201
|
McQueen G, Sendt KV, Gillespie A, Avila A, Lally J, Vallianatou K, Chang N, Ferreira D, Borgan F, Howes OD, Barker GJ, Lythgoe DJ, Stone JM, McGuire P, MacCabe JH, Egerton A. Changes in Brain Glutamate on Switching to Clozapine in Treatment-Resistant Schizophrenia. Schizophr Bull 2021; 47:662-671. [PMID: 33398325 PMCID: PMC8084451 DOI: 10.1093/schbul/sbaa156] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been suggested that the antipsychotic clozapine may modulate brain glutamate, and that this effect could contribute to its efficacy in treatment-resistant schizophrenia (TRS). The aim of this study was to examine the effects of clozapine on brain glutamate in TRS longitudinally. This study examined individuals with TRS before and 12 weeks after switching from a non-clozapine antipsychotic to treatment with clozapine as part of their normal clinical care. Proton magnetic resonance spectroscopy (1H-MRS) measured concentrations, corrected for voxel tissue content, of glutamate (Glucorr), and glutamate plus glutamine (Glxcorr) in the anterior cingulate cortex (ACC) and right caudate nucleus. Symptoms were monitored using the Positive and Negative Syndrome Scale (PANSS). Of 37 recruited patients (27 men, 39.30 years old, 84% clozapine naïve), 25 completed 1H-MRS at both timepoints. 12 weeks of clozapine was associated with a longitudinal reduction in Glucorr in the caudate (n = 23, F = 7.61 P = .01) but not in the ACC (n = 24, F = 0.02, P = .59). Percentage reduction in caudate Glucorr was positively correlated with percentage improvement in symptoms (total PANSS score, n = 23, r = .42, P = .04). These findings indicate that reductions in glutamate in the caudate nucleus may contribute to symptomatic improvement during the first months of clozapine treatment.
Collapse
Affiliation(s)
- Grant McQueen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Amy Gillespie
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Alessia Avila
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.,Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kalliopi Vallianatou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Nynn Chang
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Diogo Ferreira
- Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroimaging, King's College London, De Crespigny Park, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroimaging, King's College London, De Crespigny Park, London, UK
| | - James M Stone
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.,South London and Maudsley NHS Trust, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| |
Collapse
|
202
|
Loiodice S, Drinkenburg WH, Ahnaou A, McCarthy A, Viardot G, Cayre E, Rion B, Bertaina-Anglade V, Mano M, L’Hostis P, Drieu La Rochelle C, Kas MJ, Danjou P. Mismatch negativity as EEG biomarker supporting CNS drug development: a transnosographic and translational study. Transl Psychiatry 2021; 11:253. [PMID: 33927180 PMCID: PMC8085207 DOI: 10.1038/s41398-021-01371-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
The lack of translation from basic research into new medicines is a major challenge in CNS drug development. The need to use novel approaches relying on (i) patient clustering based on neurobiology irrespective to symptomatology and (ii) quantitative biomarkers focusing on evolutionarily preserved neurobiological systems allowing back-translation from clinical to nonclinical research has been highlighted. Here we sought to evaluate the mismatch negativity (MMN) response in schizophrenic (SZ) patients, Alzheimer's disease (AD) patients, and age-matched healthy controls. To evaluate back-translation of the MMN response, we developed EEG-based procedures allowing the measurement of MMN-like responses in a rat model of schizophrenia and a mouse model of AD. Our results indicate a significant MMN attenuation in SZ but not in AD patients. Consistently with the clinical findings, we observed a significant attenuation of deviance detection (~104.7%) in rats subchronically exposed to phencyclidine, while no change was observed in APP/PS1 transgenic mice when compared to wild type. This study provides new insight into the cross-disease evaluation of the MMN response. Our findings suggest further investigations to support the identification of neurobehavioral subtypes that may help patients clustering for precision medicine intervention. Furthermore, we provide evidence that MMN could be used as a quantitative/objective efficacy biomarker during both preclinical and clinical stages of SZ drug development.
Collapse
Affiliation(s)
- Simon Loiodice
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042, Rennes, France.
| | - Wilhelmus H. Drinkenburg
- grid.419619.20000 0004 0623 0341Department of Neuroscience Discovery, Janssen Research & Development, a Division of Janssen Pharmaceutical NV, Turnhoutseweg 30, B-2340, Beerse, Belgium ,grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Abdallah Ahnaou
- grid.419619.20000 0004 0623 0341Department of Neuroscience Discovery, Janssen Research & Development, a Division of Janssen Pharmaceutical NV, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Andrew McCarthy
- Lilly Research Laboratories, Windlesham, Surrey, GU20 6PH UK
| | - Geoffrey Viardot
- Biotrial Neuroscience, Avenue de Bruxelles, 68350 Didenheim, France
| | - Emilie Cayre
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | - Bertrand Rion
- Biotrial Pharmacology, 7-9 rue Jean-Louis Bertrand, 35042 Rennes, France
| | | | - Marsel Mano
- Biotrial Neuroscience, Avenue de Bruxelles, 68350 Didenheim, France
| | | | | | - Martien J. Kas
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Philippe Danjou
- Biotrial Neuroscience, Avenue de Bruxelles, 68350 Didenheim, France
| |
Collapse
|
203
|
Abstract
Schizophrenia is a severe and clinically heterogenous mental disorder
affecting approximately 1% of the population worldwide. Despite
tremendous achievements in the field of schizophrenia research, its
precise aetiology remains elusive. Besides dysfunctional neuronal
signalling, the pathophysiology of schizophrenia appears to involve
molecular and functional abnormalities in glial cells, including
astrocytes. This article provides a concise overview of the current
evidence supporting altered astrocyte activity in schizophrenia, which
ranges from findings obtained from post-mortem immunohistochemical
analyses, genetic association studies and transcriptomic
investigations, as well as from experimental investigations of
astrocyte functions in animal models. Integrating the existing data
from these research areas strongly suggests that astrocytes have the
capacity to critically affect key neurodevelopmental and homeostatic
processes pertaining to schizophrenia pathogenesis, including
glutamatergic signalling, synaptogenesis, synaptic pruning and
myelination. The further elucidation of astrocytes functions in health
and disease may, therefore, offer new insights into how these glial
cells contribute to abnormal brain development and functioning
underlying this debilitating mental disorder.
Collapse
Affiliation(s)
- Tina Notter
- Tina Notter, Institute of
Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich,
Switzerland. Emails: ;
| |
Collapse
|
204
|
Oral S, Göktalay G. Prepulse inhibition based grouping of rats and assessing differences in response to pharmacological agents. Neurosci Lett 2021; 755:135913. [PMID: 33895274 DOI: 10.1016/j.neulet.2021.135913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022]
Abstract
Schizophrenia modeling by disrupting prepulse inhibition (PPI) is one of the most frequently used psycho-pharmacological methods by administering pharmacological agents to stimulate disruption. However, since PPI is also a biological indicator of schizophrenia, it is possible to classify subjects based on their basal PPI values and group them as "low inhibition" and "high inhibition without taking any pharmacological agent. Therefore this study was conducted to show that rats can be divided into groups in terms of susceptibility to schizophrenia according to basal PPI values. It was also observed that these groups might give different responses to different pharmacological agents (apomorphine, amphetamine, MK-801, scopolamine, nicotine, caffeine). Male Sprague Dawley rats (250-350 g) were used in the study. To examine the effects of different pharmacological agents on the groups, apomorphine (0.5 mg/kg and 1 mg/kg), amphetamine (4 mg/kg), MK-801 (0.05 mg/kg and 0.15 mg/kg), scopolamine (0.4 mg/kg), nicotine (1 mg/kg) and caffeine (10 mg/kg and 30 mg/kg) were used. Amphetamine showed a disruptive effect on PPI in both low and high inhibitory groups, while apomorphine, MK-801, scopolamine, and nicotine showed PPI decrease only in the high inhibitory group. Besides, caffeine decreased PPI levels at two doses in the high inhibitory group; however, 10 mg/kg dose caffeine was increased only in the low inhibitory group. According to the data obtained from this study, rats can be grouped with baseline inhibition values by using PPI, and response differences of pharmacological agents to groups may vary.
Collapse
Affiliation(s)
- Sema Oral
- University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, 16290, Bursa, Turkey.
| | - Gökhan Göktalay
- Department of Medical Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
205
|
Wang X, Hu Y, Liu W, Ma Y, Chen X, Xue T, Cui D. Molecular Basis of GABA Hypofunction in Adolescent Schizophrenia-Like Animals. Neural Plast 2021; 2021:9983438. [PMID: 33936193 PMCID: PMC8062182 DOI: 10.1155/2021/9983438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder that NMDA receptor (NMDAR) hypofunction appears centrally involved. Schizophrenia typically emerges in adolescence or early adulthood. Electrophysiological and several neurochemical changes have linked the GABA deficits to abnormal behaviors induced by NMDAR hypofunction. However, few studies have systematically investigated the molecular basis of GABA deficits, especially during adolescence. To address this issue, we transiently administrated MK-801 to mice on PND 10, which exhibited schizophrenia-relevant deficits in adolescence. Slice recording showed reduced GABA transmission and PVI+ hypofunction, indicating GABAergic hypofunction. Cortical proteomic evaluation combined with analysis of single cell data from the Allen Brain showed that various metabolic processes were enriched in top ranks and differentially altered in excitatory neurons, GABAergic interneurons, and glial cells. Notably, the GABA-related amino acid metabolic process was disturbed in both astrocytes and interneurons, in which we found a downregulated set of GABA-related proteins (GAD65, SYNPR, DBI, GAT3, SN1, and CPT1A). They synergistically regulate GABA synthesis, release, reuptake, and replenishment. Their downregulation indicates impaired GABA cycle and homeostasis regulated by interneuron-astrocyte communication in adolescence. Our findings on molecular basis of GABA deficits could provide potential drug targets of GABAergic rescue for early prevention and intervention.
Collapse
Affiliation(s)
- Xiaodan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Department of Neurology & Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Hu
- Shenzhi Department of the Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenxin Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuanyuan Ma
- Shenzhi Department of the Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xi Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Ting Xue
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
206
|
Migocka-Patrzałek M, Elias M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 2021; 10:cells10040883. [PMID: 33924466 PMCID: PMC8070155 DOI: 10.3390/cells10040883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen phosphorylase (PG) is a key enzyme taking part in the first step of glycogenolysis. Muscle glycogen phosphorylase (PYGM) differs from other PG isoforms in expression pattern and biochemical properties. The main role of PYGM is providing sufficient energy for muscle contraction. However, it is expressed in tissues other than muscle, such as the brain, lymphoid tissues, and blood. PYGM is important not only in glycogen metabolism, but also in such diverse processes as the insulin and glucagon signaling pathway, insulin resistance, necroptosis, immune response, and phototransduction. PYGM is implicated in several pathological states, such as muscle glycogen phosphorylase deficiency (McArdle disease), schizophrenia, and cancer. Here we attempt to analyze the available data regarding the protein partners of PYGM to shed light on its possible interactions and functions. We also underline the potential for zebrafish to become a convenient and applicable model to study PYGM functions, especially because of its unique features that can complement data obtained from other approaches.
