201
|
van der Meulen M, Rischer KM, González Roldán AM, Terrasa JL, Montoya P, Anton F. Age-related differences in functional connectivity associated with pain modulation. Neurobiol Aging 2024; 140:1-11. [PMID: 38691941 DOI: 10.1016/j.neurobiolaging.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Growing evidence suggests that aging is associated with impaired endogenous pain modulation, and that this likely underlies the increased transition from acute to chronic pain in older individuals. Resting-state functional connectivity (rsFC) offers a valuable tool to examine the neural mechanisms behind these age-related changes in pain modulation. RsFC studies generally observe decreased within-network connectivity due to aging, but its relevance for pain modulation remains unknown. We compared rsFC within a set of brain regions involved in pain modulation between young and older adults and explored the relationship with the efficacy of distraction from pain. This revealed several age-related increases and decreases in connectivity strength. Importantly, we found a significant association between lower pain relief and decreased strength of three connections in older adults, namely between the periaqueductal gray and right insula, between the anterior cingulate cortex (ACC) and right insula, and between the ACC and left amygdala. These findings suggest that the functional integrity of the pain control system is critical for effective pain modulation, and that its function is compromised by aging.
Collapse
Affiliation(s)
- Marian van der Meulen
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg.
| | - Katharina M Rischer
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| | - Ana María González Roldán
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Juan Lorenzo Terrasa
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Pedro Montoya
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Fernand Anton
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| |
Collapse
|
202
|
Zhang X, Wu B, Yang X, Kemp GJ, Wang S, Gong Q. Abnormal large-scale brain functional network dynamics in social anxiety disorder. CNS Neurosci Ther 2024; 30:e14904. [PMID: 39107947 PMCID: PMC11303268 DOI: 10.1111/cns.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
AIMS Although static abnormalities of functional brain networks have been observed in patients with social anxiety disorder (SAD), the brain connectome dynamics at the macroscale network level remain obscure. We therefore used a multivariate data-driven method to search for dynamic functional network connectivity (dFNC) alterations in SAD. METHODS We conducted spatial independent component analysis, and used a sliding-window approach with a k-means clustering algorithm, to characterize the recurring states of brain resting-state networks; then state transition metrics and FNC strength in the different states were compared between SAD patients and healthy controls (HC), and the relationship to SAD clinical characteristics was explored. RESULTS Four distinct recurring states were identified. Compared with HC, SAD patients demonstrated higher fractional windows and mean dwelling time in the highest-frequency State 3, representing "widely weaker" FNC, but lower in States 2 and 4, representing "locally stronger" and "widely stronger" FNC, respectively. In State 1, representing "widely moderate" FNC, SAD patients showed decreased FNC mainly between the default mode network and the attention and perceptual networks. Some aberrant dFNC signatures correlated with illness duration. CONCLUSION These aberrant patterns of brain functional synchronization dynamics among large-scale resting-state networks may provide new insights into the neuro-functional underpinnings of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xun Yang
- School of Public AffairsChongqing UniversityChongqingChina
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical SciencesUniversity of LiverpoolLiverpoolUK
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamenChina
| |
Collapse
|
203
|
Zhang S, Zhao M, Sun J, Wen J, Li M, Wang C, Xu Q, Wang J, Sun X, Cheng L, Xue X, Wang X, Jia X. Alterations in degree centrality and functional connectivity in tension-type headache: a resting-state fMRI study. Brain Imaging Behav 2024; 18:819-829. [PMID: 38512647 DOI: 10.1007/s11682-024-00875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Previous studies have provided evidence of structural and functional changes in the brains of patients with tension-type headache (TTH). However, investigations of functional connectivity alterations in TTH have been inconclusive. The present study aimed to investigate abnormal intrinsic functional connectivity patterns in patients with TTH through the voxel-wise degree centrality (DC) method as well as functional connectivity (FC) analysis. A total of 33 patients with TTH and 30 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning and were enrolled in the final study. The voxel-wise DC method was performed to quantify abnormalities in the local functional connectivity hubs. Nodes with abnormal DC were used as seeds for further FC analysis to evaluate alterations in functional connectivity patterns. In addition, correlational analyses were performed between abnormal DC and FC values and clinical features. Compared with HCs, patients with TTH had higher DC values in the left middle temporal gyrus (MTG.L) and lower DC values in the left anterior cingulate and paracingulate gyri (ACG.L) (GRF, voxel-wise p < 0.05, cluster-wise p < 0.05, two-tailed). Seed-based FC analyses revealed that patients with TTH showed greater connections between ACG.L and the right cerebellum lobule IX (CR-IX.R), and smaller connections between ACG.L and ACG.L. The MTG.L showed increased FC with the ACG.L, and decreased FC with the right caudate nucleus (CAU.R) and left precuneus (PCUN.L) (GRF, voxel-wise p < 0.05, cluster-wise p < 0.05, two-tailed). Additionally, the DC value of the MTG.L was negatively correlated with the DASS-depression score (p = 0.046, r=-0.350). This preliminary study provides important insights into the pathophysiological mechanisms of TTH.
Collapse
Affiliation(s)
- Shuxian Zhang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
| | - Mengqi Zhao
- School of Teacher Education, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiazhang Sun
- Ophthalmologic Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
| | - Jianjie Wen
- School of Teacher Education, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Chao Wang
- Basic Support Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
| | - Qinyan Xu
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
| | - Jili Wang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Xihe Sun
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China
| | - Xiaomeng Xue
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, Shandong Province, 266580, China.
| | - Xizhen Wang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China.
| | - Xize Jia
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261031, China.
| |
Collapse
|
204
|
Hajebrahimi F, Sangoi A, Scheiman M, Santos E, Gohel S, Alvarez TL. From convergence insufficiency to functional reorganization: A longitudinal randomized controlled trial of treatment-induced connectivity plasticity. CNS Neurosci Ther 2024; 30:e70007. [PMID: 39185637 PMCID: PMC11345633 DOI: 10.1111/cns.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
INTRODUCTION Convergence Insufficiency (CI) is the most prevalent oculomotor dysfunction of binocular vision that negatively impacts quality of life when performing visual near tasks. Decreased resting-state functional connectivity (RSFC) is reported in the CI participants compared to binocularly normal control participants. Studies report that therapeutic interventions such as office-based vergence and accommodative therapy (OBVAT) can improve CI participants' clinical signs, visual symptoms, and task-related functional activity. However, longitudinal studies investigating the RSFC changes after such treatments in participants with CI have not been conducted. This study aimed to investigate the neural basis of OBVAT using RSFC in CI participants compared to the placebo treatment to understand how OBVAT improves visual function and symptoms. METHODS A total of 51 CI participants between 18 and 35 years of age were included in the study and randomly allocated to receive either 12 one-hour sessions of OBVAT or placebo treatment for 6 to 8 weeks (1 to 2 sessions per week). Resting-state functional magnetic resonance imaging and clinical assessments were evaluated at baseline and outcome for each treatment group. Region of interest (ROI) analysis was conducted in nine ROIs of the oculomotor vergence network, including the following: cerebellar vermis (CV), frontal eye fields (FEF), supplementary eye fields (SEF), parietal eye fields (PEF), and primary visual cortices (V1). Paired t-tests assessed RSFC changes in each group. A linear regression analysis was conducted for significant ROI pairs in the group-level analysis for correlations with clinical measures. RESULTS Paired t-test results showed increased RSFC in 10 ROI pairs after the OBVAT but not placebo treatment (p < 0.05, false discovery rate corrected). These ROI pairs included the following: Left (L)-SEF-Right (R)-V1, L-SEF-CV, R-SEF-R-PEF, R-SEF-L-V1, R-SEF-R-V1, R-SEF-CV, R-PEF-CV, L-V1-CV, R-V1-CV, and L-V1-R-V1. Significant correlations were observed between the RSFC strength of the R-SEF-R-PEF ROI pair and the following clinical visual function parameters: positive fusional vergence and near point of convergence (p < 0.05). CONCLUSION OBVAT, but not placebo treatment, increased the RSFC in the ROIs of the oculomotor vergence network, which was correlated with the improvements in the clinical measures of the CI participants.
Collapse
Affiliation(s)
- Farzin Hajebrahimi
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Ayushi Sangoi
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Mitchell Scheiman
- Pennsylvania College of OptometrySalus UniversityPhiladelphiaPennsylvaniaUSA
| | - Elio Santos
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Suril Gohel
- Department of Health InformaticsRutgers University School of Health ProfessionsNewarkNew JerseyUSA
| | - Tara L. Alvarez
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
205
|
Hu W, Ran X, Wu Z, Zhu H, Kou Y, Zhang S, Yang G, Li W, Yang Y, Lv L, Zhang Y. Short-term antipsychotic treatment reduces functional connectivity of the striatum in first-episode drug-naïve early-onset schizophrenia. Schizophr Res 2024; 270:281-288. [PMID: 38944974 DOI: 10.1016/j.schres.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND The striatum is thought to play a critical role in the pathophysiology and antipsychotic treatment of schizophrenia. Previous studies have revealed abnormal functional connectivity (FC) of the striatum in early-onset schizophrenia (EOS) patients. However, no prior studies have examined post-treatment changes of striatal FC in EOS patients. METHODS We recruited 49 first-episode drug-naïve EOS patients to have resting-state functional magnetic resonance imaging scans at baseline and after 8 weeks of treatment with antipsychotics, along with baseline scanning of 34 healthy controls (HCs) for comparison purposes. We examined the FC values between each seed in striatal subregion and the rest of the brain. The Positive and Negative Syndrome Scale (PANSS) was applied to measure psychiatric symptoms in patients. RESULTS Compared with HCs at baseline, EOS patients exhibited weaker FC of striatal subregions with several brain regions of the salience network and default mode network. Meanwhile, FC between the dorsal caudal putamen (DCP) and left supplementary motor area, as well as between the DCP and right postcentral gyrus, was negatively correlated with PANSS negative scores. Furthermore, after 8 weeks of treatment, EOS patients showed decreased FC between subregions of the putamen and the triangular part of inferior frontal gyrus, middle frontal gyrus, supramarginal gyrus and inferior parietal lobule. CONCLUSIONS Decreased striatal FC is evident, even in the early stages of schizophrenia, and enhance our understanding of the neurodevelopmental abnormalities in schizophrenia. The findings also demonstrate that reduced striatal FC occurs after antipsychotic therapy, indicating that antipsychotic effects need to be accounted for when considering striatal FC abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Wenyan Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoyang Wu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Hanyu Zhu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yanna Kou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Sen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Ge Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China.
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China.
| |
Collapse
|
206
|
Li J, Wang S, Du T, Tang J, Yang J. Identifying the Shared and Dissociable Neural Bases between Self-Worth and Moral Ambivalence. Brain Sci 2024; 14:736. [PMID: 39061476 PMCID: PMC11274856 DOI: 10.3390/brainsci14070736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Self-ambivalence, a prevalent phenomenon in daily life, has been increasingly substantiated by research. It refers to conflicting self-views and evaluations, primarily concerning self-worth and morality. Previous behavioral research has distinguished self-worth and moral ambivalence, but it remains unclear whether they have separable neural bases. The present study addressed this question by examining resting-state brain activity (i.e., the fractional amplitude of low-frequency fluctuations, fALFF) and connectivity (i.e., resting-state functional connectivity, RSFC) in 112 college students. The results found that self-worth ambivalence was positively related to the fALFF in the orbitofrontal cortex (OFC) and left superior parietal lobule (SPL). The RSFC strength between the SPL and precuneus/posterior cingulate cortex (PCC) was positively related to self-worth ambivalence. Moral ambivalence was positively associated with the fALFF in the left SPL (extending into the temporoparietal junction) and right SPL. The RSFC strengths between the left SPL/TPJ and OFC, as well as the RSFC strengths between the right SPL as a seed and the bilateral middle and inferior temporal gyrus, were associated with moral ambivalence. Overall, the neural bases of self-worth and moral ambivalence are associated with the SPL and OFC, involved in attentional alertness and value representation, respectively. Additionally, the neural basis of moral ambivalence is associated with the TPJ, responsible for mentalizing.
