. In particular, there is evidence suggesting that the trace amine-associated receptor 1 (TAAR1) affects the dopaminergic system by regulating the firing rate of dopaminergic neurons or by altering dopamine D2 receptor (D2R) responsiveness to ligands. TAAR1 is a Gα(s) protein-coupled receptor that is activated by biogenic amines, "trace amines," such as β-phenylethylamine (β-PEA) and tyramine that are normally found at low concentrations in the mammalian brain. In the present study, we investigated the biochemical mechanism of interaction between TAAR1 and D2R and the role this interaction plays in D2R-related signaling and behaviors. Using a bioluminescence resonance energy transfer biosensor for cAMP, we demonstrated that the D2R antagonists haloperidol, raclopride, and amisulpride were able to enhance selectively a TAAR1-mediated β-PEA increase of cAMP. Moreover, TAAR1 and D2R were able to form heterodimers when coexpressed in human embryonic kidney 293 cells, and this direct interaction was disrupted in the presence of haloperidol. In addition, in mice lacking TAAR1, haloperidol-induced striatal c-Fos expression and catalepsy were significantly reduced. Taken together, these data suggest that TAAR1 and D2R have functional and physical interactions that could be critical for the modulation of the dopaminergic system by TAAR1 in vivo.
Collapse
Affiliation(s)
- Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Mowery TM, Sarin RM, Elliott KS, E Garraghty P. Nerve injury-induced changes in GABA(A) and GABA(B) sub-unit expression in area 3b and cuneate nucleus of adult squirrel monkeys: further evidence of developmental recapitulation. Brain Res 2011; 1415:63-75. [PMID: 21880301 DOI: 10.1016/j.brainres.2011.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/24/2011] [Accepted: 07/30/2011] [Indexed: 11/27/2022]
Abstract
The primate somatosensory system provides an excellent model system with which to investigate adult neural plasticity. Here, we report immunohistochemical staining data for the GABA(A) α1, GABA(B)R1a, and GABA(B)R1b receptor subunits in somatosensory area 3b, and cuneate nucleus one week after median nerve compression in adult squirrel monkeys. We find a significant decrease in GABA(A) α1 subunit staining across all cortical layers and within both soma and neuropil of the deprived cortical and brainstem regions. The GABA(B) staining showed an opposing shift in deprived regions, with a significant increase in presynaptic GABA(B)R1a staining, and a significant decrease in postsynaptic GABA(B)R1b staining in deprived regions of the cortex and brainstem. These changes in receptor subunit expression generate patterns that are very similar to those reported in the neonate. Furthermore, the similarities between brainstem and cortical expression suggest conserved forms of adult plasticity in these two regions. Taken together these results, along with the results from our previous paper investigating AMPA subunit expression in these same animals, support the hypothesis that deprived neurons enter a previously hidden state of developmental recapitulation that serves to prime the brain for NMDA receptor mediated receptive field reorganization.
Collapse
Affiliation(s)
- Todd M Mowery
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
242
|
Contribution of metabotropic GABA(B) receptors to neuronal network construction. Pharmacol Ther 2011; 132:170-9. [PMID: 21718720 DOI: 10.1016/j.pharmthera.2011.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/05/2023]
Abstract
In the 1980s, Bowery and colleagues discovered the presence of a novel, bicuculline-resistant and baclofen-sensitive type of GABA receptor on peripheral nerve terminals, the GABA(B) receptor. Since this pioneering work, GABA(B) receptors have been identified in the Central Nervous System (CNS), where they provide an important inhibitory control of postsynaptic excitability and presynaptic transmitter release. GABA(B) receptors have been implicated in a number of important processes in the adult brain such as the regulation of synaptic plasticity and modulation of rhythmic activity. As a result of these studies, several potential therapeutic applications of GABA(B) receptor ligands have been identified. Recent advances have further shown that GABA(B) receptors play more than a classical inhibitory role in adult neurotransmission, and can in fact function as an important developmental signal early in life. Here we summarize current knowledge on the contribution of GABA(B) receptors to the construction and function of developing neuronal networks.
