201
|
Staehelin Jensen T. The pathogenesis of painful diabetic neuropathy and clinical presentation. Diabetes Res Clin Pract 2023; 206 Suppl 1:110753. [PMID: 38245319 DOI: 10.1016/j.diabres.2023.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 01/22/2024]
Abstract
Diabetic neuropathy is a common complication of diabetes that affects up to 50% of patients during the course of the disease; 20-30% of the patients also develop neuropathic pain. The mechanisms underlying neuropathy are not known in detail, but both metabolic and vascular factors may contribute to the development of neuropathy. The development of the most common type of neuropathy is insidious, often starting distally in the toes and feet and gradually ascending up the leg and later also involving fingers and hands. The symptoms are mainly sensory with either sensory loss or positive symptoms with different types of paresthesia or painful sensations. In more advanced cases motor dysfunction may occur, causing gait disturbances and falls. The diagnosis of neuropathy is based on history and a careful examination, which includes a sensory examination of both large and small sensory nerve fiber function, as well as an examination of motor function and deep tendon reflexes of the lower limbs. Attention needs to be paid to the feet including examination of the skin, joints, and vascular supply. Nerve conduction studies are rarely needed to make a diagnosis of neuropathy. In patients with clear motor deficit or with an asymmetrical presentation, additional electrophysiological examination may be necessary. Early detection of diabetic neuropathy is important to avoid further irreversible injury to the peripheral nerves.
Collapse
Affiliation(s)
- Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
202
|
Yako H, Niimi N, Takaku S, Sango K. Advantages of omics approaches for elucidating metabolic changes in diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1208441. [PMID: 38089620 PMCID: PMC10715313 DOI: 10.3389/fendo.2023.1208441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Various animal and cell culture models of diabetes mellitus (DM) have been established and utilized to study diabetic peripheral neuropathy (DPN). The divergence of metabolic abnormalities among these models makes their etiology complicated despite some similarities regarding the pathological and neurological features of DPN. Thus, this study aimed to review the omics approaches toward DPN, especially on the metabolic states in diabetic rats and mice induced by chemicals (streptozotocin and alloxan) as type 1 DM models and by genetic mutations (MKR, db/db and ob/ob) and high-fat diet as type 2 DM models. Omics approaches revealed that the pathways associated with lipid metabolism and inflammation in dorsal root ganglia and sciatic nerves were enriched and controlled in the levels of gene expression among these animal models. Additionally, these pathways were conserved in human DPN, indicating the pivotal pathogeneses of DPN. Omics approaches are beneficial tools to better understand the association of metabolic changes with morphological and functional abnormalities in DPN.
Collapse
Affiliation(s)
- Hideji Yako
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
203
|
Boey J. Editorial: Novel treatments and the underlying mechanisms for diabetic foot and related diseases. Front Endocrinol (Lausanne) 2023; 14:1323323. [PMID: 38075059 PMCID: PMC10699536 DOI: 10.3389/fendo.2023.1323323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Johnson Boey
- Department of Podiatry, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
204
|
Salemcity AJ, Olanlokun JO, Olowofolahan AO, Olojo FO, Adegoke AM, Olorunsogo OO. Reversal of mitochondrial permeability transition pore and pancreas degeneration by chloroform fraction of Ocimum gratissimum (L.) leaf extract in type 2 diabetic rat model. Front Pharmacol 2023; 14:1231826. [PMID: 38035005 PMCID: PMC10683093 DOI: 10.3389/fphar.2023.1231826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Unmanaged Diabetes Mellitus (DM) usually results to tissue wastage because of mitochondrial dysfunction. Adverse effects of some drugs used in the management of DM necessitates the search for alternative therapy from plant origin with less or no side effects. Ocimum gratissimum (L.) (OG) has been folklorically used in the management of DM. However, the mechanism used by this plant is not fully understood. This study was designed to investigate the effects of chloroform fraction of OG leaf (CFOG) in the reversal of tissue wastage in DM via inhibition of mitochondrial-mediated cell death in streptozotocin (STZ)-induced diabetic male Wistar rats. Methods: Air-dried OG leaves were extracted with methanol and partitioned successively between n-hexane, chloroform, ethylacetate and methanol to obtain their fractions while CFOG was further used because of its activity. Diabetes was induced in fifteen male Wistar rats, previously fed with high fat diet (28 days), via a single intraperitoneal administration of STZ (35 mg/kg). Diabetes was confirmed after 72 h. Another five fed rats were used as the normal control, treated with corn oil (group 1). The diabetic animals were grouped (n = 5) and treated for 28 days as follows: group 2 (diabetic control: DC) received corn oil (10 mL/kg), groups 3 and 4 were administered 400 mg/kg CFOG and 5 mg/kg glibenclamide, respectively. Body weight and Fasting Blood Glucose (FBG) were determined while Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and beta cell (HOMA-β), and pancreatic tissue regenerating potential by CFOG were assessed. Activity-guided purification and characterization of the most active principle in CFOG was done using chromatographic and NMR techniques. The animals were sacrificed after 28 days, blood samples were collected and serum was obtained. Liver mitochondria were isolated and mitochondrial permeability transition (mPT) was investigated by spectrophotometry. Results: CFOG reversed diabetic-induced mPT pore opening, inhibited ATPase activity and lipid peroxidation. CFOG reduced HOMA-IR but enhanced HOMA-β and caused regeneration of pancreatic cells relative to DC. Lupanol was a major metabolite of CFOG. Discussion: Normoglycemic effect of CFOG, coupled with reversal of mPT, reduced HOMA-IR and improved HOMA-β showed the probable antidiabetic mechanism and tissue regenerating potentials of OG.
Collapse
Affiliation(s)
- A. J. Salemcity
- Department of Biochemistry, University of Medical Sciences, Ondo, Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - John Oludele Olanlokun
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - A. O. Olowofolahan
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - F. O. Olojo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodeji Mathias Adegoke
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - O. O. Olorunsogo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
205
|
Benítez-Camacho J, Ballesteros A, Beltrán-Camacho L, Rojas-Torres M, Rosal-Vela A, Jimenez-Palomares M, Sanchez-Gomar I, Durán-Ruiz MC. Endothelial progenitor cells as biomarkers of diabetes-related cardiovascular complications. Stem Cell Res Ther 2023; 14:324. [PMID: 37950274 PMCID: PMC10636846 DOI: 10.1186/s13287-023-03537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetes mellitus (DM) constitutes a chronic metabolic disease characterized by elevated levels of blood glucose which can also lead to the so-called diabetic vascular complications (DVCs), responsible for most of the morbidity, hospitalizations and death registered in these patients. Currently, different approaches to prevent or reduce DM and its DVCs have focused on reducing blood sugar levels, cholesterol management or even changes in lifestyle habits. However, even the strictest glycaemic control strategies are not always sufficient to prevent the development of DVCs, which reflects the need to identify reliable biomarkers capable of predicting further vascular complications in diabetic patients. Endothelial progenitor cells (EPCs), widely known for their potential applications in cell therapy due to their regenerative properties, may be used as differential markers in DVCs, considering that the number and functionality of these cells are affected under the pathological environments related to DM. Besides, drugs commonly used with DM patients may influence the level or behaviour of EPCs as a pleiotropic effect that could finally be decisive in the prognosis of the disease. In the current review, we have analysed the relationship between diabetes and DVCs, focusing on the potential use of EPCs as biomarkers of diabetes progression towards the development of major vascular complications. Moreover, the effects of different drugs on the number and function of EPCs have been also addressed.