Collapse
|
207
|
Antipsychotic potential of the type 1 cannabinoid receptor positive allosteric modulator GAT211: preclinical in vitro and in vivo studies. Psychopharmacology (Berl) 2021; 238:1087-1098. [PMID: 33442771 DOI: 10.1007/s00213-020-05755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE Antipsychotics help alleviate the positive symptoms associated with schizophrenia; however, their debilitating side effects have spurred the search for better treatment options. Novel compounds can be screened for antipsychotic potential in neuronal cell cultures and following acute N-methyl-D-aspartate (NMDA) receptor blockade with non-competitive antagonists such as MK-801 in rodent behavioral models. Given the known interactions between NMDA receptors and type 1 cannabinoid receptors (CB1R), compounds that modulate CB1Rs may have therapeutic potential for schizophrenia. OBJECTIVES This study assessed whether the CB1R positive allosteric modulator GAT211, when compared to ∆9-tetrahydrocannabinol (THC), has potential to reduce psychiatric behavioral phenotypes following acute MK-801 treatment in rats, and block hyperdopaminergic signalling associated with those behaviors. METHODS The effects of GAT211 and THC on cellular signaling were compared in Neuro2a cells, and behavioral effects of GAT211 and THC on altered locomotor activity and prepulse inhibition of the acoustic startle response caused by acute MK-801 treatment were assessed in male, Long Evans rats. RESULTS GAT211 limited dopamine D2 receptor-mediated extracellular regulated kinase (ERK) phosphorylation in Neuro2a cells, whereas THC did not. As expected, acute MK-801 (0.15 mg/kg) produced a significant increase in locomotor activity and impaired PPI. GAT211 treatment alone (0.3-3.0 mg/kg) dose-dependently reduced locomotor activity and the acoustic startle response. GAT211 (3.0 mg/kg) also prevented hyperlocomotion caused by MK-801 but did not significantly affect PPI impairments. CONCLUSION Taken together, these findings support continued preclinical research regarding the usefulness of CB1R positive allosteric modulators as antipsychotics.
Collapse
|
208
|
Huang J, Tong J, Zhang P, Zhou Y, Cui Y, Tan S, Wang Z, Yang F, Kochunov P, Chiappelli J, Tian B, Tian L, Tan Y, Hong LE. Effects of neuroactive metabolites of the tryptophan pathway on working memory and cortical thickness in schizophrenia. Transl Psychiatry 2021; 11:198. [PMID: 33795641 PMCID: PMC8016899 DOI: 10.1038/s41398-021-01311-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
A number of tryptophan metabolites known to be neuroactive have been examined for their potential associations with cognitive deficits in schizophrenia. Among these metabolites, kynurenic acid (KYNA), 5-hydroxyindole (5-HI), and quinolinic acid (QUIN) are documented in their diverse effects on α-7 nicotinic acetylcholine receptor (α7nAChR) and/or N-methyl-D-aspartate receptor (NMDAR), two of the receptor types thought to contribute to cognitive impairment in schizophrenia. In this study, serum levels of KYNA, 5-HI, and QUIN were measured in 195 patients with schizophrenia and in 70 healthy controls using liquid chromatography-tandem mass spectrometry; cognitive performance in MATRICS Consensus Cognitive Battery and cortical thickness measured by magnetic resonance imaging were obtained. Patients with schizophrenia had significantly lower serum KYNA (p < 0.001) and QUIN (p = 0.02) levels, and increased 5-HI/KYNA (p < 0.001) and QUIN/KYNA ratios (p < 0.001) compared with healthy controls. Multiple linear regression showed that working memory was positively correlated with serum 5-HI levels (t = 2.10, p = 0.04), but inversely correlated with KYNA concentrations (t = -2.01, p = 0.05) in patients. Patients with high 5-HI and low KYNA had better working memory than other subgroups (p = 0.01). Higher 5-HI levels were associated with thicker left lateral orbitofrontal cortex (t = 3.71, p = 2.94 × 10-4) in patients. The different effects of 5-HI and KYNA on working memory may appear consistent with their opposite receptor level mechanisms. Our findings appear to provide a new insight into the dynamic roles of tryptophan pathway metabolites on cognition, which may benefit novel therapeutic development that targets cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Junchao Huang
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ping Zhang
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yimin Cui
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Shuping Tan
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Fude Yang
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Peter Kochunov
- grid.411024.20000 0001 2175 4264Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Joshua Chiappelli
- grid.411024.20000 0001 2175 4264Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Baopeng Tian
- grid.414351.60000 0004 0530 7044Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Li Tian
- grid.10939.320000 0001 0943 7661Faculty of Medicine, Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China.
| | - L. Elliot Hong
- grid.411024.20000 0001 2175 4264Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
209
|
Anderson EM, Demis S, D’Acquisto H, Engelhardt A, Hearing M. The Role of Parvalbumin Interneuron GIRK Signaling in the Regulation of Affect and Cognition in Male and Female Mice. Front Behav Neurosci 2021; 15:621751. [PMID: 33841107 PMCID: PMC8032990 DOI: 10.3389/fnbeh.2021.621751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Pathological impairments in the regulation of affect (i.e., emotion) and flexible decision-making are commonly observed across numerous neuropsychiatric disorders and are thought to reflect dysfunction of cortical and subcortical circuits that arise in part from imbalances in excitation and inhibition within these structures. Disruptions in GABA transmission, in particular, that from parvalbumin-expressing interneurons (PVI), has been highlighted as a likely mechanism by which this imbalance arises, as they regulate excitation and synchronization of principle output neurons. G protein-gated inwardly rectifying potassium ion (GIRK/Kir3) channels are known to modulate excitability and output of pyramidal neurons in areas like the medial prefrontal cortex and hippocampus; however, the role GIRK plays in PVI excitability and behavior is unknown. Male and female mice lacking GIRK1 in PVI (Girk1flox/flox:PVcre) and expressing td-tomato in PVI (Girk1flox/flox:PVCre:PVtdtom) exhibited increased open arm time in the elevated plus-maze, while males showed an increase in immobile episodes during the forced swim test (FST). Loss of GIRK1 did not alter motivated behavior for an appetitive reward or impair overall performance in an operant-based attention set-shifting model of cognitive flexibility; however it did alter types of errors committed during the visual cue test. Unexpectedly, baseline sex differences were also identified in these tasks, with females exhibiting overall poorer performance compared to males and distinct types of errors, highlighting potential differences in task-related problem-solving. Interestingly, reductions in PVI GIRK signaling did not correspond to changes in membrane excitability but did increase action potential (AP) firing at higher current injections in PVI of males, but not females. This is the first investigation on the role that PVI GIRK-signaling has on membrane excitability, AP firing, and their role on affect and cognition together increasing the understanding of PVI cellular mechanisms and function.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
210
|
Egerton A, Murphy A, Donocik J, Anton A, Barker GJ, Collier T, Deakin B, Drake R, Eliasson E, Emsley R, Gregory CJ, Griffiths K, Kapur S, Kassoumeri L, Knight L, Lambe EJB, Lawrie SM, Lees J, Lewis S, Lythgoe DJ, Matthews J, McGuire P, McNamee L, Semple S, Shaw AD, Singh KD, Stockton-Powdrell C, Talbot PS, Veronese M, Wagner E, Walters JTR, Williams SR, MacCabe JH, Howes OD. Dopamine and Glutamate in Antipsychotic-Responsive Compared With Antipsychotic-Nonresponsive Psychosis: A Multicenter Positron Emission Tomography and Magnetic Resonance Spectroscopy Study (STRATA). Schizophr Bull 2021; 47:505-516. [PMID: 32910150 PMCID: PMC7965076 DOI: 10.1093/schbul/sbaa128] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The variability in the response to antipsychotic medication in schizophrenia may reflect between-patient differences in neurobiology. Recent cross-sectional neuroimaging studies suggest that a poorer therapeutic response is associated with relatively normal striatal dopamine synthesis capacity but elevated anterior cingulate cortex (ACC) glutamate levels. We sought to test whether these measures can differentiate patients with psychosis who are antipsychotic responsive from those who are antipsychotic nonresponsive in a multicenter cross-sectional study. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure glutamate levels (Glucorr) in the ACC and in the right striatum in 92 patients across 4 sites (48 responders [R] and 44 nonresponders [NR]). In 54 patients at 2 sites (25 R and 29 NR), we additionally acquired 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (18F-DOPA) positron emission tomography (PET) to index striatal dopamine function (Kicer, min-1). The mean ACC Glucorr was higher in the NR than the R group after adjustment for age and sex (F1,80 = 4.27; P = .04). This was associated with an area under the curve for the group discrimination of 0.59. There were no group differences in striatal dopamine function or striatal Glucorr. The results provide partial further support for a role of ACC glutamate, but not striatal dopamine synthesis, in determining the nature of the response to antipsychotic medication. The low discriminative accuracy might be improved in groups with greater clinical separation or increased in future studies that focus on the antipsychotic response at an earlier stage of the disorder and integrate other candidate predictive biomarkers. Greater harmonization of multicenter PET and 1H-MRS may also improve sensitivity.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Anna Murphy
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jacek Donocik
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Academic Unit of Radiology, Medical School, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Tracy Collier
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Drake
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emma Eliasson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Richard Emsley
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Laura Knight
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Emily J B Lambe
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | - Jane Lees
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shôn Lewis
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Julian Matthews
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Lily McNamee
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Scott Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Alexander D Shaw
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Krish D Singh
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Charlotte Stockton-Powdrell
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peter S Talbot
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mattia Veronese
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ernest Wagner
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| |
Collapse
|
211
|
Konecny J, Mezeiova E, Soukup O, Korabecny J. Review of Synthetic Approaches to Dizocilpine. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201230205835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-Methyl-D-aspartate (NMDA) receptors, together with AMPA and kainite receptors,
belong to the family of ionotropic glutamate receptors. NMDA receptors play a crucial
role in neuronal plasticity and cognitive functions. Overactivation of those receptors leads to
glutamate-induced excitotoxicity, which could be suppressed by NMDA antagonists. Dizocilpine
was firstly reported in 1982 as an NMDA receptor antagonist with anticonvulsive properties,
but due to serious side effects like neuronal vacuolization, its use in human medicine is
restricted. However, dizocilpine is still used as a validated tool to induce the symptoms of
schizophrenia in animal models and also as a standard for comparative purposes to newly
developed NMDA receptor antagonists. For this reason, the synthesis of dizocilpine and especially
its more active enantiomer (+)-dizocilpine is still relevant. In this review, we bring a
collection of various synthetic approaches leading to dizocilpine and its analogues.