Collapse
Affiliation(s)
- Jiwen Li
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| | - Shuai Wang
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| | - Tengfei Du
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| | - Jianchao Tang
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, No. 2 Tiansheng Street, Beibei District, Chongqing 400715, China; (J.L.); (S.W.); (T.D.); (J.T.)
- Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China
| |
Collapse
|
207
|
Broggini T, Duckworth J, Ji X, Liu R, Xia X, Mächler P, Shaked I, Munting LP, Iyengar S, Kotlikoff M, van Veluw SJ, Vergassola M, Mishne G, Kleinfeld D. Long-wavelength traveling waves of vasomotion modulate the perfusion of cortex. Neuron 2024; 112:2349-2367.e8. [PMID: 38781972 PMCID: PMC11257831 DOI: 10.1016/j.neuron.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Brain arterioles are active, multicellular complexes whose diameters oscillate at ∼ 0.1 Hz. We assess the physiological impact and spatiotemporal dynamics of vaso-oscillations in the awake mouse. First, vaso-oscillations in penetrating arterioles, which source blood from pial arterioles to the capillary bed, profoundly impact perfusion throughout neocortex. The modulation in flux during resting-state activity exceeds that of stimulus-induced activity. Second, the change in perfusion through arterioles relative to the change in their diameter is weak. This implies that the capillary bed dominates the hydrodynamic resistance of brain vasculature. Lastly, the phase of vaso-oscillations evolves slowly along arterioles, with a wavelength that exceeds the span of the cortical mantle and sufficient variability to establish functional cortical areas as parcels of uniform phase. The phase-gradient supports traveling waves in either direction along both pial and penetrating arterioles. This implies that waves along penetrating arterioles can mix, but not directionally transport, interstitial fluids.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Goethe University Frankfurt, Department of Neurosurgery, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Jacob Duckworth
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyue Xia
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Philipp Mächler
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Iftach Shaked
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leon Paul Munting
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael Kotlikoff
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Gal Mishne
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
208
|
Sun Y, Xie A, Fang Y, Chen H, Li L, Tang J, Liao Y. Altered insular functional activity among electronic cigarettes users with nicotine dependence. Transl Psychiatry 2024; 14:293. [PMID: 39019862 PMCID: PMC11255336 DOI: 10.1038/s41398-024-03007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Electronic cigarettes (e-cigs) use, especially among youngsters, has been on the rise in recent years. However, little is known about the long-term effects of the use of e-cigs on brain functional activity. We acquired the resting-state functional magnetic resonance imaging (rs-fMRI) data from 93 e-cigs users with nicotine dependence and 103 health controls (HC). The local synchronization was analyzed via the regional homogeneity (ReHo) method at voxel-wise level. The functional connectivity (FC) between the nucleus accumbens (NAcc), the ventral tegmental area (VTA), and the insula was calculated at ROI-wise level. The support vector machining classification model based on rs-fMRI measures was used to identify e-cigs users from HC. Compared with HC, nicotine-dependent e-cigs users showed increased ReHo in the right rolandic operculum and the right insula (p < 0.05, FDR corrected). At the ROI-wise level, abnormal FCs between the NAcc, the VTA, and the insula were found in e-cigs users compared to HC (p < 0.05, FDR corrected). Correlation analysis found a significant negative correlation between ReHo in the left NAcc and duration of e-cigs use (r = -0.273, p = 0.008, FDR corrected). The following support vector machine model based on significant results of rs-fMRI successfully differentiates chronic e-cigs users from HC with an accuracy of 73.47%, an AUC of 0.781, a sensitivity of 67.74%, and a specificity of 78.64%. Dysregulated spontaneous activity and FC of addiction-related regions were found in e-cigs users with nicotine dependence, which provides crucial insights into the prevention of its initial use and intervention for quitting e-cigs.
Collapse
Affiliation(s)
- Yunkai Sun
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - An Xie
- Department of Radiology, The People's Hospital of Hunan Province, Changsha, Hunan, PR China
| | - Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Haobo Chen
- Department of Radiology, The People's Hospital of Hunan Province, Changsha, Hunan, PR China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
209
|
Fernández-García R, Melguizo-Ibáñez E, Zurita-Ortega F, Ubago-Jiménez JL. Development and validation of a mental hyperactivity questionnaire for the evaluation of chronic stress in higher education. BMC Psychol 2024; 12:392. [PMID: 39010177 PMCID: PMC11251370 DOI: 10.1186/s40359-024-01889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Examination and understanding of neural hyperactivity are some of the greatest scientific challenges faced in the present day. For this reason, the present study aimed to examine this phenomenon in the context of higher education. METHOD Likewise, this work will enable an instrument to be created to appropriately and reliably estimate neural hyperactivity associated with chronic stress in university students undertaking a Physiotherapy degree. RESULTS Analysis of content validity was carried out according to agreement and consensus between nineteen experts with Education Science or Psychology degrees, via the Delphi method. On the other hand, face validity was established by administering the questionnaire to a sample of 194 university students aged between 18 and 45 years (M = 30.48%; SD = 13.152). CONCLUSION The final self-report measure, denominated mental hyperactivity, was composed of 10 items which showed adequate fit with regards to face and content validity (α = 0.775). Confirmatory factor analysis confirmed that the questionnaire was unidimensional.
Collapse
Affiliation(s)
- Rubén Fernández-García
- Department of Nursing, Physiotherapy and Medicine, University of Almería, La Cañada de San Urbano, Carretera Sacramento s/n, Almería, 04120, Spain
| | - Eduardo Melguizo-Ibáñez
- Department of Didactics of Musical, Artistic and Corporal Expression, University of Granada, Granada, 18071, Spain.
| | - Félix Zurita-Ortega
- Department of Didactics of Musical, Artistic and Corporal Expression, University of Granada, Granada, 18071, Spain
| | - José Luis Ubago-Jiménez
- Department of Didactics of Musical, Artistic and Corporal Expression, University of Granada, Granada, 18071, Spain
| |
Collapse
|
210
|
Peng L, Su J, Hu D, Yu Y, Wei H, Li M. Measuring functional connectivity in frequency-domain helps to better characterize brain function. Hum Brain Mapp 2024; 45:e26726. [PMID: 38949487 PMCID: PMC11215841 DOI: 10.1002/hbm.26726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Resting-state functional connectivity (FC) is widely used in multivariate pattern analysis of functional magnetic resonance imaging (fMRI), including identifying the locations of putative brain functional borders, predicting individual phenotypes, and diagnosing clinical mental diseases. However, limited attention has been paid to the analysis of functional interactions from a frequency perspective. In this study, by contrasting coherence-based and correlation-based FC with two machine learning tasks, we observed that measuring FC in the frequency domain helped to identify finer functional subregions and achieve better pattern discrimination capability relative to the temporal correlation. This study has proven the feasibility of coherence in the analysis of fMRI, and the results indicate that modeling functional interactions in the frequency domain may provide richer information than that in the time domain, which may provide a new perspective on the analysis of functional neuroimaging.
Collapse
Affiliation(s)
- Limin Peng
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| | - Jianpo Su
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| | - Dewen Hu
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| | - Yang Yu
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| | - Huilin Wei
- Systems Engineering InstituteAcademy of Military SciencesBeijingChina
| | - Ming Li
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| |
Collapse
|
211
|
Subramaniyan M, Reifman J. Can electroencephalography reveal network connectivity alterations in insomnia disorder? Sleep 2024; 47:zsae111. [PMID: 38746993 DOI: 10.1093/sleep/zsae111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Affiliation(s)
- Manivannan Subramaniyan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| |
Collapse
|
212
|
Zhang X, Wang Y, Yang X, Yang Y. The spontaneous activities of the multiple demand network are related to individual differences in indirect replies comprehension. Behav Brain Res 2024; 469:115021. [PMID: 38692358 DOI: 10.1016/j.bbr.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
This study aims to investigate the brain networks engaged in the comprehension of indirect language, as well as the individual difference in this capacity. Specially, we aim to determine whether the difference is solely influenced by the difference in individuals' default network (DN)/language network or whether it also relies on the networks associated with processing of complex cognitive tasks, particularly the multiple demand network (MDN). Conversational indirectness scale (CIS) scores in the interpretation dimension were used as a behavioral indicator of the indirect comprehension tendency. Reading time difference between indirect replies and direct replies collected through a self-paced reading experiment was deemed as a behavioral indicator of comprehension speed of indirect replies comprehension. The two behavioral indicators were combined with resting-state functional magnetic resonance imaging (rs-fMRI). The behaviour-rfMRI analysis showed that ALFF value of right SPL and the functional connectivity (FC) between the right SPL and right IPL/SMA/ITG/Precuneus/bilateral IFG were positively correlated with the interpretation dimension of CIS scores. In addition, the ALFF value of right fusiform gyrus, the FC between the right fusiform gyrus and right precuneus, and the FCs between right SPL and right IPL/Precuneus/IFG were negatively correlated with indirect replies comprehension speed. Overlapping of these regions with large-scale brain network revealed that the right SPL was mainly located in the MDN, and the right fusiform gyrus was mainly located in the language network. Additionally, the areas showing functional connectivity with these regions were primarily located in the MDN, with a smaller subset located in the DN. Our findings suggest that the ability of individuals to actively and rapidly acquire indirect meaning relies not only on the support of the DN and the language network, but also requires collective support from the MDN.
Collapse
Affiliation(s)
- Xiuping Zhang
- School of Psychology, Beijing Language and Culture University, Beijing 100083, China
| | - Yizhu Wang
- School of Psychology, Beijing Language and Culture University, Beijing 100083, China
| | - Xiaohong Yang
- Department of Psychology, Renmin University of China, Beijing 100872, China; Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China.
| | - Yufang Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
213
|
Wu YH, Podvalny E, Levinson M, He BJ. Network mechanisms of ongoing brain activity's influence on conscious visual perception. Nat Commun 2024; 15:5720. [PMID: 38977709 PMCID: PMC11231278 DOI: 10.1038/s41467-024-50102-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Sensory inputs enter a constantly active brain, whose state is always changing from one moment to the next. Currently, little is known about how ongoing, spontaneous brain activity participates in online task processing. We employed 7 Tesla fMRI and a threshold-level visual perception task to probe the effects of prestimulus ongoing brain activity on perceptual decision-making and conscious recognition. Prestimulus activity originating from distributed brain regions, including visual cortices and regions of the default-mode and cingulo-opercular networks, exerted a diverse set of effects on the sensitivity and criterion of conscious recognition, and categorization performance. We further elucidate the mechanisms underlying these behavioral effects, revealing how prestimulus activity modulates multiple aspects of stimulus processing in highly specific and network-dependent manners. These findings reveal heretofore unknown network mechanisms underlying ongoing brain activity's influence on conscious perception, and may hold implications for understanding the precise roles of spontaneous activity in other brain functions.
