201
|
Charlesworth P, Komiyama NH, Grant SGN. Homozygous mutation of focal adhesion kinase in embryonic stem cell derived neurons: normal electrophysiological and morphological properties in vitro. BMC Neurosci 2006; 7:47. [PMID: 16768796 PMCID: PMC1538614 DOI: 10.1186/1471-2202-7-47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 06/12/2006] [Indexed: 01/28/2023] Open
Abstract
Background Genetically manipulated embryonic stem (ES) cell derived neurons (ESNs) provide a powerful system with which to study the consequences of gene manipulation in mature, synaptically connected neurons in vitro. Here we report a study of focal adhesion kinase (FAK), which has been implicated in synapse formation and regulation of ion channels, using the ESN system to circumvent the embryonic lethality of homozygous FAK mutant mice. Results Mouse ES cells carrying homozygous null mutations (FAK-/-) were generated and differentiated in vitro into neurons. FAK-/- ESNs extended axons and dendrites and formed morphologically and electrophysiologically intact synapses. A detailed study of NMDA receptor gated currents and voltage sensitive calcium currents revealed no difference in their magnitude, or modulation by tyrosine kinases. Conclusion FAK does not have an obligatory role in neuronal differentiation, synapse formation or the expression of NMDA receptor or voltage-gated calcium currents under the conditions used in this study. The use of genetically modified ESNs has great potential for rapidly and effectively examining the consequences of neuronal gene manipulation and is complementary to mouse studies.
Collapse
Affiliation(s)
- P Charlesworth
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK
| | - NH Komiyama
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK
| | - SGN Grant
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
202
|
Palop JJ, Chin J, Bien-Ly N, Massaro C, Yeung BZ, Yu GQ, Mucke L. Vulnerability of dentate granule cells to disruption of arc expression in human amyloid precursor protein transgenic mice. J Neurosci 2006; 25:9686-93. [PMID: 16237173 PMCID: PMC6725729 DOI: 10.1523/jneurosci.2829-05.2005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-induced expression of Arc is necessary for maintenance of long-term potentiation and for memory consolidation. In transgenic (TG) mice with neuronal production of human amyloid precursor protein (hAPP) and hAPP-derived amyloid-beta (Abeta) peptides, basal Arc expression was reduced primarily in granule cells of the dentate gyrus. After exploration of a novel environment, Arc expression in these neurons was unaltered in hAPP mice but increased markedly in nontransgenic controls. Other TG neuronal populations showed no or only minor deficits in Arc expression, indicating a special vulnerability of dentate granule cells. The phosphorylation states of NR2B and ERK1/2 were reduced in the dentate gyrus of hAPP mice, suggesting attenuated activity in NMDA-dependent signaling pathways that regulate synaptic plasticity as well as Arc expression. Arc reductions in hAPP mice correlated with reductions in the actin-binding protein alpha-actinin-2, which is located in dendritic spines and, like Arc, fulfills important functions in excitatory synaptic activity. Reductions in Arc and alpha-actinin-2 correlated tightly with reductions in Fos and calbindin, shown previously to reflect learning deficits in hAPP mice. None of these alterations correlated with the extent of plaque formation, suggesting a plaque-independent mechanism of hAPP/Abeta-induced neuronal deficits. The brain region-specific depletion of factors that participate in activity-dependent modification of synapses may critically contribute to cognitive deficits in hAPP mice and possibly in humans with Alzheimer's disease.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Napolitano M, Picconi B, Centonze D, Bernardi G, Calabresi P, Gulino A. L-DOPA treatment of parkinsonian rats changes the expression of Src, Lyn and PKC kinases. Neurosci Lett 2006; 398:211-4. [PMID: 16529858 DOI: 10.1016/j.neulet.2005.12.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 12/16/2005] [Accepted: 12/29/2005] [Indexed: 10/24/2022]
Abstract
The dopamine (DA) precursor L-DOPA remains the most common treatment for Parkinson's disease (PD). However, long-term treatment with L-DOPA induces dyskinesia and motor disabilities in PD patients, indicating that this pharmacological agent is unable to fully compensate for the effects of DA denervation when used chronically. In this study, we examined the effect 6-hydroxydopamine (6-OHDA)-induced DA denervation of the striatum followed by either acute or chronic treatment with L-DOPA on gene expression of critical regulators of glutamate synaptic transmission. We found that administration of L-DOPA in rats with unilateral DA denervation resulted in a progressive increase of contraversive circling behavior and modulated the expression of Src, Lyn and PKC kinases. In particular, acute (3 days) and chronic (21 days) L-DOPA treatment were differentially able to rescue the effects of DA lesion, since only the acute treatment with L-DOPA corrected the decrease in Src, Lyn and PKC kinase expression induced by 6-OHDA lesion. Also, the reduced phosphorylation level of NR1 receptor subunit induced by 6-OHDA was only partially reversed by chronic L-DOPA treatment.
Collapse
Affiliation(s)
- Maddalena Napolitano
- Dipartimento di Medicina Sperimentale e Patologia, Università La Sapienza, viale Regina Elena 324, 00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
204
|
Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, Herz J. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 2006; 25:8209-16. [PMID: 16148228 PMCID: PMC6725528 DOI: 10.1523/jneurosci.1951-05.2005] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reelin, a large protein that regulates neuronal migration during embryonic development, activates a conserved signaling pathway that requires its receptors, very low-density lipoprotein receptor and apolipoprotein E receptor 2, the cytoplasmic adaptor protein Disabled-1 (Dab1), and Src family kinases (SFK). Reelin also markedly enhances long-term potentiation in the adult hippocampus, suggesting that this developmental signaling pathway can physiologically modulate learning and behavior. Here, we show that Reelin can regulate NMDA-type glutamate receptor activity through a mechanism that requires SFKs and Dab1. Reelin mediates tyrosine phosphorylation of and potentiates calcium influx through NMDA receptors in primary wild-type cortical neurons but not in Dab1 knock-out neurons or in cells in which Reelin binding to its receptors is blocked by a receptor antagonist. Inhibition of SFK abolishes Reelin-induced and glutamate-dependent enhancement of calcium influx. We also show that Reelin-induced augmentation of Ca2+ entry through NMDA receptors increases phosphorylation and nuclear translocation of the transcription factor cAMP-response element binding protein. Thus, Reelin may physiologically modulate learning and memory by modulating NMDA receptor functions.
Collapse
Affiliation(s)
- Ying Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Hattori K, Uchino S, Isosaka T, Maekawa M, Iyo M, Sato T, Kohsaka S, Yagi T, Yuasa S. Fyn Is Required for Haloperidol-induced Catalepsy in Mice. J Biol Chem 2006; 281:7129-35. [PMID: 16407246 DOI: 10.1074/jbc.m511608200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fyn-mediated tyrosine phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunits has been implicated in various brain functions, including ethanol tolerance, learning, and seizure susceptibility. In this study, we explored the role of Fyn in haloperidol-induced catalepsy, an animal model of the extrapyramidal side effects of antipsychotics. Haloperidol induced catalepsy and muscle rigidity in the control mice, but these responses were significantly reduced in Fyn-deficient mice. Expression of the striatal dopamine D(2) receptor, the main site of haloperidol action, did not differ between the two genotypes. Fyn activation and enhanced tyrosine phosphorylation of the NMDA receptor NR2B subunit, as measured by Western blotting, were induced after haloperidol injection of the control mice, but both responses were significantly reduced in Fyn-deficient mice. Dopamine D(2) receptor blockade was shown to increase both NR2B phosphorylation and the NMDA-induced calcium responses in control cultured striatal neurons but not in Fyn-deficient neurons. Based on these findings, we proposed a new molecular mechanism underlying haloperidol-induced catalepsy, in which the dopamine D(2) receptor antagonist induces striatal Fyn activation and the subsequent tyrosine phosphorylation of NR2B alters striatal neuronal activity, thereby inducing the behavioral changes that are manifested as a cataleptic response.
Collapse
Affiliation(s)
- Kotaro Hattori
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
FRIEDMAN EITAN, WANG HOAUYAN. Prenatal Cocaine Exposure Alters Signal Transduction in the Brain D1Dopamine Receptor Systema. Ann N Y Acad Sci 2006; 846:238-247. [DOI: 10.1111/j.1749-6632.1998.tb09741.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
207
|
Kurejová M, Lacinová L. Effect of protein tyrosine kinase inhibitors on the current through the CaV3.1 channel. Arch Biochem Biophys 2006; 446:20-7. [PMID: 16386702 DOI: 10.1016/j.abb.2005.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/29/2005] [Accepted: 11/29/2005] [Indexed: 11/18/2022]
Abstract
In the present study, we have investigated the effects of protein tyrosine kinase (PTK) inhibitors on the Ca(V)3.1 calcium channel stably transfected in HEK293 cells using the whole-cell configuration of the patch-clamp technique. We have tested two different tyrosine kinase inhibitors, genistein and tyrphostin AG213, and their inactive analogs, genistin and tyrphostin AG9. Bath application of genistein, but not genistin, decreased the T-type calcium current amplitude in a concentration-dependent manner with an IC(50) of 24.7+/-2.0 microM. This effect of genistein was accompanied by deceleration of channel activation and acceleration of channel inactivation. Intracellular application of neither genistein nor genistin had a significant effect on the calcium current. Extracellular application of 50 microM tyrphostin AG213 and its inactive analogue, tyrphostin AG9, did not affect the current through the Ca(V)3.1 channel. The effect of genistein on the channel was also not affected by the presence of catalytically active PTK, p60(c-src) inside the cell. We have concluded that genistein directly inhibited the channel. This mechanism does not involve a PTK-dependent pathway. The alteration of the channel kinetics by genistein suggests an interaction with the voltage sensor of the channel together with the channel pore occlusion.
