201
|
Gong T, Zhang X, Peng Z, Ye Y, Liu R, Yang Y, Chen Z, Zhang Z, Hu H, Yin S, Xu Y, Tang J, Liu Y. Macrophage-derived exosomal aminopeptidase N aggravates sepsis-induced acute lung injury by regulating necroptosis of lung epithelial cell. Commun Biol 2022; 5:543. [PMID: 35668098 PMCID: PMC9170685 DOI: 10.1038/s42003-022-03481-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a serious sepsis complication and the prevailing cause of death. Circulating plasma exosomes might exert a key role in regulating intercellular communication between immunological and structural cells, as well as contributing to sepsis-related organ damage. However, the molecular mechanisms by which exosome-mediated intercellular signaling exacerbate ALI in septic infection remains undefined. Therefore, we investigated the effect of macrophage-derived exosomal APN/CD13 on the induction of epithelial cell necrosis. Exosomal APN/CD13 levels in the plasma of septic mice and patients with septic ALI were found to be higher. Furthermore, increased plasma exosomal APN/CD13 levels were associated with the severity of ALI and fatality in sepsis patients. We found remarkably high expression of APN/CD13 in exosomes secreted by LPS-stimulated macrophages. Moreover, c-Myc directly induced APN/CD13 expression and was packed into exosomes. Finally, exosomal APN/CD13 from macrophages regulated necroptosis of lung epithelial cells by binding to the cell surface receptor TLR4 to induce ROS generation, mitochondrial dysfunction and NF-κB activation. These results demonstrate that macrophage-secreted exosomal APN/CD13 can trigger epithelial cell necroptosis in an APN/CD13-dependent manner, which provides insight into the mechanism of epithelial cell functional disorder in sepsis-induced ALI. Necroptosis of lung epithelial cells is regulated by aminopeptidase N levels in circulating plasma exosomes in patients and mice with sepsis-induced acute lung injury.
Collapse
|
202
|
IL6 Induces mtDNA Leakage to Affect the Immune Escape of Endometrial Carcinoma via cGAS-STING. J Immunol Res 2022; 2022:3815853. [PMID: 35692503 PMCID: PMC9184159 DOI: 10.1155/2022/3815853] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Endometrial carcinoma (EC) is a commonly diagnosed gynecological malignancy. Interleukin-6 (IL6) plays a critical role in modulating the progression of several types of tumors, including EC. However, the specific mechanism of IL6 in regulating EC progression has not been clearly elucidated. In this study, we performed a series of functional experiments to explore the potential mechanisms involved in IL6 function in the progression of EC. Here, we found that IL6 increased reactive oxygen species (ROS) generation by enhancing the NADPH oxidase (NOX) level and induced mtDNA leakage in EC cells, which further caused the activation of the downstream cGAS-STING signaling and increased production of extracellular vesicle (EV) production from EC cells. Besides, the activation of cGAS-STING signaling enhanced the expression of type I IFN and its downstream molecule PD-L1 through the TBK1-IRF3 pathway. Importantly, a high level mtDNA and PD-L1 were present in EVs derived from IL6-induced EC cells; these vesicles were shown to be able to induce T cell apoptosis. Finally, anti-PD-L1 treatment in mice showed that blockade of PD-L1 significantly reversed tumor immune escape mediated by IL6-induced EVs. Together, we provide evidence that IL6 induced mtDNA leakage to regulate the immune escape of EC cells. Our findings may provide a novel clue for the development of therapeutic targets for EC.
Collapse
|
203
|
Khan MI, Alsayed RKME, Choudhry H, Ahmad A. Exosome-Mediated Response to Cancer Therapy: Modulation of Epigenetic Machinery. Int J Mol Sci 2022; 23:ijms23116222. [PMID: 35682901 PMCID: PMC9181065 DOI: 10.3390/ijms23116222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Exosomes, the extracellular vesicles produced in the endosomal compartments, facilitate the transportation of proteins as well as nucleic acids. Epigenetic modifications are now considered important for fine-tuning the response of cancer cells to various therapies, and the acquired resistance against targeted therapies often involves dysregulated epigenetic modifications. Depending on the constitution of their cargo, exosomes can affect several epigenetic events, thus impacting post-transcriptional regulations. Thus, a role of exosomes as facilitators of epigenetic modifications has come under increased scrutiny in recent years. Exosomes can deliver methyltransferases to recipient cells and, more importantly, non-coding RNAs, particularly microRNAs (miRNAs), represent an important exosome cargo that can affect the expression of several oncogenes and tumor suppressors, with a resulting impact on cancer therapy resistance. Exosomes often harbor other non-coding RNAs, such as long non-coding RNAs and circular RNAs that support resistance. The exosome-mediated transfer of all this cargo between cancer cells and their surrounding cells, especially tumor-associated macrophages and cancer-associated fibroblasts, has a profound effect on the sensitivity of cancer cells to several chemotherapeutics. This review focuses on the exosome-induced modulation of epigenetic events with resulting impact on sensitivity of cancer cells to various therapies, such as, tamoxifen, cisplatin, gemcitabine and tyrosine kinase inhibitors. A better understanding of the mechanisms by which exosomes can modulate response to therapy in cancer cells is critical for the development of novel therapeutic strategies to target cancer drug resistance.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.I.K.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem K. M. E. Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.I.K.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Correspondence: ; Tel.: +974-44390984
| |
Collapse
|
204
|
Kawamura A, Yoshida S, Aoki K, Shimoyama Y, Yamada K, Yoshida K. DYRK2 maintains genome stability via neddylation of cullins in response to DNA damage. J Cell Sci 2022; 135:jcs259514. [PMID: 35582972 DOI: 10.1242/jcs.259514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), an ubiquitin-like protein, is an essential regulator of the DNA damage response. Numerous studies have shown that neddylation (conjugation of NEDD8 to target proteins) dysfunction causes several human diseases, such as cancer. Hence clarifying the regulatory mechanism of neddylation could provide insight into the mechanism of genome stability underlying the DNA damage response (DDR) and carcinogenesis. Here, we demonstrate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a novel regulator of neddylation and maintains genome stability. Deletion of DYRK2 leads to persistent DNA double-strand breaks (DSBs) and subsequent genome instability. Mechanistically, DYRK2 promotes neddylation through forming a complex with NAE1, which is a component of NEDD8-activating enzyme E1, and maintaining its protein level by suppressing polyubiquitylation. The present study is the first to demonstrate that DYRK2 controls neddylation and is necessary for maintaining genome stability. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Katsuhiko Aoki
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yuya Shimoyama
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
205
|
Chu Q, Li J, Chen J, Yuan Z. HBV induced the discharge of intrinsic antiviral miRNAs in HBV-replicating hepatocytes via extracellular vesicles to facilitate its replication. J Gen Virol 2022; 103. [PMID: 35604380 DOI: 10.1099/jgv.0.001744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV), which can cause chronic hepatitis B, has sophisticated machinery to establish persistent infection. Here, we report a novel mechanism whereby HBV changed miRNA packaging into extracellular vesicles (EVs) to facilitate replication. Disruption of the miRNA machinery in hepatocytes enhanced HBV replication, indicating an intrinsic miRNA-mediated antiviral state. Interference with EV release only decreased HBV replication if there was normal miRNA biogenesis, suggesting a possible link between HBV replication and EV-associated miRNAs. Microarray and qPCR analyses revealed that HBV replication changed miRNA expression in EVs. EV incubation, transfection of miRNA mimics and inhibitors, and functional pathway and network analyses showed that EV miRNAs are associated with antiviral function, suggesting that to promote survival HBV coopts EVs to excrete anti-HBV intracellular miRNAs. These data suggest a novel mechanism by which HBV maintains its replication, which has therapeutic implications.
Collapse
Affiliation(s)
- Qiaofang Chu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| |
Collapse
|
206
|
Liu B, Jin Y, Yang J, Han Y, Shan H, Qiu M, Zhao X, Liu A, Jin Y, Yin Y. Extracellular vesicles from lung tissue drive bone marrow neutrophil recruitment in inflammation. J Extracell Vesicles 2022; 11:e12223. [PMID: 35595717 PMCID: PMC9122834 DOI: 10.1002/jev2.12223] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/11/2022] Open
Abstract
Extracellular vesicles (EVs) are single-membrane vesicles that play an essential role in long-range intercellular communications. EV investigation has been explored largely through cell-culture systems, but it remains unclear how physiological EVs exert homeostatic or pathological functions in vivo. Here, we report that lung EVs promote chemotaxis of neutrophils in bone marrow through delivery of double stranded DNA (dsDNA). We have identified and characterized EVs containing dsDNA collected from both human and murine lung tissues using newly developed approaches. Our analysis of EV proteomics together with single-cell RNA sequencing data reveals that type II alveolar epithelial cells are the main source of the lung EVs. Furthermore, we demonstrate that the lung EVs accumulate in bone marrow and enhance neutrophil recruitment under inflammation conditions. Moreover, lung EV-DNA stimulates neutrophils to release the chemokines CXCL1 and CXCL2 via DNA-TLR9 signalling. Our findings establish a molecular basis of lung EVs in enhancement of host immune response to bacterial infection and provide new insights into understanding of vesicle-mediated systematic communications.