Collapse
Affiliation(s)
- Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
212
|
Goh KK, Wu TH, Chen CH, Lu ML. Efficacy of N-methyl- D-aspartate receptor modulator augmentation in schizophrenia: A meta-analysis of randomised, placebo-controlled trials. J Psychopharmacol 2021; 35:236-252. [PMID: 33406959 DOI: 10.1177/0269881120965937] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Dysfunction of the N-methyl-D-aspartate glutamate receptor is involved in the putative pathology of schizophrenia. There is growing interest in the potential of N-methyl-D-aspartate receptor modulators to improve the symptoms of schizophrenia, but the evidence for the use of glutamatergic agents for augmenting schizophrenia remains inconclusive. AIMS We conducted a meta-analysis to test the efficacy and safety of N-methyl-D-aspartate receptor modulator supplements in patients with schizophrenia. METHODS Following a systemic search in MEDLINE, Embase, Cochrane and Scopus, 40 double-blinded, randomised, placebo-controlled trials involving 4937 patients with schizophrenia were included in this meta-analysis. The change in the severity of symptoms among patients with schizophrenia was defined as the primary outcome, whereas the safety profiles of the intervention, including the discontinuation rate and adverse events, were defined as secondary outcomes. RESULTS When added to antipsychotic treatments, N-methyl-D-aspartate receptor modulators improved multiple schizophrenia symptoms, particularly negative symptoms, and had satisfactory side effects and safety profile. Among the seven glutamatergic agents analysed, glycine, D-serine and sarcosine had better treatment profiles than other agents, and NMDA receptor co-agonists, as a group, provided a reduction in schizophrenia symptoms compared to antipsychotic treatments without supplementation. Augmentation with N-methyl-D-aspartate receptor modulators was only effective among patients treated with antipsychotics other than clozapine. CONCLUSIONS The results indicate that N-methyl-D-aspartate receptor modulators, particularly with glycine, D-serine and sarcosine, are more beneficial than the placebo in treating schizophrenia, and the effects extended to both positive and negative symptoms, when augmented with antipsychotics other than clozapine.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Tapei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Tapei, Taiwan
| |
Collapse
|
213
|
Aoi T, Fujisawa TX, Nishitani S, Tomoda A. Mismatch negativity of preschool children at risk of developing mental health problems. Neuropsychopharmacol Rep 2021; 41:185-191. [PMID: 33606363 PMCID: PMC8340815 DOI: 10.1002/npr2.12168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/08/2022] Open
Abstract
This study examined the relationship between mismatch negativity (MMN) during the passive oddball task and clinical assessment using a behavioral scale in nonclinical preschool children to identify neurobiological endophenotypes associated with the risk of developing mental health problems. We assessed the risk of developing mental health problems in preschool children using the Strengths and Difficulties Questionnaire, which is used worldwide as a behavior‐based screening tool for assessing mental health risks, and examined its relevance to amplitude and latency MMN. As a result, we found that children at a higher risk of mental health problems had smaller MMN amplitudes than those at lower risk. It was also found that MMN amplitude was negatively correlated with the assessed higher risk of mental health problems. Although it is not clear what neural mechanisms underlie the functional association between MMN and risk of mental health problems in preschool children, the findings of this study indicate that there is an involvement of individual differences in auditory processing in childhood mental health problems. The findings suggest that such neurological changes may be prodromal symptoms of the onset of psychiatric disorders and applicable as endophenotypic markers for the early detection of various psychiatric disorders. This study examined the relationship between mismatch negativity (MMN) during the passive oddball task and clinical assessment using a behavioral scale in nonclinical preschool children to identify neurobiological endophenotypes associated with the risk of developing mental health problems. We found that children at a higher risk of mental health problems had smaller MMN amplitudes than those at lower risk. It was also found that MMN amplitude was negatively correlated with the assessed higher risk of mental health problems.![]()
Collapse
Affiliation(s)
- Toshiya Aoi
- Department of Child DevelopmentUnited Graduate School of Child DevelopmentOsaka UniversityKanazawa UniversityHamamatsu University School of MedicineChiba University and University of FukuiOsakaJapan
- Department of NursingFaculty of Health ScienceFukui Health Science UniversityFukuiJapan
| | - Takashi X. Fujisawa
- Department of Child DevelopmentUnited Graduate School of Child DevelopmentOsaka UniversityKanazawa UniversityHamamatsu University School of MedicineChiba University and University of FukuiOsakaJapan
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
| | - Shota Nishitani
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
| | - Akemi Tomoda
- Department of Child DevelopmentUnited Graduate School of Child DevelopmentOsaka UniversityKanazawa UniversityHamamatsu University School of MedicineChiba University and University of FukuiOsakaJapan
- Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan
| |
Collapse
|
214
|
Mascio G, Bucci D, Notartomaso S, Liberatore F, Antenucci N, Scarselli P, Imbriglio T, Caruso S, Gradini R, Cannella M, Di Menna L, Bruno V, Battaglia G, Nicoletti F. Perineuronal nets are under the control of type-5 metabotropic glutamate receptors in the developing somatosensory cortex. Transl Psychiatry 2021; 11:109. [PMID: 33597513 PMCID: PMC7889908 DOI: 10.1038/s41398-021-01210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
mGlu5 metabotropic glutamate receptors are highly functional in the early postnatal life, and regulate developmental plasticity of parvalbumin-positive (PV+) interneurons in the cerebral cortex. PV+ cells are enwrapped by perineuronal nets (PNNs) at the closure of critical windows of cortical plasticity. Changes in PNNs have been associated with neurodevelopmental disorders. We found that the number of Wisteria Fluoribunda Agglutinin (WFA)+ PNNs and the density of WFA+/PV+ cells were largely increased in the somatosensory cortex of mGlu5-/- mice at PND16. An increased WFA+ PNN density was also observed after pharmacological blockade of mGlu5 receptors in the first two postnatal weeks. The number of WFA+ PNNs in mGlu5-/- mice was close to a plateau at PND16, whereas continued to increase in wild-type mice, and there was no difference between the two genotypes at PND21 and PND60. mGlu5-/- mice at PND16 showed increases in the transcripts of genes involved in PNN formation and a reduced expression and activity of type-9 matrix metalloproteinase in the somatosensory cortex suggesting that mGlu5 receptors control both PNN formation and degradation. Finally, unilateral whisker stimulation from PND9 to PND16 enhanced WFA+ PNN density in the contralateral somatosensory cortex only in mGlu5+/+ mice, whereas whisker trimming from PND9 to PND16 reduced WFA+ PNN density exclusively in mGlu5-/- mice, suggesting that mGlu5 receptors shape the PNN response to sensory experience. These findings disclose a novel undescribed mechanism of PNN regulation, and lay the groundwork for the study of mGlu5 receptors and PNNs in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Giada Mascio
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Domenico Bucci
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Nico Antenucci
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | | | - Stefano Caruso
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Roberto Gradini
- grid.7841.aDepartment of Experimental Medicine, Sapienza University, Rome, Italy
| | - Milena Cannella
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Luisa Di Menna
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Valeria Bruno
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy. .,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
215
|
Plekanchuk VS, Ryazanova MA. Expression of Glutamate Receptor Genes
in the Hippocampus and Frontal Cortex in GC Rat Strain with Genetic
Catatonia. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
216
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
217
|
Hamilton HK, Roach BJ, Mathalon DH. Forecasting Remission From the Psychosis Risk Syndrome With Mismatch Negativity and P300: Potentials and Pitfalls. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:178-187. [PMID: 33431345 PMCID: PMC8128162 DOI: 10.1016/j.bpsc.2020.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Clinical outcomes vary for individuals at clinical high risk (CHR) for psychosis, ranging from conversion to a psychotic disorder to full remission from the risk syndrome. Given that most CHR individuals do not convert to psychosis, recent research efforts have turned toward identifying specific predictors of CHR remission, a task that is conceptually and empirically dissociable from the identification of predictors of conversion to psychosis, and one that may reveal specific biological characteristics that confer resilience to psychosis and provide further insights into the mechanisms associated with the pathogenesis of schizophrenia and those underlying a transient CHR syndrome. Such biomarkers may ultimately facilitate the development of novel early interventions and support the optimization of individualized care. In this review, we focus on two event-related brain potential measures, mismatch negativity and P300, that have attracted interest as predictors of future psychosis among CHR individuals. We describe several recent studies examining whether mismatch negativity and P300 predict subsequent CHR remission and suggest that intact mismatch negativity and P300 may reflect the integrity of specific neurocognitive processes that confer resilience against the persistence of the CHR syndrome and its associated risk for future transition to psychosis. We also highlight several major methodological concerns associated with these studies that apply to the broader literature examining predictors of CHR remission. Among them is the concern that studies that predict dichotomous remission versus nonremission and/or dichotomous conversion versus nonconversion outcomes potentially confound remission and conversion effects, a phenomenon we demonstrate with a data simulation.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| | - Brian J Roach
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco VA Health Care System, University of California San Francisco, San Francisco, California; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
218
|
Kaminski J, Mascarell-Maricic L, Fukuda Y, Katthagen T, Heinz A, Schlagenhauf F. Glutamate in the Dorsolateral Prefrontal Cortex in Patients With Schizophrenia: A Meta-analysis of 1H-Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 89:270-277. [PMID: 33129486 DOI: 10.1016/j.biopsych.2020.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND To date, there is no systematic overview of glutamate in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. Here, we meta-analyzed case-control studies of high-field proton magnetic resonance spectroscopy (1H-MRS) investigating glutamate in DLPFC. Additionally, we estimated variance ratios to investigate homo/heterogeneity. METHODS Preregistration of the study was performed on September 20, 2019. The predefined literature search on PubMed comprised articles with search terms (magnetic resonance spectroscopy OR MRS) AND (glutamate OR glut∗ OR GLX) AND (schizophrenia OR psychosis OR schizophren∗). Meta-analyses with a fixed- and random-effects model with inverse variance method, DerSimonian-Laird estimator for τ2, and Cohen's d were calculated. For differences in variability, we calculated a random-effects model for measures of variance ratios. The primary study outcome was the difference in glutamate in the DLPFC in cases versus controls. Secondary outcomes were differences in variability. RESULTS The quantitative analysis comprised 429 cases and 365 controls. Overall, we found no group difference (d = 0.03 [95% confidence interval (CI), -0.20 to 0.26], z = 0.28, p = .78). Sensitivity analysis revealed an effect for medication status (Q = 8.35, p = .039), i.e., increased glutamate in antipsychotic-naïve patients (d = 0.46 [95% CI, 0.08 to 0.84], z = 2.37, p = .018). Concerning variance ratios, we found an effect of medication status (Q = 16.95, p < .001) due to lower coefficient of variation ratio (CVR) in medication-naïve patients (logCVR = -0.49 [95% CI, -0.78 to -0.20], z = -3.33, p < .001). In studies with medicated patients, we found higher CVR (logCVR = 0.22 [95% CI, 0.06 to 0.39], z = 2.67; p = .008). CONCLUSIONS We carefully interpret the higher levels and lower variability in cortical glutamate in antipsychotic-naïve patients as a possible key factor resulting from a putative allostatic mechanism. We conclude that care has to be taken when evaluating metabolite levels in clinical samples in which medication might confound findings.