Collapse
|
243
|
Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. ACTA ACUST UNITED AC 2011; 192:463-80. [PMID: 21300851 PMCID: PMC3101103 DOI: 10.1083/jcb.201009128] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Receptor dimerization is important for many signaling pathways. However, the monomer-dimer equilibrium has never been fully characterized for any receptor with a 2D equilibrium constant as well as association/dissociation rate constants (termed super-quantification). Here, we determined the dynamic equilibrium for the N-formyl peptide receptor (FPR), a chemoattractant G protein-coupled receptor (GPCR), in live cells at 37°C by developing a single fluorescent-molecule imaging method. Both before and after liganding, the dimer-monomer 2D equilibrium is unchanged, giving an equilibrium constant of 3.6 copies/µm(2), with a dissociation and 2D association rate constant of 11.0 s(-1) and 3.1 copies/µm(2)s(-1), respectively. At physiological expression levels of ∼2.1 receptor copies/µm(2) (∼6,000 copies/cell), monomers continually convert into dimers every 150 ms, dimers dissociate into monomers in 91 ms, and at any moment, 2,500 and 3,500 receptor molecules participate in transient dimers and monomers, respectively. Not only do FPR dimers fall apart rapidly, but FPR monomers also convert into dimers very quickly.
Collapse
Affiliation(s)
- Rinshi S Kasai
- Membrane Mechanisms Project, International Cooperative Research Project, Kyoto University, Shougoin, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
244
|
Nakamura Y, Hinoi E, Takarada T, Takahata Y, Yamamoto T, Fujita H, Takada S, Hashizume S, Yoneda Y. Positive regulation by GABA(B)R1 subunit of leptin expression through gene transactivation in adipocytes. PLoS One 2011; 6:e20167. [PMID: 21655283 PMCID: PMC3105007 DOI: 10.1371/journal.pone.0020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The view that γ-aminobutyric acid (GABA) plays a functional role in non-neuronal tissues, in addition to an inhibitory neurotransmitter role in the mammalian central nervous system, is prevailing, while little attention has been paid to GABAergic signaling machineries expressed by adipocytes to date. In this study, we attempted to demonstrate the possible functional expression of GABAergic signaling machineries by adipocytes. METHODOLOGY/PRINCIPAL FINDINGS GABA(B) receptor 1 (GABA(B)R1) subunit was constitutively expressed by mouse embryonic fibroblasts differentiated into adipocytes and adipocytic 3T3-L1 cells in culture, as well as mouse white adipose tissue, with no responsiveness to GABA(B)R ligands. However, no prominent expression was seen with mRNA for GABA(B)R2 subunit required for heteromeric orchestration of the functional GABA(B)R by any adipocytic cells and tissues. Leptin mRNA expression was significantly and selectively decreased in adipose tissue and embryonic fibroblasts, along with drastically reduced plasma leptin levels, in GABA(B)R1-null mice than in wild-type mice. Knockdown by siRNA of GABA(B)R1 subunit led to significant decreases in leptin promoter activity and leptin mRNA levels in 3T3-L1 cells. CONCLUSIONS/SIGNIFICANCE Our results indicate that GABA(B)R1 subunit is constitutively expressed by adipocytes to primarily regulate leptin expression at the transcriptional level through a mechanism not relevant to the function as a partner of heterodimeric assembly to the functional GABA(B)R.