Collapse
Affiliation(s)
- Bowen Liu
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumour Systems Biology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Jin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumour Systems Biology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Jingyi Yang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumour Systems Biology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yue Han
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumour Systems Biology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumour Systems Biology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Anhang Liu
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumour Systems Biology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumour Systems Biology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumour Systems Biology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China.,Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
207
|
Ran Z, Wu S, Ma Z, Chen X, Liu J, Yang J. Advances in exosome biomarkers for cervical cancer. Cancer Med 2022; 11:4966-4978. [PMID: 35578572 PMCID: PMC9761094 DOI: 10.1002/cam4.4828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer (CC) ranks as the fourth most frequently diagnosed malignancy in females worldwide. Exosomes are a subclass of extracellular vesicles released by nearly all types of cells that act as cargo transport vehicles, carrying proteins, and genetic material (such as miRNAs, long noncoding RNAs, and mRNAs) derived from their parent cells may affect receiving cells and thus have emerged as key players in several biological processes, including inflammatory pathways. In this review, we concentrated on the findings of exosome investigations in CC, particularly their components. They direct the actions of CC cells by inducing surface molecules associated with various biological pathways. We summarized the current knowledge of exosomal RNAs and proteins from CC cells and discussed the feasibility of exosomes as potential biomarkers for CC. We suggest that cancer-derived exosomes promote metastasis in CC by supporting EMT, controlling the proliferation, invasion, or migration of cancer cells, as well as influencing immune escape and aiding angiogenesis. Overall, cancer-derived exosomes are critical in the progression of CC, and further studies are necessary to advance our understanding of the clinical value of exosomes in CC.
Collapse
Affiliation(s)
- Zihan Ran
- Department of ResearchShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghaiChina,Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Shaobo Wu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Zijng Ma
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Xiuwen Chen
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Jing Liu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC)ShanghaiChina,State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer CenterFudan UniversityShanghaiChina,Greater Bay Area Institute of Precision MedicineGuangzhouChina
| |
Collapse
|
208
|
Salomon C, Das S, Erdbrügger U, Kalluri R, Kiang Lim S, Olefsky JM, Rice GE, Sahoo S, Andy Tao W, Vader P, Wang Q, Weaver AM. Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocr Rev 2022; 43:441-468. [PMID: 35552682 PMCID: PMC10686249 DOI: 10.1210/endrev/bnac009] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/15/2022]
Abstract
During the last decade, there has been great interest in elucidating the biological role of extracellular vesicles (EVs), particularly, their hormone-like role in cell-to-cell communication. The field of endocrinology is uniquely placed to provide insight into the functions of EVs, which are secreted from all cells into biological fluids and carry endocrine signals to engage in paracellular and distal interactions. EVs are a heterogeneous population of membrane-bound vesicles of varying size, content, and bioactivity. EVs are specifically packaged with signaling molecules, including lipids, proteins, and nucleic acids, and are released via exocytosis into biofluid compartments. EVs regulate the activity of both proximal and distal target cells, including translational activity, metabolism, growth, and development. As such, EVs signaling represents an integral pathway mediating intercellular communication. Moreover, as the content of EVs is cell-type specific, it is a "fingerprint" of the releasing cell and its metabolic status. Recently, changes in the profile of EV and bioactivity have been described in several endocrine-related conditions including diabetes, obesity, cardiovascular diseases, and cancer. The goal of this statement is to highlight relevant aspects of EV research and their potential role in the field of endocrinology.
Collapse
Affiliation(s)
- Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Uta Erdbrügger
- Department of Medicine, Nephrology Division, University of Virginia, Charlottesville, VA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Jerrold M Olefsky
- Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Pieter Vader
- CDL Research, Division LAB, UMC Utrecht, Utrecht, the Netherlands Faculty of Medicine, Utrecht University, Utrecht, the Netherlands; Laboratory of Experimental Cardiology, UMC Utrecht, Utrecht, The Netherlands
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
209
|
Yang Z, Su HS, You EM, Liu S, Li Z, Zhang Y. High Uniformity and Enhancement Au@AgNS 3D Substrates for the Diagnosis of Breast Cancer. ACS OMEGA 2022; 7:15223-15230. [PMID: 35572747 PMCID: PMC9089677 DOI: 10.1021/acsomega.2c01453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer appears to be one of the leading causes of cancer-related morbidity and mortality for women worldwide. The accurate and rapid diagnosis of breast cancer is hence critical for the treatment and prognosis of patients. With the vibrational fingerprint information and high detection sensitivity, surface-enhanced Raman spectroscopy (SERS) has been extensively applied in biomedicine. Here, an optimized bimetallic nanosphere (Au@Ag NS) 3D substrate was fabricated for the aim of the diagnosis of breast cancer based on the SERS analysis of the extracellular metabolites. The unique stacking mode of 3D Au@Ag NSs provided multiple plasmonic hot spots according to the theoretical calculations of the electromagnetic field distribution. The low relative standard deviation (RSD = 2.7%) and high enhancement factor (EF = 1.42 × 105) proved the uniformity and high sensitivity. More importantly, the normal breast cells and breast cancer cells could be readily distinguished from the corresponding SERS spectra based on the extracellular metabolites. Furthermore, the clear clusters of SERS spectra from MCF-7 and MDA-MB-231 extracellular metabolites in the orthogonal partial least-squares discriminant analysis plot indicate the distinct metabolic fingerprint between breast cancer cells, which imply their potential clinical application in the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Zhengxia Yang
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen
Institute of Rare Earth Materials, Haixi Institute, Xiamen Key Laboratory
of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Hai-Sheng Su
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen
Institute of Rare Earth Materials, Haixi Institute, Xiamen Key Laboratory
of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - En-Ming You
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Siying Liu
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen
Institute of Rare Earth Materials, Haixi Institute, Xiamen Key Laboratory
of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Zihang Li
- Wenzhou-Kean
University, 88 Daxue
Road, Ouhai, Wenzhou, Zhejiang
Province 325060, China
| | - Yun Zhang
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen
Institute of Rare Earth Materials, Haixi Institute, Xiamen Key Laboratory
of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Ganjiang
Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P. R. China
| |
Collapse
|
210
|
Abstract
Exosomes are natural nanoparticles that originate in the endocytic system. Exosomes play an important role in cell-to-cell communication by transferring RNAs, lipids, and proteins from donor cells to recipient cells or by binding to receptors on the recipient cell surface. The concentration of exosomes and the diversity of cargos are high in milk. Exosomes and their cargos resist degradation in the gastrointestinal tract and during processing of milk in dairy plants. They are absorbed and accumulate in tissues following oral administrations, cross the blood-brain barrier, and dietary depletion and supplementation elicit phenotypes. These features have sparked the interest of the nutrition and pharmacology communities for exploring milk exosomes as novel bioactive food compounds and for delivering drugs to diseased tissues. This review discusses the current knowledgebase, uncertainties, and controversies in these lines of scholarly endeavor and health research.
Collapse
Affiliation(s)
- Alice Ngu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Haichuan Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Afsana Khanam
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
211
|
Dellar ER, Hill C, Melling GE, Carter DR, Baena‐Lopez LA. Unpacking extracellular vesicles: RNA cargo loading and function. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e40. [PMID: 38939528 PMCID: PMC11080855 DOI: 10.1002/jex2.40] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed structures produced by prokaryotic and eukaryotic cells. EVs carry a range of biological cargoes, including RNA, protein, and lipids, which may have both metabolic significance and signalling potential. EV release has been suggested to play a critical role in maintaining intracellular homeostasis by eliminating unnecessary biological material from EV producing cells, and as a delivery system to enable cellular communication between both neighbouring and distant cells without physical contact. In this review, we give an overview of what is known about the relative enrichment of the different types of RNA that have been associated with EVs in the most recent research efforts. We then examine the selective and non-selective incorporation of these different RNA biotypes into EVs, the molecular systems of RNA sorting into EVs that have been elucidated so far, and the role of this process in EV-producing cells. Finally, we also discuss the model systems providing evidence for EV-mediated delivery of RNA to recipient cells, and the implications of this evidence for the relevance of this RNA delivery process in both physiological and pathological scenarios.
Collapse
Affiliation(s)
- Elizabeth R. Dellar
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
| | - Genevieve E. Melling
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Institute of Clinical SciencesSchool of Biomedical SciencesCollege of Medical and Dental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - David R.F Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
| | | |
Collapse
|
212
|
Huang S, Nishiumi S, Asaduzzaman M, Pan Y, Liu G, Yoshitake K, Maeyama K, Kinoshita S, Nagai K, Watabe S, Yoshida T, Asakawa S. Exosome-derived small non-coding RNAs reveal immune response upon grafting transplantation in Pinctada fucata (Mollusca). Open Biol 2022; 12:210317. [PMID: 35506205 PMCID: PMC9065966 DOI: 10.1098/rsob.210317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exosomes, a subset of small extracellular vesicles, carry various nucleic acids, proteins, lipids, amino acids and metabolites. They function as a mode of intercellular communication and molecular transfer. Exosome cargo molecules, including small non-coding RNAs (sncRNAs), are involved in the immune response in various organisms. However, the role of exosome-derived sncRNAs in immune responses in molluscs remains unclear. Here, we aimed to reveal the sncRNAs involved in the immune response during grafting transplantation by the pearl oyster Pinctada fucata. Exosomes were successfully extracted from the P. fucata haemolymph during graft transplantation. Abundant microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) were simultaneously discovered in P. fucata exosomes by small RNA sequencing. The expression patterns of the miRNAs and piRNAs at the grafting and initial stages were not substantially different, but varied significantly between the initial and later stages. Target prediction and functional analysis indicate that these miRNAs and piRNAs are related to immune response upon grafting transplantation, whereas piRNAs may also be associated with transposon silencing by targeting with genome transposon elements. This work provides the basis for a functional understanding of exosome-derived sncRNAs and helps to gain further insight into the PIWI/piRNA pathway function outside of germline cells in molluscs.