Collapse
Affiliation(s)
- Martina Kurejová
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | |
Collapse
|
208
|
Li SY, Huang BB, Ouyang S. Effect of genistein on voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells. World J Gastroenterol 2006; 12:420-5. [PMID: 16489642 PMCID: PMC4066061 DOI: 10.3748/wjg.v12.i3.420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the action of genistein (GST), a broad spectrum tyrosine kinase inhibitor, on voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells.
METHODS: Smooth muscle cells in guinea pig proximal colon were enzymatically isolated. Nystatin-perforated whole cell patch clamp technique was used to record potassium currents including fast transient outward current (IKto) and delayed rectifier current (IKdr), two of which were isolated pharmacologically with 10 mmol/L tetraethylammonium or 5 mmol/L 4-aminopyridine. Contamination of calcium-dependent potassium currents was minimized with no calcium and 0.2 mmol/L CdCl2 in an external solution.
RESULTS: GST (10-100 µmol/L) reversibly and dose-dependently reduced the peak amplitude of IKto with an IC50 value of 22.0±6.9 µmol/L. To a lesser extent, IKdr was also inhibited in both peak current and sustained current. GST could not totally block the outward potassium current as a fraction of the outward potassium current, which was insensitive to GST. GST had no effect on the steady-state activation (n = 6) and inactivation kinetics (n = 6) of IKto. Sodium orthovanadate (1 mmol/L), a potent inhibitor of tyrosine phosphatase, significantly inhibited GST-induced inhibition (P < 0.05).
CONCLUSION: GST can dose-dependently and reversibly block voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells.
Collapse
Affiliation(s)
- Shi-Ying Li
- Xiamen Institute of Medicine, 2 Tongan Road, Xiamen 361003, Fujian Province, China.
| | | | | |
Collapse
|
209
|
Chen L, Dai XN, Sokabe M. Chronic administration of dehydroepiandrosterone sulfate (DHEAS) primes for facilitated induction of long-term potentiation via sigma 1 (sigma1) receptor: optical imaging study in rat hippocampal slices. Neuropharmacology 2005; 50:380-92. [PMID: 16364377 DOI: 10.1016/j.neuropharm.2005.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 09/20/2005] [Accepted: 10/18/2005] [Indexed: 12/29/2022]
Abstract
Dehydroepiandrosterone sulfate (DHEAS), one of the most abundant neurosteroids synthesized de novo in the nervous system, has well characterized effects on memory and cognitive performances. However, little is known about the underlying synaptic mechanisms. In this study, we investigated the effects of chronic administration of DHEAS (20 mg/kg for 7 days) on the plasticity of Schaffer collateral-CA1 synapses by applying an optical recording technique on the hippocampal slices stained with voltage-sensitive dyes. We report here that chronically administered DHEAS significantly facilitated the induction of frequency-dependent LTP, termed DHEAS-facilitated LTP. While tetanus of at least 50 pulses (at 100 Hz) were required to induce LTP in control rats, only 20 pulses were needed in DHEAS-treated animals. In contrast DHEA, the non-sulfated form of DHEAS, had no facilitating effect on the induction of LTP. We found that chronically administered DHEAS did not alter the presynaptic glutamate release in response to both single pulse and tetanic stimulation, suggesting that certain alterations happened in postsynaptic neurons. Co-administration of the sigma 1 (sigma1) receptor antagonists, haloperidol or NE100, with DHEAS completely inhibited the DHEAS-facilitated LTP. However, acute administration of sigma1 receptor antagonists to the slices did not affect the induction of DHEAS-facilitated LTP, suggesting that sigma1 receptor is a key target of chronic actions of DHEAS but is not involved in the induction of DHEAS-facilitated LTP. Our findings provide evidence that chronically administered DHEAS plays a priming role in inducing a facilitated synaptic plasticity probably via a chronic activation of sigma1 receptor in rat hippocampal CA1 pyramidal cells.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, Nanjing Medical University, 140 Hanzhong-road, Nanjing 210029, China
| | | | | |
Collapse
|
210
|
Goebel SM, Alvestad RM, Coultrap SJ, Browning MD. Tyrosine phosphorylation of the N-methyl-d-aspartate receptor is enhanced in synaptic membrane fractions of the adult rat hippocampus. ACTA ACUST UNITED AC 2005; 142:65-79. [PMID: 16257472 DOI: 10.1016/j.molbrainres.2005.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 09/01/2005] [Accepted: 09/18/2005] [Indexed: 11/30/2022]
Abstract
Hippocampal N-methyl-D-aspartate receptors (NMDARs) contribute to the expression of certain types of synaptic plasticity, such as long-term potentiation (LTP). It is well documented that tyrosine kinases increase NMDAR phosphorylation and potentiate NMDAR function. However, it is unclear how these phosphorylation changes result in enhanced NMDAR activity. We previously reported that NMDAR surface expression can be increased by LTP-inducing stimulation via tyrosine kinase-dependent mechanisms in the adult hippocampus [D.R. Grosshans, D.A. Clayton, S.J. Coultrap, M.D. Browning, Nat. Neurosci., 5 (2002) 27-33]. We therefore hypothesized that tyrosine phosphorylation of the NMDAR may enhance the trafficking of the receptor to the synaptic membrane. Here, we show that the stoichiometry of NR2A and NR2B tyrosine phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Interestingly, NR2B tyrosine-1472, but not NR1 serine-896 or -897, phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Furthermore, treatment of hippocampal slices with either a tyrosine phosphatase inhibitor or a tyrosine kinase inhibitor alters NMDAR tyrosine phosphorylation and produces a corresponding change in the concentration of NMDARs in the synaptosomal membrane fraction. Taken together, these data support the hypothesis that tyrosine phosphorylation may enhance NMDAR activity by increasing the number of NMDARs at the synaptic membrane.
Collapse
Affiliation(s)
- Susan M Goebel
- Neuroscience Program, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
211
|
Reinés A, Zárate S, Carmona C, Negri G, Peña C, Rodríguez de Lores Arnaiz G. Endobain E, a brain endogenous factor, is present and modulates NMDA receptor in ischemic conditions. Life Sci 2005; 78:245-52. [PMID: 16107263 DOI: 10.1016/j.lfs.2005.04.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 04/19/2005] [Indexed: 11/16/2022]
Abstract
We have isolated from rat cerebral cortex an endogenous Na(+), K(+)-ATPase inhibitor, termed endobain E, which modulates glutamatergic N-methyl-d-aspartate (NMDA) receptor. This endogenous factor allosterically decreases [(3)H]dizocilpine binding to NMDA receptor, most likely acting as a weak channel blocker. In the present study we investigated whether endobain E is present in the cerebral cortex of rats subjected to ischemia and modulates NMDA receptor exposed to the same conditions. Ischemia-reperfusion was carried out by bilateral occlusion of common carotid arteries followed by a 15-min reperfusion period. Elution profile of brain soluble fraction showed that endobain E is present in cerebral cortex of ischemia-reperfusion rats. On assaying its effect on synaptosomal membrane Na(+), K(+)-ATPase activity and [(3)H]dizocilpine binding to cerebral cortex membranes prepared from animals without treatment, it was found that the endogenous modulator isolated from ischemia-reperfusion rats was able to inhibit both enzyme activity and ligand binding. On the other hand, endobain E prepared from rats without treatment also decreased binding to cerebral cortex or hippocampal membranes obtained from animals exposed to ischemia-reperfusion. Since ischemia decreases tissue pH and NMDA receptor activity varies according to proton concentration, pH influence on endobain E effect was tested. Endobain E ( approximately 80 mg original tissue) decreased [(3)H]dizocilpine binding 25% at pH 7.4 or 8.0 but 90% at pH 6.5. These results demonstrate that endobain E is present and also able to modulate NMDA receptor in the short-term period that follows cerebral ischemia and that its effect depends on proton concentration, suggesting greater NMDA receptor modulation by endobain E at low pH, typical of ischemic tissues.
Collapse
Affiliation(s)
- A Reinés
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
212
|
Shin DSH, Wilkie MP, Pamenter ME, Buck LT. Calcium and protein phosphatase 1/2A attenuate N-methyl-D-aspartate receptor activity in the anoxic turtle cortex. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:50-7. [PMID: 16139540 DOI: 10.1016/j.cbpa.2005.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/20/2005] [Accepted: 07/24/2005] [Indexed: 11/24/2022]
Abstract
Excitotoxic cell death (ECD) is characteristic of mammalian brain following min of anoxia, but is not observed in the western painted turtle following days to months without oxygen. A key event in ECD is a massive increase in intracellular Ca(2+) by over-stimulation of N-methyl-d-aspartate receptors (NMDARs). The turtle's anoxia tolerance may involve the prevention of ECD by attenuating NMDAR-induced Ca(2+) influx. The goal of this study was to determine if protein phosphatases (PPs) and intracellular calcium mediate reductions in turtle cortical neuron whole-cell NMDAR currents during anoxia, thereby preventing ECD. Whole-cell NMDAR currents did not change during 80 min of normoxia, but decreased 56% during 40 min of anoxia. Okadaic acid and calyculin A, inhibitors of serine/threonine PP1 and PP2A, potentiated NMDAR currents during normoxia and prevented anoxia-mediated attenuation of NMDAR currents. Decreases in NMDAR activity during anoxia were also abolished by inclusion of the Ca(2+) chelator -- BAPTA and the calmodulin inhibitor -- calmidazolium. However, cypermethrin, an inhibitor of the Ca(2+)/calmodulin-dependent PP2B (calcineurin), abolished the anoxic decrease in NMDAR activity at 20, but not 40 min suggesting that this phosphatase might play an early role in attenuating NMDAR activity during anoxia. Our results show that PPs, Ca(2+) and calmodulin play an important role in decreasing NMDAR activity during anoxia in the turtle cortex. We offer a novel mechanism describing this attenuation in which PP1 and 2A dephosphorylate the NMDAR (NR1 subunit) followed by calmodulin binding, a subsequent dissociation of alpha-actinin-2 from the NR1 subunit, and a decrease in NMDAR activity.