Collapse
Affiliation(s)
- Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Ballesteros
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Lucía Beltrán-Camacho
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
- Cell Biology, Physiology and Immunology Department, Córdoba University, Córdoba, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University, Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, 11519, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), Cádiz, Spain.
| |
Collapse
|
206
|
Chan K, Badanes Z, Ledbetter EC. Decreased corneal subbasal nerve fiber length and density in diabetic dogs with cataracts using in vivo confocal microscopy. Vet Ophthalmol 2023; 26:524-531. [PMID: 36854901 DOI: 10.1111/vop.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To determine whether there is a difference in corneal sensitivity and corneal subbasal nerve plexus (CSNP) morphology in cataractous dogs with diabetes mellitus (DM) versus without DM. ANIMALS STUDIED Twenty six domestic dogs with cataracts of various breeds presented for phacoemulsification, 13 with DM and 13 without DM. PROCEDURE The inclusion criteria for the study were dogs with bilateral cataracts and no clinical evidence of corneal disease. The diabetic group had documented hyperglycemia and was currently treated with insulin. The non-diabetic group had no evidence of DM on examination and bloodwork. Complete ophthalmic examination, corneal esthesiometry, and in vivo confocal microscopy of the CSNP was performed for both eyes of each dog. The CSNP was evaluated using a semi-automated program and statistically analyzed. RESULTS The mean (±SD) CSNP fiber length was significantly decreased in diabetic (3.8 ± 3.0 mm/mm2 ) versus non-diabetic (6.7 ± 1.9 mm/mm2 ) dogs. Likewise, the mean (±SD) fiber density was significantly decreased in diabetic (8.3 ± 3.1 fibers/mm2 ) versus non-diabetic (15.5 ± 4.9 fibers/mm2 ) dogs. The corneal touch threshold was significantly reduced in diabetic (2.1 ± 0.8 cm) versus non-diabetic (2.8 ± 0.4 cm) dogs. There was a non-significant trend towards subclinical keratitis in diabetic (9/13) versus non-diabetic (4/13) dogs. CONCLUSIONS Morphological and functional abnormalities of the CSNP were present in dogs with DM, including decreased fiber length, fiber density, and corneal sensitivity. These findings are consistent with diabetic neuropathy and could contribute to clinically significant corneal complications after cataract surgery.
Collapse
Affiliation(s)
- Kore Chan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Zachary Badanes
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Eric C Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
207
|
Quiroz‐Aldave JE, Concepción‐Zavaleta MJ, del Carmen Durand‐Vásquez M, Gamarra‐Osorio ER, Alcalá‐Mendoza RM, Puelles‐León SL, Ildefonso‐Najarro S, Concepción‐Urteaga LA, Gonzáles‐Mendoza JE, Paz‐Ibarra J. Treatment‐induced neuropathy of diabetes: an update. PRACTICAL DIABETES 2023; 40:28-35. [DOI: 10.1002/pdi.2485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Abstract
Background and aims: Treatment‐induced neuropathy of diabetes is an acute small‐fibre neuropathy associated with rapid glycaemia improvement.Methods: This study is a narrative review carried out based on a bibliographic review, using articles indexed in PubMed/Medline and Scielo.Results: This entity is more frequent in adult patients with poor previous glycaemic control. Its precise pathophysiology is unknown, but it is likely related to unrestored microcirculation changes that occurred during the hyperglycaemic period. It presents with intense, sudden neuropathic pain and autonomic dysfunction after a rapid glycaemic correction and a poorer analgesic response than in diabetic neuropathy.Conclusions: Since rapid glycaemia correction is the cause of this problem, clinical practice guidelines that can help physicians to prevent, diagnose and manage this entity should be developed. Copyright © 2023 John Wiley & Sons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - José Paz‐Ibarra
- School of Medicine National University of San Marcos, Lima Perú
| |
Collapse
|
208
|
Nizamdeen FN, Quamri MA, Anzar Alam M. Efficacy of Habb-e-Asab in diabetic peripheral neuropathy: a randomized placebo control study. J Basic Clin Physiol Pharmacol 2023; 34:735-744. [PMID: 35026880 DOI: 10.1515/jbcpp-2021-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Diabetic peripheral neuropathy (DPN) is a common diabetes complication. The prevalence of neuropathy is 55% for type 1 and 66% for type 2 diabetes. In Unani medicine neuropathy is known as Khidr (numbness). It is treated with drugs possessing hypoglycemic and analgesic properties, etc. Habb-e-Asab, a polyherbal Unani formulation used for the treatment of Waja-ul-Asab (neuralgia) is routinely used for its indications in neurological pain in Unani medicine. The aim of this study to investigate the efficacy of Habb-e-Asab in diabetic peripheral neuropathy. METHODS Thirty patients with DPN were randomly assigned to test (n=20) and control (n=10) groups in a randomized single-blind placebo control study. For 45 days, the test group was given 250 mg Habb-e-Asab twice a day and the control group 250 mg placebo twice a day. The subjective parameters Pain in feet, burning in feet, and tingling in feet was assessed by the arbitrary scale and VAS fortnightly and objective parameters MNSI, and VPT was assessed in pre-post-treatment. RESULTS The research drug revealed highly statistically significant with p<0.001 on VAS score and MNSI whereas VPT is significant with p<0.01 on few points. But control group exhibits no significant effect in any of the parameters. No adverse effects had been reported in either group. CONCLUSIONS Our finding indicated that the Habb-e-Asab for 45 days improved and reduced the severity of DPN in a patient with diabetes (CTRI/2018/02/011725).