Collapse
Affiliation(s)
- Songqian Huang
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shinya Nishiumi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Md Asaduzzaman
- Department of Marine Bioresources Science, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi 4225, Chittagong, Bangladesh
| | - Yida Pan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Guanting Liu
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical Co., Ltd., Kurose 1425, Ise, Mie 516-8581, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. Mikimoto & Co., Ltd., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan
| | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
213
|
Utility of cell-free transrenal DNA for the diagnosis of Tuberculous Meningitis: A proof-of-concept study. Tuberculosis (Edinb) 2022; 135:102213. [DOI: 10.1016/j.tube.2022.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022]
|
214
|
Tkach M, Thalmensi J, Timperi E, Gueguen P, Névo N, Grisard E, Sirven P, Cocozza F, Gouronnec A, Martin-Jaular L, Jouve M, Delisle F, Manel N, Rookhuizen DC, Guerin CL, Soumelis V, Romano E, Segura E, Théry C. Extracellular vesicles from triple negative breast cancer promote pro-inflammatory macrophages associated with better clinical outcome. Proc Natl Acad Sci U S A 2022; 119:e2107394119. [PMID: 35439048 PMCID: PMC9169908 DOI: 10.1073/pnas.2107394119] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor associated macrophages (TAMs), which differentiate from circulating monocytes, are pervasive across human cancers and comprise heterogeneous populations. The contribution of tumor-derived signals to TAM heterogeneity is not well understood. In particular, tumors release both soluble factors and extracellular vesicles (EVs), whose respective impact on TAM precursors may be different. Here, we show that triple negative breast cancer cells (TNBCs) release EVs and soluble molecules promoting monocyte differentiation toward distinct macrophage fates. EVs specifically promoted proinflammatory macrophages bearing an interferon response signature. The combination in TNBC EVs of surface CSF-1 promoting survival and cargoes promoting cGAS/STING or other activation pathways led to differentiation of this particular macrophage subset. Notably, macrophages expressing the EV-induced signature were found among patients’ TAMs. Furthermore, higher expression of this signature was associated with T cell infiltration and extended patient survival. Together, this data indicates that TNBC-released CSF-1-bearing EVs promote a tumor immune microenvironment associated with a better prognosis in TNBC patients.
Collapse
Affiliation(s)
- Mercedes Tkach
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Jessie Thalmensi
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Eleonora Timperi
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Paul Gueguen
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Nathalie Névo
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Eleonora Grisard
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Philemon Sirven
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Federico Cocozza
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Alizée Gouronnec
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | | | - Mabel Jouve
- CNRS UMR3215, Institut Curie, PSL Research University, 75005, Paris, France
| | - Fabien Delisle
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Nicolas Manel
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | | | - Coralie L. Guerin
- Cytometry Platform, CurieCoreTech, Institut Curie, Paris, F-75005 France
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, F-75006 France
| | - Vassili Soumelis
- Université de Paris, Inserm, U976 HIPI Unit, F-75006, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, F-75010, Paris, France
| | - Emanuela Romano
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Elodie Segura
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Clotilde Théry
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| |
Collapse
|
215
|
Mas-Bargues C, Borrás C, Alique M. The Contribution of Extracellular Vesicles From Senescent Endothelial and Vascular Smooth Muscle Cells to Vascular Calcification. Front Cardiovasc Med 2022; 9:854726. [PMID: 35498012 PMCID: PMC9051028 DOI: 10.3389/fcvm.2022.854726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an irreversible pathological process associated with a loss of vascular wall function. This process occurs as a result of aging and age-related diseases, such as cardiovascular and chronic kidney diseases, and leads to comorbidities. During these age-related diseases, the endothelium accumulates senescent cells, which stimulate calcification in vascular smooth muscle cells. Currently, vascular calcification is a silent pathology, and there are no early diagnostic tools. Therefore, by the time vascular calcification is diagnosed, it is usually untreatable. Some mediators, such as oxidative stress, inflammation, and extracellular vesicles, are inducers and promoters of vascular calcification. They play a crucial role during vascular generation and the progression of vascular calcification. Extracellular vesicles, mainly derived from injured endothelial cells that have acquired a senescent phenotype, contribute to calcification in a manner mostly dependent on two factors: (1) the number of extracellular vesicles released, and (2) their cargo. In this review, we present state-of-the-art knowledge on the composition and functions of extracellular vesicles involved in the generation and progression of vascular calcification.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
- *Correspondence: Consuelo Borrás,
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Matilde Alique,
| |
Collapse
|
216
|
Piazza A, Rosa P, Ricciardi L, Mangraviti A, Pacini L, Calogero A, Raco A, Miscusi M. Circulating Exosomal-DNA in Glioma Patients: A Quantitative Study and Histopathological Correlations—A Preliminary Study. Brain Sci 2022; 12:brainsci12040500. [PMID: 35448031 PMCID: PMC9028788 DOI: 10.3390/brainsci12040500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/29/2022] Open
Abstract
Glial neoplasms are a group of diseases with poor prognoses. Not all risk factors are known, and no screening tests are available. Only histology provides certain diagnosis. As already reported, DNA transported by exosomes can be an excellent source of information shared by cells locally or systemically. These vesicles seem to be one of the main mechanisms of tumor remote intercellular signaling used to induce immune deregulation, apoptosis, and both phenotypic and genotypic modifications. In this study, we evaluated the exosomal DNA (exoDNA) concentration in blood samples of patients affected by cerebral glioma and correlated it with histological and radiological characteristics of tumors. From 14 patients with diagnosed primary or recurrent glioma, we obtained MRI imaging data, histological data, and preoperative blood samples that were used to extract circulating exosomal DNA, which we then quantified. Our results demonstrate a relationship between the amount of circulating exosomal DNA and tumor volume, and mitotic activity. In particular, a high concentration of exoDNA was noted in low-grade gliomas. Our results suggest a possible role of exoDNAs in the diagnosis of brain glioma. They could be particularly useful in detecting early recurrent high-grade gliomas and asymptomatic low-grade gliomas.
Collapse
Affiliation(s)
- Amedeo Piazza
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
- Correspondence:
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (P.R.); (A.C.)
| | - Luca Ricciardi
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
| | - Antonella Mangraviti
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
| | - Luca Pacini
- Pathology Unit, I.C.O.T. Hospital, 04100 Latina, Italy;
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (P.R.); (A.C.)
| | - Antonino Raco
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
| | - Massimo Miscusi
- Operative Unit of Neurosurgery, Department of NESMOS, Sapienza University of Rome, 00185 Rome, Italy; (L.R.); (A.M.); (A.R.); (M.M.)
| |
Collapse
|
217
|
Lu F, Zhang Q, Zhang M, Sun S, Yang X, Yan H. Blocking exosomal secretion aggravates 1,4-Benzoquinone-induced mitochondrial fission activated by the AMPK/MFF/Drp1 pathway in HL-60 cells. J Appl Toxicol 2022; 42:1618-1627. [PMID: 35383983 DOI: 10.1002/jat.4328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 11/11/2022]
Abstract
There is in vivo and in vitro evidence that exposure to benzene or its metabolites could affect the mitochondrial function. However, the underlying molecular mechanism of mitochondrial damage remains to be elucidated. In this study, exposure of human promyelocytic leukemia cells (HL-60) to 1,4-benzoquinone (1,4-BQ; an active metabolite of benzene) increased the intracellular reactive oxygen species levels, decreased the mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA (mtDNA) copy number, up-regulated the expression of mitochondrial fission proteins Drp1 and Fis1, and down-regulated the expression of mitochondrial fusion proteins Mfn2 and Opa1. Further study showed that 1,4-BQ mediated mitochondrial fission through activation of the AMP-activated protein kinase/mitochondrial fission factor/dynamin-related protein 1 pathway. Additionally, we also examined the role of exosomal secretion in mitochondrial damage under 1,4-BQ treatment. Results showed that 1,4-BQ increased the total protein level and mtDNA content in exosomes. Upon pre-treatment with the mitochondria-targeted antioxidant SS-31, there was attenuation of the mitochondrial damage induced by 1,4-BQ, accompanied by a change in the exosome release characteristics, while inhibition of exosomal secretion using GW4869 aggravated the 1,4-BQ-mediated mitochondrial fission. We concluded that exosomal secretion may serve as a self-protective mechanism of cells against 1,4-BQ-induced mitochondria damage and mitochondrial dynamics interference.