Collapse
Affiliation(s)
- Jakob Kaminski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Lea Mascarell-Maricic
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Yu Fukuda
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Teresa Katthagen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Andreas Heinz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Florian Schlagenhauf
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| |
Collapse
|
219
|
Andrade YCP, Ropke J, Viana TG, Fanelli C, Minaldi E, Batista LA, Issy AC, Del Bel EA, Rodrigues LCM, Liégeois JF, Moreira FA. Effects of JL13, a pyridobenzoxazepine compound, in dopaminergic and glutamatergic models of antipsychotic activity. Behav Pharmacol 2021; 32:2-8. [PMID: 33399294 DOI: 10.1097/fbp.0000000000000595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The pyridobenzoxazepine compound, 5-(4-methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine (JL13), has been developed as a potential antipsychotic drug. We tested the hypothesis that JL13 is efficacious in both dopaminergic and glutamatergic animal models of schizophrenia. We investigated JL13 for its efficacy to prevent cocaine- and ketamine-induced hyperlocomotion and MK-801-induced deficits in prepulse inhibition (PPI) of the startle reflex. Male Swiss mice received injections of JL13 (0.1-10 mg/kg) and were tested in the open field for basal locomotion. In separate experiments, the animals received injections of JL13 (0.1-3 mg/kg) followed by cocaine (10 mg/kg), ketamine (60 mg/kg), or MK-801 (0.5 mg/kg) and were tested in the open field for hyperlocomotion. In addition, it was also tested if JL13 prevented MK-801-induced disruption of PPI. Only the highest dose of JL13 impaired spontaneous locomotion, suggesting its favorable profile regarding motor side effects. At doses that did not impair basal motor activity, JL13 prevented cocaine-, ketamine-, and MK-801-induced hyperlocomotion. Moreover, JL13 prevented MK-801-induced disruption of PPI. Extending previous findings, this study shows that JL13 exerts antipsychotic-like activity in both dopaminergic and glutamatergic models. This compound has a favorable pharmacological profile, similar to second-generation antipsychotics.
Collapse
Affiliation(s)
| | - Jivago Ropke
- Department of Pharmacology, Institute of Biological Sciences
| | - Thércia G Viana
- Department of Pharmacology, Institute of Biological Sciences
| | - Chiara Fanelli
- Department of Pharmacology, Institute of Biological Sciences
| | - Elisa Minaldi
- Department of Pharmacology, Institute of Biological Sciences
| | - Luara A Batista
- Department of Pharmacology, Graduate School in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Ana C Issy
- Departament of Morphology, Estomatology and Basic Pathology, Faculty of Odontology of Ribeirão Preto, Universidade de São Paulo Ribeirão Preto
| | - Elaine A Del Bel
- Departament of Morphology, Estomatology and Basic Pathology, Faculty of Odontology of Ribeirão Preto, Universidade de São Paulo Ribeirão Preto
| | - Lívia C M Rodrigues
- Department of Physiological Sciences, Health Science Center, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Jean-François Liégeois
- Department of Pharmacy, Laboratory of Medicinal Chemistry, Faculty of Medicine and CIRM, University of Liège, Liège, Belgium
| | | |
Collapse
|
220
|
Abstract
RATIONALE Proton magnetic resonance spectroscopy (1H-MRS) is a cross-species neuroimaging technique that can measure concentrations of several brain metabolites, including glutamate and GABA. This non-invasive method has promise in developing centrally acting drugs, as it can be performed repeatedly within-subjects and be used to translate findings from the preclinical to clinical laboratory using the same imaging biomarker. OBJECTIVES This review focuses on the utility of single-voxel 1H-MRS in developing novel glutamatergic or GABAergic drugs for the treatment of psychiatric disorders and includes research performed in rodent models, healthy volunteers and patient cohorts. RESULTS Overall, these studies indicate that 1H-MRS is able to detect the predicted pharmacological effects of glutamatergic or GABAergic drugs on voxel glutamate or GABA concentrations, although there is a shortage of studies examining dose-related effects. Clinical studies have applied 1H-MRS to better understand drug therapeutic mechanisms, including the glutamatergic effects of ketamine in depression and of acamprosate in alcohol dependence. There is an emerging interest in identifying patient subgroups with 'high' or 'low' brain regional 1H-MRS glutamate levels for more targeted drug development, which may require ancillary biomarkers to improve the accuracy of subgroup discrimination. CONCLUSIONS Considerations for future research include the sensitivity of single-voxel 1H-MRS in detecting drug effects, inter-site measurement reliability and the interpretation of drug-induced changes in 1H-MRS metabolites relative to the known pharmacological molecular mechanisms. On-going technological development, in single-voxel 1H-MRS and in related complementary techniques, will further support applications within CNS drug discovery.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
221
|
Kraguljac NV, Lahti AC. Neuroimaging as a Window Into the Pathophysiological Mechanisms of Schizophrenia. Front Psychiatry 2021; 12:613764. [PMID: 33776813 PMCID: PMC7991588 DOI: 10.3389/fpsyt.2021.613764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a complex neuropsychiatric disorder with a diverse clinical phenotype that has a substantial personal and public health burden. To advance the mechanistic understanding of the illness, neuroimaging can be utilized to capture different aspects of brain pathology in vivo, including brain structural integrity deficits, functional dysconnectivity, and altered neurotransmitter systems. In this review, we consider a number of key scientific questions relevant in the context of neuroimaging studies aimed at unraveling the pathophysiology of schizophrenia and take the opportunity to reflect on our progress toward advancing the mechanistic understanding of the illness. Our data is congruent with the idea that the brain is fundamentally affected in the illness, where widespread structural gray and white matter involvement, functionally abnormal cortical and subcortical information processing, and neurometabolic dysregulation are present in patients. Importantly, certain brain circuits appear preferentially affected and subtle abnormalities are already evident in first episode psychosis patients. We also demonstrated that brain circuitry alterations are clinically relevant by showing that these pathological signatures can be leveraged for predicting subsequent response to antipsychotic treatment. Interestingly, dopamine D2 receptor blockers alleviate neural abnormalities to some extent. Taken together, it is highly unlikely that the pathogenesis of schizophrenia is uniform, it is more plausible that there may be multiple different etiologies that converge to the behavioral phenotype of schizophrenia. Our data underscore that mechanistically oriented neuroimaging studies must take non-specific factors such as antipsychotic drug exposure or illness chronicity into consideration when interpreting disease signatures, as a clear characterization of primary pathophysiological processes is an imperative prerequisite for rational drug development and for alleviating disease burden in our patients.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Neuroimaging and Translational Research Laboratory, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adrienne Carol Lahti
- Neuroimaging and Translational Research Laboratory, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
222
|
Pei JC, Luo DZ, Gau SS, Chang CY, Lai WS. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Front Psychiatry 2021; 12:742058. [PMID: 34658976 PMCID: PMC8517243 DOI: 10.3389/fpsyt.2021.742058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is a severe mental illness that affects ~1% of the world's population. It is clinically characterized by positive, negative, and cognitive symptoms. Currently available antipsychotic medications are relatively ineffective in improving negative and cognitive deficits, which are related to a patient's functional outcomes and quality of life. Negative symptoms and cognitive deficits are unmet by the antipsychotic medications developed to date. In recent decades, compelling animal and clinical studies have supported the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have suggested some promising therapeutic agents. Notably, several NMDAR-enhancing agents, especially those that function through the glycine modulatory site (GMS) of NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated in cognitive/social functions and that GMS is a potential therapeutic target for enhancing the activation of NMDARs, there is great interest in investigating the effects of direct and indirect GMS modulators and their therapeutic potential. In this review, we focus on describing preclinical and clinical studies of direct and indirect GMS modulators in the treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter 1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight some of the most promising recently developed pharmacological compounds designed to either directly or indirectly target GMS and thus augment NMDAR function to treat the cognitive and negative symptoms of schizophrenia. Overall, the current findings suggest that indirectly targeting of GMS appears to be more beneficial and leads to less adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for the treatment of unmet medical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shiang-Shin Gau
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
223
|
Moldavski A, Wenz H, Lange BE, Rohleder C, Leweke FM. Case Report: Severe Adolescent Major Depressive Syndrome Turns Out to Be an Unusual Case of Anti-NMDA Receptor Encephalitis. Front Psychiatry 2021; 12:679996. [PMID: 34113272 PMCID: PMC8185133 DOI: 10.3389/fpsyt.2021.679996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 01/17/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a neuroinflammatory condition mediated by autoantibodies against the GluN1 subunit of the receptor. Clinically, it is characterized by a complex neuropsychiatric presentation with rapidly progressive psychiatric symptoms, cognitive deficits, seizures, and abnormal movements. Isolated psychiatric manifestations of anti-NMDAR encephalitis are rare and usually dominated by psychotic symptoms. We present a case of an 18-year-old female high school student-without a previous history of psychiatric disorders-with a rapid onset severe depressive syndrome. Surprisingly, we found pleocytosis and anti-NMDAR autoantibodies in the cerebrospinal fluid (CSF), despite an otherwise unremarkable diagnostic workup, including blood test, clinical examination, and cranial magnetic resonance imaging (MRI). After intravenous immunoglobulins treatment, a complete remission of the initial symptoms was observed. In a follow-up 5 years later, the young woman did not experience any relapse or sequelae. Anti-NMDAR encephalitis can present in rare cases as an organic disorder with major depressive symptoms without distinct concomitant psychotic or neurological symptoms. A clinical presentation such as a rapid onset of symptoms, distinct disturbance in the thought process, restlessness, and cognitive deficits should prompt screening for NMDAR- and other neural autoantibodies to rule out this rare but debilitating pathology.