Collapse
Affiliation(s)
| | | | - Md Anzar Alam
- Department of Moalajat, National Institute of Unani Medicine, Bangalore, India
| |
Collapse
|
209
|
Wang Y, Wang X, Liang S, Cai W, Chen L, Hu Y, Hao F, Ren W. Predictive value of risk factors for bladder dysfunction in Chinese patients with type 2 diabetes mellitus: A case-control study. Neurourol Urodyn 2023; 42:1712-1721. [PMID: 37674463 DOI: 10.1002/nau.25278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE To analyze risk factors associated with bladder dysfunction in patients with type 2 diabetes mellitus (T2DM) and to construct a prediction model for early prediction of diabetic bladder dysfunction (DBD). METHODS We included hospitalized patients with T2DM from the endocrinology department of Shenzhen Hospital, Southern Medical University, Shenzhen, China, from January 2019 to 2022. Factors associated with DBD in bivariate analysis with a p < 0.05 were included in a multivariate logistic regression analysis. Multivariate logistic regression analysis was used to determine independent risk factors and to construct a prediction model. The prediction model was presented as the model formula. The receiver operating characteristic (ROC) curve was used to evaluate the predictive value of the above risk factors and the prediction model for DBD. The model was internally verified by Boostrap resampling 1000 times. RESULTS Two hundred and eleven patients were included in this study, and they were divided into the DBD group (n = 101) and the non-DBD group (n = 110). Eight variables showed significant significance in the bivariate analysis, including age, diabetic peripheral neuropathy (DPN), glycated hemoglobin (HbA1c), urinary microalbumin (mALB), red blood cell count (RBC), white blood cell count (WBC), absolute neutrophil count (ANC), percentage of monocyte (Mono%). Furthermore, multivariate logistic regression analysis revealed that age (OR [95% CI]: 1.077 [1.042-1.112]), p < 0.001; DPN (OR [95% CI]: 2.373 [1.013-5.561]), p = 0.047; HbA1c (OR [95% CI]: 1.170 [1.029-1.330]), p = 0.017 and ANC (OR [95% CI]: 1.234 [1.059-1.438]), p = 0.007 were independent risk factors for the DBD. The prediction model formula was Logit (p) = -6.611 + 0.074 age + 0.864 DPN + 0.157 HbA 1 c + 0.078 ANC. The area under the ROC curve (AUC) for the four risk factors were 0.676, 0.582, 0.618, and 0.674, respectively. The prediction model predicted DBD with higher accuracy than the individual risk factors, AUC = 0.817 (95% CI: 0.757-0.877), and the sensitivity and specificity were 88.1% and 50.0%, respectively. The model internal validation results showed that the AUC = 0.804 (95% CI: 0.707-0.901), and the calibration curve is close to the ideal diagonal line. CONCLUSIONS Age, DPN, HbA1c, and ANC were risk factors for DBD. The prediction model constructed based on the four risk factors had a good predictive value for predicting the occurrence of DBD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiufen Wang
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
- Department of the Third Pulmonary Disease, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Surui Liang
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wenzhi Cai
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Chen
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingjie Hu
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Fengming Hao
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Ren
- Department of Nursing, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
210
|
Wee J, Tan XR, Gunther SH, Ihsan M, Leow MKS, Tan DSY, Eriksson JG, Lee JKW. Effects of Medications on Heat Loss Capacity in Chronic Disease Patients: Health Implications Amidst Global Warming. Pharmacol Rev 2023; 75:1140-1166. [PMID: 37328294 DOI: 10.1124/pharmrev.122.000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
Pharmacological agents used to treat or manage diseases can modify the level of heat strain experienced by chronically ill and elderly patients via different mechanistic pathways. Human thermoregulation is a crucial homeostatic process that maintains body temperature within a narrow range during heat stress through dry (i.e., increasing skin blood flow) and evaporative (i.e., sweating) heat loss, as well as active inhibition of thermogenesis, which is crucial to avoid overheating. Medications can independently and synergistically interact with aging and chronic disease to alter homeostatic responses to rising body temperature during heat stress. This review focuses on the physiologic changes, with specific emphasis on thermolytic processes, associated with medication use during heat stress. The review begins by providing readers with a background of the global chronic disease burden. Human thermoregulation and aging effects are then summarized to give an understanding of the unique physiologic changes faced by older adults. The effects of common chronic diseases on temperature regulation are outlined in the main sections. Physiologic impacts of common medications used to treat these diseases are reviewed in detail, with emphasis on the mechanisms by which these medications alter thermolysis during heat stress. The review concludes by providing perspectives on the need to understand the effects of medication use in hot environments, as well as a summary table of all clinical considerations and research needs of the medications included in this review. SIGNIFICANCE STATEMENT: Long-term medications modulate thermoregulatory function, resulting in excess physiological strain and predisposing patients to adverse health outcomes during prolonged exposures to extreme heat during rest and physical work (e.g., exercise). Understanding the medication-specific mechanisms of altered thermoregulation has importance in both clinical and research settings, paving the way for work toward refining current medication prescription recommendations and formulating mitigation strategies for adverse drug effects in the heat in chronically ill patients.
Collapse
Affiliation(s)
- Jericho Wee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Xiang Ren Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Samuel H Gunther
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Melvin Khee Shing Leow
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Doreen Su-Yin Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Johan G Eriksson
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Jason Kai Wei Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| |
Collapse
|
211
|
Mandel N, Büttner M, Poschet G, Kuner R, Agarwal N. SUMOylation Modulates Reactive Oxygen Species (ROS) Levels and Acts as a Protective Mechanism in the Type 2 Model of Diabetic Peripheral Neuropathy. Cells 2023; 12:2511. [PMID: 37947589 PMCID: PMC10648122 DOI: 10.3390/cells12212511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the prevalent type of peripheral neuropathy; it primarily impacts extremity nerves. Its multifaceted nature makes the molecular mechanisms of diabetic neuropathy intricate and incompletely elucidated. Several types of post-translational modifications (PTMs) have been implicated in the development and progression of DPN, including phosphorylation, glycation, acetylation and SUMOylation. SUMOylation involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target proteins, and it plays a role in various cellular processes, including protein localization, stability, and function. While the specific relationship between high blood glucose and SUMOylation is not extensively studied, recent evidence implies its involvement in the development of DPN in type 1 diabetes. In this study, we investigated the impact of SUMOylation on the onset and progression of DPN in a type 2 diabetes model using genetically modified mutant mice lacking SUMOylation, specifically in peripheral sensory neurons (SNS-Ubc9-/-). Behavioural measurement for evoked pain, morphological analyses of nerve fibre loss in the epidermis, measurement of reactive oxygen species (ROS) levels, and antioxidant molecules were analysed over several months in SUMOylation-deficient and control mice. Our longitudinal analysis at 30 weeks post-high-fat diet revealed that SNS-Ubc9-/- mice exhibited earlier and more pronounced thermal and mechanical sensation loss and accelerated intraepidermal nerve fibre loss compared to control mice. Mechanistically, these changes are associated with increased levels of ROS both in sensory neuronal soma and in peripheral axonal nerve endings in SNS-Ubc9-/- mice. In addition, we observed compromised detoxifying potential, impaired respiratory chain complexes, and reduced levels of protective lipids in sensory neurons upon deletion of SUMOylation in diabetic mice. Importantly, we also identified mitochondrial malate dehydrogenase (MDH2) as a SUMOylation target, the activity of which is negatively regulated by SUMOylation. Our results indicate that SUMOylation is an essential neuroprotective mechanism in sensory neurons in type 2 diabetes, the deletion of which causes oxidative stress and an impaired respiratory chain, resulting in energy depletion and subsequent damage to sensory neurons.
Collapse
Affiliation(s)
- Nicolas Mandel
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| | - Michael Büttner
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| |
Collapse
|
212
|
Zaccaria S, Di Perna P, Giurato L, Pecchioli C, Sperti P, Arciprete F, Del Grande A, Nardone I, Wolde Sellasie S, Iani C, Uccioli L. Diabetic Polyneuropathy and Physical Activity in Type 1 Diabetes Mellitus: A Cross-Sectional Study. J Clin Med 2023; 12:6597. [PMID: 37892734 PMCID: PMC10607752 DOI: 10.3390/jcm12206597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The purpose of this study is to access whether a personal attitude to physical activity (PA) may influence the appearance of diabetic polyneuropathy (DPN) patients with well-controlled type 1 diabetes mellitus. METHODS Ninety patients attending the diabetes technology outpatient clinic were enrolled. DPN was investigated according to the Toronto consensus diagnostic criteria. PA was assessed using the International Physical Activity Questionnaire. RESULTS PA was low in 21.1%, moderate in 42.2% and high in 36.7% of patients. According to Toronto criteria, we defined two categories: the first one with DPN absent or possible (57 (63.3%)) and a second one with DPN certain or probable (33 (36.7%)). The χ2-test of the PA groups and the DPN categories showed a statistically significant difference (p < 0.001), with less neuropathy in patients belonging to the group of moderate/high PA. Exposure to a minimum of 600 MET minutes/week was protective factor against the onset of DPN (odd ratio 0.221, c.i. 0.068-0.720, p = 0.012). CONCLUSIONS This study suggests that DPN is less present in type 1 diabetic patients with good metabolic control and a good personal habit of PA. Moderate-to-vigorous PA of at least 600 MET minutes/week might be a protective factor against DPN.
