201
|
Abstract
Animal–animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli. DOI:http://dx.doi.org/10.7554/eLife.02743.001 Many animals emit and detect chemicals known as pheromones to communicate with other members of their own species. Animals also rely on chemical signals from other species to warn them, for example, that a predator is nearby. Many of these chemical signals—which are present in sweat, tears, urine, and saliva—are detected by a structure called the vomeronasal organ, which is located at the base of the nasal cavity. When this organ detects a particular chemical signal, it broadcasts this information to a network of brain regions that generates an appropriate behavioral response. Two structures within this network, the accessory olfactory bulb and the medial amygdala, play an important role in modifying this signal before it reaches its final destination—a region of the brain called the hypothalamus. Activation of the hypothalamus by the signal triggers changes in the animal's behavior. Although the anatomical details of this pathway have been widely studied, it is not clear how information is actually transmitted along it. Now, Bergan et al. have provided insights into this process by recording signals in the brains of anesthetized mice exposed to specific stimuli. Whereas neurons in the accessory olfactory bulb responded similarly in male and female mice, those in the medial amygdala showed a preference for female urine in male mice, and a preference for male urine in the case of females. This is the first direct demonstration of differences in sensory processing in the brains of male and female mammals. These differences are thought to result from the actions of sex hormones, particularly estrogen, on brain circuits during development. Consistent with this, neurons in the medial amygdala of male mice with reduced levels of estrogen showed a reduced preference for female urine compared to control males. Similarly, female mice that had been previously exposed to high levels of estrogen as pups showed a reduced preference for male urine compared to controls. In addition to increasing understanding of how chemical signals—including pheromones—influence the responses of rodents to other animals, the work of Bergan et al. has provided clues to the neural mechanisms that underlie sex-specific differences in behaviors. DOI:http://dx.doi.org/10.7554/eLife.02743.002
Collapse
Affiliation(s)
- Joseph F Bergan
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Yoram Ben-Shaul
- School of Medicine, Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Catherine Dulac
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
202
|
Bergan JF, Ben-Shaul Y, Dulac C. Sex-specific processing of social cues in the medial amygdala. eLife 2014. [PMID: 24894465 DOI: 10.7554/elife.02743.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal-animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli.DOI: http://dx.doi.org/10.7554/eLife.02743.001.
Collapse
Affiliation(s)
- Joseph F Bergan
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Yoram Ben-Shaul
- School of Medicine, Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Catherine Dulac
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
203
|
Schneider JE, Brozek JM, Keen-Rhinehart E. Our stolen figures: the interface of sexual differentiation, endocrine disruptors, maternal programming, and energy balance. Horm Behav 2014; 66:104-19. [PMID: 24681201 DOI: 10.1016/j.yhbeh.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The prevalence of adult obesity has risen markedly in the last quarter of the 20th century and has not been reversed in this century. Less well known is the fact that obesity prevalence has risen in domestic, laboratory, and feral animals, suggesting that all of these species have been exposed to obesogenic factors present in the environment. This review emphasizes interactions among three biological processes known to influence energy balance: Sexual differentiation, endocrine disruption, and maternal programming. Sexual dimorphisms include differences between males and females in body weight, adiposity, adipose tissue distribution, ingestive behavior, and the underlying neural circuits. These sexual dimorphisms are controlled by sex chromosomes, hormones that masculinize or feminize adult body weight during perinatal development, and hormones that act during later periods of development, such as puberty. Endocrine disruptors are natural and synthetic molecules that attenuate or block normal hormonal action during these same developmental periods. A growing body of research documents effects of endocrine disruptors on the differentiation of adipocytes and the central nervous system circuits that control food intake, energy expenditure, and adipose tissue storage. In parallel, interest has grown in epigenetic influences, including maternal programming, the process by which the mother's experience has permanent effects on energy-balancing traits in the offspring. This review highlights the points at which maternal programming, sexual differentiation, and endocrine disruption might dovetail to influence global changes in energy balancing traits.
Collapse
Affiliation(s)
- Jill E Schneider
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA.
| | - Jeremy M Brozek
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | - Erin Keen-Rhinehart
- Susquehanna University, Department of Biological Sciences, Selinsgrove, PA 17870, USA
| |
Collapse
|
204
|
Rebuli ME, Cao J, Sluzas E, Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Patisaul HB. Investigation of the effects of subchronic low dose oral exposure to bisphenol A (BPA) and ethinyl estradiol (EE) on estrogen receptor expression in the juvenile and adult female rat hypothalamus. Toxicol Sci 2014; 140:190-203. [PMID: 24752507 DOI: 10.1093/toxsci/kfu074] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Concerns have been raised regarding the long-term impacts of early life exposure to the ubiquitous environmental contaminant bisphenol A (BPA) on brain organization. Because BPA has been reported to affect estrogen signaling, and steroid hormones play a critical role in brain sexual differentiation, there is also concern that BPA exposure could alter neural sex differences. Here, we examine the impact of subchronic exposure from gestation to adulthood to oral doses of BPA below the current no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day on estrogen receptor (ESR) expression in sexually dimorphic brain regions of prepubertal and adult female rats. The dams were gavaged daily with vehicle (0.3% carboxymethylcellulose), 2.5, 25, 260, or 2700 μg BPA/kg bw/day, or 0.5 or 5.0 μg ethinyl estradiol (EE)/kg bw/day from gestational day 6 until labor began. Offspring were then gavaged directly from the day after birth until the day before scheduled sacrifice on postnatal days 21 or 90. Using in situ hybridization, one or more BPA doses produced significant decreases in Esr1 expression in the juvenile female rat anteroventral periventricular nucleus (AVPV) of the hypothalamus and significant decreases in Esr2 expression in the adult female rat AVPV and medial preoptic area (MPOA), relative to vehicle controls. BPA did not simply reproduce EE effects, indicating that BPA is not acting solely as an estrogen mimic. The possible consequences of long-term changes in hypothalamic ESR expression resulting from subchronic low dose BPA exposure on neuroendocrine effects are discussed and being addressed in ongoing, related work.
Collapse
Affiliation(s)
- Meghan E Rebuli
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695 Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Jinyan Cao
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695 Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Emily Sluzas
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - K Barry Delclos
- National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Luísa Camacho
- National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Sherry M Lewis
- National Center for Toxicological Research, Jefferson, Arkansas 72079
| | | | - Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695 Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
205
|
Lee H, Kim DW, Remedios R, Anthony TE, Chang A, Madisen L, Zeng H, Anderson DJ. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 2014; 509:627-32. [PMID: 24739975 PMCID: PMC4098836 DOI: 10.1038/nature13169] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/21/2014] [Indexed: 12/17/2022]
Abstract
Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1(+) (but not Esr1(-)) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1(+) neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1(+) neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population.
Collapse
Affiliation(s)
- Hyosang Lee
- 1] Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California 91125, USA [2] Howard Hughes Medical Institute, Pasadena, California 91125, USA
| | - Dong-Wook Kim
- Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125, USA
| | - Ryan Remedios
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Todd E Anthony
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Angela Chang
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - David J Anderson
- 1] Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California 91125, USA [2] Howard Hughes Medical Institute, Pasadena, California 91125, USA [3] Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
206
|
Pinelli C, Rastogi RK, Scandurra A, Jadhao AG, Aria M, D'Aniello B. A comparative cluster analysis of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry in the brains of amphibians. J Comp Neurol 2014; 522:2980-3003. [PMID: 24549578 DOI: 10.1002/cne.23561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 11/09/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) is a key enzyme in the synthesis of the gaseous neurotransmitter nitric oxide. We compare the distribution of NADPH-d in the brain of four species of hylid frogs. NADPH-d-positive fibers are present throughout much of the brain, whereas stained cell groups are distributed in well-defined regions. Whereas most brain areas consistently show positive neurons in all species, in some areas species-specific differences occur. We analyzed our data and those available for other amphibian species to build a matrix on NADPH-d brain distribution for a multivariate analysis. Brain dissimilarities were quantified by using the Jaccard index in a hierarchical clustering procedure. The whole brain dendrogram was compared with that of its main subdivisions by applying the Fowlkes-Mallows index for dendrogram similarity, followed by bootstrap replications and a permutation test. Despite the differences in the distribution map of the NADPH-d system among species, cluster analysis of data from the whole brain and hindbrain faithfully reflected the evolutionary history (framework) of amphibians. Dendrograms from the secondary prosencephalon, diencephalon, mesencephalon, and isthmus showed some deviation from the main scheme. Thus, the present analysis supports the major evolutionary stability of the hindbrain. We provide evidence that the NADPH-d system in main brain subdivisions should be cautiously approached for comparative purposes because specific adaptations of a single species could occur and may affect the NADPH-d distribution pattern in a brain subdivision. The minor differences in staining pattern of particular subdivisions apparently do not affect the general patterns of staining across species.