Collapse
|
213
|
Miyamoto Y, Chen L, Sato M, Sokabe M, Nabeshima T, Pawson T, Sakai R, Mori N. Hippocampal synaptic modulation by the phosphotyrosine adapter protein ShcC/N-Shc via interaction with the NMDA receptor. J Neurosci 2005; 25:1826-35. [PMID: 15716419 PMCID: PMC6725942 DOI: 10.1523/jneurosci.3030-04.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
N-Shc (neural Shc) (also ShcC), an adapter protein possessing two phosphotyrosine binding motifs [PTB (phosphotyrosine binding) and SH2 (Src homology 2) domains], is predominantly expressed in mature neurons of the CNS and transmits neurotrophin signals from the TrkB receptor to the Ras/mitogen-activated protein kinase (MAPK) pathway, leading to cellular growth, differentiation, or survival. Here, we demonstrate a novel role of ShcC, the modulation of NMDA receptor function in the hippocampus, using ShcC gene-deficient mice. In behavioral analyses such as the Morris water maze, contextual fear conditioning, and novel object recognition tasks, ShcC mutant mice exhibited superior ability in hippocampus-dependent spatial and nonspatial learning and memory. Consistent with this finding, electrophysiological analyses revealed that hippocampal long-term potentiation in ShcC mutant mice was significantly enhanced, with no alteration of presynaptic function, and the effect of an NMDA receptor antagonist on its expression in the mutant mice was notably attenuated. The tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B was also increased, suggesting that ShcC mutant mice have enhanced NMDA receptor function in the hippocampus. These results indicate that ShcC not only mediates TrkB-Ras/MAPK signaling but also is involved in the regulation of NMDA receptor function in the hippocampus via interaction with phosphotyrosine residues on the receptor subunits and serves as a modulator of hippocampal synaptic plasticity underlying learning and memory.
Collapse
Affiliation(s)
- Yoshiaki Miyamoto
- Department of Molecular Genetics, National Institute for Longevity Sciences, Oobu 474-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
214
|
van der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GMJ. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 2005; 94:1158-66. [PMID: 16092951 DOI: 10.1111/j.1471-4159.2005.03269.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the frequency-response curve of synaptic plasticity revealed that insulin induced LTD at 0.033 Hz and LTP at 10 Hz, whereas in the absence of insulin, 1 Hz induced LTD and 100 Hz induced LTP. LTD induction in the presence of insulin required low frequency synaptic stimulation (0.033 Hz) and blockade of GABAergic transmission. The LTD or LTP induced in the presence of insulin was N-methyl-d-aspartate (NMDA) receptor specific as it could be inhibited by alpha-amino-5-phosphonopentanoic acid (APV), a specific NMDA receptor antagonist. LTD induction was also facilitated by lowering the extracellular Mg(2+) concentration, indicating an involvement of NMDA receptors. Inhibition of PI3K signalling or discontinuing synaptic stimulation also prevented this LTD. These results show that insulin modulates activity-dependent synaptic plasticity, which requires activation of NMDA receptors and the PI3K pathway. The results obtained provide a mechanistic link between insulin and synaptic plasticity, and explain how insulin functions as a neuromodulator.
Collapse
Affiliation(s)
- Lars P van der Heide
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
215
|
Abe T, Matsumura S, Katano T, Mabuchi T, Takagi K, Xu L, Yamamoto A, Hattori K, Yagi T, Watanabe M, Nakazawa T, Yamamoto T, Mishina M, Nakai Y, Ito S. Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain. Eur J Neurosci 2005; 22:1445-54. [PMID: 16190898 DOI: 10.1111/j.1460-9568.2005.04340.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Blotting, Western
- Dinoprostone/physiology
- Dose-Response Relationship, Drug
- Histocytochemistry
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Microscopy, Immunoelectron
- Neoplasm Proteins
- Nitric Oxide/metabolism
- Pain/etiology
- Pain/physiopathology
- Pain/psychology
- Peripheral Nervous System Diseases/complications
- Phosphorylation
- Piperidines/pharmacology
- Protein-Tyrosine Kinases
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Signal Transduction/physiology
- Tyrosine/metabolism
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Tetsuya Abe
- Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Niisato K, Fujikawa A, Komai S, Shintani T, Watanabe E, Sakaguchi G, Katsuura G, Manabe T, Noda M. Age-dependent enhancement of hippocampal long-term potentiation and impairment of spatial learning through the Rho-associated kinase pathway in protein tyrosine phosphatase receptor type Z-deficient mice. J Neurosci 2005; 25:1081-8. [PMID: 15689543 PMCID: PMC6725950 DOI: 10.1523/jneurosci.2565.04.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although protein tyrosine phosphatases (PTPs) are expressed abundantly in the brain, their roles in synaptic plasticity have not been well elucidated. In this study, we have examined the physiological functions of Ptprz, which is a receptor-type PTP expressed predominantly in the brain as a chondroitin sulfate proteoglycan. We have examined phenotypes of mutant mice deficient in Ptprz using electrophysiological, pharmacological, and behavioral approaches. Mutant mice exhibit enhanced long-term potentiation (LTP) in the CA1 region of hippocampal slices and impaired spatial learning abilities in an age-dependent manner: young adult (<10 weeks old) mutant mice show normal LTP and learning abilities in the Morris water maze task, whereas adult (>13 weeks old) mutant mice exhibit enhanced LTP and impairment in the task. The enhanced LTP is specifically canceled out by pharmacological inhibition of Rho-associated kinase (ROCK), a major downstream effector of Rho. These findings suggest that the lack of Ptprz leads to aberrant activation of ROCK and resultantly to enhanced LTP in the slice and learning impairments in the animal.
Collapse
Affiliation(s)
- Kazue Niisato
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH, Jia Y, Shum F, Xu H, Li BM, Kaang BK, Zhuo M. Roles of NMDA NR2B Subtype Receptor in Prefrontal Long-Term Potentiation and Contextual Fear Memory. Neuron 2005; 47:859-72. [PMID: 16157280 DOI: 10.1016/j.neuron.2005.08.014] [Citation(s) in RCA: 393] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 06/17/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Cortical plasticity is thought to be important for the establishment, consolidation, and retrieval of permanent memory. Hippocampal long-term potentiation (LTP), a cellular mechanism of learning and memory, requires the activation of glutamate N-methyl-D-aspartate (NMDA) receptors. In particular, it has been suggested that NR2A-containing NMDA receptors are involved in LTP induction, whereas NR2B-containing receptors are involved in LTD induction in the hippocampus. However, LTP in the prefrontal cortex is less well characterized than in the hippocampus. Here we report that the activation of the NR2B and NR2A subunits of the NMDA receptor is critical for the induction of cingulate LTP, regardless of the induction protocol. Furthermore, pharmacological or genetic blockade of the NR2B subunit in the cingulate cortex impaired the formation of early contextual fear memory. Our results demonstrate that the NR2B subunit of the NMDA receptor in the prefrontal cortex is critically involved in both LTP and contextual memory.
Collapse
Affiliation(s)
- Ming-Gao Zhao
- Laboratory of Higher Brain Functions, Institute of Neurobiology, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Suvarna N, Borgland SL, Wang J, Phamluong K, Auberson YP, Bonci A, Ron D. Ethanol Alters Trafficking and Functional N-Methyl-D-aspartate Receptor NR2 Subunit Ratio via H-Ras. J Biol Chem 2005; 280:31450-9. [PMID: 16009711 DOI: 10.1074/jbc.m504120200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity and is one of the main targets for alcohol (ethanol) in the brain. Trafficking of the NMDAR is emerging as a key regulatory mechanism that underlies channel activity and synaptic plasticity. Here we show that exposure of hippocampal neurons to ethanol increases the internalization of the NR2A but not NR2B subunit of the NMDAR via the endocytic pathway. We further observed that ethanol exposure results in NR2A endocytosis through the activation of H-Ras and the inhibition of the tyrosine kinase Src. Importantly, ethanol treatment alters functional subunit composition from NR2A/NR2B- to mainly NR2B-containing NMDARs. Our results suggest that addictive drugs such as ethanol alter NMDAR trafficking and subunit composition. This may be an important mechanism by which ethanol exerts its effects on NMDARs to produce alcohol-induced aberrant plasticity.
Collapse
Affiliation(s)
- Neesha Suvarna
- Ernest Gallo Research Center, Emeryville, California 94608, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Magoski NS, Kaczmarek LK. Association/dissociation of a channel-kinase complex underlies state-dependent modulation. J Neurosci 2005; 25:8037-47. [PMID: 16135761 PMCID: PMC2873328 DOI: 10.1523/jneurosci.1903-05.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/22/2005] [Accepted: 07/26/2005] [Indexed: 11/21/2022] Open
Abstract
Although ion channels are regulated by protein kinases, it has yet to be established whether the behavioral state of an animal may dictate whether or not modulation by a kinase can occur. Here, we describe behaviorally relevant changes in the ability of a nonselective cation channel from Aplysia bag cell neurons to be regulated by protein kinase C (PKC). This channel drives a prolonged afterdischarge that triggers the release of egg-laying hormone and a series of reproductive behaviors. The afterdischarge is followed by a lengthy refractory period, during which additional bursting cannot be elicited. Previously, we reported that, in excised inside-out patches, the cation channel is closely associated with PKC, which increases channel activity. We now show that this channel-kinase association is plastic, because channels excised from certain neurons lack PKC-dependent modulation. Although direct application of PKC-activating phorbol ester to these patches had no effect, exposing the neurons themselves to phorbol ester reinstated modulation, suggesting that an absence of modulation was attributable to a lack of associated kinase. Furthermore, modulation was restored by pretreating neurons with either PP1 [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] or SU6656, inhibitors of Src tyrosine kinase, an enzyme whose Src homology 3 domain is required for channel-PKC association. Neurons that were stimulated to afterdischarge and had entered the prolonged refractory period were found to have more phosphotyrosine staining and less channel-PKC association than unstimulated neurons. These findings suggest that Src-dependent regulation of the association between the cation channel and PKC controls both the long-term excitability of these neurons and their ability to induce reproduction.