Collapse
Affiliation(s)
- Simona Zaccaria
- Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.Z.); (P.D.P.); (L.G.); (C.P.); (P.S.); (I.N.); (S.W.S.)
| | - Pasquale Di Perna
- Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.Z.); (P.D.P.); (L.G.); (C.P.); (P.S.); (I.N.); (S.W.S.)
| | - Laura Giurato
- Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.Z.); (P.D.P.); (L.G.); (C.P.); (P.S.); (I.N.); (S.W.S.)
| | - Chiara Pecchioli
- Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.Z.); (P.D.P.); (L.G.); (C.P.); (P.S.); (I.N.); (S.W.S.)
| | - Patrizia Sperti
- Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.Z.); (P.D.P.); (L.G.); (C.P.); (P.S.); (I.N.); (S.W.S.)
| | - Flavio Arciprete
- Division of Neurology, Sant’Eugenio Hospital, 00144 Rome, Italy; (F.A.); (A.D.G.); (C.I.)
| | - Alessandra Del Grande
- Division of Neurology, Sant’Eugenio Hospital, 00144 Rome, Italy; (F.A.); (A.D.G.); (C.I.)
| | - Isabella Nardone
- Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.Z.); (P.D.P.); (L.G.); (C.P.); (P.S.); (I.N.); (S.W.S.)
| | - Sium Wolde Sellasie
- Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.Z.); (P.D.P.); (L.G.); (C.P.); (P.S.); (I.N.); (S.W.S.)
| | - Cesare Iani
- Division of Neurology, Sant’Eugenio Hospital, 00144 Rome, Italy; (F.A.); (A.D.G.); (C.I.)
| | - Luigi Uccioli
- Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.Z.); (P.D.P.); (L.G.); (C.P.); (P.S.); (I.N.); (S.W.S.)
| |
Collapse
|
213
|
Zhu JY, Yao W, Ni XS, Yao MD, Bai W, Yang TJ, Zhang ZR, Li XM, Jiang Q, Yan B. Hyperglycemia-regulated tRNA-derived fragment tRF-3001a propels neurovascular dysfunction in diabetic mice. Cell Rep Med 2023; 4:101209. [PMID: 37757825 PMCID: PMC10591036 DOI: 10.1016/j.xcrm.2023.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/19/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Neurovascular dysfunction is a preclinical manifestation of diabetic complications, including diabetic retinopathy (DR). Herein, we report that a transfer RNA-derived RNA fragment, tRF-3001a, is significantly upregulated under diabetic conditions. tRF-3001a downregulation inhibits Müller cell activation, suppresses endothelial angiogenic effects, and protects against high-glucose-induced retinal ganglion cell injury in vitro. Furthermore, tRF-3001a downregulation alleviates retinal vascular dysfunction, inhibits retinal reactive gliosis, facilitates retinal ganglion cell survival, and preserves visual function and visually guided behaviors in STZ-induced diabetic mice and db/db diabetic mice. Mechanistically, tRF-3001a regulates neurovascular dysfunction in a microRNA-like mechanism by targeting GSK3B. Clinically, tRF-3001a is upregulated in aqueous humor (AH) samples of DR patients. tRF-3001a downregulation inhibits DR-induced human retinal vascular endothelial cell and Müller cell dysfunction in vitro and DR-induced retinal neurovascular dysfunction in C57BL/6J mice. Thus, targeting tRF-3001a-mediated signaling is a promising strategy for the concurrent treatment of vasculopathy and neuropathy in diabetes mellitus.
Collapse
Affiliation(s)
- Jun-Ya Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China; Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Wen Yao
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Xi-Sen Ni
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Mu-Di Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China
| | - Wen Bai
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Tian-Jing Yang
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Zi-Ran Zhang
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Xiu-Miao Li
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China; Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Qin Jiang
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China; Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China.
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China; National Health Commission Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai 200030, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200030, China.
| |
Collapse
|
214
|
Azhar MK, Anwar S, Hasan GM, Shamsi A, Islam A, Parvez S, Hassan MI. Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients 2023; 15:4297. [PMID: 37836581 PMCID: PMC10574478 DOI: 10.3390/nu15194297] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Phytochemicals are abundantly occurring natural compounds extracted from plant sources. Rosmarinic acid (RA) is an abundant phytochemical of Lamiaceae species with various therapeutic implications for human health. In recent years, natural compounds have gained significant attention as adjuvant and complementary therapies to existing medications for various diseases. RA has gained popularity due to its anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes, etc. The present review aims to offer a comprehensive insight into the multifaceted therapeutic properties of RA, including its potential as an anticancer agent, neuroprotective effects, and antidiabetic potential. Based on the available evidences, RA could be considered a potential dietary component for treating various diseases, including cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Md. Khabeer Azhar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Saleha Anwar
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (A.I.); (M.I.H.)
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (A.I.); (M.I.H.)
| |
Collapse
|
215
|
Gunsch G, Paradie E, Townsend KL. Peripheral nervous system glia in support of metabolic tissue functions. Trends Endocrinol Metab 2023; 34:622-639. [PMID: 37591710 DOI: 10.1016/j.tem.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
The peripheral nervous system (PNS) relays information between organs and tissues and the brain and spine to maintain homeostasis, regulate tissue functions, and respond to interoceptive and exteroceptive signals. Glial cells perform support roles to maintain nerve function, plasticity, and survival. The glia of the central nervous system (CNS) are well characterized, but PNS glia (PNSG) populations, particularly tissue-specific subtypes, are underexplored. PNSG are found in large nerves (such as the sciatic), the ganglia, and the tissues themselves, and can crosstalk with a range of cell types in addition to neurons. PNSG are also subject to phenotypic changes in response to signals from their local tissue environment, including metabolic changes. These topics and the importance of PNSG in metabolically active tissues, such as adipose, muscle, heart, and lymphatic tissues, are outlined in this review.
Collapse
Affiliation(s)
- Gilian Gunsch
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Emma Paradie
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
216
|
Zhang J, Lin C, Jin S, Wang H, Wang Y, Du X, Hutchinson MR, Zhao H, Fang L, Wang X. The pharmacology and therapeutic role of cannabidiol in diabetes. EXPLORATION (BEIJING, CHINA) 2023; 3:20230047. [PMID: 37933286 PMCID: PMC10582612 DOI: 10.1002/exp.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.