Collapse
Affiliation(s)
- Claudia Pinelli
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100, Caserta, Italy
| | | | | | | | | | | |
Collapse
|
207
|
Mauvais-Jarvis F. Developmental androgenization programs metabolic dysfunction in adult mice: Clinical implications. Adipocyte 2014; 3:151-4. [PMID: 24719790 DOI: 10.4161/adip.27746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/26/2013] [Accepted: 01/06/2014] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence supports a developmental origin for the metabolic syndrome in the context of polycystic ovary syndrome (PCOS) in which the fetal environment programs both reproductive and metabolic abnormalities that will occur in adulthood. To explore the role of developmental androgen excess in programming metabolic dysfunction in adulthood, we reported a mouse model system in which neonates were androgenized with testosterone. We compared female mice with neonatal exposure to testosterone (NTF) with control females (CF), control males (CM), and male mice with neonatal testosterone exposure (NTM). NTF develop many of the features of metabolic syndrome observed in women with PCOS. These features include increased food intake and lean mass, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, decreased osteocalcin activity, insulin resistance, pre-diabetes, and hypertension. NTF also develop a novel form of leptin resistance independent of STAT3. In contrast, littermate NTM develop a phenotype of hypogonadotropic hypogonadism with decreased lean mass and food intake. These NTM mice exhibit subcutaneous adiposity without cardiometabolic alterations. We discuss the relevance of this mouse model of developmental androgenization to the metabolic syndrome and its clinical implications to human metabolic diseases.
Collapse
|
208
|
Haimov-Kochman R, Berger I. Cognitive functions of regularly cycling women may differ throughout the month, depending on sex hormone status; a possible explanation to conflicting results of studies of ADHD in females. Front Hum Neurosci 2014; 8:191. [PMID: 24744721 PMCID: PMC3978296 DOI: 10.3389/fnhum.2014.00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022] Open
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is considered as a model of neuro-developmental cognitive function. ADHD research previously studied mainly males. A major biological distinction between the genders is the presence of a menstrual cycle, which is associated with variations in sex steroid hormone levels. There is a growing body of literature showing that sex hormones have the ability to regulate intracellular signaling systems that are thought to be abnormal in ADHD. Thus, it is conceivable to believe that this functional interaction between sex hormones and molecules involved with synaptic plasticity and neurotransmitter systems may be associated with some of the clinical characteristics of women with ADHD. In spite of the impact of sex hormones on major neurotransmitter systems of the brain in a variety of clinical settings, the menstrual cycle is usually entered to statistical analyses as a nuisance or controlled for by only testing male samples. Evaluation of brain structure, function and chemistry over the course of the menstrual cycle as well as across the lifespan of women (premenarche, puberty, cycling period, premenopause, postmenopause) is critical to understanding sex differences in both normal and aberrant mental function and behavior. The studies of ADHD in females suggest confusing and non-consistent conclusions. None of these studies examined the possible relationship between phase of the menstrual cycle, sex hormones levels and ADHD symptoms. The menstrual cycle should therefore be taken into consideration in future studies in the neurocognitive field since it offers a unique opportunity to understand whether and how subtle fluctuations of sex hormones and specific combinations of sex hormones influence neuronal circuits implicated in the cognitive regulation of emotional processing. The investigation of biological models involving the role of estrogen, progesterone, and other sex steroids has the potential to generate new and improved diagnostic and treatment strategies that could change the course of cognitive-behavioral disorders such as ADHD.
Collapse
Affiliation(s)
- Ronit Haimov-Kochman
- Unit of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical CenterJerusalem, Israel
| | - Itai Berger
- The Neuro-Cognitive Center, Pediatric Wing, Hadassah Hebrew University Medical CenterJerusalem, Israel
| |
Collapse
|
209
|
Morris JS, Weil ZM, Nelson RJ. Early sexual experience alters voluntary alcohol intake in adulthood. Neurosci Lett 2014; 563:129-33. [DOI: 10.1016/j.neulet.2014.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/03/2014] [Accepted: 01/20/2014] [Indexed: 11/25/2022]
|
210
|
Hami J, Kheradmand H, Haghir H. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study. Cell Mol Neurobiol 2014; 34:215-26. [PMID: 24287499 DOI: 10.1007/s10571-013-0005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022]
Abstract
Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | | |
Collapse
|
211
|
Naulé L, Picot M, Martini M, Parmentier C, Hardin-Pouzet H, Keller M, Franceschini I, Mhaouty-Kodja S. Neuroendocrine and behavioral effects of maternal exposure to oral bisphenol A in female mice. J Endocrinol 2014; 220:375-88. [PMID: 24403293 DOI: 10.1530/joe-13-0607] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bisphenol A (BPA) is a widespread estrogenic compound. We investigated the effects of maternal exposure to BPA at reference doses on sexual behavior and neuroendocrine functions of female offspring in C57BL/6J mice. The dams were orally exposed to vehicle alone or vehicle-containing BPA at doses equivalent to the no observed adverse effect level (5 mg/kg body weight per day) and tolerable daily intake (TDI, 0.05 mg/kg body weight per day) level from gestational day 15 until weaning. Developmental exposure to BPA increased the lordosis quotient in naive females exposed to BPA at the TDI dose only. BPA exposure had no effect on olfactory preference, ability to express masculine behaviors or number of calbindin-positive cells, a sexually dimorphic population of the preoptic area. BPA at both doses selectively increased kisspeptin cell number in the preoptic periventricular nucleus of the rostral periventricular area of the third ventricle in adult females. It did not affect the number of GNRH-positive cells or percentage of kisspeptin appositions on GNRH neurons in the preoptic area. These changes were associated with higher levels of estradiol (E2) at the TDI dose while levels of LH, estrus cyclicity, ovarian and uterine weights, and fertility remained unaffected. Delay in the time of vaginal opening was observed during the postnatal period at TDI dose, without any alteration in body growth. This shows that developmental exposure to BPA at reference doses did not masculinize and defeminize the neural circuitry underlying sexual behavior in female mice. The TDI dose specifically exacerbated responses normally induced by ovarian E2, through estrogen receptor α, during the postnatal/prepubertal period.
Collapse
Affiliation(s)
- Lydie Naulé
- Sorbonne Universités, UPMC University Paris 06, UMR 7224Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 952 and Centre National de la Recherche Scientifique (CNRS) UMR 7224, Physiopathologie des Maladies du Système Nerveux Central (PMSNC), Université Pierre et Marie Curie,
9 Quai St Bernard Bât B 2ème Étage, F75005 Paris, France Institut National de la Recherche Agronomique (INRA) UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37000 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Hami J, Kheradmand H, Haghir H. Sex differences and laterality of insulin receptor distribution in developing rat hippocampus: an immunohistochemical study. J Mol Neurosci 2014; 54:100-8. [PMID: 24573599 DOI: 10.1007/s12031-014-0255-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
Abstract
This study aimed to compare the regional distribution of insulin receptor in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14) between male/female and right/left hippocampi. We found that the number of insulin receptor (InsR)-immunoreactive-positive (InsR+) cells in CA1 continued to increase until P7 and remained unchanged thereafter. A marked increase in distribution of InsR+ cells in CA3 from P0 to P14 was observed, although there was a significant decline in the number of InsR+ cells in dentate gyrus (DG) at the same time. No differences between the right/left and male/female hippocampi were detected at P0 (P > 0.05). Seven-day-old female rats showed a higher number of labeled cells in the left than in the right hippocampus. Moreover, the differences between the number of InsR+ cells in area CA1 and CA3 were statistically significant between males and females (P < 0.05). At P14, the number of InsR+ cells was significantly higher in CA1 and DG of males, especially in the right one (P < 0.05). These results indicate the existence of a differential distribution pattern of InsR between the left/right and male/female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left/right asymmetry in the hippocampus.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | | |
Collapse
|
213
|
Ramirez MC, Zubeldía-Brenner L, Wargon V, Ornstein AM, Becu-Villalobos D. Expression and methylation status of female-predominant GH-dependent liver genes are modified by neonatal androgenization in female mice. Mol Cell Endocrinol 2014; 382:825-34. [PMID: 24239981 DOI: 10.1016/j.mce.2013.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 01/04/2023]
Abstract
Neonatal androgenization masculinizes the GH axis and thus may impact on liver gene regulation. Neonatal testosterone administration to female mice decreased (defeminized) female predominant GH-dependent liver gene expression (Hnf6, Adh1, Prlr, Cyp3a41) and did not modify male predominant genes (Cyp7b1, Cyp4a12, Slp). Female predominance of Cis mRNA, an inhibitor of episodic GH signaling pathway, was unaltered. At birth, Cyp7b1 promoter exhibited a higher methylation status in female livers, while the Hnf6 promoter was equally methylated in both sexes; no differences in gene expression were detected at this age. In adulthood, consistent with sex specific predominance, lower methylation status was determined for the Cyp7b1 promoter in males, and for the Hnf6 promoter in females, and this last difference was prevented by neonatal androgenization. Therefore, early steroid treatment or eventually endocrine disruptor exposure may alter methylation status and sexual dimorphic expression of liver genes, and consequently modify liver physiology in females.