Collapse
Affiliation(s)
- Yuan-Hao Wu
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ella Podvalny
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
- The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Max Levinson
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Biyu J He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
214
|
Wu X, Xu K, Li T, Wang L, Fu Y, Ma Z, Wu X, Wang Y, Chen F, Song J, Song Y, Lv Y. Abnormal intrinsic functional hubs and connectivity in patients with post-stroke depression. Ann Clin Transl Neurol 2024; 11:1852-1867. [PMID: 38775214 PMCID: PMC11251479 DOI: 10.1002/acn3.52091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate the specific alterations of brain networks in patients with post-stroke depression (PSD), and further assist in elucidating the brain mechanisms underlying the PSD which would provide supporting evidence for early diagnosis and interventions for the disease. METHODS Resting-state functional magnetic resonace imaging data were acquired from 82 nondepressed stroke patients (Stroke), 39 PSD patients, and 74 healthy controls (HC). Voxel-wise degree centrality (DC) conjoined with seed-based functional connectivity (FC) analyses were performed to investigate the PSD-related connectivity alterations. The relationship between these alterations and depression severity was further examined in PSD patients. RESULTS Relative to both Stroke and HC groups, (1) PSD showed increased centrality in regions within the default mode network (DMN), including contralesional angular gyrus (ANG), posterior cingulate cortex (PCC), and hippocampus (HIP). DC values in contralesional ANG positively correlated with the Patient Health Questionnaire-9 (PHQ-9) scores in PSD group. (2) PSD exhibited increased connectivity between these three seeds showing altered DC and regions within the DMN: bilateral medial prefrontal cortex and middle temporal gyrus and ipsilesional superior parietal gyrus, and regions outside the DMN: bilateral calcarine, ipsilesional inferior occipital gyrus and contralesional lingual gyrus, while decreased connectivity between contralesional ANG and contralesional supramarginal gyrus. Moreover, these FC alterations could predict PHQ-9 scores in PSD group. INTERPRETATION These findings highlight that PSD was related with increased functional connectivity strength in some areas within the DMN, which might be attribute to the specific alterations of connectivity between within DMN and outside DMN regions in PSD.
Collapse
Affiliation(s)
- Xiumei Wu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Kang Xu
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Tongyue Li
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| | - Luoyu Wang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
| | - Yanhui Fu
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Zhenqiang Ma
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Xiaoyan Wu
- Department of ImageAnshan Changda HospitalAnshanLiaoningChina
| | - Yiying Wang
- Department of UltrasonicsAnshan Changda HospitalAnshanLiaoningChina
| | - Fenyang Chen
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Jinyi Song
- III Department of Clinic MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yulin Song
- Department of NeurologyAnshan Changda HospitalAnshanLiaoningChina
| | - Yating Lv
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouZhejiangChina
| |
Collapse
|
215
|
Lewis AF, Bohnenkamp R, Myers M, den Ouden DB, Fritz SL, Stewart JC. Effect of positive social comparative feedback on the resting state connectivity of dopaminergic neural pathways: A preliminary investigation. Neurobiol Learn Mem 2024; 212:107930. [PMID: 38692391 DOI: 10.1016/j.nlm.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Positive social comparative feedback is hypothesized to generate a dopamine response in the brain, similar to reward, by enhancing expectancies to support motor skill learning. However, no studies have utilized neuroimaging to examine this hypothesized dopaminergic mechanism. Therefore, the aim of this preliminary study was to investigate the effect of positive social comparative feedback on dopaminergic neural pathways measured by resting state connectivity. Thirty individuals practiced an implicit, motor sequence learning task and were assigned to groups that differed in feedback type. One group received feedback about their actual response time to complete the task (RT ONLY), while the other group received feedback about their response time with positive social comparison (RT + POS). Magnetic resonance imaging was acquired at the beginning and end of repetitive motor practice with feedback to measure practice-dependent changes in resting state brain connectivity. While both groups showed improvements in task performance and increases in performance expectancies, ventral tegmental area and the left nucleus accumbens (mesolimbic dopamine pathway) resting state connectivity increased in the RT + POS group but not in the RT ONLY group. Instead, the RT ONLY group showed increased connectivity between ventral tegmental area and primary motor cortex. Positive social comparative feedback during practice of a motor sequence task may induce a dopaminergic response in the brain along the mesolimbic pathway. However, given that absence of effects on expectancies and motor learning, more robust and individualized approaches may be needed to provide beneficial psychological and behavioral effects.
Collapse
Affiliation(s)
- Allison F Lewis
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Rachel Bohnenkamp
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Makenzie Myers
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Dirk B den Ouden
- University of South Carolina, Department of Communication Sciences and Disorders, Columbia, SC, USA
| | - Stacy L Fritz
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | | |
Collapse
|
216
|
Zhao W, Zhu DM, Shen Y, Zhang Y, Chen T, Cai H, Zhu J, Yu Y. The protective effect of vitamin D supplementation as adjunctive therapy to antidepressants on brain structural and functional connectivity of patients with major depressive disorder: a randomized controlled trial. Psychol Med 2024; 54:2403-2413. [PMID: 38482853 DOI: 10.1017/s0033291724000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients. METHODS We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups. Data from diffusion tensor imaging, resting-state functional MRI, serum vitamin D concentration, and clinical symptoms were obtained at baseline and after an average of 7 months of intervention. RESULTS Both VD and NVD groups showed significant improvement in depression and anxiety symptoms but with no significant differences between the two groups. However, a greater increase in serum vitamin D concentration was found to be associated with greater improvement in depression and anxiety symptoms in VD group. More importantly, neuroimaging data demonstrated disrupted white matter integrity of right inferior fronto-occipital fasciculus along with decreased functional connectivity between right frontoparietal and medial visual networks after intervention in NVD group, but no changes in VD group. CONCLUSIONS These findings suggest that vitamin D supplementation as adjunctive therapy to antidepressants may not only contribute to improvement in clinical symptoms but also help preserve brain structural and functional connectivity in MDD patients.
Collapse
Affiliation(s)
- Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China
- Hefei Fourth People's Hospital, Hefei 230022, China
- Anhui Mental Health Center, Hefei 230022, China
| | - Yuhao Shen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China
- Hefei Fourth People's Hospital, Hefei 230022, China
- Anhui Mental Health Center, Hefei 230022, China
| | - Tao Chen
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China
- Hefei Fourth People's Hospital, Hefei 230022, China
- Anhui Mental Health Center, Hefei 230022, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| |
Collapse
|
217
|
Siffredi V, Liverani MC, Fernandez N, Freitas LGA, Borradori Tolsa C, Van De Ville D, Hüppi PS, Ha‐Vinh Leuchter R. Impact of a mindfulness-based intervention on neurobehavioral functioning and its association with large-scale brain networks in preterm young adolescents. Psychiatry Clin Neurosci 2024; 78:416-425. [PMID: 38757554 PMCID: PMC11488620 DOI: 10.1111/pcn.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
AIM Adolescents born very preterm (VPT; <32 weeks of gestation) face an elevated risk of executive, behavioral, and socioemotional difficulties. Evidence suggests beneficial effects of mindfulness-based intervention (MBI) on these abilities. This study seeks to investigate the association between the effects of MBI on executive, behavioral, and socioemotional functioning and reliable changes in large-scale brain networks dynamics during rest in VPT young adolescents who completed an 8-week MBI program. METHODS Neurobehavioral assessments and resting-state functional magnetic resonance imaging were performed before and after MBI in 32 VPT young adolescents. Neurobehavioral abilities in VPT participants were compared with full-term controls. In the VPT group, dynamic functional connectivity was extracted by using the innovation-driven coactivation patterns framework. The reliable change index was used to quantify change after MBI. A multivariate data-driven approach was used to explore associations between MBI-related changes on neurobehavioral measures and temporal brain dynamics. RESULTS Compared with term-born controls, VPT adolescents showed reduced executive and socioemotional functioning before MBI. After MBI, a significant improvement was observed for all measures that were previously reduced in the VPT group. The increase in executive functioning, only, was associated with reliable changes in the duration of activation of large-scale brain networks, including frontolimbic, amygdala-hippocampus, dorsolateral prefrontal, and visual networks. CONCLUSION The improvement in executive functioning after an MBI was associated with reliable changes in large-scale brain network dynamics during rest. These changes encompassed frontolimbic, amygdala-hippocampus, dorsolateral prefrontal, and visual networks that are related to different executive processes including self-regulation, attentional control, and attentional awareness of relevant sensory stimuli.
Collapse
Affiliation(s)
- Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
- Neuro‐X InstituteÉcole polytechnique fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical Informatics, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
- SensoriMotor, Affective and Social Development Laboratory, Faculty of Psychology and Educational SciencesUniversity of GenevaGenevaSwitzerland
| | - Natalia Fernandez
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Lorena G. A. Freitas
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
- Neuro‐X InstituteÉcole polytechnique fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical Informatics, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Dimitri Van De Ville
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
- Neuro‐X InstituteÉcole polytechnique fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical Informatics, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Petra Susan Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Russia Ha‐Vinh Leuchter
- Division of Development and Growth, Department of Paediatrics, Gynaecology and ObstetricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| |
Collapse
|
218
|
Han S, Zheng Q, Zheng Z, Su J, Liu X, Shi C, Li B, Zhang X, Zhang M, Yu Q, Hou Z, Li T, Zhang B, Lin Y, Wen G, Deng Y, Liu K, Xu K. Exosomal miR-1202 mediates Brodmann Area 44 functional connectivity changes in medication-free patients with major depressive disorder: An fMRI study. J Affect Disord 2024; 356:470-476. [PMID: 38608766 DOI: 10.1016/j.jad.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Previous large-sample postmortem study revealed that the expression of miR-1202 in brain tissues from Brodmann area 44 (BA44) was dysregulated in patients with major depressive disorder (MDDs). However, the specific in vivo neuropathological mechanism of miR-1202 as well as its interplay with BA44 circuits in the depressed brain are still unclear. Here, we performed a case-control study with imaging-genetic approach based on resting-state functional magnetic resonance imaging (MRI) data and miR-1202 quantification from 110 medication-free MDDs and 102 healthy controls. Serum-derived circulating exosomes that readily cross the blood-brain barrier were isolated to quantify miR-1202. For validation, repeated MR scans were performed after a six-week follow-up of antidepressant treatment on a cohort of MDDs. Voxelwise factorial analysis revealed two brain areas (including the striatal-thalamic region) in which the effect of depression on the functional connectivity with BA44 was significantly dependent on the expression level of exosomal miR-1202. Moreover, longitudinal change of the BA44 connectivity with the striatal-thalamic region in MDDs after antidepressant treatment was found to be significantly related to the level of miR-1202 expression. These findings revealed that the in vivo neuropathological effect of miR-1202 dysregulation in depression is possibly exerted by mediating neural functional abnormalities in BA44-striatal-thalamic circuits.
Collapse
Affiliation(s)
- Shuguang Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Research Center for Psychological Crisis Prevention and Intervention of College Students in Jiangsu Province, Jiangsu, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Qingtong Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Zixuan Zheng
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Su
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xiaohua Liu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Changzhou Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Bo Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xuanxuan Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Minghao Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ziwei Hou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ting Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Lin
- The Fifth Affiliated Hospital of Sun-Yat Sen University, Sun-Yat Sen University, Zhuhai, China; The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ge Wen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjia Deng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Research Center for Psychological Crisis Prevention and Intervention of College Students in Jiangsu Province, Jiangsu, China.
| | - Kai Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
219
|
Kashyap R, Holla B, Bhattacharjee S, Sharma E, Mehta UM, Vaidya N, Bharath RD, Murthy P, Basu D, Nanjayya SB, Singh RL, Lourembam R, Chakrabarti A, Kartik K, Kalyanram K, Kumaran K, Krishnaveni G, Krishna M, Kuriyan R, Kurpad SS, Desrivieres S, Purushottam M, Barker G, Orfanos DP, Hickman M, Heron J, Toledano M, Schumann G, Benegal V. Childhood adversities characterize the heterogeneity in the brain pattern of individuals during neurodevelopment. Psychol Med 2024; 54:2599-2611. [PMID: 38509831 DOI: 10.1017/s0033291724000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.