Collapse
Affiliation(s)
- Neil S Magoski
- Department of Physiology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | | |
Collapse
|
220
|
Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005; 8:1051-8. [PMID: 16025111 DOI: 10.1038/nn1503] [Citation(s) in RCA: 1203] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 06/22/2005] [Indexed: 11/09/2022]
Abstract
Amyloid-beta peptide is elevated in the brains of patients with Alzheimer disease and is believed to be causative in the disease process. Amyloid-beta reduces glutamatergic transmission and inhibits synaptic plasticity, although the underlying mechanisms are unknown. We found that application of amyloid-beta promoted endocytosis of NMDA receptors in cortical neurons. In addition, neurons from a genetic mouse model of Alzheimer disease expressed reduced amounts of surface NMDA receptors. Reducing amyloid-beta by treating neurons with a gamma-secretase inhibitor restored surface expression of NMDA receptors. Consistent with these data, amyloid-beta application produced a rapid and persistent depression of NMDA-evoked currents in cortical neurons. Amyloid-beta-dependent endocytosis of NMDA receptors required the alpha-7 nicotinic receptor, protein phosphatase 2B (PP2B) and the tyrosine phosphatase STEP. Dephosphorylation of the NMDA receptor subunit NR2B at Tyr1472 correlated with receptor endocytosis. These data indicate a new mechanism by which amyloid-beta can cause synaptic dysfunction and contribute to Alzheimer disease pathology.
Collapse
Affiliation(s)
- Eric M Snyder
- Laboratory for Molecular and Cellular Neuroscience, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Khan AM, Cheung HH, Gillard ER, Palarca JA, Welsbie DS, Gurd JW, Stanley BG. Lateral hypothalamic signaling mechanisms underlying feeding stimulation: differential contributions of Src family tyrosine kinases to feeding triggered either by NMDA injection or by food deprivation. J Neurosci 2005; 24:10603-15. [PMID: 15564576 PMCID: PMC6730118 DOI: 10.1523/jneurosci.3390-04.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In rats, feeding can be triggered experimentally using many approaches. Included among these are (1) food deprivation and (2) acute microinjection of the neurotransmitter l-glutamate (Glu) or its receptor agonist NMDA into the lateral hypothalamic area (LHA). Under both paradigms, the NMDA receptor (NMDA-R) within the LHA appears critically involved in transferring signals encoded by Glu to stimulate feeding. However, the intracellular mechanisms underlying this signal transfer are unknown. Because protein-tyrosine kinases (PTKs) participate in NMDA-R signaling mechanisms, we determined PTK involvement in LHA mechanisms underlying both types of feeding stimulation through food intake and biochemical measurements. LHA injections of PTK inhibitors significantly suppressed feeding elicited by LHA NMDA injection (up to 69%) but only mildly suppressed deprivation feeding (24%), suggesting that PTKs may be less critical for signals underlying this feeding behavior. Conversely, food deprivation but not NMDA injection produced marked increases in apparent activity for Src PTKs and in the expression of Pyk2, an Src-activating PTK. When considered together, the behavioral and biochemical results demonstrate that, although it is easier to suppress NMDA-elicited feeding by PTK inhibitors, food deprivation readily drives PTK activity in vivo. The latter result may reflect greater PTK recruitment by neurotransmitter receptors, distinct from the NMDA-R, that are activated during deprivation-elicited but not NMDA-elicited feeding. These results also demonstrate how the use of only one feeding stimulation paradigm may fail to reveal the true contributions of signaling molecules to pathways underlying feeding behavior in vivo.
Collapse
Affiliation(s)
- Arshad M Khan
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA.
| | | | | | | | | | | | | |
Collapse
|
222
|
Chung HJ, Huang YH, Lau LF, Huganir RL. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 2005; 24:10248-59. [PMID: 15537897 PMCID: PMC6730169 DOI: 10.1523/jneurosci.0546-04.2004] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interactions between NMDA receptors (NMDARs) and the PDZ [postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] domains of PSD-95/SAP90 (synapse-associated protein with a molecular weight of 90 kDa) family proteins play important roles in the synaptic targeting and signaling of NMDARs. However, little is known about the mechanisms that regulate these PDZ domain-mediated interactions. Here we show that casein kinase II (CK2) phosphorylates the serine residue (Ser1480) within the C-terminal PDZ ligand (IESDV) of the NR2B subunit of NMDAR in vitro and in vivo. Phosphorylation of Ser1480 disrupts the interaction of NR2B with the PDZ domains of PSD-95 and SAP102 and decreases surface NR2B expression in neurons. Interestingly, activity of the NMDAR and Ca2+/calmodulin-dependent protein kinase II regulates CK2 phosphorylation of Ser1480. Furthermore, CK2 colocalizes with NR1 and PSD-95 at synaptic sites. These results indicate that activity-dependent CK2 phosphorylation of the NR2B PDZ ligand regulates the interaction of NMDAR with PSD-95/SAP90 family proteins as well as surface NMDAR expression and may be a critical mechanism for modulating excitatory synaptic function and plasticity.
Collapse
Affiliation(s)
- Hee Jung Chung
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
223
|
Gu Z, Jiang Q, Fu AKY, Ip NY, Yan Z. Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 2005; 25:4974-84. [PMID: 15901778 PMCID: PMC6724849 DOI: 10.1523/jneurosci.1086-05.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 11/21/2022] Open
Abstract
Recent linkage studies have identified a significant association of the neuregulin gene with schizophrenia, but how neuregulin is involved in schizophrenia is primarily unknown. Aberrant NMDA receptor functions have been implicated in the pathophysiology of schizophrenia. Therefore, we hypothesize that neuregulin, which is present in glutamatergic synaptic vesicles, may affect NMDA receptor functions via actions on its ErbB receptors enriched in postsynaptic densities, hence participating in emotional regulation and cognitive processes that are impaired in schizophrenia. To test this, we examined the regulation of NMDA receptor currents by neuregulin signaling pathways in prefrontal cortex (PFC), a prominent area affected in schizophrenia. We found that bath perfusion of neuregulin significantly reduced whole-cell NMDA receptor currents in acutely isolated and cultured PFC pyramidal neurons and decreased NMDA receptor-mediated EPSCs in PFC slices. The effect of neuregulin was mainly blocked by application of the ErbB receptor tyrosine kinase inhibitor, phospholipase C (PLC) inhibitor, IP3 receptor (IP3R) antagonist, or Ca2+ chelators. The neuregulin regulation of NMDA receptor currents was also markedly attenuated in cultured neurons transfected with mutant forms of Ras or a dominant-negative form of MEK1 (mitogen-activated protein kinase kinase 1). Moreover, the neuregulin effect was prevented by agents that stabilize or disrupt actin polymerization but not by agents that interfere with microtubule assembly. Furthermore, neuregulin treatment increased the abundance of internalized NMDA receptors in cultured PFC neurons, which was also sensitive to agents affecting actin cytoskeleton. Together, our study suggests that both PLC/IP3R/Ca2+ and Ras/MEK/ERK (extracellular signal-regulated kinase) signaling pathways are involved in the neuregulin-induced reduction of NMDA receptor currents, which is likely through enhancing NR1 internalization via an actin-dependent mechanism.
Collapse
Affiliation(s)
- Zhenglin Gu
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
224
|
Ferrani-Kile K, Leslie SW. Modulation of Protein Tyrosine Phosphatase Activity Alters the Subunit Assembly in Native N-Methyl-d-aspartate Receptor Complex. J Pharmacol Exp Ther 2005; 314:86-93. [PMID: 15837820 DOI: 10.1124/jpet.105.083535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-methyl-D-aspartate (NMDA) receptor is crucial for development and neuroplasticity as well as excitotoxicity. The biochemical basis of the disassembly and reassembly of NMDA receptor has never been reported. Using coimmunoprecipitation, Western blotting, and mass spectrometry, we show that inhibition of tyrosine phosphatases triggers disassembly of NR1, NR2A, and NR2B in cortical NMDA receptor complexes. Furthermore, the disassembly of the NMDA receptor subunits is immediate, dose-dependent, and reversible and seems to occur through mechanisms linked to Src kinases. Together, these results define a novel role for tyrosine phosphatases in the complex mechanism of NMDA receptor regulation.
Collapse
Affiliation(s)
- Karima Ferrani-Kile
- Division of Pharmacology and Toxicology, College of Pharmacy and the Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1 University Station, A1915, Austin, TX 78712, USA.
| | | |
Collapse
|
225
|
Buck LT. Adenosine as a signal for ion channel arrest in anoxia-tolerant organisms. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:401-14. [PMID: 15544964 DOI: 10.1016/j.cbpc.2004.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 03/31/2004] [Accepted: 04/05/2004] [Indexed: 11/18/2022]
Abstract
Certain freshwater turtles and fish are extremely anoxia-tolerant, capable of surviving hours of anoxia at high temperatures and weeks to months at low temperatures. There is great interest in understanding the cellular mechanisms underlying anoxia-tolerance in these groups because they are anoxia-tolerant vertebrates and because of the far-reaching medical benefits that would be gained. It has become clear that a pre-condition of prolonged anoxic survival must involve the matching of ATP production with ATP utilization to maintain stable ATP levels during anoxia. In most vertebrates, anoxia leads to a severe decrease in ATP production without a concomitant reduction in utilization, which inevitably leads to the catastrophic events associated with cell death or necrosis. Anoxia-tolerant organisms do not increase ATP production when faced with anoxia, but rather decrease utilization to a level that can be met by anaerobic glycolysis alone. Protein synthesis and ion movement across the plasma membrane are the two main targets of regulatory processes that reduce ATP utilization and promote anoxic survival. However, the oxygen sensing and biochemical signaling mechanisms that achieve a coordinated reduction in ATP production and utilization remain unclear. One candidate-signaling compound whose extracellular concentration increases in concert with decreasing oxygen availability is adenosine. Adenosine is known to have profound effects on various aspects of tissue metabolism, including protein synthesis, ion pumping and permeability of ion channels. In this review, I will investigate the role of adenosine in the naturally anoxia-tolerant freshwater turtle and goldfish and give an overview of pathways by which adenosine concentrations are regulated.