Collapse
Affiliation(s)
- Maria Cecilia Ramirez
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina
| | - Lautaro Zubeldía-Brenner
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina
| | - Victoria Wargon
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina
| | - Ana María Ornstein
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| |
Collapse
|
214
|
Effects of diethylstilbestrol on luteinizing hormone-producing cells in the mouse anterior pituitary. Exp Biol Med (Maywood) 2014; 239:311-9. [DOI: 10.1177/1535370213519722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gonadotrophs in the anterior pituitary secrete luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Neonatal diethylstilbestrol (neoDES) treatment affects reproductive function of male and female mice, but the effect of this treatment on the development as well as direct effects on pituitary gonadotrophs have not been ascertained. We investigated LH-secreting gonadotropes and the expression of genes involved in the synthesis and secretion of gonadotropins in the anterior pituitary of neoDES mice using immunohistochemistry and real-time reverse transcription-polymerase chain reaction (RT-PCR). The percentage of LH-secreting gonadotropes in 90-day-old female mice treated neonatally with an oil vehicle (neoOil) was significantly lower than in 30-day-old neoOil females but not in males, indicating a significant reduction after reproductive maturation in females. The percentage of LH-secreting gonadotropes in the medial area of 90-day-old neoDES females was significantly lower than that of 90-day-old neoOil females, ovariectomized neoOil females, and neoOil and neoDES males. The expression of the LH beta ( Lhb) subunit in the anterior pituitary of 90-day-old neoDES females was similar to that in neoOil females, but it was significantly lower than that observed in 90-day-old males. Ovariectomy increased the expression of the alpha subunit of glycoprotein hormones, FSH beta ( Fshb) subunit and Lhb subunit both in neoOil and neoDES females, suggesting that the anterior pituitary of neoDES female mice is regulated by ovarian hormones via negative feedback. In organ-cultured, anterior pituitaries exposed to DES exhibited no change in the number of LH-secreting gonadotropes but did reduced gene expression. These results suggest that LH-secreting gonadotropes in the female mice are not only directly affected by neoDES but also are influenced by the masculinization of the hypothalamus. That is, neonatal DES exposure can masculinize or defeminize the hypothalamus of female mice. However, the regulation of the pituitary gonadotropins by the hypothalamus could be different from that in intact male mice.
Collapse
|
215
|
Zupanc GKH, Ilies I, Sîrbulescu RF, Zupanc MM. Large-scale identification of proteins involved in the development of a sexually dimorphic behavior. J Neurophysiol 2014; 111:1646-54. [PMID: 24478160 DOI: 10.1152/jn.00750.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sexually dimorphic behaviors develop under the influence of sex steroids, which induce reversible changes in the underlying neural network of the brain. However, little is known about the proteins that mediate these activational effects of sex steroids. Here, we used a proteomics approach for large-scale identification of proteins involved in the development of a sexually dimorphic behavior, the electric organ discharge of brown ghost knifefish, Apteronotus leptorhynchus. In this weakly electric fish, the discharge frequency is controlled by the medullary pacemaker nucleus and is higher in males than in females. After lowering the discharge frequency by chronic administration of β-estradiol, 2-dimensional difference gel electrophoresis revealed 62 proteins spots in tissue samples from the pacemaker nucleus that exhibited significant changes in abundance of >1.5-fold. The 20 identified protein spots indicated, among others, a potential involvement of astrocytes in the establishment of the behavioral dimorphism. Indeed, immunohistochemical analysis demonstrated higher expression of the astrocytic marker protein GFAP and increased gap-junction coupling between astrocytes in females compared with males. We hypothesize that changes in the size of the glial syncytium, glial coupling, and/or number of glia-specific potassium channels lead to alterations in the firing frequency of the pacemaker nucleus via a mechanism mediating the uptake of extracellular potassium ions from the extracellular space.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Department of Biology, Northeastern University, Boston, Massachusetts; and
| | | | | | | |
Collapse
|
216
|
Jašarević E, Geary DC, Rosenfeld CS. Sexually selected traits: a fundamental framework for studies on behavioral epigenetics. ILAR J 2014; 53:253-69. [PMID: 23744965 DOI: 10.1093/ilar.53.3-4.253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that epigenetic-based mechanisms contribute to various aspects of sex differences in brain and behavior. The major obstacle in establishing and fully understanding this linkage is identifying the traits that are most susceptible to epigenetic modification. We have proposed that sexual selection provides a conceptual framework for identifying such traits. These are traits involved in intrasexual competition for mates and intersexual choice of mating partners and generally entail a combination of male-male competition and female choice. These behaviors are programmed during early embryonic and postnatal development, particularly during the transition from the juvenile to adult periods, by exposure of the brain to steroid hormones, including estradiol and testosterone. We evaluate the evidence that endocrine-disrupting compounds, including bisphenol A, can interfere with the vital epigenetic and gene expression pathways and with the elaboration of sexually selected traits with epigenetic mechanisms presumably governing the expression of these traits. Finally, we review the evidence to suggest that these steroid hormones can induce a variety of epigenetic changes in the brain, including the extent of DNA methylation, histone protein alterations, and even alterations of noncoding RNA, and that many of the changes differ between males and females. Although much previous attention has focused on primary sex differences in reproductive behaviors, such as male mounting and female lordosis, we outline why secondary sex differences related to competition and mate choice might also trace their origins back to steroid-induced epigenetic programming in disparate regions of the brain.
Collapse
Affiliation(s)
- Eldin Jašarević
- Department of Psychological Sciences, the Interdisciplinary Neuroscience Program, and the Bond Life Sciences Center, University of Missouri, Columbia 65211, USA
| | | | | |
Collapse
|
217
|
Sex differences in anxiety and depression: role of testosterone. Front Neuroendocrinol 2014; 35:42-57. [PMID: 24076484 PMCID: PMC3946856 DOI: 10.1016/j.yfrne.2013.09.001] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/31/2013] [Accepted: 09/06/2013] [Indexed: 01/30/2023]
Abstract
Compelling evidence exists for pervasive sex differences in pathological conditions, including anxiety and depressive disorders, with females more than twice as likely to be afflicted. Gonadal hormones may be a major factor in this disparity, given that women are more likely to experience mood disturbances during times of hormonal flux, and testosterone may have protective benefits against anxiety and depression. In this review we focus on the effects of testosterone in males and females, revealed in both human and animal studies. We also present possible neurobiological mechanisms underlying testosterone's mostly protective benefits, including the brain regions, neural circuits, and cellular and molecular pathways involved. While the precise underlying mechanisms remain unclear, both activational and organizational effects of testosterone appear to contribute to these effects. Future clinical studies are necessary in order to better understand when and how testosterone therapy may be effective in both sexes.