Collapse
Affiliation(s)
- Alexander Moldavski
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Holger Wenz
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bettina E Lange
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Local Health District, NSW Health, Sydney, NSW, Australia
| |
Collapse
|
224
|
Hamilton HK, Roach BJ, Cavus I, Teyler TJ, Clapp WC, Ford JM, Tarakci E, Krystal JH, Mathalon DH. Impaired Potentiation of Theta Oscillations During a Visual Cortical Plasticity Paradigm in Individuals With Schizophrenia. Front Psychiatry 2020; 11:590567. [PMID: 33391054 PMCID: PMC7772351 DOI: 10.3389/fpsyt.2020.590567] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term potentiation (LTP) is a form of experience-dependent synaptic plasticity mediated by glutamatergic transmission at N-methyl-D-aspartate receptors (NMDARs). Impaired neuroplasticity has been implicated in the pathophysiology of schizophrenia, possibly due to underlying NMDAR hypofunction. Analogous to the high frequency electrical stimulation used to induce LTP in vitro and in vivo in animal models, repeated high frequency presentation of a visual stimulus in humans in vivo has been shown to induce enduring LTP-like neuroplastic changes in electroencephalography (EEG)-based visual evoked potentials (VEPs) elicited by the stimulus. Using this LTP-like visual plasticity paradigm, we previously showed that visual high-frequency stimulation (VHFS) induced sustained changes in VEP amplitudes in healthy controls, but not in patients with schizophrenia. Here, we extend this prior work by re-analyzing the EEG data underlying the VEPs, focusing on neuroplastic changes in stimulus-evoked EEG oscillatory activity following VHFS. EEG data were recorded from 19 patients with schizophrenia and 21 healthy controls during the visual plasticity paradigm. Event-related EEG oscillations (total power, intertrial phase coherence; ITC) elicited by a standard black and white checkerboard stimulus (~0.83 Hz, several 2-min blocks) were assessed before and after exposure to VHFS with the same stimulus (~8.9 Hz, 2 min). A cluster-based permutation testing approach was applied to time-frequency data to examine LTP-like plasticity effects following VHFS. VHFS enhanced theta band total power and ITC in healthy controls but not in patients with schizophrenia. The magnitude and phase synchrony of theta oscillations in response to a visual stimulus were enhanced for at least 22 min following VHFS, a frequency domain manifestation of LTP-like visual cortical plasticity. These theta oscillation changes are deficient in patients with schizophrenia, consistent with hypothesized NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - Idil Cavus
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Timothy J. Teyler
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States
| | | | - Judith M. Ford
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Erendiz Tarakci
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Northern California Institute for Research and Education, San Francisco, CA, United States
| | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Daniel H. Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
225
|
Choueiry J, Blais CM, Shah D, Smith D, Fisher D, Illivitsky V, Knott V. CDP-choline and galantamine, a personalized α7 nicotinic acetylcholine receptor targeted treatment for the modulation of speech MMN indexed deviance detection in healthy volunteers: a pilot study. Psychopharmacology (Berl) 2020; 237:3665-3687. [PMID: 32851421 DOI: 10.1007/s00213-020-05646-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE The combination of CDP-choline, an α7 nicotinic acetylcholine receptor (α7 nAChR) agonist, with galantamine, a positive allosteric modulator of nAChRs, is believed to counter the fast desensitization rate of the α7 nAChRs and may be of interest for schizophrenia (SCZ) patients. Beyond the positive and negative clinical symptoms, deficits in early auditory prediction-error processes are also observed in SCZ. Regularity violations activate these mechanisms that are indexed by electroencephalography-derived mismatch negativity (MMN) event-related potentials (ERPs) in response to auditory deviance. OBJECTIVES/METHODS This pilot study in thirty-three healthy humans assessed the effects of an optimized α7 nAChR strategy combining CDP-choline (500 mg) with galantamine (16 mg) on speech-elicited MMN amplitude and latency measures. The randomized, double-blinded, placebo-controlled, and counterbalanced design with a baseline stratification method allowed for assessment of individual response differences. RESULTS Increases in MMN generation mediated by the acute CDP-choline/galantamine treatment in individuals with low baseline MMN amplitude for frequency, intensity, duration, and vowel deviants were revealed. CONCLUSIONS These results, observed primarily at temporal recording sites overlying the auditory cortex, implicate α7 nAChRs in the enhancement of speech deviance detection and warrant further examination with respect to dysfunctional auditory deviance processing in individuals with SCZ.
Collapse
Affiliation(s)
- Joelle Choueiry
- Department of Neuroscience, Faculty of Medicine, University of Ottawa, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada.
- Department of Psychiatry, The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada.
- Department of Psychology, University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Crystal M Blais
- Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Dhrasti Shah
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Smith
- Department of Psychiatry, The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
- Department of Psychology, University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Derek Fisher
- Department of Psychology, Faculty of Social Sciences, Mount Saint Vincent University, Halifax, NS, Canada
| | - Vadim Illivitsky
- Department of Psychiatry, The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Verner Knott
- Department of Neuroscience, Faculty of Medicine, University of Ottawa, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Psychiatry, The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
- Department of Psychology, University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Institute of Cognitive Science, Carleton University, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
226
|
Sydnor VJ, Roalf DR. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: Implications for studies of psychosis risk. Schizophr Res 2020; 226:61-69. [PMID: 32723493 PMCID: PMC7750272 DOI: 10.1016/j.schres.2020.06.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ultra-high field proton magnetic resonance spectroscopy (1HMRS) offers a unique opportunity to measure the concentration of neurometabolites implicated in psychosis (PSY). The extant 7 T 1HMRS literature measuring glutamate-associated neurometabolites in the brain in PSY in vivo is small, but a comprehensive, quantitative summary of these data can offer insight and guidance to this emerging field. This meta-analysis examines proton spectroscopy (1HMRS) measures of glutamate (Glu), glutamine (Gln), glutamate+glutamine (Glx), gamma aminobutyric acid (GABA), and glutathione (GSH) across 255 individuals with PSY (121 first episode) and 293 healthy comparison participants (HC). While all five neurometabolites were lower in PSY as compared to HC, only Glu (Cohen's d = -0.18) and GSH (Cohen's d = -0.21) concentrations were significantly lower in PSY, whereas concentrations of Gln, Glx, and GABA did not significantly differ between groups. Notably, 1HMRS methodological choices and sample demographic characteristics did not impact study-specific effect sizes for PSY-related Glu or GSH differences. This review thus provides further evidence of neurometabolite dysfunction in first episode and chronic PSY, and thereby suggests that Glu and GSH abnormalities may additionally play a role in more incipient stages of the disorder: in clinical high risk stages. Additional 7 T neurochemical imaging studies in larger, longitudinal, and unmedicated samples and in youth at risk for developing psychosis are needed. Such studies will be critical for elucidating the neurodevelopmental and clinical time course of PSY-related neurometabolite alterations, and for assessing the potential for implicated metabolites to serve as druggable targets for decreasing PSY risk.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Lifespan Brain Institute at the Children's Hospital of Philadelphia & the University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
227
|
Szűcs E, Ducza E, Büki A, Kekesi G, Benyhe S, Horvath G. Characterization of dopamine D2 receptor binding, expression and signaling in different brain regions of control and schizophrenia-model Wisket rats. Brain Res 2020; 1748:147074. [DOI: 10.1016/j.brainres.2020.147074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
|
228
|
Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Joca S, Menezes PR, Dalton CF, Del-Ben CM, Louzada-Junior P, Reynolds GP. Epigenetic-mediated N-methyl-D-aspartate receptor changes in the brain of isolated reared rats. Epigenomics 2020; 12:1983-1997. [PMID: 33242253 DOI: 10.2217/epi-2020-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: We investigated: Grin1, Grin2a, Grin2b DNA methylation; NR1 and NR2 mRNA/protein in the prefrontal cortex (PFC); and hippocampus of male Wistar rats exposed to isolation rearing. Materials & methods: Animals were kept isolated or grouped (n = 10/group) from weaning for 10 weeks. Tissues were dissected for RNA/DNA extraction and N-methyl-D-aspartate receptor subunits were analyzed using quantitative reverse transcription (RT)-PCR, ELISA and pyrosequencing. Results: Isolated-reared animals had: decreased mRNA in PFC for all markers, increased NR1 protein in hippocampus and hypermethylation of Grin1 in PFC and Grin2b in hippocampus, compared with grouped rats. Associations between mRNA/protein and DNA methylation were found for both brain areas. Conclusion: This study indicates that epigenetic DNA methylation may underlie N-methyl-D-aspartate receptor mRNA/protein expression alterations caused by isolation rearing.
Collapse
Affiliation(s)
- Camila Marcelino Loureiro
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Helene Aparecida Fachim
- Department of Endocrinology & Metabolism, Salford Royal Foundation Trust, Salford, UK.,Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Fabiana Corsi-Zuelli
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Rosana Shuhama
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Paulo Rossi Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Cristina Marta Del-Ben
- Department of Neurosciences & Behaviour, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Paulo Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology. Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
229
|
Memory Impairments and Psychosis Prediction: A Scoping Review and Theoretical Overview. Neuropsychol Rev 2020; 30:521-545. [PMID: 33226539 DOI: 10.1007/s11065-020-09464-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Impairments in memory functions are among the most robust correlates of schizophrenia and of poor functional outcomes in individuals with psychotic disorders. Prospective, longitudinal studies are crucial to determining the meaning of these deficits in relation to mechanisms associated with the onset and course of these disorders.The objective of this review is to examine the literature concerning premorbid memory impairments during the prodromal phase of psychosis to address three primary questions 1) are memory impairments present among individuals with a clinical high risk syndrome? 2) are memory deficits in clinical high risk cases predictive of future conversion to psychosis? and 3) what are the underlying neural correlates of memory impairment in clinical high risk individuals and are they also predictive of future conversion?PubMed and Google Scholar databases were systematically searched. The primary inclusion criteria were to select studies that 1) were original research articles published in a peer-reviewed journal in the past 25 years, 2) studied subjects at clinical high risk for psychosis or in the prodromal phase of illness, and 3) included examinations into verbal memory performance in those at clinical high risk for psychosis.64 articles were identified and screened for eligibility. The review included 34 studies investigating verbal memory impairment in clinical high risk individuals compared to controls. The average effect size of verbal learning total recall was .58, indicating a moderate level of impairment in verbal learning among individuals at clinical high risk for psychosis as compared to healthy controls. Of studies that predicted time to conversion, indices of memory, particularly declarative and verbal working memory, were especially predictive of future conversion. Finally, when examining investigations of the neural correlates of memory dysfunction in the clinical high risk state, findings suggest altered activation and functional connectivity among medial temporal lobe regions may underlie differences in memory performance between clinical high risk individuals and healthy controls.Findings to date strongly indicate that memory impairments are present during the premorbid phase of psychosis and that verbal memory impairment in particular is predictive of future conversion to psychosis. Evidence from fMRI studies is fairly consistent in showing greater activation of memory-related regions during retrieval among clinical high risk cases who convert, with less consistent evidence of altered functional connectivity in the encoding phase. These findings support the use of verbal learning and memory measures in the psychosis prediction and prevention field.
Collapse
|
230
|
Usiello A, Di Fiore MM, De Rosa A, Falvo S, Errico F, Santillo A, Nuzzo T, Chieffi Baccari G. New Evidence on the Role of D-Aspartate Metabolism in Regulating Brain and Endocrine System Physiology: From Preclinical Observations to Clinical Applications. Int J Mol Sci 2020; 21:E8718. [PMID: 33218144 PMCID: PMC7698810 DOI: 10.3390/ijms21228718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.