Collapse
Affiliation(s)
- Fangfang Lu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Qianqian Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China.,Department of Pharmacology, School of Pharmacy, Qilu Medical University, Shandong, PR China
| | - Mengyan Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Shuqiang Sun
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Xinjun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| | - Hongtao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Zhejiang, PR China
| |
Collapse
|
218
|
Ohtani N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflamm Regen 2022; 42:11. [PMID: 35365245 PMCID: PMC8976373 DOI: 10.1186/s41232-022-00197-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that can be induced by a variety of potentially oncogenic stimuli, including DNA damage. Hence, senescence has long been considered to suppress tumorigenesis, acting as a guardian of homeostasis. However, recent studies have revealed that senescent cells exhibit the secretion of a series of inflammatory cytokines, chemokines, growth factors, and matrix remodeling factors that alter the local tissue environment and contribute to chronic inflammation and cancer. This senescence phenotype is termed as senescence-associated secretory phenotype (SASP) and is observed not only in cultured cells in vitro but also in vivo. Recently, the physiological and pathological roles of SASP have been increasingly clarified. Notably, several studies have reported that the intrinsic mechanism of SASP factor production is predominantly mediated through the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway by aberrantly accumulated DNA fragments from the nucleus of senescent cells. In contrast, various extrinsic triggers of SASP also exist in vivo, for example, the SASP induction in hepatic stellate cells in the tumor microenvironment of obesity-associated liver cancer by the translocated gut microbial metabolites. Recently, the strategy for the elimination of senescent cells (senolysis) has attracted increasing attention. Thus, the role of SASP and the effects and outcomes of senolysis in vivo will be also discussed in this review.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, 1-4-3, Abeno-ku, Osaka, Japan.
| |
Collapse
|
219
|
Bağcı C, Sever-Bahcekapili M, Belder N, Bennett APS, Erdener ŞE, Dalkara T. Overview of extracellular vesicle characterization techniques and introduction to combined reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle subpopulations. NEUROPHOTONICS 2022; 9:021903. [PMID: 35386596 PMCID: PMC8978261 DOI: 10.1117/1.nph.9.2.021903] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/04/2022] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are nanoparticles (30 to 1000 nm in diameter) surrounded by a lipid-bilayer which carry bioactive molecules between local and distal cells and participate in intercellular communication. Because of their small size and heterogenous nature they are challenging to characterize. Here, we discuss commonly used techniques that have been employed to yield information about EV size, concentration, mechanical properties, and protein content. These include dynamic light scattering, nanoparticle tracking analysis, flow cytometry, transmission electron microscopy, atomic force microscopy, western blotting, and optical methods including super-resolution microscopy. We also introduce an innovative technique for EV characterization which involves immobilizing EVs on a microscope slide before staining them with antibodies targeting EV proteins, then using the reflectance mode on a confocal microscope to locate the EV plane. By then switching to the microscope's fluorescence mode, immunostained EVs bearing specific proteins can be identified and the heterogeneity of an EV preparation can be determined. This approach does not require specialist equipment beyond the confocal microscopes that are available in many cell biology laboratories, and because of this, it could become a complementary approach alongside the aforementioned techniques to identify molecular heterogeneity in an EV preparation before subsequent analysis requiring specialist apparatus.
Collapse
Affiliation(s)
- Canan Bağcı
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Bahçeşehir University, Department of Biomedical Engineering, İstanbul, Turkey
| | | | - Nevin Belder
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Ankara University, Institute of Biotechnology, Ankara, Turkey
| | - Adam P. S. Bennett
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Şefik Evren Erdener
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Address all correspondence to Şefik Evren Erdener, ; Turgay Dalkara,
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Address all correspondence to Şefik Evren Erdener, ; Turgay Dalkara,
| |
Collapse
|
220
|
Liu H, Tian Y, Xue C, Niu Q, Chen C, Yan X. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. J Extracell Vesicles 2022; 11:e12206. [PMID: 35373518 PMCID: PMC8977970 DOI: 10.1002/jev2.12206] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 12/21/2022] Open
Abstract
It has been demonstrated recently that extracellular vesicles (EVs) carry DNA; however, many fundamental features of DNA in EVs (EV-DNA) remain elusive. In this study, a laboratory-built nano-flow cytometer (nFCM) that can detect single EVs as small as 40 nm in diameter and single DNA fragments of 200 bp upon SYTO 16 staining was used to study EV-DNA at the single-vesicle level. Through simultaneous side-scatter and fluorescence (FL) detection of single particles and with the combination of enzymatic treatment, present study revealed that: (1) naked DNA or DNA associated with non-vesicular entities is abundantly presented in EV samples prepared from cell culture medium by ultracentrifugation; (2) the quantity of EV-DNA in individual EVs exhibits large heterogeneity and the population of DNA positive (DNA+ ) EVs varies from 30% to 80% depending on the cell type; (3) external EV-DNA is mainly localized on relatively small size EVs (e.g. <100 nm for HCT-15 cell line) and the secretion of external DNA+ EVs can be significantly reduced by exosome secretion pathway inhibition; (4) internal EV-DNA is mainly packaged inside the lumen of relatively large EVs (e.g. 80-200 nm for HCT-15 cell line); (5) double-stranded DNA (dsDNA) is the predominant form of both the external and internal EV-DNA; (6) histones (H3) are not found in EVs, and EV-DNA is not associated with histone proteins and (7) genotoxic drug induces an enhanced release of DNA+ EVs, and the number of both external DNA+ EVs and internal DNA+ EVs as well as the DNA content in single EVs increase significantly. This study provides direct and conclusive experimental evidence for an in-depth understanding of how DNA is associated with EVs.
Collapse
Affiliation(s)
- Haisheng Liu
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Ye Tian
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Chengfeng Xue
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Qian Niu
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Chen Chen
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| | - Xiaomei Yan
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollaborative Innovation Center of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople's Republic of China
| |
Collapse
|
221
|
Nakamya MF, Sil S, Buch S, Hakami RM. Mitochondrial Extracellular Vesicles in CNS Disorders: New Frontiers in Understanding the Neurological Disorders of the Brain. Front Mol Biosci 2022; 9:840364. [PMID: 35433837 PMCID: PMC9005996 DOI: 10.3389/fmolb.2022.840364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Recent findings have highlighted potential diagnostic and prognostic values of extracellular vesicles (EVs) that contain mitochondrial derived components for neurological disorders. Furthermore, functional influences of vesicles carrying mitochondrial components have been reported. In particular, this includes indications of crosstalk with mitophagy to influence progression of various CNS disorders. In this mini-review, we discuss the current state of knowledge about this intriguing class of vesicles in neurological disorders of the CNS, and outline the lacunae and thus scope of further development in this fascinating field of study.
Collapse
Affiliation(s)
- Mary F. Nakamya
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Center for Infectious Disease Research, George Mason University, Manassas, VA, United States
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ramin M. Hakami
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Center for Infectious Disease Research, George Mason University, Manassas, VA, United States
- *Correspondence: Ramin M. Hakami,
| |
Collapse
|
222
|
Zeng W, Wen Z, Chen H, Duan Y. Exosomes as Carriers for Drug Delivery in Cancer Therapy. Pharm Res 2022; 40:873-887. [PMID: 35352281 DOI: 10.1007/s11095-022-03224-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Exosomes are extracellular vesicles secreted by cells with a particle size of 30-150 nm in diameter. Exosomes can be used as natural drug carriers. The treatment of cancer with drug-loaded exosomes is an area of high interest. This review introduces the composition, function, isolation and characterization of exosomes, and briefly describes the selection of exosome donor cells and methods for drug loading. Through studies on therapies with drug-loaded exosomes in gastric cancer, lung cancer, brain cancer and other cancers, the advantages and disadvantages of drug-loaded exosomes have been analyzed.