Collapse
|
218
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
219
|
Fairbanks SL, Vest R, Verma S, Traystman RJ, Herson PS. Sex stratified neuronal cultures to study ischemic cell death pathways. J Vis Exp 2013:e50758. [PMID: 24378980 DOI: 10.3791/50758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome.
Collapse
Affiliation(s)
- Stacy L Fairbanks
- Department of Anesthesiology, University of Colorado School of Medicine
| | | | | | | | | |
Collapse
|
220
|
Nohara K, Liu S, Meyers MS, Waget A, Ferron M, Karsenty G, Burcelin R, Mauvais-Jarvis F. Developmental androgen excess disrupts reproduction and energy homeostasis in adult male mice. J Endocrinol 2013; 219:259-68. [PMID: 24084835 PMCID: PMC3901078 DOI: 10.1530/joe-13-0230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome is a common endocrine disorder in females of reproductive age and is believed to have a developmental origin in which gestational androgenization programs reproductive and metabolic abnormalities in offspring. During gestation, both male and female fetuses are exposed to potential androgen excess. In this study, we determined the consequences of developmental androgenization in male mice exposed to neonatal testosterone (NTM). Adult NTM displayed hypogonadotropic hypogonadism with decreased serum testosterone and gonadotropin concentrations. Hypothalamic KiSS1 neurons are believed to be critical to the onset of puberty and are the target of leptin. Adult NTM exhibited lower hypothalamic Kiss1 expression and a failure of leptin to upregulate Kiss1 expression. NTM displayed an early reduction in lean mass, decreased locomotor activity, and decreased energy expenditure. They displayed a delayed increase in subcutaneous white adipose tissue amounts. Thus, excessive neonatal androgenization disrupts reproduction and energy homeostasis and predisposes to hypogonadism and obesity in adult male mice.
Collapse
Affiliation(s)
- Kazunari Nohara
- Division of Endocrinology, Metabolism and Molecular Medicine and Comprehensive Center on Obesity, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Suhuan Liu
- Division of Endocrinology, Metabolism and Molecular Medicine and Comprehensive Center on Obesity, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew S. Meyers
- Division of Endocrinology, Metabolism and Molecular Medicine and Comprehensive Center on Obesity, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aurélie Waget
- Department of Genetics & Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mathieu Ferron
- Department of Genetics & Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gérard Karsenty
- Department of Genetics & Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rémy Burcelin
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases of Rangueil, Toulouse 31432, France
| | - Franck Mauvais-Jarvis
- Division of Endocrinology, Metabolism and Molecular Medicine and Comprehensive Center on Obesity, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Endocrinology, Department of Medicine Tulane, University Health Sciences Center, New York, NY 10032, USA
| |
Collapse
|
221
|
Androgen regulates development of the sexually dimorphic gastrin-releasing peptide neuron system in the lumbar spinal cord: evidence from a mouse line lacking androgen receptor in the nervous system. Neurosci Lett 2013; 558:109-14. [PMID: 24211692 DOI: 10.1016/j.neulet.2013.10.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022]
Abstract
Androgens including testosterone, organize the nervous system as well as masculine external and internal genitalia during the perinatal period. Androgen organization involves promotion of masculine body features, usually by acting through androgen receptors (ARs). We have recently demonstrated that the gastrin-releasing peptide (GRP) system in the lumbar spinal cord also mediates spinal centers promoting penile reflexes during male sexual behavior in rats. Testosterone may induce sexual differentiation of this spinal GRP system during development and maintain its activation in adulthood. In the present study, we examined the role of ARs in the nervous system regulating the development of the sexually dimorphic GRP system. For this purpose, we used a conditional mouse line selectively lacking the AR gene in the nervous system. AR floxed males carrying (mutants) or not (controls) the nestin-Cre transgene were castrated in adulthood and supplemented with physiological amounts of testosterone. Loss of AR expression in the nervous system resulted in a significant decrease in the number of GRP neurons compared to control littermates. Consequently, the intensity of GRP axonal projections onto the lower lumbar and upper sacral spinal cord was greater in control males than in mutant males. These results suggest that ARs expressed in the nervous system play a significant role in the development of the GRP system in the male lumbar spinal cord. The AR-deletion mutation may attenuate sexual behavior and activity of mutant males via spinal GRP system-mediated neural mechanisms.
Collapse
|
222
|
Abstract
Disruptive Behaviors Disorders (DBD), including Oppositional-Defiant Disorder (ODD) and Attention-Deficit/Hyperactivity Disorder (ADHD), are fairly common and highly impairing childhood behavior disorders that can be diagnosed as early as preschool. Prenatal exposure to testosterone may be particularly relevant to these early-emerging DBDs that exhibit a sex-biased prevalence rate favoring males. The current study examined associations between preschool DBD symptom domains and prenatal exposure to testosterone measured indirectly via right 2D:4D finger-length ratios. The study sample consisted of 109 preschool-age children between ages 3 and 6 (64% males;72% with DBD) and their primary caregivers. Primary caregivers completed a semi-structured interview (i.e., Kiddie Disruptive Behavior Disorder Schedule), as well as symptom questionnaires (i.e., Disruptive Behavior Rating Scale, Peer Conflict Scale); teachers and/or daycare providers completed symptom questionnaires and children provided measures of prenatal testosterone exposure, measured indirectly via finger-length ratios (i.e., right 2D:4D). Study results indicated a significant association of high prenatal testosterone (i.e., smaller right 2D:4D) with high hyperactive-impulsive ADHD symptoms in girls but not boys, suggesting that the effect may be driven by, or might only exist in, girls. The present study suggests that prenatal exposure to testosterone may increase risk for early ADHD, particularly hyperactivity-impulsivity, in preschool girls.
Collapse
|
223
|
Takeda T, Fujii M, Hattori Y, Yamamoto M, Shimazoe T, Ishii Y, Himeno M, Yamada H. Maternal exposure to dioxin imprints sexual immaturity of the pups through fixing the status of the reduced expression of hypothalamic gonadotropin-releasing hormone. Mol Pharmacol 2013; 85:74-82. [PMID: 24132183 DOI: 10.1124/mol.113.088575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have shown that treatment of pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 1 μg/kg) at gestational day (GD) 15 reduces the pituitary synthesis of luteinizing hormone (LH) during the late fetal and early postnatal period, leading to the imprinting of defects in sexual behaviors at adulthood. However, it remains unclear how the attenuation of pituitary LH is linked to sexual immaturity. To address this issue, we performed a DNA microarray analysis to identify the gene(s) responsible for dioxin-induced sexual immaturity on the pituitary and hypothalamus of male pups, born of TCDD-treated dams, at the age of postnatal day (PND) 70. Among the reduced genes, we focused on gonadotropin-releasing hormone (GnRH) in the hypothalamus because of published evidence that it has a role in sexual behaviors. An attenuation by TCDD of GnRH expression emerged at PND4, and no subsequent return to the control level was seen. A change in neither DNA methylation nor histone acetylation accounted for the reduced expression of GnRH. Intracerebroventricular infusion of GnRH to the TCDD-exposed pups after reaching maturity restored the impairment of sexual behaviors. Supplying equine chorionic gonadotropin, an LH-mimicking hormone, to the TCDD-exposed fetuses at GD15 resulted in a recovery from the reduced expression of GnRH, as well as from the defects in sexual behavior. These results strongly suggest that maternal exposure to TCDD fixes the status of the lowered expression of GnRH in the offspring by reducing the LH-assisted steroidogenesis at the perinatal stage, and this mechanism imprints defects in sexual behaviors at adulthood.
Collapse
Affiliation(s)
- Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., M.F., Y.H., T.S., Y.I., H.Y.); and Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan (M.Y., M.H.)