Collapse
Affiliation(s)
- Leslie Thomas Buck
- Department of Zoology, University of Toronto, 25 Harbord St., Toronto, ON, Canada M5S 3G5.
| |
Collapse
|
226
|
Cho CH, Song W, Leitzell K, Teo E, Meleth AD, Quick MW, Lester RAJ. Rapid upregulation of alpha7 nicotinic acetylcholine receptors by tyrosine dephosphorylation. J Neurosci 2005; 25:3712-23. [PMID: 15814802 PMCID: PMC6725387 DOI: 10.1523/jneurosci.5389-03.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/02/2005] [Accepted: 03/02/2005] [Indexed: 11/21/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) modulate network activity in the CNS. Thus, functional regulation of alpha7 nAChRs could influence the flow of information through various brain nuclei. It is hypothesized here that these receptors are amenable to modulation by tyrosine phosphorylation. In both Xenopus oocytes and rat hippocampal interneurons, brief exposure to a broad-spectrum protein tyrosine kinase inhibitor, genistein, specifically and reversibly potentiated alpha7 nAChR-mediated responses, whereas a protein tyrosine phosphatase inhibitor, pervanadate, caused depression. Potentiation was associated with an increased expression of surface alpha7 subunits and was not accompanied by detectable changes in receptor open probability, implying that the increased function results from an increased number of alpha7 nAChRs. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated exocytosis was shown to be a plausible mechanism for the rapid delivery of additional alpha7 nAChRs to the plasma membrane. Direct phosphorylation/dephosphorylation of alpha7 subunits was unlikely because mutation of all three cytoplasmic tyrosine residues did not prevent the genistein-mediated facilitation. Overall, these data are consistent with the hypothesis that the number of functional cell surface alpha7 nAChRs is controlled indirectly via processes involving tyrosine phosphorylation.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0021, USA
| | | | | | | | | | | | | |
Collapse
|
227
|
Chang YC, Kuo YM, Huang AM, Huang CC. Repetitive febrile seizures in rat pups cause long-lasting deficits in synaptic plasticity and NR2A tyrosine phosphorylation. Neurobiol Dis 2005; 18:466-75. [PMID: 15755673 DOI: 10.1016/j.nbd.2004.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Revised: 11/24/2004] [Accepted: 12/22/2004] [Indexed: 11/15/2022] Open
Abstract
Adult rats with early-life frequently repetitive febrile seizures (FRFS), but not single febrile seizure (SFS), exhibited impaired performance in inhibitory avoidance tasks but without significant hippocampal neuronal loss. The mechanisms of long-term memory impairment in the hippocampus of adult rats with early-life FRFS remain unknown. Using a heated-air febrile seizures (FS) paradigm, male rat pups were subjected to single or nine episodes of brief FS at days 10 to 12 postpartum. We found that early-life FRFS led to long-term bidirectional modulation in hippocampal synaptic plasticity, i.e., impaired long-term potentiation and facilitated long-term depression. Three hours after inhibitory avoidance training, phosphorylation of hippocampal extracellular signal-regulated kinase (ERK) 1/2 was significantly less in the FRFS group than in controls. Furthermore, there was a selective alteration in NMDA receptor-mediated ERK1/2 phosphorylation in the hippocampus of the FRFS group. Although the expression levels of NMDA receptor subunits and interaction of NMDA receptor and postsynaptic density 95 did not alter quantitatively, there was a specific alteration in NR2A, but not NR2B, subunit tyrosine phosphorylation after NMDA stimulation in the FRFS group. These data offer a potential molecular explanation for the hippocampus-dependent memory deficits observed in the rats with early-life FRFS.
Collapse
Affiliation(s)
- Ying-Chao Chang
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
228
|
Wu K, Len GW, McAuliffe G, Ma C, Tai JP, Xu F, Black IB. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms. ACTA ACUST UNITED AC 2005; 130:178-86. [PMID: 15519688 DOI: 10.1016/j.molbrainres.2004.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2004] [Indexed: 11/30/2022]
Abstract
Brain-derived growth factor (BDNF) acutely regulates synaptic transmission and modulates hippocampal long-term potentiation (LTP) and long-term depression (LTD), cellular models of plasticity associated with learning and memory. Our previous studies revealed that BDNF rapidly increases phosphorylation of NMDA receptor subunits NR1 and NR2B in the postsynaptic density (PSD), potentially linking receptor phosphorylation to synaptic plasticity. To further define molecular mechanisms governing BDNF actions, we examined tyrosine phosphorylation of GluR1, the most well-characterized subunit of AMPA receptors. Initially, we investigated synaptoneurosomes that contain intact pre- and postsynaptic elements. Incubation of synaptoneurosomes with BDNF for 5 min increased tyrosine phosphorylation of GluR1 in a dose-dependent manner, with a maximal, 4-fold enhancement at 10 ng/ml BDNF. NGF had no effects, suggesting the specificity of BDNF actions. Subsequently, we found that BDNF elicited a maximal, 2.5-fold increase in GluR1 phosphorylation in the PSD at 250 ng/ml BDNF within 5 min, suggesting that BDNF enhances the phosphorylation through postsynaptic mechanisms. Activation of trkB receptors was critical as k252-a, an inhibitor of trk receptor tyrosine kinase, blocked the BDNF-activated GluR1 phosphorylation. In addition, AP-5 and MK 801, NMDA receptor antagonists, blocked BDNF enhancement of phosphorylation in synaptoneurosomes or PSDs. Conversely, NMDA, the specific receptor agonist, evoked respective 3.8- and 2-fold increases in phosphorylation in synaptoneurosomes and PSDs within 5 min, mimicking the effects of BDNF. These findings raise the possibility that BDNF modulates GluR1 activity via changes in NMDA receptor function. Moreover, incubation of synaptoneurosomes or PSDs with BDNF and ifenprodil, a specific NR2B antagonist, reproduced the results of AP-5 and MK-801. Finally, coexposure of synaptoneurosomes or PSDs to BDNF and NMDA was not additive, suggesting that BDNF and NMDA activate the same tyrosine phosphorylation site(s) in GluR1. Our findings suggest that BDNF-mediated GluR1 tyrosine phosphorylation potentially regulates synaptic plasticity postsynaptically through NR2B subunits of the NMDA receptor.
Collapse
Affiliation(s)
- Kuo Wu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
229
|
Vial C, Tobin A, Evans R. G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 2005; 382:101-10. [PMID: 15144237 PMCID: PMC1133920 DOI: 10.1042/bj20031910] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/21/2004] [Accepted: 05/14/2004] [Indexed: 01/26/2023]
Abstract
P2X1 receptors for ATP are ligand-gated cation channels, which mediate smooth muscle contraction, contribute to blood clotting and are co-expressed with a range of GPCRs (G-protein-coupled receptors). Stimulation of Galpha(q)-coupled mGluR1alpha (metabotropic glutamate receptor 1alpha), P2Y1 or P2Y2 receptors co-expressed with P2X(1) receptors in Xenopus oocytes evoked calcium-activated chloride currents (I(ClCa)) and potentiated subsequent P2X1-receptor-mediated currents by up to 250%. The mGluR1alpha-receptor-mediated effects were blocked by the phospholipase C inhibitor U-73122. Potentiation was mimicked by treatment with the phor-bol ester PMA. P2X receptors have a conserved intracellular PKC (protein kinase C) site; however, GPCR- and PMA-mediated potentiation was still observed with point mutants in which this site was disrupted. Similarly, the potentiation by GPCRs or PMA was unaffected by chelating the intracellular calcium rise with BAPTA/AM [bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis-(acetoxymethyl ester)] or the PKC inhibitors Ro-32-0432 and bisindolylmaleimide I, suggesting that the regulation does not involve a calcium-sensitive form of PKC. However, both GPCR and PMA potentiation were blocked by the kinase inhibitor staurosporine. Potentiation by phorbol esters was recorded in HEK-293 cells expressing P2X1 receptors, and radiolabelling of phosphorylated proteins in these cells demonstrated that P2X1 receptors are basally phosphorylated and that this level of phosphorylation is unaffected by phorbol ester treatment. This demonstrates that P2X1 regulation does not result directly from phosphorylation of the channel, but more likely by a staurosporine-sensitive phosphorylation of an accessory protein in the P2X1 receptor complex and suggests that in vivo fine-tuning of P2X1 receptors by GPCRs may contribute to cardiovascular control and haemostasis.