Collapse
Affiliation(s)
- Rajan Kashyap
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sagarika Bhattacharjee
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Eesha Sharma
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nilakshi Vaidya
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pratima Murthy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Debashish Basu
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Roshan Lourembam
- Department of Psychiatry, Regional Institute of Medical Sciences, Imphal, India
| | - Amit Chakrabarti
- Division of Mental Health, ICMR-Centre for Ageing and Mental Health, Kolkata, India
| | - Kamakshi Kartik
- Rishi Valley Rural Health Centre, Madanapalle, Chittoor, India
| | | | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Ghattu Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | - Murali Krishna
- Health Equity Cluster, Institute of Public Health, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St John's Research Institute, Bengaluru, India
| | - Sunita Simon Kurpad
- Department of Psychiatry & Department of Medical Ethics, St John's Research Institute, Bengaluru, India
| | - Sylvane Desrivieres
- SGDP Centre, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Meera Purushottam
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gareth Barker
- Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | | | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jon Heron
- Center for Public Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mireille Toledano
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vivek Benegal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
220
|
Bagdasarov A, Roberts K, Brunet D, Michel CM, Gaffrey MS. Exploring the Association Between EEG Microstates During Resting-State and Error-Related Activity in Young Children. Brain Topogr 2024; 37:552-570. [PMID: 38141125 PMCID: PMC11199242 DOI: 10.1007/s10548-023-01030-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the -64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same -64 to 108 ms period (i.e., error-related microstate 3), and to greater anxiety risk as measured by parent-reported behavioral inhibition. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.
Collapse
Affiliation(s)
- Armen Bagdasarov
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA.
| | - Kenneth Roberts
- Duke Institute for Brain Sciences, Duke University, 308 Research Drive, Durham, NC, USA
| | - Denis Brunet
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Michael S Gaffrey
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA
- Children's Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, WI, 53226, USA
- Medical College of Wisconsin, Division of Pediatric Psychology and Developmental Medicine, Department of Pediatrics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
221
|
Gao Z, Guan J, Yin S, Liu F. The role of ATP in sleep-wake regulation: In adenosine-dependent and -independent manner. Sleep Med 2024; 119:147-154. [PMID: 38678758 DOI: 10.1016/j.sleep.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/31/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
ATP plays a crucial role as an energy currency in the body's various physiological functions, including the regulation of the sleep-wake cycle. Evidence from genetics and pharmacology demonstrates a strong association between ATP metabolism and sleep. With the advent of new technologies such as optogenetics, genetically encoded biosensors, and novel ATP detection methods, the dynamic changes in ATP levels between different sleep states have been further uncovered. The classic mechanism for regulating sleep by ATP involves its conversion to adenosine, which increases sleep pressure when accumulated extracellularly. However, emerging evidence suggests that ATP can directly bind to P2 receptors and influence sleep-wake regulation through both adenosine-dependent and independent pathways. The outcome depends on the brain region where ATP acts and the expression type of P2 receptors. This review summarizes the experimental evidence on the relationship between ATP levels and changes in sleep states and outlines the mechanisms by which ATP is involved in regulating the sleep-wake cycle through both adenosine-dependent and independent pathways. Hopefully, this review will provide a comprehensive understanding of the current research basis and progress in this field and promote further investigations into the specific mechanisms of ATP in regulating sleep.
Collapse
Affiliation(s)
- Zhenfei Gao
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
222
|
Chhade F, Tabbal J, Paban V, Auffret M, Hassan M, Vérin M. Predicting creative behavior using resting-state electroencephalography. Commun Biol 2024; 7:790. [PMID: 38951602 PMCID: PMC11217288 DOI: 10.1038/s42003-024-06461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Neuroscience research has shown that specific brain patterns can relate to creativity during multiple tasks but also at rest. Nevertheless, the electrophysiological correlates of a highly creative brain remain largely unexplored. This study aims to uncover resting-state networks related to creative behavior using high-density electroencephalography (HD-EEG) and to test whether the strength of functional connectivity within these networks could predict individual creativity in novel subjects. We acquired resting state HD-EEG data from 90 healthy participants who completed a creative behavior inventory. We then employed connectome-based predictive modeling; a machine-learning technique that predicts behavioral measures from brain connectivity features. Using a support vector regression, our results reveal functional connectivity patterns related to high and low creativity, in the gamma frequency band (30-45 Hz). In leave-one-out cross-validation, the combined model of high and low networks predicts individual creativity with very good accuracy (r = 0.36, p = 0.00045). Furthermore, the model's predictive power is established through external validation on an independent dataset (N = 41), showing a statistically significant correlation between observed and predicted creativity scores (r = 0.35, p = 0.02). These findings reveal large-scale networks that could predict creative behavior at rest, providing a crucial foundation for developing HD-EEG-network-based markers of creativity.
Collapse
Affiliation(s)
- Fatima Chhade
- CIC-IT INSERM 1414, Université de Rennes, Rennes, France.
| | - Judie Tabbal
- Institute of Clinical Neurosciences of Rennes (INCR), Rennes, France
- MINDIG, Rennes, France
| | - Véronique Paban
- CRPN, CNRS-UMR 7077, Aix Marseille Université, Marseille, France
| | - Manon Auffret
- CIC-IT INSERM 1414, Université de Rennes, Rennes, France
- France Développement Électronique, Monswiller, France
| | - Mahmoud Hassan
- MINDIG, Rennes, France
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Marc Vérin
- CIC-IT INSERM 1414, Université de Rennes, Rennes, France
- B-CLINE, Laboratoire Interdisciplinaire pour l'Innovation et la Recherche en Santé d'Orléans (LI²RSO), Université d'Orléans, Orléans, France
| |
Collapse
|
223
|
Li W, Wang B, Yuan H, Chen J, Chen G, Wang Y, Wen S. Effects of acute aerobic exercise on resting state functional connectivity of motor cortex in college students. Sci Rep 2024; 14:14837. [PMID: 38937472 PMCID: PMC11211492 DOI: 10.1038/s41598-024-63140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
This study intends to inspect the effects of acute aerobic exercise (AE) on resting state functional connectivity (RSFC) in motor cortex of college students and the moderating effect of fitness level. METHODS 20 high fitness level college students and 20 ordinary college students were recruited in public. Subjects completed 25 min of moderate- and high-intensity acute aerobic exercise respectively by a bicycle ergometer, and the motor cortex's blood oxygen signals in resting state were monitored by functional Near Infrared Spectroscopy (fNIRS, the Shimadzu portable Light NIRS, Japan) in pre- and post-test. RESULTS At the moderate intensity level, the total mean value of RSFC pre- and post-test was significantly different in the high fitness level group (pre-test 0.62 ± 0.18, post-test 0.51 ± 0.17, t(19) = 2.61, p = 0.02, d = 0.58), but no significant change was found in the low fitness level group. At the high-intensity level, there was no significant difference in the difference of total RSFC between pre- and post-test in the high and low fitness group. According to and change trend of 190 "edges": at the moderate-intensity level, the number of difference edges in the high fitness group (d = 0.58, 23) were significantly higher than those in the low fitness group (d = 0.32, 15), while at high-intensity level, there was a reverse trend between the high fitness group (d = 0.25, 18) and the low fitness group (d = 0.39, 23). CONCLUSIONS moderate-intensity AE can cause significant changes of RSFC in the motor cortex of college students with high fitness, while high fitness has a moderating effect on the relationship between exercise intensity and RSFC. RSFC of people with high fitness is more likely to be affected by AE and show a wider range of changes.
Collapse
Affiliation(s)
- Wenyi Li
- Department of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Bingyang Wang
- Department of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Haoteng Yuan
- Department of Ideological, Political and General Education, Guangzhou Huashang Vocational College, Jiangmen, 529152, Guangdong, China
| | - Jun Chen
- Department of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Gonghe Chen
- Department of Physical Education, Changsha Medical University, Changsha, 410000, Hunan, China
| | - Yue Wang
- Department of Physical Education, North China Institute of Aerospace Engineering, Langfang, 065000, Hebei, China
| | - Shilin Wen
- Department of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, 100191, China.
| |
Collapse
|
224
|
Omidvarnia A, Sasse L, Larabi DI, Raimondo F, Hoffstaedter F, Kasper J, Dukart J, Petersen M, Cheng B, Thomalla G, Eickhoff SB, Patil KR. Individual characteristics outperform resting-state fMRI for the prediction of behavioral phenotypes. Commun Biol 2024; 7:771. [PMID: 38926486 PMCID: PMC11208538 DOI: 10.1038/s42003-024-06438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we aimed to compare imaging-based features of brain function, measured by resting-state fMRI (rsfMRI), with individual characteristics such as age, gender, and total intracranial volume to predict behavioral measures. We developed a machine learning framework based on rsfMRI features in a dataset of 20,000 healthy individuals from the UK Biobank, focusing on temporal complexity and functional connectivity measures. Our analysis across four behavioral phenotypes revealed that both temporal complexity and functional connectivity measures provide comparable predictive performance. However, individual characteristics consistently outperformed rsfMRI features in predictive accuracy, particularly in analyses involving smaller sample sizes. Integrating rsfMRI features with demographic data sometimes enhanced predictive outcomes. The efficacy of different predictive modeling techniques and the choice of brain parcellation atlas were also examined, showing no significant influence on the results. To summarize, while individual characteristics are superior to rsfMRI in predicting behavioral phenotypes, rsfMRI still conveys additional predictive value in the context of machine learning, such as investigating the role of specific brain regions in behavioral phenotypes.
Collapse
Affiliation(s)
- Amir Omidvarnia
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany.
| | - Leonard Sasse
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - Daouia I Larabi
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands
| | - Federico Raimondo
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Jan Kasper
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Jürgen Dukart
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Marvin Petersen
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| |
Collapse
|
225
|
Nick Q, Gale DJ, Areshenkoff C, De Brouwer A, Nashed J, Wammes J, Zhu T, Flanagan R, Smallwood J, Gallivan J. Reconfigurations of cortical manifold structure during reward-based motor learning. eLife 2024; 12:RP91928. [PMID: 38916598 PMCID: PMC11198988 DOI: 10.7554/elife.91928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Adaptive motor behavior depends on the coordinated activity of multiple neural systems distributed across the brain. While the role of sensorimotor cortex in motor learning has been well established, how higher-order brain systems interact with sensorimotor cortex to guide learning is less well understood. Using functional MRI, we examined human brain activity during a reward-based motor task where subjects learned to shape their hand trajectories through reinforcement feedback. We projected patterns of cortical and striatal functional connectivity onto a low-dimensional manifold space and examined how regions expanded and contracted along the manifold during learning. During early learning, we found that several sensorimotor areas in the dorsal attention network exhibited increased covariance with areas of the salience/ventral attention network and reduced covariance with areas of the default mode network (DMN). During late learning, these effects reversed, with sensorimotor areas now exhibiting increased covariance with DMN areas. However, areas in posteromedial cortex showed the opposite pattern across learning phases, with its connectivity suggesting a role in coordinating activity across different networks over time. Our results establish the neural changes that support reward-based motor learning and identify distinct transitions in the functional coupling of sensorimotor to transmodal cortex when adapting behavior.