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Wittmann W, McLennan IS. Anti-Müllerian hormone may regulate the number of calbindin-positive neurons in the sexually dimorphic nucleus of the preoptic area of male mice. Biol Sex Differ 2013; 4:18. [PMID: 24119315 PMCID: PMC3852321 DOI: 10.1186/2042-6410-4-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/02/2013] [Indexed: 01/20/2023] Open
Abstract
Background The male brain is putatively organised early in development by testosterone, with the sexually dimorphic nucleus of the medial preoptic area (SDN) a main exemplifier of this. However, pubescent neurogenesis occurs in the rat SDN, and the immature testes secrete anti-Müllerian hormone (AMH) as well as testosterone. We have therefore re-examined the development of the murine SDN to determine whether it is influenced by AMH and/or whether the number of calbindin-positive (calbindin+ve) neurons in it changes after pre-pubescent development. Methods In mice, the SDN nucleus is defined by calbindin+ve neurons (CALB-SDN). The number and size of the neurons in the CALB-SDN of male and female AMH null mutant (Amh-/-) mice and their wild-type littermates (Amh+/+) were studied using stereological techniques. Groups of mice were examined immediately before the onset of puberty (20 days postnatal) and at adulthood (129–147 days old). Results The wild-type pre-pubertal male mice had 47% more calbindin+ve neurons in the CALB-SDN than their female wild-type littermates. This sex difference was entirely absent in Amh-/- mice. In adults, the extent of sexual dimorphism almost doubled due to a net reduction in the number and size of calbindin+ve neurons in females and a net increase in neuron number in males. These changes occurred to a similar extent in the Amh-/- and Amh+/+ mice. Consequently, the number of calbindin+ve neurons in Amh-/- adult male mice was intermediate between Amh+/+ males and Amh+/+ females. The sex difference in the size of the neurons was predominantly generated by a female-specific atrophy after 20 days, independent of AMH. Conclusions The establishment of dimorphic cell number in the CALB-SDN of mice is biphasic, with each phase being subject to different regulation. The second phase of dimorphism is not dependent on the first phase having occurred as it was present in the Amh-/- male mice that have female-like numbers of calbindin+ve neurons at 20 days. These observations extend emerging evidence that the organisation of highly dimorphic neuronal networks changes during puberty or afterwards. They also raise the possibility that cellular events attributed to the imprinting effects of testosterone are mediated by AMH.
Collapse
Affiliation(s)
- Walter Wittmann
- Brain Health Research Centre, Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | | |
Collapse
|
225
|
Sickmann HM, Patten AR, Morch K, Sawchuk S, Zhang C, Parton R, Szlavik L, Christie BR. Prenatal ethanol exposure has sex-specific effects on hippocampal long-term potentiation. Hippocampus 2013; 24:54-64. [PMID: 23996604 DOI: 10.1002/hipo.22203] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Alcohol consumption during pregnancy is deleterious to the developing brain of the fetus and leads to persistent deficits in adulthood. Long-term potentiation (LTP) is a biological model for learning and memory processes and previous evidence has shown that prenatal ethanol exposure (PNEE) affects LTP in a sex specific manner during adolescence. The objective of this study was to determine if there are sex specific differences in adult animals and to elucidate the underlying molecular mechanisms that contribute to these differences. Pregnant Sprague-Dawley dams were assigned to either; liquid ethanol, pair-fed or standard chow diet. In vivo electrophysiology was performed in the hippocampal dentate gyrus (DG) of adult offspring. LTP was induced by administering 400 Hz stimuli. Western blot analysis for glutamine synthetase (GS) and glutamate decarboxylase from tissue of the DG indicated that GS expression was increased following PNEE. Surprisingly, adult females did not show any deficit in N-methyl-D-aspartate (NMDA)-dependent LTP after PNEE. In contrast, males showed a 40% reduction in LTP. It was indicated that glutamine synthetase expression was increased in PNEE females, suggesting that altered excitatory neurotransmitter replenishment may serve as a compensatory mechanism. Ovariectomizing females did not influence LTP in control or PNEE animals, suggesting that circulating estradiol levels do not play a major role in maintaining LTP levels in PNEE females. These results demonstrate the sexually dimorphic effects of PNEE on the ability for the adult brain to elicit LTP in the DG. The mechanisms for these effects are not fully understood, but an increase in glutamine synthetase in females may underlie this phenomenon.
Collapse
Affiliation(s)
- H M Sickmann
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Herlitz A, Reuterskiöld L, Lovén J, Thilers PP, Rehnman J. Cognitive sex differences are not magnified as a function of age, sex hormones, or puberty development during early adolescence. Dev Neuropsychol 2013; 38:167-79. [PMID: 23573795 DOI: 10.1080/87565641.2012.759580] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Are cognitive sex differences magnified by individual differences in age, sex hormones, or puberty development? Cross-sectional samples of 12- to 14-year-old boys (n = 85) and girls (n = 102) completed tasks assessing episodic memory, face recognition, verbal fluency, and mental rotations. Blood estradiol, free testosterone, and self-rated puberty scores were obtained. Sex differences were found on all cognitive measures. However, the magnitude was not larger for older children, hormones and cognitive performance were not associated, and early maturers did not perform better than late maturers. Thus, cognitive sex differences were not associated with age, levels of sex hormones, or puberty development.
Collapse
Affiliation(s)
- Agneta Herlitz
- Aging Research Center, NVS, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
227
|
Reinhold K, Engqvist L. The variability is in the sex chromosomes. Evolution 2013; 67:3662-8. [PMID: 24299417 DOI: 10.1111/evo.12224] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/16/2013] [Indexed: 11/26/2022]
Abstract
Sex differences in the mean trait expression are well documented, not only for traits that are directly associated with reproduction. Less is known about how the variability of traits differs between males and females. In species with sex chromosomes and dosage compensation, the heterogametic sex is expected to show larger trait variability ("sex-chromosome hypothesis"), yet this central prediction, based on fundamental genetic principles, has never been evaluated in detail. Here we show that in species with heterogametic males, male variability in body size is significantly larger than in females, whereas the opposite can be shown for species with heterogametic females. These results support the prediction of the sex-chromosome hypothesis that individuals of the heterogametic sex should be more variable. We argue that the pattern demonstrated here for sex-specific body size variability is likely to apply to any trait and needs to be considered when testing predictions about sex-specific variability and sexual selection.
Collapse
Affiliation(s)
- Klaus Reinhold
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
228
|
Wittmann W, McLennan IS. The bed nucleus of the stria terminalis has developmental and adult forms in mice, with the male bias in the developmental form being dependent on testicular AMH. Horm Behav 2013; 64:605-10. [PMID: 24012942 DOI: 10.1016/j.yhbeh.2013.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/15/2022]
Abstract
Canonically, the sexual dimorphism in the brain develops perinatally, with adult sexuality emerging due to the activating effects of pubescent sexual hormones. This concept does not readily explain why children have a gender identity and exhibit sex-stereotypic behaviours. These phenomena could be explained if some aspects of the sexual brain networks have childhood forms, which are transformed at puberty to generate adult sexuality. The bed nucleus of stria terminalis (BNST) is a dimorphic nucleus that is sex-reversed in transsexuals but not homosexuals. We report here that the principal nucleus of the BNST (BNSTp) of mice has developmental and adult forms that are differentially regulated. In 20-day-old prepubescent mice, the male bias in the principal nucleus of the BNST (BNSTp) was moderate (360 ± 6 vs 288 ± 12 calbindin(+ve) neurons, p < 0.0001), and absent in mice that lacked a gonadal hormone, AMH. After 20 days, the number of BNSTp neurons increased in the male mice by 25% (p < 0.0001) and decreased in female mice by 15% (p = 0.0012), independent of AMH. Adult male AMH-deficient mice had a normal preference for sniffing female pheromones (soiled bedding), but exhibited a relative disinterest in both male and female pheromones. This suggests that male mice require AMH to undergo normal social development. The reported observations provide a rationale for examining AMH levels in children with gender identity disorders and disorders of socialization that involve a male bias.