Collapse
Affiliation(s)
- Weiping Zeng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhengbo Wen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
223
|
Ghanam J, Chetty VK, Barthel L, Reinhardt D, Hoyer PF, Thakur BK. DNA in extracellular vesicles: from evolution to its current application in health and disease. Cell Biosci 2022; 12:37. [PMID: 35346363 PMCID: PMC8961894 DOI: 10.1186/s13578-022-00771-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicle (EV) secretion is a highly conserved evolutionary trait in all organisms in the three domains of life. The packaging and release of EVs appears to be a bulk-flow process which takes place mainly under extreme conditions. EVs participate in horizontal gene transfer, which supports the survival of prokaryotic and eukaryotic microbes. In higher eukaryotes, almost all cells secrete a heterogeneous population of EVs loaded with various biomolecules. EV secretion is typically higher in cancer microenvironments, promoting tumor progression and metastasis. EVs are now recognized as additional mediators of autocrine and paracrine communication in health and disease. In this context, proteins and RNAs have been studied the most, but extracellular vesicle DNA (EV-DNA) has started to gain in importance in the last few years. In this review, we summarize new findings related to the loading mechanism(s), localization, and post-shedding function of EV-DNA. We also discuss the feasibility of using EV-DNA as a biomarker when performing a liquid biopsy, at the same time emphasizing the lack of data from clinical trials in this regard. Finally, we outline the potential of EV-DNA uptake and its interaction with the host genome as a promising tool for understanding the mechanisms of cancer evolution. Protecting DNA in membrane vesicles seems to be a conserved phenomenon for the horizontal genetic flux between prokaryotes and lower eukaryotes. Capturing and analyzing this vesicular DNA enables quick and non-invasive monitoring of natural ecosystems. Cancer-derived extracellular vesicles containing DNA open up novel directions in cell-to-cell communication and therefore disease monitoring. Complex and fluctuating conditions of the tumor microenvironment, mimicking natural ecosystems, could favor EV-DNA release, mediating tumor multi-clonal evolution and providing survival benefits.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Venkatesh Kumar Chetty
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Peter-Friedrich Hoyer
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
224
|
O'Grady T, Njock MS, Lion M, Bruyr J, Mariavelle E, Galvan B, Boeckx A, Struman I, Dequiedt F. Sorting and packaging of RNA into extracellular vesicles shape intracellular transcript levels. BMC Biol 2022; 20:72. [PMID: 35331218 PMCID: PMC8944098 DOI: 10.1186/s12915-022-01277-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are released by nearly every cell type and have attracted much attention for their ability to transfer protein and diverse RNA species from donor to recipient cells. Much attention has been given so far to the features of EV short RNAs such as miRNAs. However, while the presence of mRNA and long noncoding RNA (lncRNA) transcripts in EVs has also been reported by multiple different groups, the properties and function of these longer transcripts have been less thoroughly explored than EV miRNA. Additionally, the impact of EV export on the transcriptome of exporting cells has remained almost completely unexamined. Here, we globally investigate mRNA and lncRNA transcripts in endothelial EVs in multiple different conditions. RESULTS In basal conditions, long RNA transcripts enriched in EVs have longer than average half-lives and distinctive stability-related sequence and structure characteristics including shorter transcript length, higher exon density, and fewer 3' UTR A/U-rich elements. EV-enriched long RNA transcripts are also enriched in HNRNPA2B1 binding motifs and are impacted by HNRNPA2B1 depletion, implicating this RNA-binding protein in the sorting of long RNA to EVs. After signaling-dependent modification of the cellular transcriptome, we observed that, unexpectedly, the rate of EV enrichment relative to cells was altered for many mRNA and lncRNA transcripts. This change in EV enrichment was negatively correlated with intracellular abundance, with transcripts whose export to EVs increased showing decreased abundance in cells and vice versa. Correspondingly, after treatment with inhibitors of EV secretion, levels of mRNA and lncRNA transcripts that are normally highly exported to EVs increased in cells, indicating a measurable impact of EV export on the long RNA transcriptome of the exporting cells. Compounds with different mechanisms of inhibition of EV secretion affected the cellular transcriptome differently, suggesting the existence of multiple EV subtypes with different long RNA profiles. CONCLUSIONS We present evidence for an impact of EV physiology on the characteristics of EV-producing cell transcriptomes. Our work suggests a new paradigm in which the sorting and packaging of transcripts into EVs participate, together with transcription and RNA decay, in controlling RNA homeostasis and shape the cellular long RNA abundance profile.
Collapse
Affiliation(s)
- Tina O'Grady
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Makon-Sébastien Njock
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Michelle Lion
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Jonathan Bruyr
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Emeline Mariavelle
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Bartimée Galvan
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Amandine Boeckx
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Franck Dequiedt
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium.
| |
Collapse
|
225
|
Abstract
Rheumatoid arthritis (RA) is a heterogeneous autoimmune disorder that leads to severe joint deformities, negatively affecting the patient's quality of life. Extracellular vesicles (EVs), which include exosomes and ectosomes, act as intercellular communication mediators in several physiological and pathological processes in various diseases including RA. In contrast, EVs secreted by mesenchymal stem cells perform an immunomodulatory function and stimulate cartilage repair, showing promising therapeutic results in animal models of RA. EVs from other sources, including dendritic cells, neutrophils and myeloid-derived suppressor cells, also influence the biological function of immune and joint cells. This review describes the role of EVs in the pathogenesis of RA and presents evidence supporting future studies on the therapeutic potential of EVs from different sources. This information will contribute to a better understanding of RA development, as well as a starting point for exploring cell-free-based therapies for RA.
Collapse
|
226
|
Abstract
Ageing, death, and potential immortality lie at the heart of biology, but two seemingly incompatible paradigms coexist in different research communities and have done since the nineteenth century. The universal senescence paradigm sees senescence as inevitable in all cells. Damage accumulates. The potential immortality paradigm sees some cells as potentially immortal, especially unicellular organisms, germ cells and cancerous cells. Recent research with animal cells, yeasts and bacteria show that damaged cell constituents do in fact build up, but can be diluted by growth and cell division, especially by asymmetric cell division. By contrast, mammalian embryonic stem cells and many cancerous and 'immortalized' cell lines divide symmetrically, and yet replicate indefinitely. How do they acquire their potential immortality? I suggest they are rejuvenated by excreting damaged cell constituents in extracellular vesicles. If so, our understanding of cellular senescence, rejuvenation and potential immortality could be brought together in a new synthesis, which I call the cellular rejuvenation hypothesis: damaged cell constituents build up in all cells, but cells can be rejuvenated either by growth and cell division or, in 'immortal' cell lines, by excreting damaged cell constituents. In electronic supplementary material, appendix, I outline nine ways in which this hypothesis could be tested.
Collapse
|
227
|
Hamsanathan S, Gurkar AU. Lipids as Regulators of Cellular Senescence. Front Physiol 2022; 13:796850. [PMID: 35370799 PMCID: PMC8965560 DOI: 10.3389/fphys.2022.796850] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Lipids are key macromolecules that perform a multitude of biological functions ranging from maintaining structural integrity of membranes, energy storage, to signaling molecules. Unsurprisingly, variations in lipid composition and its levels can influence the functional and physiological state of the cell and its milieu. Cellular senescence is a permanent state of cell cycle arrest and is a hallmark of the aging process, as well as several age-related pathologies. Senescent cells are often characterized by alterations in morphology, metabolism, chromatin remodeling and exhibit a complex pro-inflammatory secretome (SASP). Recent studies have shown that the regulation of specific lipid species play a critical role in senescence. Indeed, some lipid species even contribute to the low-grade inflammation associated with SASP. Many protein regulators of senescence have been well characterized and are associated with lipid metabolism. However, the link between critical regulators of cellular senescence and senescence-associated lipid changes is yet to be elucidated. Here we systematically review the current knowledge on lipid metabolism and dynamics of cellular lipid content during senescence. We focus on the roles of major players of senescence in regulating lipid metabolism. Finally, we explore the future prospects of lipid research in senescence and its potential to be targeted as senotherapeutics.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Aditi U. Gurkar,
| |
Collapse
|
228
|
Hong X, Wang L, Zhang K, Liu J, Liu JP. Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis. Cells 2022; 11:877. [PMID: 35269498 PMCID: PMC8909789 DOI: 10.3390/cells11050877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-β signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence.
Collapse
Affiliation(s)
- Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, VIC 3181, Australia
- Hudson Institute of Medical Research, Monash University Department of Molecular and Translational Science, Clayton, VIC 3168, Australia
| |
Collapse
|
229
|
Clancy JW, Sheehan CS, Boomgarden AC, D'Souza-Schorey C. Recruitment of DNA to tumor-derived microvesicles. Cell Rep 2022; 38:110443. [PMID: 35235806 DOI: 10.1016/j.celrep.2022.110443] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
The shedding of extracellular vesicles (EVs) represents an important but understudied means of cell-cell communication in cancer. Among the currently described classes of EVs, tumor-derived microvesicles (TMVs) comprise a class of vesicles released directly from the cell surface. TMVs contain abundant cargo, including functional proteins and miRNA, which can be transferred to and alter the behavior of recipient cells. Here, we document that a fraction of extracellular double-stranded DNA (dsDNA) is enclosed within TMVs and protected from nuclease degradation. dsDNA inclusion in TMVs is regulated by ARF6 cycling and occurs with the cytosolic DNA sensor, cGAS, but independent of amphisome or micronuclei components. Our studies suggest that dsDNA is trafficked to TMVs via a mechanism distinct from the multivesicular body-dependent secretion reported for the extracellular release of cytosolic DNA. Furthermore, TMV dsDNA can be transferred to recipient cells with consequences to recipient cell behavior, reinforcing its relevance in mediating cell-cell communication.