Collapse
Affiliation(s)
- Alessandro Usiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Arianna De Rosa
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Francesco Errico
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy;
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Tommaso Nuzzo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| |
Collapse
|
231
|
Hunter D, Jamet Z, Groc L. Autoimmunity and NMDA receptor in brain disorders: Where do we stand? Neurobiol Dis 2020; 147:105161. [PMID: 33166697 DOI: 10.1016/j.nbd.2020.105161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Over the past decades, the identification of autoimmune encephalitis in which patients express autoantibodies directed against neurotransmitter receptors has generated great hope to shed new light on the molecular mechanisms underpinning neurological and psychiatric conditions. Among these autoimmune encephalitides, the discovery of autoantibodies directed against the glutamatergic NMDA receptor (NMDAR-Ab), in the anti-NMDAR encephalitis, has provided some key information on how complex neuropsychiatric symptoms can be caused by a deficit in NMDAR signalling. Yet, NMDAR-Abs have also been detected in several neurological and psychiatric conditions, as well as in healthy individuals. In addition, these various NMDAR-Abs appear to have different molecular properties and pathogenicities onto receptors and synaptic functions. Here, we discuss the current view on the variety of NMDAR-Abs and, in particular, how these autoantibodies can lead to receptor dysfunction in neuronal networks. Since our mechanistic understanding on patients' NMDAR-Abs is still in its infancy, several complementary processes can be proposed and further in-depth molecular and cellular investigations will surely reveal key insights. Autoantibodies represent a great opportunity to gain knowledge on the etiology of neuropsychiatric disorders and pave the way for innovative therapeutic strategies. ONE SENTENCE SUMMARY: Current view on patients' autoantibody against NMDAR.
Collapse
Affiliation(s)
- Daniel Hunter
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Zoe Jamet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Laurent Groc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France.
| |
Collapse
|
232
|
Yavas E, Young AM. Repeated phencyclidine disrupts nicotinic acetylcholine regulation of dopamine release in nucleus accumbens: Implications for models of schizophrenia. Neurochem Int 2020; 140:104836. [DOI: 10.1016/j.neuint.2020.104836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023]
|
233
|
Li P, Jing RX, Zhao RJ, Shi L, Sun HQ, Ding Z, Lin X, Lu L, Fan Y. Association between functional and structural connectivity of the corticostriatal network in people with schizophrenia and unaffected first-degree relatives. J Psychiatry Neurosci 2020; 45:395-405. [PMID: 32436671 PMCID: PMC7595738 DOI: 10.1503/jpn.190015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Dysfunction of the corticostriatal network has been implicated in the pathophysiology of schizophrenia, but findings are inconsistent within and across imaging modalities. We used multimodal neuroimaging to analyze functional and structural connectivity in the corticostriatal network in people with schizophrenia and unaffected first-degree relatives. METHODS We collected resting-state functional magnetic resonance imaging and diffusion tensor imaging scans from people with schizophrenia (n = 47), relatives (n = 30) and controls (n = 49). We compared seed-based functional and structural connectivity across groups within striatal subdivisions defined a priori. RESULTS Compared with controls, people with schizophrenia had altered connectivity between the subdivisions and brain regions in the frontal and temporal cortices and thalamus; relatives showed different connectivity between the subdivisions and the right anterior cingulate cortex (ACC) and the left precuneus. Post-hoc t tests revealed that people with schizophrenia had decreased functional connectivity in the ventral loop (ventral striatum-right ACC) and dorsal loop (executive striatum-right ACC and sensorimotor striatum-right ACC), accompanied by decreased structural connectivity; relatives had reduced functional connectivity in the ventral loop and the dorsal loop (right executive striatum-right ACC) and no significant difference in structural connectivity compared with the other groups. Functional connectivity among people with schizophrenia in the bilateral ventral striatum-right ACC was correlated with positive symptom severity. LIMITATIONS The number of relatives included was moderate. Striatal subdivisions were defined based on a relatively low threshold, and structural connectivity was measured based on fractional anisotropy alone. CONCLUSION Our findings provide insight into the role of hypoconnectivity of the ventral corticostriatal system in people with schizophrenia.
Collapse
Affiliation(s)
- Peng Li
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Ri-Xing Jing
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Rong-Jiang Zhao
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Le Shi
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Hong-Qiang Sun
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Zengbo Ding
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Xiao Lin
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Lin Lu
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| | - Yong Fan
- From the Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China (Li, Shi, Sun, Lin, Lu); the National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China (Jing); the University of Chinese Academy of Sciences, Beijing, China (Jing); the Department of Alcohol and Drug Dependence, Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China (Zhao); the National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China (Ding); the Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China (Lin, Lu); and the Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Fan)
| |
Collapse
|
234
|
Tryon VL, Garman HD, Loewy RL, Niendam TA. Links Between Human and Animal Models of Trauma and Psychosis: A Narrative Review. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:154-165. [PMID: 33309566 DOI: 10.1016/j.bpsc.2020.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
Traumatic experiences during development are associated with an increased risk of developing psychosis. Individuals with psychosis also report a higher rate of past trauma than healthy control subjects and worse outcomes than those who do not have these experiences. It is thought that traumatic experiences negatively impact specific neurobiological processes to confer this increased risk, and that systems affected by trauma are similarly changed in individuals with psychosis. Examining animal models of psychosis and the shared neurobiological changes in response to stressors can offer valuable insight into biological mechanisms that mediate symptoms and targets for intervention. This targeted review highlights a subset of models of psychosis across humans and animals, examines the similarities with the brain's response to stress and traumatic events, and discusses how these models may interact. Suggestions for future research are described.
Collapse
Affiliation(s)
- Valerie L Tryon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis
| | - Heather D Garman
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Rachel L Loewy
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis.
| |
Collapse
|
235
|
Kaya-Yertutanol FD, Uzbay İT, Çevreli B, Bolay-Belen H. Effect of gabapentin on sleep-deprivation-induced disruption of prepulse inhibition. Psychopharmacology (Berl) 2020; 237:2993-3006. [PMID: 32594186 DOI: 10.1007/s00213-020-05587-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
RATIONALE There are controversial reports on the effects of gabapentin in respect to psychotic symptoms. Prepulse inhibition of the acoustic startle response is an operational measure of sensorimotor gating. In laboratory rodents, deficits in sensorimotor gating are used to model behavioral endophenotypes of schizophrenia. Sleep deprivation disrupts prepulse inhibition and can be used as a psychosis model to evaluate effects of gabapentin. OBJECTIVES This study aimed to investigate behavioral effects of gabapentin in both naïve and sleep-deprived rats. METHODS Sleep deprivation was induced in male Wistar rats by using the modified multiple platform technique in a water tank for 72 h. The effect of water tank itself was studied in a sham group. The effects of oral acute and subchronic (4.5 days) gabapentin doses (25, 100, or 200 mg/kg/day) on sensorimotor gating and locomotor activity was evaluated by prepulse inhibition test and locomotor activity test, respectively. Plasma gabapentin levels of some groups and body weights of all groups were also assessed. RESULTS Sleep deprivation disrupted prepulse inhibition, increased locomotor activity, reduced gabapentin plasma levels, and body weights. Some gabapentin doses disrupted sensorimotor gating irrespective of sleep condition. Some gabapentin doses increased locomotor activity in non-sleep-deprived rats and decreased locomotor activity in sleep-deprived rats. On the contrary, gabapentin did not normalize sleep deprivation-induced disruption in sensorimotor gating. CONCLUSIONS Sleep deprivation via modified multiple platform technique could be used as an animal model for psychosis. Gabapentin may have dose- and duration-dependent effects on sensorimotor gating and locomotor activity.
Collapse
Affiliation(s)
- Fatma Duygu Kaya-Yertutanol
- Neuropsychopharmacology Practice and Research Center, Uskudar University, Haluk Türksoy Sokak No:14, Istanbul, 34662, Turkey.
| | - İ Tayfun Uzbay
- Neuropsychopharmacology Practice and Research Center, Uskudar University, Haluk Türksoy Sokak No:14, Istanbul, 34662, Turkey
| | - Burcu Çevreli
- Neuropsychopharmacology Practice and Research Center, Uskudar University, Haluk Türksoy Sokak No:14, Istanbul, 34662, Turkey
| | - Hayrunnisa Bolay-Belen
- Department of Neurology, Gazi University Faculty of Medicine, Mevlana Bulvarı No:29, Ankara, 06560, Turkey
| |
Collapse
|
236
|
Glutamatergic hypo-function in the left superior and middle temporal gyri in early schizophrenia: a data-driven three-dimensional proton spectroscopic imaging study. Neuropsychopharmacology 2020; 45:1851-1859. [PMID: 32403117 PMCID: PMC7608301 DOI: 10.1038/s41386-020-0707-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) studies have examined glutamatergic abnormalities in schizophrenia, mostly in single voxels. Though the critical brain nodes remain unknown, schizophrenia involves networks with broad abnormalities. Hence, glutamine plus glutamate (Glx) and other metabolites were examined with whole-brain 1H-MRS, in early schizophrenia. Three dimensional 1H-MRS was acquired in young schizophrenia subjects (N = 36, 19 antipsychotic-naïve and 17 antipsychotic-treated) and healthy controls (HC, N = 29). Glx (as well as N-acetylaspartate, choline, myo-inositol and creatine) group contrasts from all individual voxels that met spectral quality, were analyzed in common brain space, followed by cluster-corrected level alpha-value (CCLAV ≤ 0.05). Schizophrenia subjects had lower Glx in the left superior (STG) and middle temporal gyri (16 voxels, CCLAV = 0.04) and increased creatine in two clusters involving left temporal, parietal and occipital regions (32, and 18 voxels, CCLAV = 0.02 and 0.04, respectively). Antipsychotic-treated and naïve patients (vs HC) had similar Glx reductions (8/16 vs 10/16 voxels respectively, but CCLAV's > 0.05). However, creatine was higher in antipsychotic-treated vs HC's in a larger left hemisphere cluster (100 voxels, CCLAV = 0.01). Also in treated patients, choline was increased in left middle frontal gyrus (18 voxels, CCLAV = 0.04). Finally in antipsychotic-naive patients, NAA was reduced in right frontal gyri (19 voxels, CCLAV = 0.05) and myo-inositol was reduced in the left cerebellum (34 voxels, CCLAV = 0.02). We conclude that data-driven spectroscopic brain examination supports that reductions in Glx in the left STG may be critical to the pathophysiology of schizophrenia. Postmortem and neuromodulation schizophrenia studies focusing on left STG, may provide critical mechanistic and therapeutic advancements, respectively.