Collapse
Affiliation(s)
- Qasem Nick
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Corson Areshenkoff
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Anouk De Brouwer
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Joseph Nashed
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Medicine, Queen's UniversityKingstonCanada
| | - Jeffrey Wammes
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Tianyao Zhu
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Randy Flanagan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jonny Smallwood
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jason Gallivan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| |
Collapse
|
226
|
Yin Y, Lyu X, Zhou J, Yu K, Huang M, Shen G, Hao C, Wang Z, Yu H, Gao B. Cerebral cortex functional reorganization in preschool children with congenital sensorineural hearing loss: a resting-state fMRI study. Front Neurol 2024; 15:1423956. [PMID: 38988601 PMCID: PMC11234816 DOI: 10.3389/fneur.2024.1423956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose How cortical functional reorganization occurs after hearing loss in preschool children with congenital sensorineural hearing loss (CSNHL) is poorly understood. Therefore, we used resting-state functional MRI (rs-fMRI) to explore the characteristics of cortical reorganization in these patents. Methods Sixty-three preschool children with CSNHL and 32 healthy controls (HCs) were recruited, and the Categories of Auditory Performance (CAP) scores were determined at the 6-month follow-up after cochlear implantation (CI). First, rs-fMRI data were preprocessed, and amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were calculated. Second, whole-brain functional connectivity (FC) analysis was performed using bilateral primary auditory cortex as seed points. Finally, Spearman correlation analysis was performed between the differential ALFF, ReHo and FC values and the CAP score. Results ALFF analysis showed that preschool children with CSNHL had lower ALFF values in the bilateral prefrontal cortex and superior temporal gyrus than HCs, but higher ALFF values in the bilateral thalamus and calcarine gyrus. And correlation analysis showed that some abnormal brain regions were weak negatively correlated with CAP score (p < 0.05). The ReHo values in the bilateral superior temporal gyrus, part of the prefrontal cortex and left insular gyrus were lower, whereas ReHo values in the bilateral thalamus, right caudate nucleus and right precentral gyrus were higher, in children with CSNHL than HCs. However, there was no correlation between ReHo values and the CAP scores (p < 0.05). Using primary auditory cortex (PAC) as seed-based FC further analysis revealed enhanced FC in the visual cortex, proprioceptive cortex and motor cortex. And there were weak negative correlations between the FC values in the bilateral superior temporal gyrus, occipital lobe, left postcentral gyrus and right thalamus were weakly negatively correlated and the CAP score (p < 0.05). Conclusion After auditory deprivation in preschool children with CSNHL, the local functions of auditory cortex, visual cortex, prefrontal cortex and somatic motor cortex are changed, and the prefrontal cortex plays a regulatory role in this process. There is functional reorganization or compensation between children's hearing and these areas, which may not be conducive to auditory language recovery after CI in deaf children.
Collapse
Affiliation(s)
- Yi Yin
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinyue Lyu
- Guizhou Medical University, Guiyang, China
| | - Jian Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunlin Yu
- The Key Laboratory for Chemistry of Natural Product of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guiquan Shen
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Cheng Hao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhengfu Wang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Yu
- Department of Radiology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China
| |
Collapse
|
227
|
Yan Y, Murphy TH. Decoding state-dependent cortical-cerebellar cellular functional connectivity in the mouse brain. Cell Rep 2024; 43:114348. [PMID: 38865245 DOI: 10.1016/j.celrep.2024.114348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
The cortex and cerebellum form multi-synaptic reciprocal connections. We investigate the functional connectivity between single spiking cerebellar neurons and the population activity of the mouse dorsal cortex using mesoscale imaging. Cortical representations of individual cerebellar neurons vary significantly across different brain states but are drawn from a common set of cortical networks. These cortical-cerebellar connectivity features are observed in mossy fibers and Purkinje cells as well as neurons in different cerebellar lobules, albeit with variations across cell types and regions. Complex spikes of Purkinje cells preferably associate with the sensorimotor cortex, whereas simple spikes display more diverse cortical connectivity patterns. The spontaneous functional connectivity patterns align with cerebellar neurons' functional responses to external stimuli in a modality-specific manner. The tuning properties of subsets of cerebellar neurons differ between anesthesia and awake states, mirrored by state-dependent changes in their long-range functional connectivity patterns with mesoscale cortical activity.
Collapse
Affiliation(s)
- Yuhao Yan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
228
|
Daood M, Magal N, Peled-Avron L, Nevat M, Ben-Hayun R, Aharon-Peretz J, Tomer R, Admon R. Graph analysis uncovers an opposing impact of methylphenidate on connectivity patterns within default mode network sub-divisions. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:15. [PMID: 38902791 PMCID: PMC11191242 DOI: 10.1186/s12993-024-00242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The Default Mode Network (DMN) is a central neural network, with recent evidence indicating that it is composed of functionally distinct sub-networks. Methylphenidate (MPH) administration has been shown before to modulate impulsive behavior, though it is not yet clear whether these effects relate to MPH-induced changes in DMN connectivity. To address this gap, we assessed the impact of MPH administration on functional connectivity patterns within and between distinct DMN sub-networks and tested putative relations to variability in sub-scales of impulsivity. METHODS Fifty-five right-handed healthy adults underwent two resting-state functional MRI (rs-fMRI) scans, following acute administration of either MPH (20 mg) or placebo, via a randomized double-blind placebo-controlled design. Graph modularity analysis was implemented to fractionate the DMN into distinct sub-networks based on the impact of MPH (vs. placebo) on DMN connectivity patterns with other neural networks. RESULTS MPH administration led to an overall decreased DMN connectivity, particularly with the auditory, cinguloopercular, and somatomotor networks, and increased connectivity with the parietomedial network. Graph analysis revealed that the DMN could be fractionated into two distinct sub-networks, with one exhibiting MPH-induced increased connectivity and the other decreased connectivity. Decreased connectivity of the DMN sub-network with the cinguloopercular network following MPH administration was associated with elevated impulsivity and non-planning impulsiveness. CONCLUSION Current findings highlight the intricate effects of MPH administration on DMN rs-fMRI connectivity, uncovering its opposing impact on distinct DMN sub-divisions. MPH-induced dynamics in DMN connectivity patterns with other neural networks may account for some of the effects of MPH administration on impulsive behavior.
Collapse
Affiliation(s)
- Maryana Daood
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
- Sakhnin College of Education, Sakhnin, Israel
| | - Noa Magal
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
| | - Leehe Peled-Avron
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Nevat
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
| | - Rachel Ben-Hayun
- Stroke and Cognition Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Judith Aharon-Peretz
- Stroke and Cognition Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Tomer
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
229
|
Zhang X, Xu R, Ma H, Qian Y, Zhu J. Brain Structural and Functional Damage Network Localization of Suicide. Biol Psychiatry 2024; 95:1091-1099. [PMID: 38215816 DOI: 10.1016/j.biopsych.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Extensive neuroimaging research on brain structural and functional correlates of suicide has produced inconsistent results. Despite increasing recognition that damage in multiple different brain locations that causes the same symptom can map to a common brain network, there is still a paucity of research investigating network localization of suicide. METHODS To clarify this issue, we initially identified brain structural and functional damage locations in relation to suicide from 63 published studies with 2135 suicidal and 2606 nonsuicidal individuals. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 suicide brain damage networks corresponding to different imaging modalities. RESULTS The suicide gray matter volume damage network comprised widely distributed brain areas primarily involving the dorsal default mode, basal ganglia, and anterior salience networks. The suicide task-induced activation damage network was similar to but less extensive than the gray matter volume damage network, predominantly implicating the same canonical networks. The suicide resting-state activity damage network manifested as a localized set of brain regions encompassing the orbitofrontal cortex and middle cingulate cortex. CONCLUSIONS Our findings not only may help reconcile prior heterogeneous neuroimaging results, but also may provide insights into the neurobiological mechanisms of suicide from a network perspective, which may ultimately inform more targeted and effective strategies to prevent suicide.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Haining Ma
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
230
|
Bathelt J, Rastle K, Taylor JSH. Relationship Between Resting State Functional Connectivity and Reading-Related Behavioural Measures in 69 Adults. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:589-607. [PMID: 38939731 PMCID: PMC11210933 DOI: 10.1162/nol_a_00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/25/2024] [Indexed: 06/29/2024]
Abstract
In computational models of reading, written words can be read using print-to-sound and/or print-to-meaning pathways. Neuroimaging data associate dorsal stream regions (left posterior occipitotemporal cortex, intraparietal cortex, dorsal inferior frontal gyrus [dIFG]) with the print-to-sound pathway and ventral stream regions (left anterior fusiform gyrus, middle temporal gyrus) with the print-to-meaning pathway. In 69 typical adults, we investigated whether resting state functional connectivity (RSFC) between the visual word form area (VWFA) and dorsal and ventral regions correlated with phonological (nonword reading, nonword repetition, spoonerisms), lexical-semantic (vocabulary, sensitivity to morpheme units in reading), and general literacy (word reading, spelling) skills. VWFA activity was temporally correlated with activity in both dorsal and ventral reading regions. In pre-registered whole-brain analyses, spoonerisms performance was positively correlated with RSFC between the VWFA and left dorsal regions (dIFG, superior parietal and intraparietal cortex). In exploratory region-of-interest analyses, VWFA-dIFG connectivity was also positively correlated with nonword repetition, spelling, and vocabulary. Connectivity between the VWFA and ventral stream regions was not associated with performance on any behavioural measure, either in whole-brain or region-of-interest analyses. Our results suggest that tasks such as spoonerisms and spellings, which are both complex (i.e., involve multiple subprocesses) and have high between-subject variability, provide greater opportunity for observing resting-state brain-behaviour associations. However, the complexity of these tasks limits the conclusions we can draw about the specific mechanisms that drive these associations. Future research would benefit from constructing latent variables from multiple tasks tapping the same reading subprocess.
Collapse
Affiliation(s)
- Joe Bathelt
- Department of Psychology, Royal Holloway University of London, UK
- Faculty of Social and Behavioural Sciences, University of Amsterdam, Netherlands
| | - Kathleen Rastle
- Department of Psychology, Royal Holloway University of London, UK
| | - J. S. H. Taylor
- Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
231
|
Sheng H, Liu R, Li Q, Lin Z, He Y, Blum TS, Zhao H, Tang X, Wang W, Jin L, Wang Z, Hsiao E, Le Floch P, Shen H, Lee AJ, Jonas-Closs RA, Briggs J, Liu S, Solomon D, Wang X, Lu N, Liu J. Brain implantation of tissue-level-soft bioelectronics via embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596533. [PMID: 38853924 PMCID: PMC11160708 DOI: 10.1101/2024.05.29.596533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The design of bioelectronics capable of stably tracking brain-wide, single-cell, and millisecond-resolved neural activities in the developing brain is critical to the study of neuroscience and neurodevelopmental disorders. During development, the three-dimensional (3D) structure of the vertebrate brain arises from a 2D neural plate 1,2 . These large morphological changes previously posed a challenge for implantable bioelectronics to track neural activity throughout brain development 3-9 . Here, we present a tissue-level-soft, sub-micrometer-thick, stretchable mesh microelectrode array capable of integrating into the embryonic neural plate of vertebrates by leveraging the 2D-to-3D reconfiguration process of the tissue itself. Driven by the expansion and folding processes of organogenesis, the stretchable mesh electrode array deforms, stretches, and distributes throughout the entire brain, fully integrating into the 3D tissue structure. Immunostaining, gene expression analysis, and behavioral testing show no discernible impact on brain development or function. The embedded electrode array enables long-term, stable, brain-wide, single-unit-single-spike-resolved electrical mapping throughout brain development, illustrating how neural electrical activities and population dynamics emerge and evolve during brain development.