Collapse
Affiliation(s)
- James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Colin S Sheehan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alex C Boomgarden
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
230
|
N V Lakshmi Kavya A, Subramanian S, Ramakrishna S. Therapeutic applications of exosomes in various diseases: A review. BIOMATERIALS ADVANCES 2022; 134:112579. [PMID: 35525729 DOI: 10.1016/j.msec.2021.112579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Exosomes (30-150 nm in diameter) a subset of extracellular vesicles, secreted by mostly all cells, have been gaining enormous recognition from the last decade. In recent times, several studies have included exosomes to design novel therapeutic applications along with their contribution to diagnostic evaluations and pathophysiological processes. Based on cell origin, they show diverse functions and characteristics. This article is classified into several sections that include exosomes biogenesis, isolation methods, and application as therapeutic tools, commercialized exosome products, clinical trials, benefits, and challenges faced in the progress of exosome-dependent therapeutics. This work aims to give a thorough review of the numerous studies where exosomes act as therapeutic tools in the treatment of various disorders including heart, kidney, liver, and lung illnesses. The clinical trials involving exosomes, their advantages, and hazards, and difficulties involved during storage and large-scale production, applications of nanotechnology in exosome research while applying for therapeutic applications, and future directions are summarized.
Collapse
Affiliation(s)
| | - Sundarrajan Subramanian
- Center for Nanofibers and Nanotechnology Lab, Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology Lab, Mechanical Engineering, National University of Singapore, Blk E3 05-12, 2 Engineering Drive 3, Singapore 117581, Singapore.
| |
Collapse
|
231
|
Chen R, Skutella T. Synergistic Anti-Ageing through Senescent Cells Specific Reprogramming. Cells 2022; 11:830. [PMID: 35269453 PMCID: PMC8909644 DOI: 10.3390/cells11050830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
In this review, we seek a novel strategy for establishing a rejuvenating microenvironment through senescent cells specific reprogramming. We suggest that partial reprogramming can produce a secretory phenotype that facilitates cellular rejuvenation. This strategy is desired for specific partial reprogramming under control to avoid tumour risk and organ failure due to loss of cellular identity. It also alleviates the chronic inflammatory state associated with ageing and secondary senescence in adjacent cells by improving the senescence-associated secretory phenotype. This manuscript also hopes to explore whether intervening in cellular senescence can improve ageing and promote damage repair, in general, to increase people's healthy lifespan and reduce frailty. Feasible and safe clinical translational protocols are critical in rejuvenation by controlled reprogramming advances. This review discusses the limitations and controversies of these advances' application (while organizing the manuscript according to potential clinical translation schemes) to explore directions and hypotheses that have translational value for subsequent research.
Collapse
Affiliation(s)
| | - Thomas Skutella
- Group for Regeneration and Reprogramming, Medical Faculty, Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
232
|
de Bruyn DP, Beasley AB, Verdijk RM, van Poppelen NM, Paridaens D, de Keizer ROB, Naus NC, Gray ES, de Klein A, Brosens E, Kiliç E. Is Tissue Still the Issue? The Promise of Liquid Biopsy in Uveal Melanoma. Biomedicines 2022; 10:biomedicines10020506. [PMID: 35203714 PMCID: PMC8962331 DOI: 10.3390/biomedicines10020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Uveal melanoma (UM) is the second most frequent type of melanoma. Therapeutic options for UM favor minimally invasive techniques such as irradiation for vision preservation. As a consequence, no tumor material is obtained. Without available tissue, molecular analyses for gene expression, mutation or copy number analysis cannot be performed. Thus, proper patient stratification is impossible and patients’ uncertainty about their prognosis rises. Minimally invasive techniques have been studied for prognostication in UM. Blood-based biomarker analysis has become more common in recent years; however, no clinically standardized protocol exists. This review summarizes insights in biomarker analysis, addressing new insights in circulating tumor cells, circulating tumor DNA, extracellular vesicles, proteomics, and metabolomics. Additionally, medical imaging can play a significant role in staging, surveillance, and prognostication of UM and is addressed in this review. We propose that combining multiple minimally invasive modalities using tumor biomarkers should be the way forward and warrant more attention in the coming years.
Collapse
Affiliation(s)
- Daniël P. de Bruyn
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Aaron B. Beasley
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (E.S.G.)
| | - Robert M. Verdijk
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands; (R.M.V.); (R.O.B.d.K.)
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Natasha M. van Poppelen
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Dion Paridaens
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands; (R.M.V.); (R.O.B.d.K.)
| | | | - Nicole C. Naus
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Elin S. Gray
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (E.S.G.)
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-107030683
| |
Collapse
|
233
|
Alpha Satellite RNA Levels Are Upregulated in the Blood of Patients with Metastatic Castration-Resistant Prostate Cancer. Genes (Basel) 2022; 13:genes13020383. [PMID: 35205427 PMCID: PMC8871578 DOI: 10.3390/genes13020383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
The aberrant overexpression of alpha satellite DNA is characteristic of many human cancers including prostate cancer; however, it is not known whether the change in the alpha satellite RNA amount occurs in the peripheral tissues of cancer patients, such as blood. Here, we analyse the level of intracellular alpha satellite RNA in the whole blood of cancer prostate patients at different stages of disease and compare it with the levels found in healthy controls. Our results reveal a significantly increased level of intracellular alpha satellite RNA in the blood of metastatic cancers patients, particularly those with metastatic castration-resistant prostate cancer relative to controls. In the blood of patients with localised tumour, no significant change relative to the controls was detected. Our results show a link between prostate cancer pathogenesis and blood intracellular alpha satellite RNA levels. We discuss the possible mechanism which could lead to the increased level of blood intracellular alpha satellite RNA at a specific metastatic stage of prostate cancer. Additionally, we analyse the clinically accepted prostate cancer biomarker PSA in all samples and discuss the possibility that alpha satellite RNA can serve as a novel prostate cancer diagnostic blood biomarker.
Collapse
|
234
|
Miyata K, Takahashi A. Pericentromeric repetitive ncRNA regulates chromatin interaction and inflammatory gene expression. Nucleus 2022; 13:74-78. [PMID: 35167425 PMCID: PMC8855862 DOI: 10.1080/19491034.2022.2034269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular senescence provokes a dramatic alteration of chromatin organization and gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies via the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained through the CCCTC-binding factor (CTCF). However, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains to be fully elucidated. A recent study by our team showed that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impair the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin at the loci of SASP genes and caused the transcription of inflammatory factors. This mechanism may promote malignant transformation.
Collapse
Affiliation(s)
- Kenichi Miyata
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akiko Takahashi
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan.,Advanced Research & Development Programs for Medical Innovation (PRIME), Japan Agency for Medical Research and Development (Amed), Tokyo, Japan
| |
Collapse
|
235
|
Yang Y, Huang Y, Zeng Z. Advances in cGAS-STING Signaling Pathway and Diseases. Front Cell Dev Biol 2022; 10:800393. [PMID: 35186921 PMCID: PMC8851069 DOI: 10.3389/fcell.2022.800393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Pathogens can produce conserved pathogen-associated molecular patterns (PAMPs) after invading the body, which can be specifically recognized by host pattern recognition receptors (PRRs). In recent years, it has been found that cytoplasmic DNA receptors recognize exogenous DNA inducing activation of interferon 1 (IFN1), which is a rapid advance in various research areas. The cyclic GMP–AMP synthase (cGAS) stimulator of interferon gene (STING) signaling pathway is a critical natural immune pathway in cells. Early studies revealed that it plays a crucial regulatory role in pathogen infection and tumor, and it is associated with various human autoimmune diseases. Recently studies have found that activation of cGAS-STING signaling pathway is related to different organ injuries. The present review elaborates on the regulation of the cGAS-STING signaling pathway and its role in various diseases, aiming to provide a theoretical basis for immunotherapy targeting this pathway.
Collapse
|
236
|
Sanders OD, Rajagopal L, Rajagopal JA. The oxidatively damaged DNA and amyloid-β oligomer hypothesis of Alzheimer's disease. Free Radic Biol Med 2022; 179:403-412. [PMID: 34506904 DOI: 10.1016/j.freeradbiomed.2021.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
The amyloid-β (Aβ) oligomer hypothesis of Alzheimer's disease (AD) still dominates the field, yet the clinical trial evidence does not robustly support it. A falsifiable prediction of the hypothesis is that Aβ oligomer levels should be elevated in the brain regions and at the disease stages where and when neuron death and synaptic protein loss begin and are the most severe, but we review previous evidence to demonstrate that this is not consistently the case. To rescue the Aβ oligomer hypothesis from falsification, we propose the novel ad-hoc hypothesis that the exceptionally vulnerable hippocampus may normally produce Aβ peptides even in healthily aging individuals, and hippocampal oxidatively damaged DNA, pathogen DNA, and metal ions such as zinc may initiate and drive Aβ peptide aggregation into oligomers and spreading, neuron death, synaptic dysfunction, and other aspects of AD neurodegeneration. We highlight additional evidence consistent with the underwhelming efficacy of Aβ oligomer-lowering agents, such as aducanumab, and of antioxidants, such as vitamin E, versus the so far isolated case report that DNase-I treatment for 2 months resulted in a severe AD patient's Mini-Mental State Exam score increasing from 3 to 18, reversing his diagnosis to moderate AD, according to the Mini-Mental State Exam.