Collapse
|
237
|
Spronk M, Keane BP, Ito T, Kulkarni K, Ji JL, Anticevic A, Cole MW. A Whole-Brain and Cross-Diagnostic Perspective on Functional Brain Network Dysfunction. Cereb Cortex 2020; 31:547-561. [PMID: 32909037 DOI: 10.1093/cercor/bhaa242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/07/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
A wide variety of mental disorders have been associated with resting-state functional network alterations, which are thought to contribute to the cognitive changes underlying mental illness. These observations appear to support theories postulating large-scale disruptions of brain systems in mental illness. However, existing approaches isolate differences in network organization without putting those differences in a broad, whole-brain perspective. Using a graph distance approach-connectome-wide similarity-we found that whole-brain resting-state functional network organization is highly similar across groups of individuals with and without a variety of mental diseases. This similarity was observed across autism spectrum disorder, attention-deficit hyperactivity disorder, and schizophrenia. Nonetheless, subtle differences in network graph distance were predictive of diagnosis, suggesting that while functional connectomes differ little across health and disease, those differences are informative. These results suggest a need to reevaluate neurocognitive theories of mental illness, with a role for subtle functional brain network changes in the production of an array of mental diseases. Such small network alterations suggest the possibility that small, well-targeted alterations to brain network organization may provide meaningful improvements for a variety of mental disorders.
Collapse
Affiliation(s)
- Marjolein Spronk
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Brian P Keane
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.,Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Kaustubh Kulkarni
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
238
|
Wang K, Smolker HR, Brown MS, Snyder HR, Hankin BL, Banich MT. Association of γ-aminobutyric acid and glutamate/glutamine in the lateral prefrontal cortex with patterns of intrinsic functional connectivity in adults. Brain Struct Funct 2020; 225:1903-1919. [PMID: 32803293 PMCID: PMC8765125 DOI: 10.1007/s00429-020-02084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 05/04/2020] [Indexed: 01/04/2023]
Abstract
This study examined how levels of neurotransmitters in the lateral prefrontal cortex (LPFC), a region underlying higher-order cognition, are related to the brain's intrinsic functional organization. Using magnetic resonance spectroscopy (MRS), GABA+ and Glx (glutamate + glutamine) levels in the left dorsal (DLPFC) and left ventral (VLPFC) lateral prefrontal cortex were obtained in a sample of 64 female adults (mean age = 48.5). We measured intrinsic connectivity via resting-state fMRI in three ways: (a) via seed-based connectivity for each of the two spectroscopy voxels; (b) via the spatial configurations of 17 intrinsic networks defined by a well-known template; and (c) via examination of the temporal inter-relationships between these intrinsic networks. The results showed that different neurotransmitter indexes (Glx-specific, GABA+-specific, Glx-GABA+ average and Glx-GABA+ ratio) were associated with distinct patterns of intrinsic connectivity. Neurotransmitter levels in the left LPFC are mainly associated with connectivity of right hemisphere prefrontal (e.g., DLPFC) or striatal (e.g., putamen) regions, two areas of the brain connected to LPFC via large white matter tracts. While the directions of these associations were mixed, in most cases, higher Glx levels are related to reduced connectivity. Prefrontal neurotransmitter levels are also associated with the degree of connectivity between non-prefrontal regions. These results suggest robust relationships between the brain's intrinsic functional organization and local neurotransmitters in the LPFC which may be constrained by white matter neuroanatomy.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, No. 55 West Zhongshan Avenue, Guangzhou, 510631, Guangdong, China.
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA.
| | - Harry R Smolker
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, E230 Muenzinger Hall, UCB 345, Boulder, CO, 80309-0345, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80303, USA
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, 12401 E 17th Place, Aurora, CO, 80045, USA
| | - Hannah R Snyder
- Department of Psychology, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Benjamin L Hankin
- Psychology Department, University of Illinois-Urbana Champaign, 603 E. Daniel Street, Champaign, IL, 61820, USA
| | - Marie T Banich
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder, E230 Muenzinger Hall, UCB 345, Boulder, CO, 80309-0345, USA.
| |
Collapse
|
239
|
Donegan JJ, Lodge DJ. Stem Cells for Improving the Treatment of Neurodevelopmental Disorders. Stem Cells Dev 2020; 29:1118-1130. [PMID: 32008442 PMCID: PMC7469694 DOI: 10.1089/scd.2019.0265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment options for neurodevelopmental disorders such as schizophrenia and autism are currently limited. Antipsychotics used to treat schizophrenia are not effective for all patients, do not target all symptoms of the disease, and have serious adverse side effects. There are currently no FDA-approved drugs to treat the core symptoms of autism. In an effort to develop new and more effective treatment strategies, stem cell technologies have been used to reprogram adult somatic cells into induced pluripotent stem cells, which can be differentiated into neuronal cells and even three-dimensional brain organoids. This new technology has the potential to elucidate the complex mechanisms that underlie neurodevelopmental disorders, offer more relevant platforms for drug discovery and personalized medicine, and may even be used to treat the disease.
Collapse
Affiliation(s)
- Jennifer J. Donegan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daniel J. Lodge
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
240
|
Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia. Transl Psychiatry 2020; 10:305. [PMID: 32873780 PMCID: PMC7463024 DOI: 10.1038/s41398-020-00988-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder with a significant number of patients not adequately responding to treatment. Phencyclidine (PCP) is used as a validated model for schizophrenia, shown to reliably induce positive, negative and cognitive-like behaviors in rodents. It was previously shown in our lab that behavioral phenotypes of PCP-treated mice can be alleviated after intracranial transplantation of mesenchymal stem cells (MSC). Here, we assessed the feasibility of intranasal delivery of MSCs-derived-extracellular vesicles (EVs) to alleviate schizophrenia-like behaviors in a PCP model of schizophrenia. As MSCs-derived EVs were already shown to concentrate at the site of lesion in the brain, we determined that in PCP induced injury the EVs migrate to the prefrontal cortex (PFC) of treated mice, a most involved area of the brain in schizophrenia. We show that intranasal delivery of MSC-EVs improve social interaction and disruption in prepulse inhibition (PPI) seen in PCP-treated mice. In addition, immunohistochemical studies demonstrate that the EVs preserve the number of parvalbumin-positive GABAergic interneurons in the PFC of treated mice. Finally, MSCs-EVs reduced glutamate levels in the CSF of PCP-treated mice, which might explain the reduction of toxicity. In conclusion, we show that MSCs-EVs improve the core schizophrenia-like behavior and biochemical markers of schizophrenia and might be used as a novel treatment for this incurable disorder.
Collapse
|
241
|
Huang LC, Lin SH, Tseng HH, Chen KC, Yang YK. The integrated model of glutamate and dopamine hypothesis for schizophrenia: Prediction and personalized medicine for prevent potential treatment-resistant patients. Med Hypotheses 2020; 143:110159. [PMID: 32795840 DOI: 10.1016/j.mehy.2020.110159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/20/2022]
Abstract
Treatment-resistant schizophrenia (TRS) is one of the subgroups of schizophrenia of which little is known with regard to its optimal mechanism. Treatment response, either as full remission of symptoms or prediction by biomarker, is important in psychiatry. We have proposed a model that integrates dopaminergic and glutamatergic systems with the biological interactions of TRS patients. We hypothesize that the subgroups of schizophrenia may be determined by glutamatergic and dopaminergic concentrations prior to medical treatment. This hypothesis implies that higher glutamatergic concentration in the brain with normalized or decreased dopamine synthesis capacity may explain aspects of TRS as observed in clinical medical practice, neuroimaging measurements, and brain stimulations. According to this hypothesis, the ability to prescribe a proper medication combination, to predict the outcome in first-episode psychosis, and personalized medicine for chronic schizophrenia patients can be applied into practice. This represents an initial step in explaining psychosis due to the valence of two neurotransmitters. Future studies are needed to examine the validity of this mechanism.
Collapse
Affiliation(s)
- Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Chia-Yi Branch, Taichung Veteran General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan; Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
242
|
Hamilton HK, Boos AK, Mathalon DH. Electroencephalography and Event-Related Potential Biomarkers in Individuals at Clinical High Risk for Psychosis. Biol Psychiatry 2020; 88:294-303. [PMID: 32507388 PMCID: PMC8300573 DOI: 10.1016/j.biopsych.2020.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023]
Abstract
Clinical outcomes vary among youths at clinical high risk for psychosis (CHR-P), with approximately 20% progressing to full-blown psychosis over 2 to 3 years and 30% achieving remission. Recent research efforts have focused on identifying biomarkers that precede psychosis onset and enhance the accuracy of clinical outcome prediction in CHR-P individuals, with the ultimate goal of developing staged treatment approaches based on the individual's level of risk. Identifying such biomarkers may also facilitate progress toward understanding pathogenic mechanisms underlying psychosis onset, which may support the development of mechanistically informed early interventions for psychosis. In recent years, electroencephalography-based event-related potential measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its clinical outcomes. In this review, we describe the evidence for event-related potential abnormalities in CHR-P and discuss how they inform our understanding of information processing deficits as vulnerability markers for emerging psychosis and as indicators of future outcomes. Among the measures studied, P300 and mismatch negativity are notable because deficits predict conversion to psychosis and/or CHR-P remission. However, the accuracy with which these and other measures predict outcomes in CHR-P has been obscured in the prior literature by the tendency to only report group-level differences, underscoring the need for inclusion of individual predictive accuracy metrics in future studies. Nevertheless, both P300 and mismatch negativity show promise as electrophysiological markers of risk for psychosis, as target engagement measures for clinical trials, and as potential translational bridges between human studies and animal models focused on novel drug development for early psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California
| | - Alison K Boos
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California.
| |
Collapse
|
243
|
Neuroimmunological antibody-mediated encephalitis and implications for diagnosis and therapy in neuropsychiatry. Acta Neuropsychiatr 2020; 32:177-185. [PMID: 31791436 DOI: 10.1017/neu.2019.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The past decade has seen a surge of reports and investigations into cases of autoimmune-mediated encephalitis. The increasing recognition of these disorders is especially of relevance to the fields of neurology and psychiatry. Autoimmune encephalitis involves antibodies against synaptic receptors, neuronal cell surface proteins and intracellular targets. These disorders feature prominent symptoms of cognitive impairment and behavioural changes, often associated with the presence of seizures. Early in the clinical course, autoimmune encephalitis may manifest as psychiatric symptoms of psychosis and involve psychiatry as an initial point of contact. Although commonly associated with malignancy, these disorders can present in the absence of an inciting neoplasm. The identification of autoimmune encephalitis is of clinical importance as a large proportion of individuals experience a response to immunotherapy. This review focuses on the current state of knowledge on n-methyl-d-aspartate (NMDA) receptor-associated encephalitis and limbic encephalitis, the latter predominantly involving antibodies against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, the γ-aminobutyric acid (GABA)B receptor and leucine-rich glioma-inactivated 1 (LGI1) protein. In addition, we briefly describe anti-dopamine D2 receptor encephalitis. A summary of the literature will focus on common clinical presentations and course, diagnostic approaches and response to treatment. Since a substantial proportion of patients with autoimmune encephalitis exhibit symptoms of psychosis, the relevance of this disorder to theories of psychosis and schizophrenia will also be discussed.