Collapse
Affiliation(s)
- Walter Wittmann
- Department of Anatomy, Brain Health Research Centre, University of Otago, PO Box 913, Dunedin, New Zealand; Umeå Center for Molecular Medicine, Umeå University, Sweden
| | | |
Collapse
|
229
|
Fergus DJ, Bass AH. Localization and divergent profiles of estrogen receptors and aromatase in the vocal and auditory networks of a fish with alternative mating tactics. J Comp Neurol 2013; 521:2850-69. [PMID: 23460422 PMCID: PMC3688646 DOI: 10.1002/cne.23320] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/06/2022]
Abstract
Estrogens play a salient role in the development and maintenance of both male and female nervous systems and behaviors. The plainfin midshipman (Porichthys notatus), a teleost fish, has two male reproductive morphs that follow alternative mating tactics and diverge in multiple somatic, hormonal, and neural traits, including the central control of morph-specific vocal behaviors. After we identified duplicate estrogen receptors (ERβ1 and ERβ2) in midshipman, we developed antibodies to localize protein expression in the central vocal-acoustic networks and saccule, the auditory division of the inner ear. As in other teleost species, ERβ1 and ERβ2 were robustly expressed in the telencephalon and hypothalamus in vocal-acoustic and other brain regions shown previously to exhibit strong expression of ERα and aromatase (estrogen synthetase, CYP19) in midshipman. Like aromatase, ERβ1 label colocalized with glial fibrillary acidic protein (GFAP) in telencephalic radial glial cells. Quantitative polymerase chain reaction revealed similar patterns of transcript abundance across reproductive morphs for ERβ1, ERβ2, ERα, and aromatase in the forebrain and saccule. In contrast, transcript abundance for ERs and aromatase varied significantly between morphs in and around the sexually polymorphic vocal motor nucleus (VMN). Together, the results suggest that VMN is the major estrogen target within the estrogen-sensitive hindbrain vocal network that directly determines the duration, frequency, and amplitude of morph-specific vocalizations. Comparable regional differences in steroid receptor abundances likely regulate morph-specific behaviors in males and females of other species exhibiting alternative reproductive tactics.
Collapse
Affiliation(s)
- Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
230
|
Morris JS, Weil ZM, Nelson RJ. Sexual experience and testosterone during adolescence alter adult neuronal morphology and behavior. Horm Behav 2013; 64:454-60. [PMID: 23954393 DOI: 10.1016/j.yhbeh.2013.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
Abstract
Steroid hormones released immediately before and after birth provoke sexual differentiation of neural circuits. Further, steroid hormones secreted during adolescence also exert long lasting effects on the nervous system. Hormones secreted during development may act through two distinct pathways: (1) hormones can directly affect neuron and synapse elimination and (2) endocrine changes in the nervous system may occur secondary to changes in social behaviors. Therefore, a critical period for organization of the nervous system by steroid hormones during adolescence may also be a sensitive period for the effects of social experience. The overall goal of this experiment was to determine whether the opportunity to mate with a sexually receptive female during this adolescent critical period would have enduring effects on behavior and neuronal morphology into adulthood. A second question was to determine the extent to which testosterone mediated the effects of these social interactions on adult outcomes. Compared to sexually inexperienced hamsters and those that experienced sex for the first time in adulthood, hamsters that experienced adolescent sexual experience displayed increased anxiety- and depressive-like behavioral responses. Adolescent sexual experiences decreased the complexity and length of dendrites on prefrontal cortical neurons and increased the expression of the pro-inflammatory cytokine interleukin 1β (IL-1β) in the PFC. In a second experiment, administration of testosterone during the adolescent period largely recapitulated the effects of adolescent sexual experience. These data support the overall hypothesis that a sensitive period extends into adolescence and that salient social stimuli during this time can significantly and persistently alter adult phenotype.
Collapse
Affiliation(s)
- John S Morris
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
231
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
232
|
High resolution whole brain imaging of anatomical variation in XO, XX, and XY mice. Neuroimage 2013; 83:962-8. [PMID: 23891883 DOI: 10.1016/j.neuroimage.2013.07.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/01/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022] Open
Abstract
The capacity of sex to modify behavior in health and illness may stem from biological differences between males and females. One such difference--fundamental to the biological definition of sex--is inequality of X chromosome dosage. Studies of Turner Syndrome (TS) suggest that X-monosomy profoundly alters mammalian brain development. However, use of TS as a model for X chromosome haploinsufficiency is complicated by karyotypic mosaicism, background genetic heterogeneity and ovarian dysgenesis. Therefore, to better isolate X chromosome effects on brain development and identify how these overlap with normative sex differences, we used whole-brain structural imaging to study X-monosomic mice (free of mosaicism and ovarian dysgenesis) alongside their karyotypical normal male and female littermates. We demonstrate that murine X-monosomy (XO) causes (i) accentuation of XX vs XY differences in a set of sexually dimorphic structures including classical foci of sex-hormone action, such as the bed nucleus of the stria terminal and medial amygdala, (ii) parietal and striatal abnormalities that recapitulate those reported TS, and (iii) abnormal development of brain systems relevant for domains of altered cognition and emotion in both murine and human X-monosomy. Our findings suggest an unexpected role for X-linked genes in shaping sexually dimorphic brain development, and an evolutionarily conserved influence of X-linked genes on both cortical and subcortical development in mammals. Furthermore, our murine findings highlight the bed nucleus of the stria terminalis and periaqueductal gray matter as novel neuroanatomical candidates for closer study in TS. Integration of these data with existing genomic knowledge generates a set of novel, testable hypotheses regarding candidate mechanisms for each observed pattern of anatomical variation across XO, XX and XY groups.
Collapse
|
233
|
Cunningham RL, Lumia AR, McGinnis MY. Androgenic anabolic steroid exposure during adolescence: ramifications for brain development and behavior. Horm Behav 2013; 64:350-6. [PMID: 23274699 PMCID: PMC3633688 DOI: 10.1016/j.yhbeh.2012.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Puberty is a critical period for brain maturation that is highly dependent on gonadal sex hormones. Modifications in the gonadal steroid environment, via the use of anabolic androgenic steroids (AAS), have been shown to affect brain development and behavior. Studies in both humans and animal models indicate that AAS exposure during adolescence alters normal brain remodeling, including structural changes and neurotransmitter function. The most commonly reported behavioral effect is an increase in aggression. Evidence has been presented to identify factors that influence the effect of AAS on the expression of aggression. The chemical composition of the AAS plays a major role in determining whether aggression is displayed, with testosterone being the most effective. The hormonal context, the environmental context, physical provocation and the perceived threat during the social encounter have all been found to influence the expression of aggression and sexual behavior. All of these factors point toward an altered behavioral state that includes an increased readiness to respond to a social encounter with heightened vigilance and enhanced motivation. This AAS-induced state may be defined as emboldenment. The evidence suggests that the use of AAS during this critical period of development may increase the risk for maladaptive behaviors along with neurological disorders.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Centre at Fort Worth, Fort Worth, TX 76107 USA.
| | | | | |
Collapse
|
234
|
Witchel SF, Tena-Sempere M. The Kiss1 system and polycystic ovary syndrome: lessons from physiology and putative pathophysiologic implications. Fertil Steril 2013; 100:12-22. [DOI: 10.1016/j.fertnstert.2013.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 01/02/2023]
|
235
|
Nohara K, Waraich RS, Liu S, Ferron M, Waget A, Meyers MS, Karsenty G, Burcelin R, Mauvais-Jarvis F. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. Am J Physiol Endocrinol Metab 2013; 304:E1321-30. [PMID: 23612996 PMCID: PMC3680697 DOI: 10.1152/ajpendo.00620.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.
Collapse
Affiliation(s)
- Kazunari Nohara
- Division of Endocrinology, Metabolism, and Molecular Medicine, and
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Waddell J, Bowers JM, Edwards NS, Jordan CL, McCarthy MM. Dysregulation of neonatal hippocampal cell genesis in the androgen insensitive Tfm rat. Horm Behav 2013; 64:144-52. [PMID: 23747829 PMCID: PMC3753588 DOI: 10.1016/j.yhbeh.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
The first two weeks of life are a critical period for hippocampal development. At this time gonadal steroid exposure organizes sex differences in hippocampal sensitivity to activational effects of steroids, hippocampal cell morphology and hippocampus dependent behaviors. Our laboratory has characterized a robust sex difference in neonatal neurogenesis in the hippocampus that is mediated by estradiol. Here, we extend our knowledge of this sex difference by comparing the male and female hippocampus to the androgen insensitive testicular feminized mutant (Tfm) rat. In the neonatal Tfm rat hippocampus, fewer newly generated cells survive compared to males or females. This deficit in cell genesis is partially recovered with the potent androgen DHT, but is more completely recovered following estradiol administration. Tfm rats do not differ from males or females in the level of endogenous estradiol in the neonatal hippocampus, suggesting other mechanisms mediate a differential sensitivity to estradiol in male, female and Tfm hippocampus. We also demonstrate disrupted performance on a hippocampal-dependent contextual fear discrimination task. Tfm rats generalize fear across contexts, and do not exhibit significant loss of fear during extinction exposure. These results extend prior reports of exaggerated response to stress in Tfm rats, and following gonadectomy in normal male rats.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
237
|
Manoli DS, Fan P, Fraser EJ, Shah NM. Neural control of sexually dimorphic behaviors. Curr Opin Neurobiol 2013; 23:330-8. [PMID: 23680385 DOI: 10.1016/j.conb.2013.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/06/2013] [Indexed: 01/18/2023]
Abstract
All sexually reproducing animals exhibit gender differences in behavior. Such sexual dimorphisms in behavior are most obvious in stereotyped displays that enhance reproductive success such as mating, aggression, and parental care. Sexually dimorphic behaviors are a consequence of a sexually differentiated nervous system, and recent studies in fruit flies and mice reveal novel insights into the neural mechanisms that control these behaviors. In the main, these include a diverse array of novel sex differences in the nervous system, surprisingly modular control of various stereotyped dimorphic behavioral routines, and unanticipated sensory and central modulation of mating. We start with a brief overview to provide the appropriate conceptual framework so that the advances made by the newer studies discussed subsequently can be fully appreciated. We restrict our review to reporting progress in understanding the basis of mating and aggression in fruit flies and mice.