Collapse
Affiliation(s)
- Jin Zhang
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople's Republic of China
| | - Mark R. Hutchinson
- Discipline of PhysiologyAdelaide Medical SchoolUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
- ARC Centre for Nanoscale BioPhotonicsUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
| | - Huiying Zhao
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Beijing National Laboratory for Molecular SciencesBeijingPeople's Republic of China
| |
Collapse
|
217
|
Landrum O, Marcondes L, Egharevba T, Gritsenko K. Painful diabetic peripheral neuropathy of the feet: integrating prescription-strength capsaicin into office procedures. Pain Manag 2023; 13:613-626. [PMID: 37750226 DOI: 10.2217/pmt-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Prescription-strength (8%) capsaicin topical system is a US FDA-approved treatment for painful diabetic peripheral neuropathy of the feet. A 30 min application of the capsaicin 8% topical system can provide sustained (up to 3 months) local pain relief by desensitizing and reducing TRPV1-expressing cutaneous fibers. Capsaicin is not absorbed systemically; despite associated application-site discomfort, capsaicin 8% topical system is well tolerated, with no known drug interactions or contraindications, and could offer clinical advantages over oral options. Capsaicin 8% topical system are not for patient self-administration and require incorporation into office procedures, with the added benefit of treatment compliance. This article reviews existing literature and provides comprehensive, practical information regarding the integration of capsaicin 8% topical systems into office procedures.
Collapse
Affiliation(s)
- Orlando Landrum
- Regenerative Medicine & Interventional Pain Specialist, Cutting Edge Integrative Pain Centers, 3060 Windsor Cir, Elkhart, IN 46514, USA
| | - Lizandra Marcondes
- Averitas Pharma, Inc., Morristown, 360 Mt Kemble Ave, Morristown, NJ 07960, USA
| | - Toni Egharevba
- Averitas Pharma, Inc., Morristown, 360 Mt Kemble Ave, Morristown, NJ 07960, USA
| | - Karina Gritsenko
- Montefiore Medical Center, New 111 E 210th St, Bronx, NY 10467, USA
| |
Collapse
|
218
|
Calikoglu BF, Celik S, Idiz C, Bagdemir E, Issever H, Calvet JH, Satman I. Electrochemical skin conductances values and clinical factors affecting sudomotor dysfunction in patients with prediabetes, type 1 diabetes, and type 2 diabetes: A single center experience. Prim Care Diabetes 2023; 17:499-505. [PMID: 37394312 DOI: 10.1016/j.pcd.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/05/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND AND AIM Sudomotor dysfunction is linked to small fibers damage. We investigated sudomotor dysfunction in a large group of participants with diabetes, prediabetes, and nondiabetic healthy subjects. This study aimed to complete knowledge on sudomotor dysfunction in this population, especially regarding the threshold values for the electrochemical skin conductance (ESC) and factors affecting it. MATERIALS AND METHODS A total of 690 volunteers in four groups were included in the study (type 1 [T1DG]: n = 80, 61.3% women; type 2 diabetes [T2DG]: n = 438, 63.5% women; prediabetes [Pre-DG]: n = 88, 80.7% women; healthy control [HC-G]: n = 84, 67.5% women). All subjects were investigated for clinical diabetic peripheral polyneuropathy and sudomotor dysfunction. The characteristics of participants obtained from outpatient records were evaluated. We used the Sudoscan device to measure ESC which was normalized for BMI, to improve the discriminative capability of the method. RESULTS Diabetic polyneuropathy was found in 17.5% of T1DG, 27.4% of T1DG, and 10.2% of Pre-DG. The mean ESC/BMI was lower in subgroups with diabetic polyneuropathy than those without. Mean ESC/BMI was lowest in T2DG and highest in HC-G but comparable in T1DG and Pre-DG. We accepted the "mean ESC/BMI-1 SD" in the HC-G as the threshold for sudomotor dysfunction. Accordingly, the prevalence of sudomotor dysfunction was 18.8%, 44.3%, 59.1%, and 15% in T1DG, T2DG, Pre-DG, and HC-G, respectively. In T2DG, sudomotor dysfunction was found in 66.7% of persons with retinopathy, of which 56.3% had clinical diabetic polyneuropathy. The prevalence of sudomotor dysfunction in subjects with peripheral artery disease, chronic kidney disease, cardiovascular disease, and hypertension was 46.7%, 47.4%, 43.4%, and 50%, respectively, and 42.9%, 38.9%, 45.5%, and 37.3% of whom in the same order detected with clinical diabetic polyneuropathy. Considering the entire group, a logistic regression model demonstrated that the variables associated with SMD were: retinopathy (OR: 2.969; 95% CI: 1.723, 5.114), female gender (OR: 1.952; 95% CI: 1.287, 2.962), and e-GFR (OR: 0.989; 95% CI: 0.981, 0.998). Since the rate of complications was very low in T1DG, excluding this group, a new model similarly revealed that retinopathy and female gender were associated with SMD, however, the association with e-GFR was disappeared. CONCLUSION The prevalence of sudomotor dysfunction is high when established peripheral polyneuropathy was present in diabetes. Even though, sudomotor dysfunction can also occur before clinical polyneuropathy in both types of diabetes (T1DG: 18.8%, T2DG 44.3%), prediabetes (59.1%), and nondiabetic healthy subjects (15%). The variables associated with sudomotor dysfunction were retinopathy and female sex. Normalization of ESC for BMI would be a beneficial approach. However, before this method is included in the routine screening programs for diabetic polyneuropathy, large-scale and prospective studies are required to reach a consensus on the pathological threshold values.
Collapse
Affiliation(s)
- Bedia Fulya Calikoglu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkiye
| | - Selda Celik
- University of Health Sciences Turkey, Hamidiye Faculty of Nursing, Department of Internal Medicine, Istanbul, Turkiye
| | - Cemile Idiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkiye
| | - Elif Bagdemir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkiye
| | - Halim Issever
- Division of Medical Sciences, Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkiye
| | | | - Ilhan Satman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkiye.
| |
Collapse
|
219
|
Jin HY, Lee KA, Kim YJ, Gwak IS, Park TS, Yeom SW, Kim JS. Bidirectional association between diabetic peripheral neuropathy and vitamin B12 deficiency: Two longitudinal 9-year follow-up studies using a national sample cohort. Prim Care Diabetes 2023; 17:436-443. [PMID: 37344286 DOI: 10.1016/j.pcd.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
AIM This study aims to investigate the association among metformin use, vit B12 deficiency, and DPN occurrence in diabetes. METHODS This retrospective, propensity-matched cohort study was performed using National Health Insurance Service database - National Sample Cohort in South Korea. Study 1 analyzed DPN incidence according to vit B12 deficiency and study 2 analyzed vit B12 deficiency incidence according to the presence/absence of DPN. Moreover, we compared the results with respect to metformin use. RESULTS In study 1, DPN incidence per 10000 person-year (PY) was 179.7 and 76.6 in the vit B12 and non-vit B12 deficiency groups, respectively. The adjusted HR was 1.32 (95% CI; 1.21-1.44, P < 0.05) and metformin use elicited a more significant effect of DPN occurrence in patient with vit B12 deficiency (HR: 5.76 (95% CI; 5.28-6.29). In study 2, vit B12 deficiency incidence per 10000 PY was 250.6 and 129.4 in the DPN and non-DPN groups, respectively. The adjusted HR was 2.44 (95% CI; 2.24-2.66, P < 0.05), however, metformin prescription was associated with the reduced incidence of vit B12 deficiency in DPN patients (HR 0.68 (95% CI; 0.62-0.74, P < 0.05). CONCLUSION DPN occurrence increased in diabetes with vit B12 deficiency and the incidence of vit B12 deficiency was also high in DPN patients. However, metformin showed opposite effects in both cohorts. Further studies clarifying the causal relationship among DPN occurrence, vit B12 deficiency, and metformin use are warranted.