Collapse
|
232
|
Yablonskiy DA, Sukstanskii AL. Quantum dipole interactions and transient hydrogen bond orientation order in cells, cellular membranes and myelin sheath: Implications for MRI signal relaxation, anisotropy, and T 1 magnetic field dependence. Magn Reson Med 2024; 91:2597-2611. [PMID: 38241135 PMCID: PMC10997466 DOI: 10.1002/mrm.29996] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Despite significant impact on the study of human brain, MRI lacks a theory of signal formation that integrates quantum interactions involving proton dipoles (a primary MRI signal source) with brain intricate cellular environment. The purpose of the present study is developing such a theory. METHODS We introduce the Transient Hydrogen Bond (THB) model, where THB-mediated quantum dipole interactions between water and protons of hydrophilic heads of amphipathic biomolecules forming cells, cellular membranes and myelin sheath serve as a major source of MR signal relaxation. RESULTS The THB theory predicts the existence of a hydrogen-bond-driven structural order of dipole-dipole connections within THBs as a primary factor for the anisotropy observed in MRI signal relaxation. We have also demonstrated that the conventional Lorentzian spectral density function decreases too fast at high frequencies to adequately capture the field dependence of brain MRI signal relaxation. To bridge this gap, we introduced a stretched spectral density function that surpasses the limitations of Lorentzian dispersion. In human brain, our findings reveal that at any time point only about 4% to 7% of water protons are engaged in quantum encounters within THBs. These ultra-short (2 to 3 ns), but frequent quantum spin exchanges lead to gradual recovery of magnetization toward thermodynamic equilibrium, that is, relaxation of MRI signal. CONCLUSION By incorporating quantum proton interactions involved in brain imaging, the THB approach introduces new insights on the complex relationship between brain tissue cellular structure and MRI measurements, thus offering a promising new tool for better understanding of brain microstructure in health and disease.
Collapse
Affiliation(s)
- Dmitriy A. Yablonskiy
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave. Room 3216, St. Louis MO, 63110
- Hope Center for Neurological Disorder, 660 S. Euclid Ave., St. Louis, Missouri 63110
- Knight Alzheimer Disease Research Center, 4488 Forest Park Ave., St. Louis, MO 63108
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130
| | - Alexander L. Sukstanskii
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave. Room 3216, St. Louis MO, 63110
| |
Collapse
|
233
|
Xie P, Nie Z, Zhang T, Xu G, Sun A, Chen T, Lv Y. FNIRS based study of brain network characteristics in children with cerebral palsy during bilateral lower limb movement. Med Phys 2024; 51:4434-4446. [PMID: 38683184 DOI: 10.1002/mp.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Motor dysfunctions in children with cerebral palsy (CP) are caused by nonprogressive brain damage. Understanding the functional characteristics of the brain is important for rehabilitation. PURPOSE This paper aimed to study the brain networks of children with CP during bilateral lower limb movement using functional near-infrared spectroscopy (fNIRS) and to explore effective fNIRS indices for reflecting functional brain activity. METHODS Using fNIRS, cerebral oxygenation signals in the bilateral prefrontal cortex (LPFC/RPFC) and motor cortex (LMC/RMC) were recorded from fifteen children with spastic CP and seventeen children with typical development (CTDs) in the resting state and during bilateral lower limb movement. Functional connectivity matrices based on phase-locking values (PLVs) were calculated using Hilbert transformation, and binary networks were constructed at different sparsity levels. Network metrics such as the clustering coefficient, global efficiency, local efficiency, and transitivity were calculated. Furthermore, the time-varying curves of network metrics during movement were obtained by dividing the time window and using sparse inverse covariance matrices. Finally, conditional Granger causality (GC) was used to explore the causal relationships between different brain regions. RESULTS Compared to CTDs, the connectivity between RMC-RPFC (p = 0.017) and RMC-LMC (p = 0.002) in the brain network was decreased in children with CP, and the clustering coefficient (p = 0.003), global efficiency (p = 0.034), local efficiency (p = 0.015), and transitivity (p = 0.009) were significantly lower. The standard deviation of the changes in global efficiency of children with CP during motion was also greater than that of CTDs. Using GC, it was found that there was a significant increase in causal strength from the RMC to the RPFC (p = 0.04) and from the RMC to the LMC (p = 0.042) in children with CP during motion. Additionally, there were significant negative correlations between the PLV of LMC-RMC (p = 0.002) and the Gross Motor Function Classification System (GMFCS) and between the GMFCS and the clustering coefficient (p = 0.01). CONCLUSIONS During rehabilitation training of the lower limbs, there were significant differences in brain network indices between children with CP and CTDs. The indicators proposed in this paper are effective at evaluating motor function and the real-time impact of rehabilitation training on the brain network and have great potential for application in guiding clinical motor function assessment and planning rehabilitation strategies.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Zichao Nie
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Tengyu Zhang
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Aiping Sun
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Tiandi Chen
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Nanchang City Key Laboratory of Integrated Medical and Industrial Technology, Nanchang university, Nanchang, China
| | - Yan Lv
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
234
|
Kosakowski HL, Saadon-Grosman N, Du J, Eldaief MC, Buckner RL. Human striatal association megaclusters. J Neurophysiol 2024; 131:1083-1100. [PMID: 38505898 PMCID: PMC11383613 DOI: 10.1152/jn.00387.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
The striatum receives projections from multiple regions of the cerebral cortex consistent with the role of the basal ganglia in diverse motor, affective, and cognitive functions. Within the striatum, the caudate receives projections from association cortex, including multiple distinct regions of prefrontal cortex. Building on recent insights about the details of how juxtaposed cortical networks are specialized for distinct aspects of higher-order cognition, we revisited caudate organization using within-individual precision neuroimaging initially in two intensively scanned individuals (each scanned 31 times). Results revealed that the caudate has side-by-side regions that are coupled to at least five distinct distributed association networks, paralleling the organization observed in the cerebral cortex. We refer to these spatial groupings of regions as striatal association megaclusters. Correlation maps from closely juxtaposed seed regions placed within the megaclusters recapitulated the five distinct cortical networks, including their multiple spatially distributed regions. Striatal association megaclusters were explored in 15 additional participants (each scanned at least 8 times), finding that their presence generalizes to new participants. Analysis of the laterality of the regions within the megaclusters further revealed that they possess asymmetries paralleling their cortical counterparts. For example, caudate regions linked to the language network were left lateralized. These results extend the general notion of parallel specialized basal ganglia circuits with the additional discovery that, even within the caudate, there is fine-grained separation of multiple distinct higher-order networks that reflects the organization and lateralization found in the cerebral cortex.NEW & NOTEWORTHY An individualized precision neuroimaging approach reveals juxtaposed zones of the caudate that are coupled with five distinct networks in association cortex. The organization of these caudate zones recapitulates organization observed in the cerebral cortex and extends the notion of specialized basal ganglia circuits.
Collapse
Affiliation(s)
- Heather L Kosakowski
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
235
|
Du J, DiNicola LM, Angeli PA, Saadon-Grosman N, Sun W, Kaiser S, Ladopoulou J, Xue A, Yeo BTT, Eldaief MC, Buckner RL. Organization of the human cerebral cortex estimated within individuals: networks, global topography, and function. J Neurophysiol 2024; 131:1014-1082. [PMID: 38489238 PMCID: PMC11383390 DOI: 10.1152/jn.00308.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks from functional MRI (fMRI) data in intensively sampled participants. The procedure was developed in two participants (scanned 31 times) and then prospectively applied to 15 participants (scanned 8-11 times). Analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that linked to distant regions. Third-order networks possessed regions distributed widely throughout association cortex. Regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated across multiple cortical zones. We refer to these as supra-areal association megaclusters (SAAMs). Within each SAAM, two candidate control regions were adjacent to three separate domain-specialized regions. Response properties were explored with task data. The somatomotor and visual networks responded to body movements and visual stimulation, respectively. Second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions dissociated across language, social, and spatial/episodic processing domains. These results suggest that progressively higher-order networks nest outward from primary sensory and motor cortices. Within the apex zones of association cortex, there is specialization that repeatedly divides domain-flexible from domain-specialized regions. We discuss implications of these findings, including how repeating organizational motifs may emerge during development.NEW & NOTEWORTHY The organization of cerebral networks was estimated within individuals with intensive, repeat sampling of fMRI data. A hierarchical organization emerged in each individual that delineated first-, second-, and third-order cortical networks. Regions of distinct third-order association networks consistently exhibited side-by-side juxtapositions that repeated across multiple cortical zones, with clear and robust functional specialization among the embedded regions.
Collapse
Affiliation(s)
- Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Wendy Sun
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Stephanie Kaiser
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Joanna Ladopoulou
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Aihuiping Xue
- Centre for Sleep & Cognition and Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep & Cognition and Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
236
|
Zhang Y, Hu P, Li L, Cao R, Khadria A, Maslov K, Tong X, Zeng Y, Jiang L, Zhou Q, Wang LV. Ultrafast longitudinal imaging of haemodynamics via single-shot volumetric photoacoustic tomography with a single-element detector. Nat Biomed Eng 2024; 8:712-725. [PMID: 38036618 PMCID: PMC11136871 DOI: 10.1038/s41551-023-01149-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Techniques for imaging haemodynamics use ionizing radiation or contrast agents or are limited by imaging depth (within approximately 1 mm), complex and expensive data-acquisition systems, or low imaging speeds, system complexity or cost. Here we show that ultrafast volumetric photoacoustic imaging of haemodynamics in the human body at up to 1 kHz can be achieved using a single laser pulse and a single element functioning as 6,400 virtual detectors. The technique, which does not require recalibration for different objects or during long-term operation, enables the longitudinal volumetric imaging of haemodynamics in vasculature a few millimetres below the skin's surface. We demonstrate this technique in vessels in the feet of healthy human volunteers by capturing haemodynamic changes in response to vascular occlusion. Single-shot volumetric photoacoustic imaging using a single-element detector may facilitate the early detection and monitoring of peripheral vascular diseases and may be advantageous for use in biometrics and point-of-care testing.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Peng Hu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xin Tong
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yushun Zeng
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
237
|
Zhang S, Wu L, Yu S, Shi E, Qiang N, Gao H, Zhao J, Zhao S. An Explainable and Generalizable Recurrent Neural Network Approach for Differentiating Human Brain States on EEG Dataset. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7339-7350. [PMID: 36331650 DOI: 10.1109/tnnls.2022.3214225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electroencephalogram (EEG) is one of the most widely used brain computer interface (BCI) approaches. Despite the success of existing EEG approaches in brain state recognition studies, it is still challenging to differentiate brain states via explainable and generalizable deep learning approaches. In other words, how to explore meaningful and distinguishing features and how to overcome the huge variability and overfitting problem still need to be further studied. To alleviate these challenges, in this work, a multiple random fragment search-based multilayer recurrent neural network (MRFS-MRNN) is proposed to improve the differentiating performance and explore meaningful patterns. Specifically, an explainable MRNN module is proposed to capture the temporal dependences preserved in EEG time series. Besides, a MRFS module is designed to cut multiple random fragments from the entire EEG signal time course to improve the effectiveness of brain state differentiating ability. MRFS-MRNN is concatenatedto effectively overcome the huge variabilities and overfitting problems. Experiment results demonstrate that the proposed MRFS-MRNN model not only has excellent differentiating performance, but also has good explanation and generalization ability. The classification accuracies reach as high as 95.18% for binary classification and 89.19% for four-category classification on the individual level. Similarly, 95.53% and 85.84% classification accuracies are obtained for the binary and four-category classification on the group level. What's more, 94.28% and 85.43% classification accuracies of binary and four-category classifications are achieved for predicting brand new subjects. The experiment results showed that the proposed method outperformed other state-of-the-art (SOTA) models on the same underlying data and improved the explanation and generalization ability.