Collapse
Affiliation(s)
- Yukari Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Yoshifumi Takahata
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Tomomi Yamamoto
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Fujita
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Saya Takada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Syota Hashizume
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| |
Collapse
|
245
|
Faroni A, Mantovani C, Shawcross SG, Motta M, Terenghi G, Magnaghi V. Schwann-like adult stem cells derived from bone marrow and adipose tissue express γ-aminobutyric acid type B receptors. J Neurosci Res 2011; 89:1351-62. [PMID: 21618582 DOI: 10.1002/jnr.22652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 12/14/2022]
Abstract
γ-Aminobutyric acid type B receptors (GABA-B) are expressed in glial cells of the central and peripheral nervous systems, and recent evidence has shown their importance in modulating physiological parameters of Schwann cell (SC). SC play essential roles in peripheral nerve regeneration, but several drawbacks prevent their use for nerve repair. Adult stem cells from adipose tissue (ASC) or bone marrow (BM-MSC) can be differentiated into an SC-like phenotype and used as SC replacements. The aim of this study was to investigate GABA-B receptor functional expression in differentiated stem cells by assessing the similarity to SC. By means of RT-PCR and Western blot methodologies, BM-MSC and ASC were found to express both GABA-B1 and GABA-B2 receptor subunits. The expression levels of GABA-B1b and GABA-B2 receptors were influenced by SC-like differentiation, as shown by Western blot studies. GABA-B receptor stimulation with baclofen reduced the proliferation rate of SC and differentiated ASC (dASC) but not that of dBM-MSC. In conclusion, both of the subunits that assemble into a functional GABA-B receptor are present in differentiated stem cells. Furthermore, GABA-B receptors in dASC are functionally active, regulating a key process such as proliferation. The presence of functional GABA-B receptors on differentiated stem cells opens new opportunities for a possible pharmacological modulation of their physiology and phenotype.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Regenerative Biomedicine, The University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
246
|
Schultheis C, Brauner M, Liewald JF, Gottschalk A. Optogenetic analysis of GABAB receptor signaling in Caenorhabditis elegans motor neurons. J Neurophysiol 2011; 106:817-27. [PMID: 21613582 DOI: 10.1152/jn.00578.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the nervous system, a perfect balance of excitation and inhibition is required, for example, to enable coordinated locomotion. In Caenorhabditis elegans, cholinergic and GABAergic motor neurons (MNs) effect waves of contralateral muscle contraction and relaxation. Cholinergic MNs innervate muscle as well as GABAergic MNs, projecting to the opposite side of the body, at dyadic synapses. Only a few connections exist from GABAergic to cholinergic MNs, emphasizing that GABA signaling is mainly directed toward muscle. Yet, a GABA(B) receptor comprising GBB-1 and GBB-2 subunits, expressed in cholinergic MNs, was shown to affect locomotion, likely by feedback inhibition of cholinergic MNs in response to spillover GABA. In the present study, we examined whether the GBB-1/2 receptor could also affect short-term plasticity in cholinergic MNs with the use of channelrhodopsin-2-mediated photostimulation of GABAergic and cholinergic neurons. The GBB-1/2 receptor contributes to acute body relaxation, evoked by photoactivation of GABAergic MNs, and to effects of GABA on locomotion behavior. Loss of the plasma membrane GABA transporter SNF-11, as well as acute photoevoked GABA release, affected cholinergic MN function in opposite directions. Prolonged stimulation of GABA MNs had subtle effects on cholinergic MNs, depending on stimulus duration and gbb-2. Thus GBB-1/2 receptors serve mainly for linear feedback inhibition of cholinergic MNs but also evoke minor plastic changes.
Collapse
Affiliation(s)
- Christian Schultheis
- Institute of Biochemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe-University, Frankfurt, Germany
| | | | | | | |
Collapse
|
247
|
Comps-Agrar L, Kniazeff J, Nørskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prézeau L, Bettler B, Durroux T, Trinquet E, Pin JP. The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 2011; 30:2336-49. [PMID: 21552208 PMCID: PMC3116278 DOI: 10.1038/emboj.2011.143] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/11/2011] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have key roles in cell-cell communication. Recent data suggest that these receptors can form large complexes, a possibility expected to expand the complexity of this regulatory system. Among the brain GPCRs, the heterodimeric GABA(B) receptor is one of the most abundant, being distributed in most brain regions, on either pre- or post-synaptic elements. Here, using specific antibodies labelled with time-resolved FRET compatible fluorophores, we provide evidence that the heterodimeric GABA(B) receptor can form higher-ordered oligomers in the brain, as suggested by the close proximity of the GABA(B1) subunits. Destabilizing the oligomers using a competitor or a GABA(B1) mutant revealed different G protein coupling efficiencies depending on the oligomeric state of the receptor. By examining, in heterologous system, the G protein coupling properties of such GABA(B) receptor oligomers composed of a wild-type and a non-functional mutant heterodimer, we provide evidence for a negative functional cooperativity between the GABA(B) heterodimers.