Collapse
Affiliation(s)
- Heung Yong Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Yu Ji Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - In Sun Gwak
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Tae Sun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Sang Woo Yeom
- Department of Otorhinolaryngology-Head and Neck Surgery, Department of Medical Informatics, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Jong Seung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Department of Medical Informatics, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea.
| |
Collapse
|
220
|
Siddiqui AH, Tauheed N, Ashraf H, Ahmad J. Association of Sensory Nerve Action Potential Amplitude and Velocity With Type 2 Diabetic Peripheral Neuropathy. Cureus 2023; 15:e46501. [PMID: 37927653 PMCID: PMC10624771 DOI: 10.7759/cureus.46501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND There is ongoing controversy regarding the predominant type of nerve injury in diabetic peripheral neuropathy, whether it is demyelination or axonal degeneration. OBJECTIVE This study aimed to investigate the association between nerve conduction study parameters, specifically nerve conduction velocity and the amplitude of the action potential, with diabetic peripheral neuropathy and determine their potential as early indicators of the condition. METHODS A cross-sectional study was conducted involving diagnosed type 2 diabetes mellitus patients, who were divided into two groups: Group I (n = 111) with symptomatic diabetic peripheral neuropathy and Group II (n = 109) without clinically detectable peripheral neuropathy. Age and sex-matched healthy controls (n = 100) were also included. Nerve conduction velocity measurements were performed on both upper and lower limbs, with motor nerve conduction study focusing on the dominant side using the median and posterior tibial nerves and sensory nerve conduction study using the median and sural nerves. RESULTS The nerve conduction studies revealed significantly lower sensory nerve action potential amplitudes and compound muscle action potential amplitudes in the median, posterior tibial, and sural nerves of the diabetic groups compared to the control subjects. Furthermore, these changes were more prominent in patients with peripheral neuropathy. Among the 220 diabetic patients analyzed, 135 (61.36%) exhibited nerve conduction abnormalities. The highest rate of abnormality was observed in the sural nerve, followed by the posterior tibial and median nerves. The most common abnormality detected in diabetic patients was a decrease in sensory nerve action potential, followed by a decrease in sensory nerve conduction velocity. CONCLUSION The study findings suggest an association between reduced sensory nerve action potential amplitude and diabetic peripheral neuropathy. These results highlight the potential of sensory nerve action potential and velocity as a sensitive indicator of peripheral neuropathy in diabetic patients.
Collapse
Affiliation(s)
- Anwar H Siddiqui
- Physiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, IND
| | - Nazia Tauheed
- Anaesthesiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, IND
| | - Hamid Ashraf
- Endocrinology and Diabetes, Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh, IND
| | - Jamal Ahmad
- Endocrinology and Diabetes, Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh, IND
| |
Collapse
|
221
|
Sharma K N S, Kumar H A. Assessment of the diagnostic accuracy of Vibrasense compared to a biothesiometer and nerve conduction study for screening diabetic peripheral neuropathy. J Foot Ankle Res 2023; 16:65. [PMID: 37770911 PMCID: PMC10537102 DOI: 10.1186/s13047-023-00667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
AIMS Peripheral neuropathy is a common microvascular complication in diabetes and a risk factor for the development of diabetic foot ulcers and amputations. Vibrasense (Ayati Devices) is a handheld, battery-operated, rapid screening device for diabetic peripheral neuropathy (DPN) that works by quantifying vibration perception threshold (VPT). In this study, we compared Vibrasense against a biothesiometer and nerve conduction study for screening DPN. METHODS A total of 562 subjects with type 2 diabetes mellitus underwent neuropathy assessments including clinical examination, 10-g monofilament test, VPT evaluation with Vibrasense and a standard biothesiometer. Those with an average VPT ≥ 15 V with Vibrasense were noted to have DPN. A subset of these patients (N = 61) underwent nerve conduction study (NCS). Diagnostic accuracy of Vibrasense was compared against a standard biothesiometer and abnormal NCS. RESULTS Average VPTs measured with Vibrasense had a strong positive correlation with standard biothesiometer values (Spearman's correlation 0.891, P < 0.001). Vibrasense showed sensitivity and specificity of 87.89% and 86.81% compared to biothesiometer, and 82.14% and 78.79% compared to NCS, respectively. CONCLUSIONS Vibrasense demonstrated good diagnostic accuracy for detecting peripheral neuropathy in type 2 diabetes and can be an effective screening device in routine clinical settings. TRIAL REGISTRATION Clinical trials registry of India (CTRI/2022/11/047002). Registered 3 November 2022. https://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=76167 .
Collapse
Affiliation(s)
- Srihari Sharma K N
- College of Physiotherapy, Dayananda Sagar University, Shavige Malleshwara Hills, 1st Stage, Kumaraswamy Layout, Bangalore, Karnataka, India, 560111.
| | - Anil Kumar H
- Department of Medicine, Dr Chandramma Dayananda Sagar Institute of Medical Education and Research (CDSIMER), Kanakapura, Karnataka, India
| |
Collapse
|
222
|
Li XM, Shi R, Shen MT, Yan WF, Jiang L, Min CY, Liu XJ, Guo YK, Yang ZG. Subclinical left ventricular deformation and microvascular dysfunction in T2DM patients with and without peripheral neuropathy: assessed by 3.0 T cardiac magnetic resonance imaging. Cardiovasc Diabetol 2023; 22:256. [PMID: 37735418 PMCID: PMC10514942 DOI: 10.1186/s12933-023-01981-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) has been shown to be independently associated with cardiovascular events and mortality. This study aimed to evaluate changes in left ventricular (LV) microvascular perfusion and myocardial deformation in type 2 diabetes mellitus (T2DM) patients with and without DPN, as well as to investigate the association between myocardial perfusion and LV deformation. METHODS Between October 2015 and July 2022, one hundred and twenty-three T2DM patients without DPN, fifty-four patients with DPN and sixty age‑ and sex‑matched controls who underwent cardiovascular magnetic resonance imaging were retrospectively analyzed. LV myocardial perfusion parameters at rest, including upslope, time to maximum signal intensity (TTM), max signal intensity (max SI), and myocardial strains, including global radial, circumferential and longitudinal strain (GRS, GCS and GLS, respectively), were calculated and compared among the groups with One‑way analysis of variance. Univariable and multivariable linear regression analyses were performed to explore the independent factors influencing LV myocardial perfusion indices and LV strains in diabetes. RESULTS The LV GLS, upslope and max SI were significantly deteriorated from controls, through patients without DPN, to patients with DPN (all P < 0.001). Compared with controls, TTM was increased and LV GRS and GCS were decreased in both patient groups (all P < 0.05). Multivariable regression analyses considering covariates showed that DPN was independently associated with reduced upslope, max SI and LV GLS (β = - 0.360, - 2.503 and 1.113, p = 0.021, 0.031 and 0.010, respectively). When the perfusion indices upslope and max SI were included in the multivariable analysis for LV deformation, DPN and upslope (β = 1.057 and - 0.870, p = 0.020 and 0.018, respectively) were significantly associated with LV GLS. CONCLUSION In patients with T2DM, there was more severe LV microvascular and myocardial dysfunction in patients with complicated DPN, and deteriorated subclinical LV systolic dysfunction was associated with impaired myocardial circulation.