Collapse
Affiliation(s)
- Devanand S Manoli
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
238
|
Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, Juntti SA, Unger EK, Wells JA, Shah NM. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 2013; 153:896-909. [PMID: 23663785 PMCID: PMC3767768 DOI: 10.1016/j.cell.2013.04.017] [Citation(s) in RCA: 481] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/11/2013] [Accepted: 04/05/2013] [Indexed: 02/06/2023]
Abstract
Sexual dimorphisms in the brain underlie behavioral sex differences, but the function of individual sexually dimorphic neuronal populations is poorly understood. Neuronal sexual dimorphisms typically represent quantitative differences in cell number, gene expression, or other features, and it is unknown whether these dimorphisms control sex-typical behavior exclusively in one sex or in both sexes. The progesterone receptor (PR) controls female sexual behavior, and we find many sex differences in number, distribution, or projections of PR-expressing neurons in the adult mouse brain. Using a genetic strategy we developed, we have ablated one such dimorphic PR-expressing neuronal population located in the ventromedial hypothalamus (VMH). Ablation of these neurons in females greatly diminishes sexual receptivity. Strikingly, the corresponding ablation in males reduces mating and aggression. Our findings reveal the functions of a molecularly defined, sexually dimorphic neuronal population in the brain. Moreover, we show that sexually dimorphic neurons can control distinct sex-typical behaviors in both sexes.
Collapse
Affiliation(s)
- Cindy F Yang
- Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
deCatanzaro D, Berger RG, Guzzo AC, Thorpe JB, Khan A. Perturbation of male sexual behavior in mice (Mus musculus) within a discrete range of perinatal bisphenol-A doses in the context of a high- or low-phytoestrogen diet. Food Chem Toxicol 2013; 55:164-71. [DOI: 10.1016/j.fct.2012.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/24/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022]
|
240
|
Chung WCJ, Auger AP. Gender differences in neurodevelopment and epigenetics. Pflugers Arch 2013; 465:573-84. [PMID: 23503727 DOI: 10.1007/s00424-013-1258-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 01/19/2023]
Abstract
The concept that the brain differs in make-up between males and females is not new. For example, it is well established that anatomists in the nineteenth century found sex differences in human brain weight. The importance of sex differences in the organization of the brain cannot be overstated as they may directly affect cognitive functions, such as verbal skills and visuospatial tasks in a sex-dependent fashion. Moreover, the incidence of neurological and psychiatric diseases is also highly dependent on sex. These clinical observations reiterate the importance that gender must be taken into account as a relevant possible contributing factor in order to understand the pathogenesis of neurological and psychiatric disorders. Gender-dependent differentiation of the brain has been detected at every level of organization--morphological, neurochemical, and functional--and has been shown to be primarily controlled by sex differences in gonadal steroid hormone levels during perinatal development. In this review, we discuss howthe gonadal steroid hormone testosterone and its metabolites affect downstream signaling cascades, including gonadal steroid receptor activation, and epigenetic events in order to differentiate the brain in a gender-dependent fashion.
Collapse
Affiliation(s)
- Wilson C J Chung
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | | |
Collapse
|
241
|
Cao J, Rebuli ME, Rogers J, Todd KL, Leyrer SM, Ferguson SA, Patisaul HB. Prenatal bisphenol A exposure alters sex-specific estrogen receptor expression in the neonatal rat hypothalamus and amygdala. Toxicol Sci 2013; 133:157-73. [PMID: 23457122 DOI: 10.1093/toxsci/kft035] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) exposure is ubiquitous, and in laboratory animals, early-life BPA exposure has been shown to alter sex-specific neural organization, neuroendocrine physiology, and behavior. The specific mechanisms underlying these brain-related outcomes, however, remain largely unknown, constraining the capacity to ascertain the potential human relevance of neural effects observed in animal models. In the perinatal rat brain, estrogen is masculinizing, suggesting that BPA-induced perturbation of estrogen receptor (ESR) expression may underpin later in-life neuroendocrine effects. We hypothesized that prenatal BPA exposure alters sex-specific ESR1 (ERα) and ESR2 (ERβ) expression in postnatal limbic nuclei. Sprague Dawley rats were mated and gavaged on gestational days (GDs) 6-21 with vehicle, 2.5 or 25 μg/kg bw/day BPA, or 5 or 10 μg/kg bw/day ethinyl estradiol. An additional group was restrained but not gavaged (naïve control). Offspring were sacrificed the day after birth to quantify ESR gene expression throughout the hypothalamus and amygdala by in situ hybridization. Relative to the vehicle group, significant effects of BPA were observed on ESR1 and ESR2 expression throughout the mediobasal hypothalamus and amygdala in both sexes. Significant differences in ESR expression were also observed in the mediobasal hypothalamus and amygdala of the naïve control group compared with the vehicle group, highlighting the potential for gavage to influence gene expression in the developing brain. These results indicate that ESR expression in the neonatal brain of both sexes can be altered by low-dose prenatal BPA exposure.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biology, NCSU, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Williams SA, Jasarevic E, Vandas GM, Warzak DA, Geary DC, Ellersieck MR, Roberts RM, Rosenfeld CS. Effects of developmental bisphenol A exposure on reproductive-related behaviors in California mice (Peromyscus californicus): a monogamous animal model. PLoS One 2013; 8:e55698. [PMID: 23405200 PMCID: PMC3565966 DOI: 10.1371/journal.pone.0055698] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022] Open
Abstract
Bisphenol A (BPA), a pervasive, endocrine disrupting compound (EDC), acts as a mixed agonist-antagonist with respect to estrogens and other steroid hormones. We hypothesized that sexually selected traits would be particularly sensitive to EDC. Consistent with this concept, developmental exposure of males from the polygynous deer mouse, Peromyscus maniculatus, to BPA resulted in compromised spatial navigational ability and exploratory behaviors, while there was little effect on females. Here, we have examined a related, monogamous species, the California mouse (Peromyscus californicus), where we predicted that males would be less sensitive to BPA in terms of navigational and exploratory behaviors, while displaying other traits related to interactions with females and territorial marking that might be vulnerable to disruption. As in the deer mouse experiments, females were fed either a phytoestrogen-free CTL diet through pregnancy and lactation or the same diet supplemented with BPA (50 mg/kg feed weight) or ethinyl estradiol (EE) (0.1 part per billion) to provide a "pure" estrogen control. After weaning, pups were maintained on CTL diet until they had reached sexual maturity, at which time behaviors were evaluated. In addition, territorial marking was assessed in BPA-exposed males housed alone and when a control male was visible in the testing arena. In contrast to deer mice, BPA and EE exposure had no effect on spatial navigational skills in either male or female California mice. While CTL females exhibited greater exploratory behavior than CTL males, BPA exposure abolished this sex difference. BPA-exposed males, however, engaged in less territorial marking when CTL males were present. These studies demonstrate that developmental BPA exposure can disrupt adult behaviors in a sex- and species-dependent manner and are consistent with the hypothesis that sexually selected traits are particularly vulnerable to endocrine disruption and should be a consideration in risk assessment studies.