Collapse
|
238
|
Qi Y, Zhao M, Yan Z, Jia X, Wang Y. Altered spontaneous regional brain activity in ventromedial prefrontal cortex and visual area of expert table tennis athletes. Brain Imaging Behav 2024; 18:529-538. [PMID: 38246897 DOI: 10.1007/s11682-023-00841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Sports training may lead to functional changes in the brain, and different types of sports, including table tennis, have different influences on these changes. However, the effects of long-term table tennis practice on brain function in expert athletes are largely undefined. Here, we investigated spontaneous regional brain activity characteristics of expert table tennis athletes by using resting-state functional magnetic resonance imaging to compare differences between 25 athletes and 33 age- and sex-matched non-athletes. We analyzed four metrics-amplitude of low-frequency fluctuation (ALFF), fractional ALFF, regional homogeneity, and degree centrality-because together they identify functional changes in the brain with greater sensitivity than a single indicator and may more comprehensively describe regional functional changes. Additional statistical analysis was conducted to assess whether any correlation existed between brain activity and years of table tennis training for athletes. Results show that compared with non-athletes, table tennis athletes showed altered spontaneous regional brain activity in the ventromedial prefrontal cortex and the calcarine sulcus, a visual area. Furthermore, the functional changes in the calcarine sulcus showed a significant correlation with the number of years of expert sports training. Despite the relatively small sample size, these results indicated that the regional brain function of table tennis athletes was associated with sports training-related changes, providing insights for understanding the neural mechanisms underlying the expert performance of athletes.
Collapse
Affiliation(s)
- Yapeng Qi
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, No. 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, China
| | - Zhurui Yan
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China.
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, No. 688 Yingbin Avenue, Jinhua, Zhejiang Province, 321004, China.
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
- Center for Exercise and Brain Science, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
239
|
Zhou M, Gao G, Rong B, Zhao H, Huang J, Tu N, Bu L, Xiao L, Wang G. Sex differences of neural connectivity in internet gaming disorder and its association with sleep quality: an exploratory fMRI study. Front Psychiatry 2024; 15:1379259. [PMID: 38873537 PMCID: PMC11169786 DOI: 10.3389/fpsyt.2024.1379259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Sex-specific differences in internet gaming disorder (IGD) neurophysiology remain underexplored. Here we investigated sex-related variability in regional homogeneity (ReHo) and functional connectivity (FC) in IGD and their correlations with sleep quality. Methods Resting-state functional magnetic resonance imaging (fMRI) scans were performed on 52 subjects with IGD and 50 healthy controls (HCs). Two-way ANOVA was used to examine sex and diagnosis interactions in ReHo and FC, followed by post-hoc analyses to explore FC biomarkers for different sexes. Results In ReHo analysis, the four groups showed significant sex and diagnosis interactions in the right middle frontal gyrus (rMFG). FC analysis with rMFG as the seed region revealed a significant sex and diagnosis interaction effect in FC of the rMFG with the bilateral postcentral gyrus (PoCG). In male IGD group, FC between the rMFG and the bilateral PoCG correlates strongly with daytime dysfunction score and the Pittsburgh sleep quality inventory (PSQI) total score. Conclusion These findings emphasize the importance of considering sexual dimorphism in the neurobiology of IGD, which might influence subsequent treatment strategies.
Collapse
Affiliation(s)
- Mingzhe Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guoqing Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Rong
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haomian Zhao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhua Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning Tu
- PET-CT/MR Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihong Bu
- PET-CT/MR Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Xiao
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
240
|
Sengupta A, Mishra A, Wang F, Chen LM, Gore JC. Characteristic BOLD signals are detectable in white matter of the spinal cord at rest and after a stimulus. Proc Natl Acad Sci U S A 2024; 121:e2316117121. [PMID: 38776372 PMCID: PMC11145258 DOI: 10.1073/pnas.2316117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 05/25/2024] Open
Abstract
We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.
Collapse
Affiliation(s)
- Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
241
|
Hansen M, Simon KR, He X, Steele N, Thomas ML, Noble KG, Merz EC. Socioeconomic factors, sleep timing and duration, and amygdala resting-state functional connectivity in children. Front Psychiatry 2024; 15:1373546. [PMID: 38840942 PMCID: PMC11150855 DOI: 10.3389/fpsyt.2024.1373546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Reduced sleep health has been consistently linked with increased negative emotion in children. While sleep characteristics have been associated with neural function in adults and adolescents, much less is known about these associations in children while considering socioeconomic context. In this study, we examined the associations among socioeconomic factors, sleep duration and timing, and resting-state functional connectivity (rsFC) of the amygdala in children. Methods Participants were typically-developing 5- to 9-year-olds from socioeconomically diverse families (61% female; N = 94). Parents reported on children's weekday and weekend bedtimes and wake-up times, which were used to compute sleep duration and midpoint. Analyses focused on amygdala-anterior cingulate cortex (ACC) connectivity followed by amygdala-whole brain connectivity. Results Lower family income-to-needs ratio and parental education were significantly associated with later weekday and weekend sleep timing and shorter weekday sleep duration. Shorter weekday sleep duration was associated with decreased amygdala-ACC and amygdala-insula connectivity. Later weekend sleep midpoint was associated with decreased amygdala-paracingulate cortex and amygdala-postcentral gyrus connectivity. Socioeconomic factors were indirectly associated with connectivity in these circuits via sleep duration and timing. Discussion These results suggest that socioeconomic disadvantage may interfere with both sleep duration and timing, in turn possibly altering amygdala connectivity in emotion processing and regulation circuits in children. Effective strategies supporting family economic conditions may have benefits for sleep health and brain development in children.
Collapse
Affiliation(s)
- Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Katrina R. Simon
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Xiaofu He
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Nick Steele
- Molecular, Cellular and Integrative Neuroscience, Colorado State University, Fort Collins, CO, United States
| | - Michael L. Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Kimberly G. Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States
| | - Emily C. Merz
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
242
|
Fleming LL, Defenderfer M, Demirayak P, Stewart P, Decarlo DK, Visscher KM. Impact of deprivation and preferential usage on functional connectivity between early visual cortex and category selective visual regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.593020. [PMID: 38798355 PMCID: PMC11118586 DOI: 10.1101/2024.05.17.593020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Human behavior can be remarkably shaped by experience, such as the removal of sensory input. Many studies of conditions such as stroke, limb amputation, and vision loss have examined how the removal of input changes brain function. However, an important question has yet to be answered: when input is lost, does the brain change its connectivity to preferentially use some remaining inputs over others? In individuals with healthy vision, the central portion of the retina is preferentially used for everyday visual tasks, due to its ability to discriminate fine details. However, when central vision is lost in conditions like macular degeneration, peripheral vision must be relied upon for those everyday tasks, with certain portions receiving "preferential" usage over others. Using resting-state fMRI collected during total darkness, we examined how deprivation and preferential usage influence the intrinsic functional connectivity of sensory cortex by studying individuals with selective vision loss due to late stages of macular degeneration. We found that cortical regions representing spared portions of the peripheral retina, regardless of whether they are preferentially used, exhibit plasticity of intrinsic functional connectivity in macular degeneration. Cortical representations of spared peripheral retinal locations showed stronger connectivity to MT, a region involved in processing motion. These results suggest that long-term loss of central vision can produce widespread effects throughout spared representations in early visual cortex, regardless of whether those representations are preferentially used. These findings support the idea that connections to visual cortex maintain the capacity for change well after critical periods of visual development. Highlights Portions of early visual cortex representing central vs. peripheral vision exhibit different patterns of connectivity to category-selective visual regions.When central vision is lost, cortical representations of peripheral vision display stronger functional connections to MT than central representations.When central vision is lost, connectivity to regions selective for tasks that involve central vision (FFA and PHA) are not significantly altered.These effects do not depend on which locations of peripheral vision are used more.
Collapse
|
243
|
Pan Y, Bi C, Kochunov P, Shardell M, Smith JC, McCoy RG, Ye Z, Yu J, Lu T, Yang Y, Lee H, Liu S, Gao S, Ma Y, Li Y, Chen C, Ma T, Wang Z, Nichols T, Hong LE, Chen S. Brain-wide functional connectome analysis of 40,000 individuals reveals brain networks that show aging effects in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594743. [PMID: 38798606 PMCID: PMC11118564 DOI: 10.1101/2024.05.17.594743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The functional connectome changes with aging. We systematically evaluated aging related alterations in the functional connectome using a whole-brain connectome network analysis in 39,675 participants in UK Biobank project. We used adaptive dense network discovery tools to identify networks directly associated with aging from resting-state fMRI data. We replicated our findings in 499 participants from the Lifespan Human Connectome Project in Aging study. The results consistently revealed two motor-related subnetworks (both permutation test p-values <0.001) that showed a decline in resting-state functional connectivity (rsFC) with increasing age. The first network primarily comprises sensorimotor and dorsal/ventral attention regions from precentral gyrus, postcentral gyrus, superior temporal gyrus, and insular gyrus, while the second network is exclusively composed of basal ganglia regions, namely the caudate, putamen, and globus pallidus. Path analysis indicates that white matter fractional anisotropy mediates 19.6% (p<0.001, 95% CI [7.6% 36.0%]) and 11.5% (p<0.001, 95% CI [6.3% 17.0%]) of the age-related decrease in both networks, respectively. The total volume of white matter hyperintensity mediates 32.1% (p<0.001, 95% CI [16.8% 53.0%]) of the aging-related effect on rsFC in the first subnetwork.
Collapse
Affiliation(s)
- Yezhi Pan
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Chuan Bi
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Peter Kochunov
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center Houston, Houston, United States of America
| | - Michelle Shardell
- Department of Epidemiology and Public Health and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, Maryland, United States of America
| | - Rozalina G. McCoy
- Division of Endocrinology, Diabetes, & Nutrition, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, Maryland, United States of America
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, Maryland, United States of America
| | - Yifan Yang
- Department of Mathematics, University of Maryland, College Park, Maryland, United States of America
| | - Hwiyoung Lee
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Yiran Li
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - Ze Wang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - L. Elliot Hong
- Department of Psychiatry and Behavioral Science, University of Texas Health Science Center Houston, Houston, United States of America
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
244
|
Boccuni L, Roca-Ventura A, Buloz-Osorio E, Leno-Colorado D, Martín-Fernández J, Cabello-Toscano M, Perellón-Alfonso R, Pariente Zorrilla JC, Laredo C, Garrido C, Muñoz-Moreno E, Bargalló N, Villalba G, Martínez-Ricarte F, Trompetto C, Marinelli L, Sacchet MD, Bartrés-Faz D, Abellaneda-Pérez K, Pascual-Leone A, Tormos Muñoz JM. Exploring the neural basis of non-invasive prehabilitation in brain tumour patients: An fMRI-based case report of language network plasticity. Front Oncol 2024; 14:1390542. [PMID: 38826790 PMCID: PMC11140081 DOI: 10.3389/fonc.2024.1390542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Primary brain neoplasms are associated with elevated mortality and morbidity rates. Brain tumour surgery aims to achieve maximal tumour resection while minimizing damage to healthy brain tissue. Research on Neuromodulation Induced Cortical Prehabilitation (NICP) has highlighted the potential, before neurosurgery, of establishing new brain connections and transfer functional activity from one area of the brain to another. Nonetheless, the neural mechanisms underlying these processes, particularly in the context of space-occupying lesions, remain unclear. A patient with a left frontotemporoinsular tumour underwent a prehabilitation protocol providing 20 sessions of inhibitory non-invasive neuromodulation (rTMS and multichannel tDCS) over a language network coupled with intensive task training. Prehabilitation resulted in an increment of the distance between the tumour and the language network. Furthermore, enhanced functional connectivity within the language circuit was observed. The present innovative case-study exposed that inhibition of the functional network area surrounding the space-occupying lesion promotes a plastic change in the network's spatial organization, presumably through the establishment of novel functional pathways away from the lesion's site. While these outcomes are promising, prudence dictates the need for larger studies to confirm and generalize these findings.