Collapse
Affiliation(s)
- Catherine Vial
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
| | - Andrew B. Tobin
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
| | - Richard J. Evans
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
230
|
Hwang IK, Lee KY, Yoo KY, Kim DS, Lee NS, Jeong YG, Kang TC, Han BH, Kim JS, Won MH. Tyrosine kinase A but not phosphacan/protein tyrosine phosphatase-ζ/β immunoreactivity and protein level changes in neurons and astrocytes in the gerbil hippocampus proper after transient forebrain ischemia. Brain Res 2005; 1036:35-41. [PMID: 15725399 DOI: 10.1016/j.brainres.2004.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/27/2004] [Accepted: 12/04/2004] [Indexed: 11/22/2022]
Abstract
In the present study, ischemia-related changes in tyrosine kinase A (trkA) and phosphacan/protein tyrosine phosphatase-zeta/beta (PTP-zeta/beta) immunoreactivities and protein contents were examined in the hippocampus proper after transient forebrain ischemia for 5 min in a gerbil model. Our investigations showed that ischemia-induced changes occurred in trkA immunoreactivity in the hippocampal CA1 region, but not in the CA2/3 region of the hippocampus proper. In the sham-operated group, trkA immunoreactivity was barely detectable. trkA immunoreactivity increased from 30 min after ischemia and peaked at 12 h. Four days after ischemic insult, trkA immunoreactivity was observed in GFAP-immunoreactive astrocytes in the strata oriens and radiatum. In addition, we found that ischemia-related changes in trkA protein content were similar to immunohistochemical changes. On the other hand, PTP-zeta/beta immunoreactivities in the hippocampus proper were unaltered by forebrain ischemia. These results suggest that chronological changes of trkA after transient forebrain ischemia may be associated with an ischemic damage compensatory mechanism in CA1 pyramidal cells.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Niimura M, Moussa R, Bissoon N, Ikeda-Douglas C, Milgram NW, Gurd JW. Changes in phosphorylation of the NMDA receptor in the rat hippocampus induced by status epilepticus. J Neurochem 2005; 92:1377-85. [PMID: 15748156 DOI: 10.1111/j.1471-4159.2005.02977.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemic administration of pilocarpine preceded by lithium induces status epilepticus (SE) that results in neurodegeneration and may lead to the development of spontaneous recurrent seizures. We investigated the effect of Li/pilocarpine-induced SE on phosphorylation of the NMDA receptor in rat hippocampus. Phosphorylation of NR1 by PKC on Ser890 was decreased to 45% of control values immediately following 1 h of SE. During the first 3 h following the termination of SE, phosphorylation of Ser890 increased 4-fold before declining to control values by 24 h. Phosphorylation of NR1 by PKA was also depressed relative to controls immediately following SE and transiently increased above control values upon the termination of SE. SE was accompanied by a general increase in tyrosine phosphorylation of hippocampal proteins that lasted for several hours following the termination of seizures. Tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDAR increased 3-4-fold over control values during SE, continued to increase during the first hour following SE and then declined to control levels by 24 h. SE resulted in the activation of Src and Pyk2 associated with the postsynaptic apparatus, suggesting a role for these enzymes in the SE-induced increase in tyrosine phosphorylation. Changes in phosphorylation of the NMDA receptor may play a role in the pathophysiological consequences of SE.
Collapse
Affiliation(s)
- M Niimura
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, Toronto, ON M1C 1A4, Canada
| | | | | | | | | | | |
Collapse
|
232
|
Kato K, Murota SI. NMDA receptor stimulation in the absence of extracellular Ca2+ potentiates Ca2+ influx-dependent cell death system. Brain Res 2005; 1035:177-87. [PMID: 15722057 DOI: 10.1016/j.brainres.2004.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 12/03/2004] [Accepted: 12/04/2004] [Indexed: 10/25/2022]
Abstract
The meaning of Ca2+ influx in the time course of glutamate stimulation of neuronal cells was addressed. We demonstrated that Ca2+ influx did not work straightforward in the determination of the fate of neuronal cells. There appears to be a critical period for Ca2+ influx to work efficiently in glutamate-induced neuronal cell death. When Ca2+ influx for 5 min from the beginning of glutamate stimulation was allowed in the whole stimulation period for 15 min, potent neuronal cell death could not be attained. On the other hand, when neuronal cells had been pre-treated with glutamate or NMDA for 5-10 min in the absence of extracellular Ca2+ following Ca2+ influx for 5 min fully induced neuronal cell death. APV inhibited this pre-treatment effect. It appears that the pre-treatment of neuronal cells with glutamate or NMDA in the absence of extracellular Ca2+ promotes the Ca2+ influx-dependent process executing cell death. The pre-treatment itself did not change the pattern of intracellular Ca2+ elevation by the activation of NMDA receptors. These results imply that glutamate activation of NMDA receptors consists of two different categories of pathways relating to neuronal cell death, i.e., Ca2+ influx independent and dependent, and that the former facilitates the latter to drive neuronal cells to death. This study clarified a mechanism by which glutamate quickly determines cell fate.
Collapse
Affiliation(s)
- Kohtaro Kato
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo-113-8549, Japan.
| | | |
Collapse
|
233
|
Rycroft BK, Gibb AJ. Inhibitory interactions of calcineurin (phosphatase 2B) and calmodulin on rat hippocampal NMDA receptors. Neuropharmacology 2005; 47:505-14. [PMID: 15380369 DOI: 10.1016/j.neuropharm.2004.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Revised: 05/10/2004] [Accepted: 05/28/2004] [Indexed: 11/29/2022]
Abstract
Calcineurin, protein phosphatase 2B, is a calcium-binding protein that has been shown to modulate NMDA receptor activity (Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature 369 (1994) 235; Regulation of glycine-insensitive desensitisation of the NMDA receptor in outside-out patches. J. Neurophysiol. 71 (1994) 754; Calcineurin acts via the C-terminus of NR2A to modulate desensitization of NMDA receptors. Neuropharmacology 42 (2002) 593) and synaptic transmission (Synaptic desensitization of NMDA receptors by calcineurin. Science 267 (1995) 1510; beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron 16 (1996) 415). Calmodulin, a necessary co-factor for calcineurin (Calmodulin binding by calcineurin. J. Biol. Chem. 262 (1987) 15062), has also been shown to inhibit NMDA receptor activity (Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84 (1996) 745; Direct effects of calmodulin on NMDA receptor single-channel gating in rat hippocampal granule cells. J. Neurosci. 22 (2002) 8860) in a calcium dependent manner (Calmodulin mediates calcium-dependent inactivation of N-methyl-d-aspartate receptors. Neuron 21 (1998) 443; Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate calcium-dependent inactivation of NMDA receptors. J. Neurosci. 19 (1999) 1165). In order to gain insight into the likely actions and interactions of calcineurin and calmodulin at excitatory synapses, we have investigated the effects of these two proteins on single NMDA receptor channel activity. Calcineurin and calmodulin are both known to reduce channel open time (Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature 369 (1994) 235; Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84 (1996) 745), and the duration of receptor activations or superclusters. They are, therefore, predicted to shorten the synaptic current decay (Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature 369 (1994) 235; Direct effects of calmodulin on NMDA receptor single-channel gating in rat hippocampal granule cells. J. Neurosci. 22 (2002) 8860). In agreement with Lieberman and Mody (Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature 369 (1994) 235), the results of this study indicate calcineurin plus calmodulin reduces channel open time. However, this effect is not as pronounced as that observed in the presence of calmodulin alone. Calcineurin plus calmodulin was also found to increase single channel shut time. We conclude that in addition to its direct effects on single channel activity, calcineurin regulates the effects of calmodulin on NMDA receptor activity.
Collapse
Affiliation(s)
- Beth K Rycroft
- Department of Pharmacology, University College London, Life Sciences Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
234
|
Guo W, Wei F, Zou S, Robbins MT, Sugiyo S, Ikeda T, Tu JC, Worley PF, Dubner R, Ren K. Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. J Neurosci 2005; 24:9161-73. [PMID: 15483135 PMCID: PMC6730074 DOI: 10.1523/jneurosci.3422-04.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hindpaw inflammation induces tyrosine phosphorylation (tyr-P) of the NMDA receptor (NMDAR) 2B (NR2B) subunit in the rat spinal dorsal horn that is closely related to the initiation and development of hyperalgesia. Here, we show that in rats with Freund's adjuvant-induced inflammation, the increased dorsal horn NR2B tyr-P is blocked by group I metabotropic glutamate receptor (mGluR) antagonists [7-(hydroxyimino)cyclopropa[b] chromen-1a-carboxylate ethyl ester (CPCCOEt) and 2-methyl-6-(phenylethynyl)-pyridine (MPEP), by the Src inhibitor CGP 77675, but not by the MAP kinase inhibitor 2'-amino-3'-methoxyflavone. Analysis of the calcium pathways shows that the in vivo NR2B tyr-P is blocked by an IP3 receptor antagonist 2-aminoethoxydiphenylborate (2APB) but not by antagonists of ionotropic glutamate receptors and voltage-dependent calcium channels, suggesting that the NR2B tyr-P is dependent on intracellular calcium release. In a dorsal horn slice preparation, the group I (dihydroxyphenylglycine), but not group II [(2R,4R)-4-aminopyrrolidine-2,3-dicarboxylate] and III [L-AP 4 (L-(+)-2-amino-4-phosphonobutyric acid)], mGluR agonists, an IP3 receptor (D-IP3) agonist, and a PKC (PMA) activator, induces NR2B tyr-P similar to that seen in vivo after inflammation. Coimmunoprecipitation indicates that Shank, a postsynaptic density protein associated with mGluRs, formed a complex involving PSD-95 (postsynaptic density-95), NR2B, and Src in the spinal dorsal horn. Double immunofluorescence studies indicated that NR1 is colocalized with mGluR5 in dorsal horn neurons. mGluR5 also coimmunoprecipitates with NR2B. Finally, intrathecal pretreatment of CPCCOEt, MPEP, and 2APB attenuates inflammatory hyperalgesia. Thus, inflammation and mGluR-induced NR2B tyr-P share similar mechanisms. The group ImGluR-NMDAR coupling cascade leads to phosphorylation of the NMDAR and appears necessary for the initiation of spinal dorsal horn sensitization and behavioral hyperalgesia after inflammation.