Collapse
|
244
|
Lei G, Liu F, Liu P, Jiao T, Yang L, Chu Z, Deng LS, Li Y, Dang YH. Does genetic mouse model of constitutive Hint1 deficiency exhibit schizophrenia-like behaviors? Schizophr Res 2020; 222:304-318. [PMID: 32439293 DOI: 10.1016/j.schres.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is closely related to many neuropsychiatric disorders. Clinical studies supported that mutations in the Hint1 gene correlated potentially with schizophrenia. In addition, Hint1 gene knockout (KO) mice exhibited hyperactivity induced by amphetamine and apomorphine. However, it is still unclear whether this animal model exhibits schizophrenia-like behaviors and, if so, their underlying mechanisms remain to be elucidated. Thus, our study sought to evaluate schizophrenia-like behaviors in Hint1-KO mice, and explore the associated changes in neuronal structural plasticity and schizophrenia-related molecules. A series of behavioral tests were used to compare Hint1-KO and their wild-type (WT) littermates, alongside a number of morphological and molecular biological methods. Relative to WT mice, Hint1-KO mice exhibited reduced social interaction behaviors, aggressive behavior, sensorimotor gating deficits, apathetic and self-neglect behaviors, and increased MK-801-induced hyperactivity. Hint1-KO mice also showed partly increased dendritic complexity in the hippocampus (Hip) relative to WT mice. Total glutamate was decreased in the medial prefrontal cortex, nucleus accumbens (NAc), and Hip of KO mice. Expression of NR1, NR2A, and D4R was decreased whereas that of D1R was increased in the NAc of KO relative to WT mice. The expression level of NR2B was increased whereas that of D1R was decreased in the Hip of KO mice. Hint1-KO mice exhibited schizophrenia-like behaviors. Partly increased dendritic complexity and dysfunction in both the dopaminergic and glutamatergic systems may be involved in the abnormalities in Hint1-KO mice.
Collapse
Affiliation(s)
- Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Fei Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Tong Jiao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Liu Yang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zheng Chu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Li-Sha Deng
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
245
|
Roman C, Egert L, Di Benedetto B. Astrocytic-neuronal crosstalk gets jammed: Alternative perspectives on the onset of neuropsychiatric disorders. Eur J Neurosci 2020; 54:5717-5729. [PMID: 32644273 DOI: 10.1111/ejn.14900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/09/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Investigating interactions of glia cells and synapses during development and in adulthood is the focus of several research programmes which aim at understanding the neurobiology of brain physiological and pathological processes. Both glia-specific released and membrane-bound proteins play essential roles in the development, maintenance and functionality of synaptic connections. Alterations in synaptic contacts in specific brain areas are hallmarks of several brain diseases, such as major depressive disorder, autism spectrum disorder and schizophrenia. Thus, a deeper knowledge about putative astrocyte dysfunctions which might affect the synaptic compartment is warranted to improve treatment options. Here, we present the latest advances about the role of glia cells in orchestrating the arrangement of synapses and neuronal networks in physiological and pathological states. We specifically focus on the role of astrocytes in the phagocytosis of neuronal synapses as a novel mechanism which drives the refinement of neuronal circuits and might be affected in pathological conditions. Finally, we propose this astrocyte-dependent mechanism as a putative alternative target of pharmacological interventions for the treatment of brain disorders.
Collapse
Affiliation(s)
- Celia Roman
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Luisa Egert
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
246
|
Onaolapo AY, Onaolapo OJ. Dietary glutamate and the brain: In the footprints of a Jekyll and Hyde molecule. Neurotoxicology 2020; 80:93-104. [PMID: 32687843 DOI: 10.1016/j.neuro.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Glutamate is a crucial neurotransmitter of the mammalian central nervous system, a molecular component of our diet, and a popular food-additive. However, for decades, concerns have been raised about the issue of glutamate's safety as a food additive; especially, with regards to its ability (or otherwise) to cross the blood-brain barrier, cause excitotoxicity, or lead to neuron death. Results of animal studies following glutamate administration via different routes suggest that an array of effects can be observed. While some of the changes appear deleterious, some are not fully-understood, and the impact of others might even be beneficial. These observations suggest that with regards to the mammalian brain, exogenous glutamate might exert a double-sided effect, and in essence be a two-faced molecule whose effects may be dependent on several factors. This review draws from the research experiences of the authors and other researchers regarding the effects of exogenous glutamate on the brain of rodents. We also highlight the possible implications of such effects on the brain, in health and disease. Finally, we deduce that beyond the culinary effects of exogenous glutamate, there is the possibility of a beneficial role in the understanding and management of brain disorders.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| |
Collapse
|
247
|
Flaherty E, Maniatis T. The role of clustered protocadherins in neurodevelopment and neuropsychiatric diseases. Curr Opin Genet Dev 2020; 65:144-150. [PMID: 32679536 DOI: 10.1016/j.gde.2020.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
During development, individual neurons extend highly branched arbors that innervate the surrounding territory, enabling the formation of appropriate synaptic connections. The clustered protocadherins (cPCDH), a family of diverse cell-surface homophilic proteins, provide each neuron with a cell specific identity required for distinguishing between self versus non-self. While only 52 unique cPcdh isoforms are encoded in the human genome, a combination of stochastic promoter choice and the formation of a protein lattice through engagement of adjacent cPCDH protein cis/trans-tetramers confer the high degree of cellular specificity required for self-recognition. Studies of mice bearing deletions of individual cPcdh gene clustees have identified deficits in circuit formation and behavior. In humans, single nucleotide variants scattered across the cPCDH locus have been identified, which associate with multiple neurodevelopmental disorders, including autism and schizophrenia. To advance our understanding of cPCDH stochastic choice and maintenance, function across cell types, and contribution to neuropsychiatric disease pathogenesis, hiPSC-based models have been developed. Ultimately, integration of human genetic data, biochemical assays, and functional studies is needed to uncover the mechanism underlying neurite repulsion, which has been implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Erin Flaherty
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, United States; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, United States
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, United States; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, United States; New York Genome Center, New York, NY 10013, United States.
| |
Collapse
|
248
|
Epplin MP, Mohan A, Harris LD, Zhu Z, Strong KL, Bacsa J, Le P, Menaldino DS, Traynelis SF, Liotta DC. Discovery of Dihydropyrrolo[1,2- a]pyrazin-3(4 H)-one-Based Second-Generation GluN2C- and GluN2D-Selective Positive Allosteric Modulators (PAMs) of the N-Methyl-d-Aspartate (NMDA) Receptor. J Med Chem 2020; 63:7569-7600. [PMID: 32538088 DOI: 10.1021/acs.jmedchem.9b01733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an ion channel that mediates the slow, Ca2+-permeable component of glutamatergic synaptic transmission in the central nervous system (CNS). NMDARs are known to play a significant role in basic neurological functions, and their dysfunction has been implicated in several CNS disorders. Herein, we report the discovery of second-generation GluN2C/D-selective NMDAR-positive allosteric modulators (PAMs) with a dihydropyrrolo[1,2-a]pyrazin-3(4H)-one core. The prototype, R-(+)-EU-1180-453, exhibits log unit improvements in the concentration needed to double receptor response, lipophilic efficiency, and aqueous solubility, and lowers cLogP by one log unit compared to the first-generation prototype CIQ. Additionally, R-(+)-EU-1180-453 was found to increase glutamate potency 2-fold, increase the response to maximally effective concentration of agonist 4-fold, and the racemate is brain-penetrant. These compounds are useful second-generation in vitro tools and a promising step toward in vivo tools for the study of positive modulation of GluN2C- and GluN2D-containing NMDA receptors.
Collapse
Affiliation(s)
- Matthew P Epplin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ayush Mohan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lynnea D Harris
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Zongjian Zhu
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Katie L Strong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Phuong Le
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - David S Menaldino
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
249
|
Martínez-Pinteño A, García-Cerro S, Mas S, Torres T, Boloc D, Rodríguez N, Lafuente A, Gassó P, Arnaiz JA, Parellada E. The positive allosteric modulator of the mGlu2 receptor JNJ-46356479 partially improves neuropathological deficits and schizophrenia-like behaviors in a postnatal ketamine mice model. J Psychiatr Res 2020; 126:8-18. [PMID: 32407891 DOI: 10.1016/j.jpsychires.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Current antipsychotics have limited efficacy in controlling cognitive and negative symptoms of schizophrenia (SZ). Glutamatergic dysregulation has been implicated in the pathophysiology of SZ, based on the capacity of N-methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine (KET) to induce SZ-like behaviors. This could be related to their putative neuropathological effect on gamma-aminobutyric (GABAergic) interneurons expressing parvalbumin (PV), which would lead to a hyperglutamatergic condition. Metabotropic glutamate receptor 2 (mGluR2) negatively modulates glutamate release and has been considered a potential clinical target for novel antipsychotics drugs. Our aim was to evaluate the efficacy of JNJ-46356479 (JNJ), a positive allosteric modulator (PAM) of the mGluR2, in reversing neuropathological and behavioral deficits induced in a postnatal KET mice model of SZ. These animals presented impaired spontaneous alternation in the Y-maze test, suggesting deficits in spatial working memory, and a decrease in social motivation and memory, assessed in both the Three-Chamber and the Five Trial Social Memory tests. Interestingly, JNJ treatment of adult mice partially reversed these deficits. Mice treated with KET also showed a reduction in PV+ in the mPFC and dentate gyrus together with an increase in c-Fos expression in this hippocampal area. Compared to the control group, mice treated with KET + JNJ showed a similar PV density and c-Fos activity pattern. Our results suggest that pharmacological treatment with a PAM of the mGluR2 such as JNJ could help improve cognitive and negative symptoms related to SZ.
Collapse
Affiliation(s)
| | - Susana García-Cerro
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Torres
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Joan Albert Arnaiz
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Clinical Pharmacology Department, Hospital Clínic de Barcelona, Spain.
| | - Eduard Parellada
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Department of Medicine, University of Barcelona, Spain; Barcelona Clinic Schizophrenia Unit (BCSU), Institute of Neuroscience, Hospital Clinic of Barcelona, University of Barcelona, Spain.
| |
Collapse
|
250
|
Neural memory plasticity for medical anomaly detection. Neural Netw 2020; 127:67-81. [DOI: 10.1016/j.neunet.2020.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/18/2020] [Accepted: 04/12/2020] [Indexed: 11/18/2022]
|