Collapse
Affiliation(s)
- Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Conegliano, Scientific Institute IRCCS E. Medea, Treviso, Italy
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Edgar Buloz-Osorio
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - David Leno-Colorado
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jesús Martín-Fernández
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier, France
- Department of Neurosurgery, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Cabello-Toscano
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Carlos Pariente Zorrilla
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Carlos Laredo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Cesar Garrido
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Emma Muñoz-Moreno
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Nuria Bargalló
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gloria Villalba
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain
| | | | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Centre for Memory Health, Hebrew Senior Life, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Josep María Tormos Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
245
|
Abukuri DN. Novel Biomarkers for Alzheimer's Disease: Plasma Neurofilament Light and Cerebrospinal Fluid. Int J Alzheimers Dis 2024; 2024:6668159. [PMID: 38779175 PMCID: PMC11111307 DOI: 10.1155/2024/6668159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) represent an increasingly significant public health concern. As clinical diagnosis faces challenges, biomarkers are becoming increasingly important in research, trials, and patient assessments. While biomarkers like amyloid-β peptide, tau proteins, CSF levels (Aβ, tau, and p-tau), and neuroimaging techniques are commonly used in AD diagnosis, they are often limited and invasive in monitoring and diagnosis. For this reason, blood-based biomarkers are the optimal choice for detecting neurodegeneration in brain diseases due to their noninvasiveness, affordability, reliability, and consistency. This literature review focuses on plasma neurofilament light (NfL) and CSF NfL as blood-based biomarkers used in recent AD diagnosis. The findings revealed that the core CSF biomarkers of neurodegeneration (T-tau, P-tau, and Aβ42), CSF NFL, and plasma T-tau were strongly associated with Alzheimer's disease, and the core biomarkers were strongly associated with mild cognitive impairment due to Alzheimer's disease. Elevated levels of plasma and cerebrospinal fluid NfL were linked to decreased [18F]FDG uptake in corresponding brain areas. In participants with Aβ positivity (Aβ+), NfL correlated with reduced metabolism in regions susceptible to Alzheimer's disease. In addition, CSF NfL levels correlate with brain atrophy and predict cognitive changes, while plasma total tau does not. Plasma P-tau, especially in combination with Aβ42/Aβ40, is promising for symptomatic AD stages. Though not AD-exclusive, blood NfL holds promise for neurodegeneration detection and assessing treatment efficacy. Given the consistent levels of T-tau, P-tau, Aβ42, and NFL in CSF, their incorporation into both clinical practice and research is highly recommended.
Collapse
|
246
|
Teichert T, Papp L, Vincze F, Burns N, Goodell B, Ahmed Z, Holmes A, Gray CM, Chamanzar M, Gurnsey K. Volumetric mesoscopic electrophysiology: a new imaging modality for the non-human primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593946. [PMID: 38798595 PMCID: PMC11118515 DOI: 10.1101/2024.05.13.593946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The primate brain is a densely interconnected organ whose function is best understood by recording from the entire structure in parallel, rather than parts of it in sequence. However, available methods either have limited temporal resolution (functional magnetic resonance imaging), limited spatial resolution (macroscopic electroencephalography), or a limited field of view (microscopic electrophysiology). To address this need, we developed a volumetric, mesoscopic recording approach ( MePhys ) by tessellating the volume of a monkey hemisphere with 992 electrode contacts that were distributed across 62 chronically implanted multi-electrode shafts. We showcase the scientific promise of MePhys by describing the functional interactions of local field potentials between the more than 300,000 simultaneously recorded pairs of electrodes. We find that a subanesthetic dose of ketamine -believed to mimic certain aspects of psychosis- can create a pronounced state of functional disconnection and prevent the formation of stable large-scale intrinsic states. We conclude that MePhys provides a new and fundamentally distinct window into brain function whose unique profile of strengths and weaknesses complements existing approaches in synergistic ways.
Collapse
|
247
|
Cline TL, Morfini F, Tinney E, Makarewycz E, Lloyd K, Olafsson V, Bauer CC, Kramer AF, Raine LB, Gabard-Durnam LJ, Whitfield-Gabrieli S, Hillman CH. Resting-State Functional Connectivity Change in Frontoparietal and Default Mode Networks After Acute Exercise in Youth. Brain Plast 2024; 9:5-20. [PMID: 39081665 PMCID: PMC11234706 DOI: 10.3233/bpl-240003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND A single bout of aerobic exercise can provide acute benefits to cognition and emotion in children. Yet, little is known about how acute exercise may impact children's underlying brain networks' resting-state functional connectivity (rsFC). OBJECTIVE Using a data-driven multivariate pattern analysis, we investigated the effects of a single dose of exercise on acute rsFC changes in 9-to-13-year-olds. METHODS On separate days in a crossover design, participants (N = 21) completed 20-mins of acute treadmill walking at 65-75% heart rate maximum (exercise condition) and seated reading (control condition), with pre- and post-fMRI scans. Multivariate pattern analysis was used to investigate rsFC change between conditions. RESULTS Three clusters in the left lateral prefrontal cortex (lPFC) of the frontoparietal network (FPN) had significantly different rsFC after the exercise condition compared to the control condition. Post-hoc analyses revealed that from before to after acute exercise, activity of these FPN clusters became more correlated with bilateral lPFC and the left basal ganglia. Additionally, the left lPFC became more anti-correlated with the precuneus of the default mode network (DMN). An opposite pattern was observed from before to after seated reading. CONCLUSIONS The findings suggest that a single dose of exercise increases connectivity within the FPN, FPN integration with subcortical regions involved in movement and cognition, and segregation of FPN and DMN. Such patterns, often associated with healthier cognitive and emotional control, may underlie the transient mental benefits observed following acute exercise in youth.
Collapse
Affiliation(s)
- Trevor L. Cline
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
| | - Francesca Morfini
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
| | - Emma Tinney
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
| | - Ethan Makarewycz
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Katherine Lloyd
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Valur Olafsson
- Northeastern University Biomedical Imaging Center, Northeastern University, Boston, MA, USA
| | - Clemens C.C. Bauer
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arthur F. Kramer
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Beckman Institute for Advanced Science & Technology, University of Illinois, Urbana, Il, USA
| | - Lauren B. Raine
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Laurel J. Gabard-Durnam
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles H. Hillman
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
248
|
Bak S, Yeu M, Min D, Lee J, Jeong J. Charitable crowdfunding donation-intention estimation depending on emotional project images using fNIRS-based functional connectivity. PLoS One 2024; 19:e0303144. [PMID: 38718035 PMCID: PMC11078340 DOI: 10.1371/journal.pone.0303144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Charitable fundraising increasingly relies on online crowdfunding platforms. Project images of charitable crowdfunding use emotional appeals to promote helping behavior. Negative emotions are commonly used to motivate helping behavior because the image of a happy child may not motivate donors to donate as willingly. However, some research has found that happy images can be more beneficial. These contradictory results suggest that the emotional valence of project imagery and how fundraisers frame project images effectively remain debatable. Thus, we compared and analyzed brain activation differences in the prefrontal cortex governing human emotions depending on donation decisions using functional near-infrared spectroscopy, a neuroimaging device. We advance existing theory on charitable behavior by demonstrating that little correlation exists in donation intentions and brain activity between negative and positive project images, which is consistent with survey results on donation intentions by victim image. We also discovered quantitative brain hemodynamic signal variations between donors and nondonors, which can predict and detect donor mental brain functioning using functional connectivity, that is, the statistical dependence between the time series of electrophysiological activity and oxygenated hemodynamic levels in the prefrontal cortex. These findings are critical in developing future marketing strategies for online charitable crowdfunding platforms, especially project images.
Collapse
Affiliation(s)
- SuJin Bak
- Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Minsun Yeu
- College of Business Administration, University of Ulsan, Ulsan, Republic of Korea
| | - Dongwon Min
- College of Business, Dankook University, Yongin, Gyeonggi, Republic of Korea
| | - Jaehoon Lee
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Jichai Jeong
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
249
|
Cao Q, Wang Y, Ji Y, He Z, Lei X. Resting-State EEG Reveals Abnormal Microstate Characteristics of Depression with Insomnia. Brain Topogr 2024; 37:388-396. [PMID: 36892651 DOI: 10.1007/s10548-023-00949-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Previous research revealed various aspects of resting-state EEG for depression and insomnia. However, the EEG characteristics of depressed subjects with insomnia are rarely studied, especially EEG microstates that capture the dynamic activities of the large-scale brain network. To fill these research gaps, the present study collected resting-state EEG data from 32 subclinical depression subjects with insomnia (SDI), 31 subclinical depression subjects without insomnia (SD), and 32 healthy controls (HCs). Four topographic maps were generated from clean EEG data after clustering and rearrangement. Temporal characteristics were obtained for statistical analysis, including cross-group variance analysis (ANOVA) and intra-group correlation analysis. In our study, the global clustering of all individuals in the EEG microstate analysis revealed the four previously discovered categories of microstates (A, B, C, and D). The occurrence of microstate B was lower in SDI than in SD and HC subjects. The correlation analysis showed that the total Pittsburgh Sleep Quality Index (PSQI) score negatively correlated with the occurrence of microstate C in SDI (r = - 0.415, p < 0.05). Conversely, there was a positive correlation between Self-rating Depression Scale (SDS) scores and the duration of microstate C in SD (r = 0.359, p < 0.05). These results indicate that microstates reflect altered large-scale brain network dynamics in subclinical populations. Abnormalities in the visual network corresponding to microstate B are an electrophysiological characteristic of subclinical individuals with symptoms of depressive insomnia. Further investigation is needed for microstate changes related to high arousal and emotional problems in people suffering from depression and insomnia.
Collapse
Affiliation(s)
- Qike Cao
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yufang Ji
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Zhihui He
- The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
250
|
Zhao S, Fang L, Yang Y, Tang G, Luo G, Han J, Liu T, Hu X. Task sub-type states decoding via group deep bidirectional recurrent neural network. Med Image Anal 2024; 94:103136. [PMID: 38489895 DOI: 10.1016/j.media.2024.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Decoding brain states under different cognitive tasks from functional magnetic resonance imaging (fMRI) data has attracted great attention in the neuroimaging filed. However, the well-known temporal dependency in fMRI sequences has not been fully exploited in existing studies, due to the limited temporal-modeling capacity of the backbone machine learning algorithms and rigid training sample organization strategies upon which the brain decoding methods are built. To address these limitations, we propose a novel method for fine-grain brain state decoding, namely, group deep bidirectional recurrent neural network (Group-DBRNN) model. We first propose a training sample organization strategy that consists of a group-task sample generation module and a multiple-scale random fragment strategy (MRFS) module to collect training samples that contain rich task-relevant brain activity contrast (i.e., the comparison of neural activity patterns between different tasks) and maintain the temporal dependency. We then develop a novel decoding model by replacing the unidirectional RNNs that are widely used in existing brain state decoding studies with bidirectional stacked RNNs to better capture the temporal dependency, and by introducing a multi-task interaction layer (MTIL) module to effectively model the task-relevant brain activity contrast. Our experimental results on the Human Connectome Project task fMRI dataset (7 tasks consisting of 23 task sub-type states) show that the proposed model achieves an average decoding accuracy of 94.7% over the 23 fine-grain sub-type states. Meanwhile, our extensive interpretations of the intermediate features learned in the proposed model via visualizations and quantitative assessments of their discriminability and inter-subject alignment evidence that the proposed model can effectively capture the temporal dependency and task-relevant contrast.
Collapse
Affiliation(s)
- Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, China
| | - Long Fang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guochang Tang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guoxin Luo
- Department of Ophthalmology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- School of Computing, The University of Georgia, GA, USA
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|