Collapse
Affiliation(s)
- Wei Guo
- Department of Biomedical Sciences, Dental School and Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1101] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
236
|
Abstract
In the central nervous system (CNS), Src and other Src family kinases are widely expressed and are abundant in neurons. Src has been implicated in proliferation and differentiation during the development of the CNS. But Src is highly expressed in fully differentiated neurons in the developed CNS, implying additional functions of this kinase. Over the past decade, a large body of evidence has accumulated showing that a main function of Src is to upregulate the activity of N-methyl-D-aspartate (NMDA) receptors and other ion channels. NMDA receptors (NMDARs) are a principal subtype of glutamate receptors, which mediate fast excitatory transmission at most central synapses. In this review, we focus on Src as a regulator of NMDARs and on the role of Src in NMDAR-dependent synaptic plasticity. We also describe recent studies that give insights into the regulation of Src itself at glutamatergic synapses. By upregulating the function of NMDARs, Src gates the production of NMDAR-dependent synaptic potentiation and plasticity. Thus, Src may be critical for processes underlying physiological plasticity, including learning and memory, and pathological plasticity, such as pain and epilepsy.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Programme in Brain and Behaviour, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada M5G 1X8
| | | | | |
Collapse
|
237
|
Abstract
The immature brain has long been considered to be resistant to the damaging effects of hypoxia and hypoxia-ischemia (H/I). However, it is now appreciated that there are specific periods of increased vulnerability, which relate to the developmental stage at the time of the insult. Although much of our knowledge of the pathophysiology of cerebral H/I is based on extensive experimental studies in adult animal models, it is important to appreciate the major differences in the immature brain that impact on its response to, and recovery from, H/I. Normal maturation of the mammalian brain is characterized by periods of limitations in glucose transport capacity and increased use of alternative cerebral metabolic fuels such as lactate and ketone bodies, all of which are important during H/I and influence the development of energy failure. Cell death following H/I is mediated by glutamate excitotoxicity and oxidative stress, as well as other events that lead to delayed apoptotic death. The immature brain differs from the adult in its sensitivity to all of these processes. Finally, the ultimate outcome of H/I in the immature brain is determined by the impact on the ensuing cerebral maturation. A hypoxic-ischemic insult of insufficient severity to result in rapid cell death and infarction can lead to prolonged evolution of tissue damage.
Collapse
Affiliation(s)
- Susan J Vannucci
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
238
|
Abstract
One of the major targets for ethanol (alcohol) in the brain is the N-methyl-D-aspartate (NMDA) receptor, a glutamate-gated ion channel. Intriguingly, the effects of ethanol on the NMDA receptor are not homogeneous throughout the brain. This review focuses on recent studies revealing molecular mechanisms that mediate the actions of ethanol on the NMDA receptor in different brain regions via changes in NMDA receptor phosphorylation and compartmentalization. Specifically, the role of the scaffolding protein RACK1 and the regulatory protein DARPP-32 in mediating the distinct effects of ethanol is presented.
Collapse
Affiliation(s)
- Dorit Ron
- Department of Neurology, University of California, San Francisco, Ernest Gallo Clinic and Research Center, Emeryville 94608, USA.
| |
Collapse
|
239
|
Yang XL, Xiong WC, Mei L. Lipid rafts in neuregulin signaling at synapses. Life Sci 2004; 75:2495-504. [PMID: 15363655 DOI: 10.1016/j.lfs.2004.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 04/29/2004] [Indexed: 11/15/2022]
Abstract
Neuregulins are a family of EGF domain-containing factors that play an important role in development. In the nervous system, they promote glial differentiation, induce neurotransmitter receptor expression, and regulate synaptic plasticity. Recent studies indicate that ErbB protein tyrosine kinases, neuregulin receptors, translocate to lipid raft microdomains in the plasma membrane in response to neuregulin. Localization of ErbB proteins in lipid rafts appeared to be necessary for neuregulin signaling and regulation of synaptic plasticity. We will review recent studies of lipid rafts and neuregulin function and discuss possible roles of lipid rafts in compartmentalized neuregulin signaling and translocation of ErbB proteins to synapses.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Department of Neurobiology, University of Alabama at Birmingham, Civitan International Research Center, 1719 6th Ave. South, Birmingham, AL 35294-0021, USA
| | | | | |
Collapse
|
240
|
Woodward JJ. Fyn kinase does not reduce ethanol inhibition of zinc-insensitive NR2A-containing N-methyl-D-aspartate receptors. Alcohol 2004; 34:101-5. [PMID: 15902902 DOI: 10.1016/j.alcohol.2004.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate and are important mediators of neuronal signal transduction. Ethanol inhibits ion flux through NMDA receptors at concentrations that are associated with behavioral signs of intoxication. The overall sensitivity of NMDA receptors to ethanol is influenced by factors, including subunit composition and interactions with cytoskeletal elements. Results of studies also support the suggestion that the ethanol inhibition on NR1/2A receptors is reduced by Fyn kinase-mediated tyrosine phosphorylation. However, tyrosine kinases also reduce the high-affinity zinc sensitivity of NR1/2A receptors, supporting the suggestion that kinase-dependent effects on ethanol inhibition may be secondary to relief of zinc inhibition. In the current study, the effect of Fyn kinase on the ethanol inhibition of NR1/2A receptors was determined under conditions in which zinc sensitivity is eliminated. Human embryonic kidney 293 (HEK 293) cells were transiently transfected with wild-type or mutant NMDA subunits, and glutamate-activated currents were measured by using patch-clamp electrophysiology. Inclusion of the tyrosine phosphatase inhibitor potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) [bpV(phen)] in the recording pipette eliminated the potentiation of NR1/2A currents by heavy metal chelators. Under these conditions, Fyn kinase did not reduce ethanol inhibition of wild-type receptors. Fyn kinase also had no effect on the magnitude of ethanol inhibition of zinc-insensitive NR1/2A(H128S) receptors. Together, results of the current study indicate that Fyn kinase does not directly affect the ethanol sensitivity of NR1/2A receptors.
Collapse
Affiliation(s)
- John J Woodward
- Department of Physiology and Neuroscience and Center for Drug and Alcohol Programs, 173 Ashley Avenue, Suite 403, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
241
|
Schelman WR, Andres R, Ferguson P, Orr B, Kang E, Weyhenmeyer JA. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression. ACTA ACUST UNITED AC 2004; 128:20-9. [PMID: 15337314 DOI: 10.1016/j.molbrainres.2004.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2004] [Indexed: 10/26/2022]
Abstract
While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these results suggest that Ang II attenuates NMDA receptor-mediated neurotoxicity and that this effect may be due, in part, to an alteration in Bcl-2 expression.
Collapse
Affiliation(s)
- William R Schelman
- Department of Cell and Structural Biology, University of Illinois, B107 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
242
|
Wang Y, Ju W, Liu L, Fam S, D'Souza S, Taghibiglou C, Salter M, Wang YT. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptor (AMPAR) endocytosis is essential for N-methyl-D-aspartate-induced neuronal apoptosis. J Biol Chem 2004; 279:41267-70. [PMID: 15319422 DOI: 10.1074/jbc.c400199200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive activation of the N-methyl-d-aspartate subtype glutamate receptor (NMDAR) is thought to be involved in mediating programmed cell death (apoptosis) in numerous central nervous diseases. However, the underlying mechanisms remain unknown. We report here that stimulation of NMDARs activates intracellular signaling cascades leading to apoptosis and facilitates clathrin-dependent endocytosis of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors (AMPARs). Both broad spectrum inhibitors of clathrin-dependent endocytotic processes and a specific inhibitor of AMPAR endocytosis selectively inhibit NMDA-induced apoptosis without affecting apoptosis produced by staurosporine. These results demonstrate that clathrin-dependent endocytosis of AMPARs is an essential step in NMDAR-mediated neuronal apoptosis. Our study not only identifies a previously unsuspected step in NMDA-induced apoptosis but also demonstrates that AMPAR endocytosis, in addition to attenuating synaptic strength as previously demonstrated in models of synaptic plasticity, may play a critical role in mediating other important intracellular pathways.
Collapse
Affiliation(s)
- Yushan Wang
- Brain Research Centre and Department of Medicine, Vancouver Hospital & Health Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Collett VJ, Collingridge GL. Interactions between NMDA receptors and mGlu5 receptors expressed in HEK293 cells. Br J Pharmacol 2004; 142:991-1001. [PMID: 15210575 PMCID: PMC1575110 DOI: 10.1038/sj.bjp.0705861] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1 Ca2+ imaging was used to investigate interactions between responses induced by N-methyl-D-aspartate (NMDA; 15 microm) and (RS)-3,5-dihydroxyphenyl-glycine (DHPG; 30 microm) in human embryonic kidney (HEK) 293 cells, transiently transfected with rat recombinant NR1a, NR2A and mGlu5a cDNA. 2 Responses to NMDA were reversibly depressed by DHPG from 244+/-14 to 194+/-12% of baseline. Treatment with thapsigargin (1 microm, 10 min) prevented this effect. 3 After thapsigargin pretreatment, repeated applications of NMDA showed a gradual rundown in amplitude over a period of several hours, and were unaffected by DHPG. 4 Continuous perfusion with staurosporine (0.1 microm), after thapsigargin pretreatment, converted the run-down to a small increase in NMDA responses to 123+/-6 % of baseline. DHPG induced a further and sustained potentiation of NMDA responses to 174+/-12% of the initial baseline. 5 The protein tyrosine kinase (PTK) inhibitors genistein (50 microm) and 3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2; 1 microm) inhibited the staurosporine- and DHPG-induced potentiation of NMDA responses. 6 The protein phosphatase (PTP) inhibitors orthovanadate (100 microm) and phenyl arsine oxide (PAO, 1 microm) facilitated the staurosporine-evoked potentiation of NMDA responses and occluded DHPG-induced potentiation. 7 In conclusion, complex interactions can be demonstrated between mGlu5 and NMDA receptors expressed in HEK293 cells. There is a negative inhibitory influence of Ca2+ release and PKC activation. Inhibition of these processes reveals a tonic, mGlu5 receptor and PTK-dependent potentiation of NMDA receptors that can be augmented by either stimulating mGlu5 receptors or by inhibiting PTPs.