Collapse
Affiliation(s)
- Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Meng-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Xiao-Jing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan China
| |
Collapse
|
223
|
Tsilingiris D, Schimpfle L, von Rauchhaupt E, Sulaj A, Seebauer L, Bartl H, Herzig S, Szendroedi J, Kopf S, Kender Z. Dysmetabolism-related Early Sensory Deficits and Their Relationship With Peripheral Neuropathy Development. J Clin Endocrinol Metab 2023; 108:e979-e988. [PMID: 37139855 PMCID: PMC10505541 DOI: 10.1210/clinem/dgad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
AIM To investigate the association of early peripheral sensory dysfunction (EPSD) identified through quantitative sensory testing (QST) with factors related to a dysmetabolic status in individuals with and without type 2 diabetes (T2DM) without peripheral neuropathy (PN), and the impact of those factors on PN development. METHODS A total of 225 individuals (117 and 108 without and with T2DM, respectively) without PN based on clinical and electrophysiological criteria were analyzed. Comparative analysis was conducted between those identified as "healthy" and those with EPSD based on a standardized QST protocol. A total of 196 were followed-up over a mean of 2.64 years for PN occurrence. RESULTS Among those without T2DM, apart from male sex, height, and higher fat and lower lean mass, only higher insulin resistance (IR; homeostatic model assessment for IR: odds ratio [OR], 1.70; P = .009; McAuley index OR, 0.62, P = .008), was independently associated with EPSD. In T2DM, metabolic syndrome (OR, 18.32; P < .001) and skin advanced glycation end-products (AGEs; OR, 5.66; P = .003) were independent predictors of EPSD. In longitudinal analysis, T2DM (hazard ratio [HR], 3.32 vs no diabetes mellitus; P < .001), EPSD (adjusted HR, 1.88 vs healthy; P = .049 adjusted for diabetes mellitus and sex), higher IR and AGEs predicted PN development. Among the 3 EPSD-associated sensory phenotypes, "sensory loss" was most strongly associated with PN development (adjusted HR, 4.35; P = .011). CONCLUSION We demonstrate for the first time the utility of a standardized QST-based approach in identifying early sensory deficits in individuals with and without T2DM. These are associated with a dysmetabolic status signified by IR markers, metabolic syndrome, and higher AGEs, which in turn are shown to influence PN development.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Lukas Schimpfle
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ekaterina von Rauchhaupt
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Alba Sulaj
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Lukas Seebauer
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Hannelore Bartl
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Helmholtz Center Munich, Institute for Diabetes and Cancer, 85764 Munich-Neuherberg, Germany
| | - Julia Szendroedi
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Stefan Kopf
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Zoltan Kender
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| |
Collapse
|
224
|
Mariano XM, de Assis Ferreira LC, Almeida-Leite CM, de Castro Junior CJ, de Lima ME. PnPP-15, a Synthetic Peptide Derived from a Toxin from Phoneutria nigriventer Spider Venom, Alleviates Diabetic Neuropathic Pain and Acts Synergistically with Pregabalin in Mice. Toxins (Basel) 2023; 15:560. [PMID: 37755986 PMCID: PMC10537695 DOI: 10.3390/toxins15090560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetic neuropathic pain is one of the complications that affect a wide variety of the diabetic population and is often difficult to treat. Only a small number of patients experience pain relief, which usually comes with onerous side effects and low levels of satisfaction. The search for new analgesic drugs is necessary, given the limitations that current drugs present. Combining drugs to treat neuropathic pain has been attracting interest to improve their efficacy compared to single-drug monotherapies while also reducing dose sizes to minimize side effects. The aim of our study was to verify the antinociceptive effect of a synthetic peptide, PnPP-15, alone and combined with pregabalin, in male Swiss diabetic mice using the von Frey method. PnPP-15 is a synthetic peptide derived from PnPP19, a peptide representing a discontinuous epitope of the primary structure of the toxin PnTx2-6 from the venom of the spider Phoneutria nigriventer. The antinociceptive activity of both compounds was dose-dependent and showed synergism, which was verified by isobolographic analysis. Treatment with PnPP-15 did not cause spontaneous or forced motor changes and did not cause any damage or signs of toxicity in the analyzed organs (pancreas, lung, heart, kidney, brain, or liver). In conclusion, PnPP-15 is a great candidate for an analgesic drug against neuropathic pain caused by diabetes and exerts a synergistic effect when combined with pregabalin, allowing for even more efficient treatment.
Collapse
Affiliation(s)
- Xavier Maia Mariano
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Luana Caroline de Assis Ferreira
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Camila Megale Almeida-Leite
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Célio José de Castro Junior
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Maria Elena de Lima
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| |
Collapse
|
225
|
Qiu F, Wang Y, Du Y, Zeng C, Liu Y, Pan H, Ke C. Current evidence for J147 as a potential therapeutic agent in nervous system disease: a narrative review. BMC Neurol 2023; 23:317. [PMID: 37674139 PMCID: PMC10481599 DOI: 10.1186/s12883-023-03358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Curcumin has anti-inflammatory, antioxidant, and anticancer effects and is used to treat diseases such as dermatological diseases, infection, stress, depression, and anxiety. J147, an analogue of curcumin, is designed and synthesized with better stability and bioavailability. Accumulating evidence demonstrates the potential role of J147 in the prevention and treatment of Alzheimer's disease, diabetic neuropathy, ischemic stroke, depression, anxiety, and fatty liver disease. In this narrative review, we summarized the background and biochemical properties of J147 and discussed the role and mechanism of J147 in different diseases. Overall, the mechanical attributes of J147 connote it as a potential target for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanmei Wang
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yunbo Du
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
226
|
Eid SA, Rumora AE, Beirowski B, Bennett DL, Hur J, Savelieff MG, Feldman EL. New perspectives in diabetic neuropathy. Neuron 2023; 111:2623-2641. [PMID: 37263266 PMCID: PMC10525009 DOI: 10.1016/j.neuron.2023.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Bogdan Beirowski
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
227
|
Sierra-Silvestre E, Andrade RJ, Colorado LH, Edwards K, Coppieters MW. Occurrence of corneal sub-epithelial microneuromas and axonal swelling in people with diabetes with and without (painful) diabetic neuropathy. Diabetologia 2023; 66:1719-1734. [PMID: 37301795 PMCID: PMC10257488 DOI: 10.1007/s00125-023-05945-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/04/2023] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Non-invasive in vivo corneal confocal microscopy is gaining ground as an alternative to skin punch biopsy to evaluate small-diameter nerve fibre characteristics. This study aimed to further explore corneal nerve fibre pathology in diabetic neuropathy. METHODS This cross-sectional study quantified and compared corneal nerve morphology and microneuromas in participants without diabetes (n=27), participants with diabetes but without distal symmetrical polyneuropathy (DSPN; n=33), participants with non-painful DSPN (n=25) and participants with painful DSPN (n=18). Clinical and electrodiagnostic criteria were used to diagnose DSPN. ANCOVA was used to compare nerve fibre morphology in the central cornea and inferior whorl, and the number of corneal sub-epithelial microneuromas between groups. Fisher's exact tests were used to compare the type and presence of corneal sub-epithelial microneuromas and axonal swelling between groups. RESULTS Various corneal nerve morphology metrics, such as corneal nerve fibre length and density, showed a progressive decline across the groups (p<0.001). In addition, axonal swelling was present more frequently (p=0.018) and in higher numbers (p=0.03) in participants with painful compared with non-painful DSPN. The frequency of axonal distension, a type of microneuroma, was increased in participants with painful and non-painful DSPN compared to participants with diabetes but without DSPN and participants without diabetes (all p≤0.042). The combined presence of all microneuromas and axonal swelling was increased in participants with painful DSPN compared with all other groups (p≤0.026). CONCLUSIONS/INTERPRETATION Microneuromas and axonal swelling in the cornea increase in prevalence from participants with diabetes to participants with non-painful DSPN and participants with painful DSPN.