Collapse
Affiliation(s)
- Laëtitia Comps-Agrar
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Julie Kniazeff
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Lenea Nørskov-Lauritsen
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Damien Maurel
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Martin Gassmann
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Nathalie Gregor
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Laurent Prézeau
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Thierry Durroux
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Eric Trinquet
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Jean-Philippe Pin
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| |
Collapse
|
248
|
Chalifoux JR, Carter AG. GABAB receptor modulation of synaptic function. Curr Opin Neurobiol 2011; 21:339-44. [PMID: 21376567 PMCID: PMC3092847 DOI: 10.1016/j.conb.2011.02.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 01/17/2023]
Abstract
Neuromodulators have complex effects on both the presynaptic release and postsynaptic detection of neurotransmitters. Here we describe recent advances in our understanding of synaptic modulation by metabotropic GABAB receptors. By inhibiting multivesicular release from the presynaptic terminal, these receptors decrease the synaptic glutamate signal. GABAB receptors also inhibit the Ca2+ permeability of NMDA receptors to decrease Ca2+ signals in postsynaptic spines. These new findings highlight the importance of GABAB receptors in regulating many aspects of synaptic transmission. They also point to novel questions about the spatiotemporal dynamics and sources of synaptic modulation in the brain.
Collapse
Affiliation(s)
- Jason R. Chalifoux
- Center for Neural Science New York University 4 Washington Place New York, NY 10003
| | - Adam G. Carter
- Center for Neural Science New York University 4 Washington Place New York, NY 10003
| |
Collapse
|
249
|
Vlachou S, Paterson NE, Guery S, Kaupmann K, Froestl W, Banerjee D, Finn M, Markou A. Both GABA(B) receptor activation and blockade exacerbated anhedonic aspects of nicotine withdrawal in rats. Eur J Pharmacol 2011; 655:52-8. [PMID: 21262222 PMCID: PMC3060559 DOI: 10.1016/j.ejphar.2011.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 12/07/2010] [Accepted: 01/07/2011] [Indexed: 01/19/2023]
Abstract
Nicotine dependence is maintained by the aversive, depression-like effects of nicotine withdrawal and the rewarding effects of acute nicotine. GABA(B) receptor antagonists exhibit antidepressant-like effects in rodents, whereas GABA(B) receptor agonists attenuate the rewarding effects of nicotine. Recent studies with GABA(B) receptor positive modulators showed that these compounds represent potentially improved medications for the treatment of nicotine dependence because of fewer side-effects than GABA(B) receptor agonists. Thus, GABA(B) receptor agonists and antagonists, and GABA(B) receptor positive modulators may have efficacy as smoking cessation aids by targeting different aspects of nicotine dependence and withdrawal. The present study assessed the effects of the GABA(B) receptor agonist CGP44532, the GABA(B) receptor antagonist CGP56433A, and the GABA(B) receptor positive modulator BHF177 on the anhedonic aspects of nicotine withdrawal. Rats were prepared with stimulating electrodes in the posterior lateral hypothalamus. After establishing stable intracranial self-stimulation (ICSS) thresholds, rats were prepared with subcutaneous osmotic minipumps delivering either nicotine or saline for 7 or 14days. ICSS thresholds were assessed 6h post-pump removal. Thirty hours after pump removal, CGP44532, CGP56433A, and BHF177 were administered 30min prior to ICSS testing. Both GABA(B) receptor activation (CGP44532 and BHF177) and blockade (CGP56433A) elevated ICSS thresholds in all groups, resulting in exacerbated effects of nicotine withdrawal in the nicotine-treated groups. These similar effects of GABA(B) receptor activation and blockade on the anhedonic depression-like aspects of nicotine withdrawal were surprising and perhaps reflect differential efficacy of these compounds at presynaptic hetero- and autoreceptors, as well as postsynaptic, GABA(B) receptors.
Collapse
Affiliation(s)
- Styliani Vlachou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Neil E. Paterson
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Sebastien Guery
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Klemens Kaupmann
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Wolfgang Froestl
- Neuroscience Research, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Deboshri Banerjee
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - M.G. Finn
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| |
Collapse
|
250
|
Functional Consequences of GPCR Heterodimerization: GPCRs as Allosteric Modulators. Pharmaceuticals (Basel) 2011. [PMCID: PMC4053800 DOI: 10.3390/ph4030509] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|