Collapse
Affiliation(s)
- Scott A. Williams
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Eldin Jasarevic
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Neuroscience Program, Center for Translational Neuroscience, University of Missouri, Columbia, Missouri, United States of America
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, Missouri, United States of America
| | - Gregory M. Vandas
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Denise A. Warzak
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - David C. Geary
- Interdisciplinary Neuroscience Program, Center for Translational Neuroscience, University of Missouri, Columbia, Missouri, United States of America
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark R. Ellersieck
- College of Agriculture, Food, and Natural Resources- Statistician, University of Missouri, Columbia, Missouri, United States of America
| | - R. Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
| | - Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
243
|
McCarthy MM. Sexual differentiation of the brain in man and animals: of relevance to Klinefelter syndrome? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:3-15. [PMID: 23335108 DOI: 10.1002/ajmg.c.31351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing brain is highly sensitive to the organizing effects of steroids of gonadal origin in a process referred to as sexual differentiation. Early hormone effects prime the brain for adult sensitivity to the appropriate hormonal milieu, maximizing reproductive fitness via coordinated physiology and behavior. Animal models, in particular rodents, have provided insight into general principles and the cellular and molecular mechanisms of brain differentiation. Cellular endpoints influenced by steroids in the developing brain include neurogenesis, migration, apoptosis, dendritic growth, and synaptic patterning. Important roles for prostaglandins, endocanabinoids, and epigenetics are among the many cellular mediators of hormonal organization. Transference of general principles of brain sexual differentiation to humans relies on observations of individuals with genetic anomalies that either increase or decrease hormone exposure and sensitivity. The physiology and behavior of individuals with XXY (Klinefelter syndrome) has not been considered in the context of sexual differentiation of the brain, most likely due to the delay in diagnoses and highly variable presentation. The behavioral phenotype and impairments in the domains of speech and language that are characteristic of individuals with XXY is consistent with the reduced androgen production associated with the syndrome. Hormone replacement appears effective in restoring some deficits and impact may be further improved by increased understanding of the hormonally mediated sexual differentiation of the brain.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
244
|
Montgomery SH, Mundy NI. Microcephaly genes and the evolution of sexual dimorphism in primate brain size. J Evol Biol 2013; 26:906-11. [PMID: 23305468 DOI: 10.1111/jeb.12091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/24/2012] [Indexed: 12/29/2022]
Abstract
Microcephaly genes are amongst the most intensively studied genes with candidate roles in brain evolution. Early controversies surrounded the suggestion that they experienced differential selection pressures in different human populations, but several association studies failed to find any link between variation in microcephaly genes and brain size in humans. Recently, however, sex-dependent associations were found between variation in three microcephaly genes and human brain size, suggesting that these genes could contribute to the evolution of sexually dimorphic traits in the brain. Here, we test the hypothesis that microcephaly genes contribute to the evolution of sexual dimorphism in brain mass across anthropoid primates using a comparative approach. The results suggest a link between selection pressures acting on MCPH1 and CENPJ and different scores of sexual dimorphism.
Collapse
Affiliation(s)
- S H Montgomery
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
245
|
Filová B, Ostatníková D, Celec P, Hodosy J. The effect of testosterone on the formation of brain structures. Cells Tissues Organs 2013; 197:169-77. [PMID: 23306974 DOI: 10.1159/000345567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
It has been confirmed in several studies that testosterone can significantly affect brain development. Following metabolism of this hormone by 5α-reductase to dihydrotestosterone, testosterone may act via androgen receptors, or after conversion by aromatase to estradiol, it may act via estrogen receptors. The parts of the brain which are changed under the influence of sex hormones are known as sexually dimorphic nuclei, especially in the preoptic area of the hypothalamus. Nevertheless, evidence suggests that testosterone also influences the structure of the hippocampus, specifically CA1 and CA3 areas of the hippocampus, as well as the amygdala. These brain areas are designed to convert information from short-term into long-term memory. In this review, we summarize the effects of testosterone on the organization of brain structures with respect to spatial cognitive abilities in small rodents.
Collapse
Affiliation(s)
- Barbora Filová
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
246
|
The development of kisspeptin circuits in the Mammalian brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:221-52. [PMID: 23550009 DOI: 10.1007/978-1-4614-6199-9_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The neuropeptide kisspeptin, encoded by the Kiss1 gene, is required for mammalian puberty and fertility. Examining the development of the kisspeptin system contributes to our understanding of pubertal progression and adult reproduction and sheds light on possible mechanisms underlying the development of reproductive disorders, such as precocious puberty or hypogonadotropic hypogonadism. Recent work, primarily in rodent models, has begun to study the development of kisspeptin neurons and their regulation by sex steroids and other factors at early life stages. In the brain, kisspeptin is predominantly expressed in two areas of the hypothalamus, the anteroventral periventricular nucleus and neighboring periventricular nucleus (pre-optic area in some species) and the arcuate nucleus. Kisspeptin neurons in these two hypothalamic regions are differentially regulated by testosterone and estradiol, both in development and in adulthood, and also display differences in their degree of sexual dimorphism. In this chapter, we discuss what is currently known and not known about the ontogeny, maturation, and sexual differentiation of kisspeptin neurons, as well as their regulation by sex steroids and other factors during development.
Collapse
|
247
|
|
248
|
Gagnidze K, Pfaff DW. Hormone-Dependent Chromatin Modifications Related to Sexually Differentiated Behaviors. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2013. [DOI: 10.1007/978-3-642-33721-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
249
|
Ottem EN, Bailey DJ, Jordan CL, Breedlove SM. With a little help from my friends: androgens tap BDNF signaling pathways to alter neural circuits. Neuroscience 2012; 239:124-38. [PMID: 23262234 DOI: 10.1016/j.neuroscience.2012.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022]
Abstract
Gonadal androgens are critical for the development and maintenance of sexually dimorphic regions of the male nervous system, which is critical for male-specific behavior and physiological functioning. In rodents, the motoneurons of the spinal nucleus of the bulbocavernosus (SNB) provide a useful example of a neural system dependent on androgen. Unless rescued by perinatal androgens, the SNB motoneurons will undergo apoptotic cell death. In adulthood, SNB motoneurons remain dependent on androgen, as castration leads to somal atrophy and dendritic retraction. In a second vertebrate model, the zebra finch, androgens are critical for the development of several brain nuclei involved in song production in males. Androgen deprivation during a critical period during postnatal development disrupts song acquisition and dimorphic size-associated nuclei. Mechanisms by which androgens exert masculinizing effects in each model system remain elusive. Recent studies suggest that brain-derived neurotrophic factor (BDNF) may play a role in androgen-dependent masculinization and maintenance of both SNB motoneurons and song nuclei of birds. This review aims to summarize studies demonstrating that BDNF signaling via its tyrosine receptor kinase (TrkB) receptor may work cooperatively with androgens to maintain somal and dendritic morphology of SNB motoneurons. We further describe studies that suggest the cellular origin of BDNF is of particular importance in androgen-dependent regulation of SNB motoneurons. We review evidence that androgens and BDNF may synergistically influence song development and plasticity in bird species. Finally, we provide hypothetical models of mechanisms that may underlie androgen- and BDNF-dependent signaling pathways.
Collapse
Affiliation(s)
- E N Ottem
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA.
| | | | | | | |
Collapse
|
250
|
Kulkarni J, Gavrilidis E, Hayes E, Heaton V, Worsley R. Special biological issues in the management of women with schizophrenia. Expert Rev Neurother 2012; 12:823-33. [PMID: 22853790 DOI: 10.1586/ern.12.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schizophrenia is a debilitating and pervasive mental illness with devastating effects on psychological, cognitive and social wellbeing, and for which current treatment options are far from ideal. Gender differences and the influence of the female reproductive life cycle on the onset, course and symptoms of schizophrenia and the discovery of estrogen's remarkable psychoprotective properties in animal models led to the proposal of the 'estrogen protection hypothesis' of schizophrenia. This has fueled the recent successful investigation of estradiol as a potential adjuvant therapeutic agent in the management of schizophrenia in women. This review explains the scientific rationale behind the estrogen hypothesis and how it can be clinically utilized to address concerns unique to the care of women with schizophrenia.
Collapse
Affiliation(s)
- Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Level One, Old Baker Building, The Alfred Hospital, Commercial Road, Melbourne 3004, Australia.
| | | | | | | | | |
Collapse
|