Collapse
Affiliation(s)
| | - Lekshmy Rajagopal
- Seven Hills Hospital, Marol Maroshi Rd, Shivaji Nagar JJC, Marol, Andheri East, Mumbai, Maharashtra, 400059, India
| | | |
Collapse
|
237
|
Singh A, Verma S, Modak SB, Chaturvedi MM, Purohit JS. Extra-nuclear histones: origin, significance and perspectives. Mol Cell Biochem 2022; 477:507-524. [PMID: 34796445 DOI: 10.1007/s11010-021-04300-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Histones are classically known to organize the eukaryotic DNA into chromatin. They are one of the key players in regulating transcriptionally permissive and non-permissive states of the chromatin. Nevertheless, their context-dependent appearance within the cytoplasm and systemic circulation has also been observed. The past decade has also witnessed few scientific communications on the existence of vesicle-associated histones. Diverse groups have attempted to determine the significance of these extra-nuclear histones so far, with many of those studies still underway. Of note amongst these are interactions of extra-nuclear or free histones with cellular membranes, mediated by mutual cationic and anionic natures, respectively. It is here aimed to consolidate the mechanism of formation of extra-nuclear histones; implications of histone-induced membrane destabilization and explore the mechanisms of their association/release with extracellular vesicles, along with the functional aspects of these extra-nuclear histones in cell and systemic physiology.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, 110078, India
| | | | | | - Jogeswar S Purohit
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- Molecular and Systems Biology Lab, Cluster Innovation Centre, University of Delhi, North Campus, DREAM Building, Delhi, 110007, India.
| |
Collapse
|
238
|
Yang Q, Liu J, Wu B, Wang X, Jiang Y, Zhu D. Role of extracellular vesicles in osteosarcoma. Int J Med Sci 2022; 19:1216-1226. [PMID: 35928720 PMCID: PMC9346389 DOI: 10.7150/ijms.74137] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is a malignant bone tumor characterized by the direct production of osteoid tissue from tumor cells. Extracellular vesicles are membranous vesicles released by cells into the extracellular matrix, which exist widely in various body fluids and cell supernatants, and stably carry some important signaling molecules. They are involved in cell communication, cell migration, angiogenesis and tumor cell growth. Increasing evidence has shown that extracellular vesicles play a significant role in osteosarcoma development, progression, and metastatic process, indicating that extracellular vesicles can be use as biomarker vehicles in the diagnosis and prognosis of osteosarcoma. This review discusses the basic biological characteristics of extracellular vesicles and focuses on their application in osteosarcoma.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Jing Liu
- The first clinical medical college of Bin Zhou Medical College, Street Huanghe 661, China
| | - Bo Wu
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Xinyu Wang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Ye Jiang
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| | - Dong Zhu
- Department of Orthopaedics, the First Hospital of Jilin University, Changchun, Street Xinmin 71, China
| |
Collapse
|
239
|
Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina (B Aires) 2021; 58:medicina58010061. [PMID: 35056369 PMCID: PMC8779043 DOI: 10.3390/medicina58010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stem cells with the potential ability to differentiate into various cells and the ability to self-renew and resemble fibroblasts. These cells can adhere to plastic to facilitate the culture process. MSCs can be used in research into tissue biotechnology and rejuvenation medicine. MSCs are also beneficial in recipient tissue and differentiate as a breakthrough strategy through paracrine activity. Many databases have shown MSC-based treatment can be beneficial in the reduction of osteogenesis induced by senescence. In this article, we will discuss the potential effect of MSCs in senescence cells related to osteogenesis.
Collapse
|
240
|
Saad MG, Beyenal H, Dong WJ. Exosomes as Powerful Engines in Cancer: Isolation, Characterization and Detection Techniques. BIOSENSORS 2021; 11:518. [PMID: 34940275 PMCID: PMC8699402 DOI: 10.3390/bios11120518] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Exosomes, powerful extracellular nanovesicles released from almost all types of living cells, are considered the communication engines (messengers) that control and reprogram physiological pathways inside target cells within a community or between different communities. The cell-like structure of these extracellular vesicles provides a protective environment for their proteins and DNA/RNA cargos, which serve as biomarkers for many malicious diseases, including infectious diseases and cancers. Cancer-derived exosomes control cancer metastasis, prognosis, and development. In addition to the unique structure of exosomes, their nanometer size and tendency of interacting with cells makes them a viable novel drug delivery solution. In recent years, numerous research efforts have been made to quantify and characterize disease-derived exosomes for diagnosis, monitoring, and therapeutic purposes. This review aims to (1) relate exosome biomarkers to their origins, (2) focus on current isolation and detection methods, (3) discuss and evaluate the proposed technologies deriving from exosome research for cancer treatment, and (4) form a conclusion about the prospects of the current exosome research.
Collapse
Affiliation(s)
| | | | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (M.G.S.); (H.B.)
| |
Collapse
|
241
|
Mine Y, Takahashi T, Okamoto T. Protective effects of coenzyme Q 10 on cell damage induced by hydrogen peroxides in cultured skin fibroblasts. J Clin Biochem Nutr 2021; 69:247-255. [PMID: 34857986 PMCID: PMC8611366 DOI: 10.3164/jcbn.20-185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
Cellular senescence is an intricate and multifactorial phenomenon, which is characterized by an irreversible cellular growth arrest, it is caused in response to irretrievably DNA damage, telomere shorting, activation of oncogene, and oxidative stress. Human diploid fibroblasts are a well-established experimental model for premature senescence-related studies, and exposure of fibroblasts to H2O2 is widely used as a SIPS model. Recently, it has been reported many studies of CoQ10 as to anti-aging effects, however the effect of CoQ10 on H2O2-induced SIPS model of human skin fibroblasts has not been understood. So that, we investigated that human skin fibroblasts were used to investigate the prevention effect of CoQ10 against H2O2-induced SIPS model. We created SIPS model fibroblasts with treatment of 100 μM H2O2 for 2 h. In this study, CoQ10 also increased cell viability and mRNA levels of type I, IV collagen and protein level of type I collagen. Moreover, it is shown that CoQ10 suppressed oxidative stress, degradation of collagen by increasing MMP expression, and decreasing senescence-associated phenotypes (e.g. SA-βgal positive staining and SASP) for preventing skin aging via H2O2-induced SIPS model. These results suggested that CoQ10 has possibility to be contributory for extension of healthy life expectancy in Japan.
Collapse
Affiliation(s)
- Yukitoshi Mine
- Division of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Takayuki Takahashi
- Division of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Tadashi Okamoto
- Division of Health Sciences and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
242
|
Gonzales MM, Krishnamurthy S, Garbarino V, Daeihagh AS, Gillispie GJ, Deep G, Craft S, Orr ME. A geroscience motivated approach to treat Alzheimer's disease: Senolytics move to clinical trials. Mech Ageing Dev 2021; 200:111589. [PMID: 34687726 PMCID: PMC9059898 DOI: 10.1016/j.mad.2021.111589] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
The pathogenic processes driving Alzheimer's disease (AD) are complex. An incomplete understanding of underlying disease mechanisms has presented insurmountable obstacles for developing effective disease-modifying therapies. Advanced chronological age is the greatest risk factor for developing AD. Intervening on biological aging may alter disease progression and represents a novel, complementary approach to current strategies. Toward this end, cellular senescence has emerged as a promising target. This complex stress response harbors damaged cells in a cell cycle arrested, apoptosis-resistant cell state. Senescent cells accumulate with age where they notoriously secrete molecules that contribute to chronic tissue dysfunction and disease. Thus, benefits of cell survival in a senescent fate are countered by their toxic secretome. The removal of senescent cells improves brain structure and function in rodent models at risk of developing AD, and in those with advanced Aβ and tau pathology. The present review describes the path to translating this promising treatment strategy to AD clinical trials. We review evidence for senescent cell accumulation in the human brain, considerations and strategies for senescence-targeting trials specific to AD, approaches to detect senescent brain cells in biofluids, and summarize the goals of the first senolytic trials for the treatment of AD (NCT04063124 and NCT04685590). This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudarshan Krishnamurthy
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Valentina Garbarino
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ali S Daeihagh
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gregory J Gillispie
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
243
|
Kwan HY, Chen M, Xu K, Chen B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol Life Sci 2021; 78:7275-7288. [PMID: 34677643 PMCID: PMC8531905 DOI: 10.1007/s00018-021-03973-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
Recently, the emerging roles of adipocyte-derived extracellular vesicles (EVs) linking obesity and its comorbidities have been recognized. In obese subjects, adipocytes are having hypertrophic growth and are under stressed. The dysfunction adipocytes dysregulate the assembly of the biological components in the EVs including exosomes. This article critically reviews the current findings on the impact of obesity on the exosomal cargo contents that induce the pathophysiological changes. Besides, this review also summarizes the understanding on how obesity affects the biogenesis of adipocyte-derived exosomes and the exosome secretion. Furthermore, the differences of the exosomal contents in different adipose depots, and the impact of obesity on the exosomes that are derived from the stromal vascular fraction such as the adipose tissue macrophages and adipocyte-derived stem cells will also be discussed. The current development and potential application of exosome-based therapy will be summarized. This review provides crucial information for the design of novel exosome-based therapy for the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China.