Collapse
Affiliation(s)
- Valerie J Collett
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD.
| | | |
Collapse
|
244
|
Sung YJ, Ambron RT. Pathways that elicit long-term changes in gene expression in nociceptive neurons following nerve injury: contributions to neuropathic pain. Neurol Res 2004; 26:195-203. [PMID: 15072639 DOI: 10.1179/016164104225013761] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic neuropathic pain following nerve injury or inflammation is mediated by transcription-dependent changes in neurons that comprise the nociceptive pathway. Among these changes is often a long-term hyperexcitability (LTH) in primary nociceptors that persists long after the lesion has healed. LTH is manifest by a reduction in threshold and an increased tendency to fire action potentials. This increased excitability activates higher order neurons in the pathway, leading to the perception of pain. Efforts to ameliorate chronic pain would therefore benefit if we understood how LTH is induced, but studies toward this goal are impeded by the complexity and heterogeneity of vertebrate nervous systems. Fortunately, LTH is an evolutionarily conserved mechanism that underlies defensive behaviors across phyla, including invertebrates. Thus, the same electrophysiological changes that underlie LTH in vertebrate nociceptive neurons are seen in their counterparts in the experimentally favorable mollusk Aplysia californica. Nociceptive neurons of Aplysia are readily accessible and large enough to approach using a variety of cell and molecular approaches not possible in higher organisms. Studies of the molecular cascades activated by injury to Aplysia peripheral nerves has focused on a group of positive injury signals that are retrogradely transported from the injury site in the axon to the cell nucleus where they regulate gene transcription. One of these, protein kinase G, is activated by nitric oxide synthetase and its activation in axons is required for the induction of LTH after injury. This pathway, and the transcriptional events that it activates, are targets for therapeutic intervention for chronic pain.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
245
|
Gingrich JR, Pelkey KA, Fam SR, Huang Y, Petralia RS, Wenthold RJ, Salter MW. Unique domain anchoring of Src to synaptic NMDA receptors via the mitochondrial protein NADH dehydrogenase subunit 2. Proc Natl Acad Sci U S A 2004; 101:6237-42. [PMID: 15069201 PMCID: PMC395953 DOI: 10.1073/pnas.0401413101] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Src is the prototypic protein tyrosine kinase and is critical for controlling diverse cellular functions. Regions in Src define structural and functional domains conserved in many cell signaling proteins. Src also contains a region of low sequence conservation termed the unique domain, the function of which has until now remained enigmatic. Here, we show that the unique domain of Src is a protein-protein interaction region and we identify NADH dehydrogenase subunit 2 (ND2) as a Src unique domain-interacting protein. ND2 is a subunit of complex I in mitochondria, but we find that ND2 interacts with Src outside this organelle at excitatory synapses in the brain. ND2 acts as an adapter protein anchoring Src to the N-methyl-d-aspartate (NMDA) receptor complex, and is crucial for Src regulation of synaptic NMDA receptor activity. By showing an extramitochondrial action for a protein encoded in the mitochondrial genome, we identify a previously unsuspected means by which mitochondria regulate cellular function, suggesting a new paradigm that may be of general relevance for control of Src signaling.
Collapse
Affiliation(s)
- Jeffrey R Gingrich
- Brain and Behaviour Program, Hospital for Sick Children, Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | |
Collapse
|
246
|
Sun Z, Chen Q, Reiner A. Enkephalinergic striatal projection neurons become less affected by quinolinic acid than substance P-containing striatal projection neurons as rats age. Exp Neurol 2004; 184:1034-42. [PMID: 14769398 DOI: 10.1016/j.expneurol.2003.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 08/08/2003] [Accepted: 08/08/2003] [Indexed: 11/16/2022]
Abstract
While the excitotoxic vulnerability of striatal neurons is known to be greater in juvenile than adult animals, it is uncertain if striatal neuron types decline differentially in their vulnerability with age. To examine this issue, we unilaterally injected quinolinic acid (QA), an N-methyl-d-aspartate (NMDA) receptor agonist, into the striatum of juvenile and adult rats, and used in situ hybridization histochemistry with oligonucleotide probes for preproenkephalin and preprotachykinin mRNA to label surviving enkephalinergic (ENK) and substance P-containing (SP) neurons in adjacent sections through the injection center. The results confirmed that the region of severe damage is greater in young than adult animals, but revealed that at the very center of the QA injection, labeled neuron abundance was lower in adult than juvenile striatum. In juvenile rats, the vulnerability of the ENK neurons at all distances from the injection center was the same as that of the SP neurons. By contrast, in adult rats, the ENK neuron survival was greater than the SP neuron survival at all distances beyond the lesion center. The SP neuron survival outside the injection center in the adult rats was similar to that in juvenile rats, while the ENK neuron survival beyond the injection center was better in adult than juvenile rats. These data indicate that there is an age-dependent decrease in the vulnerability of ENK but not SP striatal projection neurons to QA-mediated injury in rats. The results also raise the possibility that, if an excitotoxic process is involved in HD pathogenesis, a differential age-related decline in the sensitivity of striatal projection neuron types to this process may contribute to the more uniform striatal neuron loss in juvenile-onset Huntington's disease (HD) and the more differential loss in adult-onset HD.
Collapse
Affiliation(s)
- Z Sun
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
247
|
Affiliation(s)
- Michael W Salter
- Programme in Brain and Behaviour, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
248
|
Fritz KI, Ashraf QM, Zubrow AB, Mishra OP, Delivoria-Papadopoulos M. Expression and Phosphorylation of N-Methyl- D-Aspartate Receptor Subunits during Graded Hypoxia in the Cerebral Cortex of Newborn Piglets. Neonatology 2004; 85:128-37. [PMID: 14631158 DOI: 10.1159/000074969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2003] [Accepted: 08/28/2003] [Indexed: 11/19/2022]
Abstract
The present study tests the hypothesis that during graded hypoxia, N-methyl-D-aspartate (NMDA) receptor expression and phosphorylation are altered in the cerebral cortex of newborn piglets. Studies were performed in anesthetized, ventilated piglets, 6 normoxic and 9 exposed to different lengths of decreased fractions of inspired oxygen to achieve varying biochemical levels of phosphocreatine (PCr). P(2) membrane proteins were immunoprecipitated with antiphosphoserine, antiphosphotyrosine, or antiphosphothreonine antibodies and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins were transblotted and probed with NMDA receptor subunit 1 (NR1), NR2A or NR2B antibodies. As tissue PCr levels decreased from 3.5 to 0.5 micromol/g brain during hypoxia, NR1, NR2A and NR2B protein increased by 84, 56 and 38%, respectively. Phosphorylated serine, tyrosine and threonine residues also increased during hypoxia on the three subunits. However, the increase in subunit protein exceeded the increase in phosphorylated residues for all three subunits. Therefore, the ratio of phosphorylated/dephosphorylated serine, tyrosine and threonine residues decreased with worsening hypoxia. We speculate that an alteration in the ratio of phosphorylated/dephosphorylated residues of the NMDA receptor may regulate receptor activation during hypoxia.
Collapse
Affiliation(s)
- Karen I Fritz
- Department of Pediatrics, St. Christopher's Neonatology Research Laboratory, Drexel University College of Medicine, Neonatology Research Laboratories, Medical College of Pennsylvania, Philadelphia, Pa. 19129, USA.
| | | | | | | | | |
Collapse
|
249
|
Li R, Dozmorov M, Hellberg F, Tian Y, Jilderos B, Wigström H. Characterization of NMDA induced depression in rat hippocampus: involvement of AMPA and NMDA receptors. Neurosci Lett 2004; 357:87-90. [PMID: 15036581 DOI: 10.1016/j.neulet.2003.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 11/05/2003] [Indexed: 12/01/2022]
Abstract
The involvement of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) vs. N-methyl-d-aspartate (NMDA) receptor mediated changes in NMDA-induced long-term depression (LTD) was assessed by monitoring isolated AMPA, isolated NMDA and composite field excitatory postsynaptic potentials (EPSP) in the CA1 area of acute rat hippocampal slices. Application of NMDA (20-50 microM) for 3-5 min led to LTD of both AMPA and NMDA receptor mediated EPSPs with near equal changes of the responses. However, AMPA EPSPs displayed a faster initial recovery than NMDA EPSPs. In addition, during the first 15-25 min after NMDA application, there was a superimposed potentiation of the later, but not early, part of AMPA EPSPs, implying a prolongation of waveform. In contrast, the NMDA EPSP waveform remained unaltered throughout the experiments. While it has been maintained that NMDA-induced depression is equivalent to stimulus-induced LTD, our results reveal additional complexity, suggesting a multitude of changes, most likely at the postsynaptic receptor level.
Collapse
Affiliation(s)
- Rui Li
- Department of Medical Biophysics, Göteborg University, Box 433, SE 405 30 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
250
|
Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K. Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 2004; 279:18887-94. [PMID: 14761972 DOI: 10.1074/jbc.m311274200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various hormonal stimuli and growth factors activate the mammalian canonical transient receptor potential (TRPC) channel through phospholipase C (PLC) activation. However, the precise mechanism of the regulation of TRPC channel activity remains unknown. Here, we provide the first evidence that direct tyrosine phosphorylation by Src family protein-tyrosine kinases (PTKs) is a novel mechanism for modulating TRPC6 channel activity. We found that TRPC6 is tyrosine-phosphorylated in COS-7 cells when coexpressed with Fyn, a member of the Src family PTKs. We also found that Fyn interacts with TRPC6 and that the interaction is mediated by the SH2 domain of Fyn and the N-terminal region of TRPC6 in a phosphorylation-independent manner. In addition, we demonstrated the physical association of TRPC6 with Fyn in the mammalian brain. Moreover, we showed that stimulation of the epidermal growth factor receptor induced rapid tyrosine phosphorylation of TRPC6 in COS-7 cells. This epidermal growth factor-induced tyrosine phosphorylation of TRPC6 was significantly blocked by PP2, a specific inhibitor of Src family PTKs, and by a dominant negative form of Fyn, suggesting that the direct phosphorylation of TRPC6 by Src family PTKs could be caused by physiological stimulation. Furthermore, using single channel recording, we showed that Fyn modulates TRPC6 channel activity via tyrosine phosphorylation. Thus, our findings demonstrated that tyrosine phosphorylation by Src family PTKs is a novel regulatory mechanism of TRPC6 channel activity.
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | |
Collapse
|