| | - Minting Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Keyang Xu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Baisen Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| |
Collapse
|
244
|
Gonzales MM, Krishnamurthy S, Garbarino V, Daeihagh AS, Gillispie GJ, Deep G, Craft S, Orr ME. A geroscience motivated approach to treat Alzheimer’s disease: Senolytics move to clinical trials. Mech Ageing Dev 2021. [DOI: 10.1016/j.mad.2021.111589
expr 868687188 + 807217478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
245
|
Ding Y, Ding N, Zhang Y, Xie S, Huang M, Ding X, Dong W, Zhang Q, Jiang L. MicroRNA-222 Transferred From Semen Extracellular Vesicles Inhibits Sperm Apoptosis by Targeting BCL2L11. Front Cell Dev Biol 2021; 9:736864. [PMID: 34820370 PMCID: PMC8607813 DOI: 10.3389/fcell.2021.736864] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Seminal plasma contains a large number of extracellular vesicles (EVs). However, the roles of these EVs and their interactions with sperm are not clear. To identify the important molecules affecting sperm motility in EVs, we analyzed RNA from seminal plasma EVs of boars with different sperm motility using whole-transcriptome sequencing and proteomic analysis. In total, 7 miRNAs, 67 lncRNAs, 126 mRNAs and 76 proteins were differentially expressed between the two groups. We observed that EV-miR-222 can obviously improve sperm motility. In addition, the results suggested that miR-222 was transferred into sperm by the EVs and that miR-222 affected sperm apoptosis by inhibiting the expression of EGFR, BCL2L11, BAX, CYCs, CASP9 and CASP3. The results of electron microscopy also showed that overexpression of miR-222 in EVs could reduce sperm apoptosis. The study of the whole transcriptomes and proteomes of EVs in boar semen revealed some miRNAs may play an important role in these EVs interactions with Duroc sperm, and the findings suggest that the release of miR-222 by semen EVs is an important mechanism by which sperm viability is maintained and sperm apoptosis is reduced. Our studies provide a new insight of miR-222 in EVs regulation for sperm motility and sperm apoptosis.
Collapse
Affiliation(s)
- Yaqun Ding
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ding
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenmin Xie
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengna Huang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
246
|
The Importance of Exosomal PD-L1 in Cancer Progression and Its Potential as a Therapeutic Target. Cells 2021; 10:cells10113247. [PMID: 34831468 PMCID: PMC8619537 DOI: 10.3390/cells10113247] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Binding of programmed cell death ligand 1 (PD-L1) to its receptor programmed cell death protein 1 (PD-1) can lead to the inactivation of cytotoxic T lymphocytes, which is one of the mechanisms for immune escape of tumors. Immunotherapy based on this mechanism has been applied in clinic with some remaining issues such as drug resistance. Exosomal PD-L1 derived from tumor cells is considered to play a key role in mediating drug resistance. Here, the effects of various tumor-derived exosomes and tumor-derived exosomal PD-L1 on tumor progression are summarized and discussed. Researchers have found that high expression of exosomal PD-L1 can inhibit T cell activation in in vitro experiments, but the function of exosomal PD-L1 in vivo remains controversial. In addition, the circulating exosomal PD-L1 has high potential to act as an indicator to evaluate the clinical effect. Moreover, therapeutic strategy targeting exosomal PD-L1 is discussed, such as inhibiting the biogenesis or secretion of exosomes. Besides, some specific methods based on the strategy of inhibiting exosomes are concluded. Further study of exosomal PD-L1 may provide an effective and safe approach for tumor treatment, and targeting exosomal PD-L1 by inhibiting exosomes may be a potential method for tumor treatment.
Collapse
|
247
|
Van Hoecke L, Van Cauwenberghe C, Dominko K, Van Imschoot G, Van Wonterghem E, Castelein J, Xie J, Claeys W, Vandendriessche C, Kremer A, Borghgraef P, De Rycke R, Hecimovic S, Vandenbroucke RE. Involvement of the Choroid Plexus in the Pathogenesis of Niemann-Pick Disease Type C. Front Cell Neurosci 2021; 15:757482. [PMID: 34720883 PMCID: PMC8555471 DOI: 10.3389/fncel.2021.757482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Niemann-Pick type C (NPC) disease, sometimes called childhood Alzheimer’s, is a rare neurovisceral lipid storage disease with progressive neurodegeneration leading to premature death. The disease is caused by loss-of-function mutations in the Npc1 or Npc2 gene which both result into lipid accumulation in the late endosomes and lysosomes. Since the disease presents with a broad heterogenous clinical spectrum, the involved disease mechanisms are still incompletely understood and this hampers finding an effective treatment. As NPC patients, who carry NPC1 mutations, have shown to share several pathological features with Alzheimer’s disease (AD) and we and others have previously shown that AD is associated with a dysfunctionality of the blood-cerebrospinal fluid (CSF) barrier located at choroid plexus, we investigated the functionality of this latter barrier in NPC1 pathology. Using NPC1–/– mice, we show that despite an increase in inflammatory gene expression in choroid plexus epithelial (CPE) cells, the blood-CSF barrier integrity is not dramatically affected. Interestingly, we did observe a massive increase in autophagosomes in CPE cells and enlarged extracellular vesicles (EVs) in CSF upon NPC1 pathology. Additionally, we revealed that these EVs exert toxic effects on brain tissue, in vitro as well as in vivo. Moreover, we observed that EVs derived from the supernatant of NPC1–/– choroid plexus explants are able to induce typical brain pathology characteristics of NPC1–/–, more specifically microgliosis and astrogliosis. Taken together, our data reveal for the first time that the choroid plexus and CSF EVs might play a role in the brain-related pathogenesis of NPC1.
Collapse
Affiliation(s)
- Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kristina Dominko
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonas Castelein
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wouter Claeys
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anna Kremer
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium
| | - Peter Borghgraef
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium
| | - Riet De Rycke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium.,Ghent University Expertise Centre for Transmission Electron Microscopy, Ghent, Belgium
| | - Silva Hecimovic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
248
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
249
|
Somiya M, Kuroda S. Reporter gene assay for membrane fusion of extracellular vesicles. J Extracell Vesicles 2021; 10:e12171. [PMID: 34807503 PMCID: PMC8607979 DOI: 10.1002/jev2.12171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) secreted by living cells are expected to deliver biological cargo molecules, including RNA and proteins, to the cytoplasm of recipient cells. There is an increasing need to understand the mechanism of intercellular cargo delivery by EVs. However, the lack of a feasible bioassay has hampered our understanding of the biological processes of EV uptake, membrane fusion, and cargo delivery to recipient cells. Here, we describe a reporter gene assay that can measure the membrane fusion efficiency of EVs during cargo delivery to recipient cells. When EVs containing tetracycline transactivator (tTA)-fused tetraspanins are internalized by recipient cells and fuse with cell membranes, the tTA domain is exposed to the cytoplasm and cleaved by tobacco etch virus protease to induce tetracycline responsive element (TRE)-mediated reporter gene expression in recipient cells. This assay (designated as EV-mediated tetraspanin-tTA delivery assay, ETTD assay), enabled us to assess the cytoplasmic cargo delivery efficiency of EVs in recipient cells. With the help of a vesicular stomatitis virus-derived membrane fusion protein, the ETTD assay could detect significant enhancement of cargo delivery efficiency of EVs. Furthermore, the ETTD assay could evaluate the effect of potential cargo delivery enhancers/inhibitors. Thus, the ETTD assay may contribute to a better understanding of the underlying mechanism of the cytoplasmic cargo delivery by EVs.
Collapse
Affiliation(s)
- Masaharu Somiya
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityOsakaJapan
| | - Shun'ichi Kuroda
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityOsakaJapan
| |
Collapse
|
250
|
Zhang L, Ma S, Wei P, Zhao Y, Mu Y, Wu J, Jing W, Zhao B, Deng J, Liu Z. Small Intestinal Submucosa Membrane Modified by Fusion Peptide-Mediated Extracellular Vesicles to Promote Tissue Regeneration. Adv Healthc Mater 2021; 10:e2101298. [PMID: 34569179 DOI: 10.1002/adhm.202101298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Indexed: 12/17/2022]
Abstract
Tissue injury, which often occurs in daily life, remains challenging in clinical medicine. Developing a novel biomaterial with the capability to provide an ideal microenvironment and homeostasis around the wound is highly desirable for effective tissue regenerative medicine. The small intestinal submucosa (SIS) membrane possesses a precise spatial structure with excellent biocompatibility. Extracellular vesicles (EVs) derived from umbilical cord mesenchymal stem cells can achieve rapid cell proliferation and migration with little immune response by creating a satisfactory microenvironment. In this study, fusion peptide-mediated EVs are able to modify the surface of the SIS membrane via specific combination. In vitro studies prove that modified SIS membranes can promote cell migration and spreading. This phenomenon may be because of the activation of TEADs, which regulate cell behavior. By constructing a rat abdominal wall defect model, it is further demonstrated that the modified SIS membrane is more conducive to tissue regeneration. Collectively, these results suggest that SIS membranes modified by fusion peptide-mediated EVs achieve excellent biofunction and provide promising prospects for tissue regeneration.
Collapse
Affiliation(s)
- Lei Zhang
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Shiqing Ma
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Yifan Zhao
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Yuzhu Mu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Jinzhe Wu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Jiayin Deng
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Zihao Liu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| |
Collapse
|