Collapse
Affiliation(s)
- Eva Sierra-Silvestre
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
- Amsterdam Movement Sciences - Musculoskeletal Health Program, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ricardo J Andrade
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
- Movement - Interactions - Performance (MIP), Nantes University, Nantes, France
| | - Luisa H Colorado
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Katie Edwards
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Michel W Coppieters
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia.
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia.
- Amsterdam Movement Sciences - Musculoskeletal Health Program, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
228
|
Armstrong DG, Grunberger G. Stimulating Results Signal a New Treatment Option for People Living With Painful Diabetic Neuropathy. J Diabetes Sci Technol 2023; 17:1387-1391. [PMID: 35770993 PMCID: PMC10563543 DOI: 10.1177/19322968221099542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Painful diabetic neuropathy (PDN) is a progressive condition that deprives many patients of quality of life. With limited treatment options available, successful pain management can be difficult to achieve. METHODS We reviewed results of recent data evaluating high frequency spinal cord stimulation (SCS). RESULTS from the SENZA-PDN randomized clinical trial (NCT03228420), the largest such trial to date, demonstrated 10-kHz spinal cord stimulation substantially reduced PDN refractory to conventional medical management along with improvements in health-related quality-of-life measures that were sustained over 12 months. These data supported the recent U.S. Food & Drug Administration (FDA) approval for 10-kHz SCS in PDN patients and contributed to the body of evidence on SCS available to health care professionals managing the effects of PDN. CONCLUSION High frequency spinal cord simulation appears to hold promise in treatment of painful diabetic neuropathy. We look forward to future works in the literature that will further elucidate these promising findings.
Collapse
Affiliation(s)
- David G. Armstrong
- Department of Surgery, Southwestern Academic Limb Salvage Alliance, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - George Grunberger
- Grunberger Diabetes Institute, Bloomfield Hills, MI, USA
- Internal Medicine, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
229
|
Taylor RS, Lad SP, White JL, Stauss TG, Healey BE, Sacks NC, McLin R, Patil S, Jaasma MJ, Caraway DL, Petersen EA. Health care resource utilization and costs in patients with painful diabetic neuropathy treated with 10 kHz spinal cord stimulation therapy. J Manag Care Spec Pharm 2023; 29:1021-1029. [PMID: 37610114 PMCID: PMC10508838 DOI: 10.18553/jmcp.2023.29.9.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
BACKGROUND: Diabetic peripheral neuropathy, a common comorbidity of diabetes, is a neurodegenerative disorder that targets sensory, autonomic, and motor nerves frequently associated with painful diabetic neuropathy (PDN). PDN carries an economic burden as the result of reduced work and productivity. A recent multicenter randomized controlled trial, SENZA-PDN (NCT03228420), assessed the impact of high-frequency (10 kHz) spinal cord stimulation (SCS) on pain relief. The effects of high-frequency SCS on health care resource utilization and medical costs are not known. OBJECTIVE: To evaluate the effect of high-frequency (10 kHz) SCS on health care resource utilization (HRU) and medical costs in patients with PDN using data from the SENZA-PDN trial. METHODS: Participants with PDN were randomly assigned 1:1 to receive either 10 kHz SCS plus conventional medical management (CMM) (SCS treatment group) or CMM alone (CMM treatment group). Patient outcomes and HRU up to the 6-month follow-up are reported here. Costs (2020 USD) for each service was estimated based on publicly available Medicare fee schedules, Medicare claims data, and literature. HRU metrics of inpatient and outpatient contacts and costs are reported as means and SDs. Univariate and bivariate analyses were used to compare SCS and CMM treatment groups at 6 months. RESULTS: At 6-month follow up, the SCS arm experienced approximately half the mean rate of hospitalizations per patient compared with the CMM treatment group (0.08 vs 0.15; P = 0.066). The CMM treatment group's total health care costs per patient were approximately 51% higher compared with the SCS treatment group (equivalent to mean annual cost per patient of $9,532 vs $6,300). CONCLUSIONS: Our analysis of the SENZA-PDN trial indicates that the addition of 10 kHz SCS therapy results in lower rates of hospitalization and consequently lower health care costs among patients with PDN compared with those receiving conventional management alone.
Collapse
Affiliation(s)
- Rod S. Taylor
- MRC/CSO Social and Public Health Sciences Unit, Robertson Centre for Biostatistics, School of Health & Wellbeing, University of Glasgow, UK
| | | | | | | | | | - Naomi C. Sacks
- PRECISIONheor, Boston, MA
- EpidStrategies, A Division of ToxStrategies, LLC, Boston, MA
| | - Ronaé McLin
- PRECISIONheor, New York, NY, now with Case Western Reserve University School of Medicine, Cleveland, OH
| | | | | | | | - Erika A. Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
230
|
Mingorance Delgado A, Lucas F. The Tandem Control-IQ advanced hybrid system improves glycemic control in children under 18 years of age with type 1 diabetes and night rest in caregivers. ENDOCRINOL DIAB NUTR 2023; 70 Suppl 3:27-35. [PMID: 37598004 DOI: 10.1016/j.endien.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 08/21/2023]
Abstract
OBJECTIVE To determine the impact of switching from the predictive low glucose suspend (PLGS) system to the advanced hybrid Tandem Control-IQ system on glucometrics and glycosylated haemoglobin (HbA1c) at one year. To assess the impact on the quality of life perceived by parents. METHOD Prospective study in 71 patients aged 6-18 years with type 1 diabetes (DM1), in treatment with PLGS, who switched to an advanced hybrid system. Glucometric data were collected before the change, at 4 and 8 weeks, and at one year of use; HbA1c before the change and after one year. The Diabetes Impact and Devices Satisfaction (DIDS) questionnaire was used at weeks 4 and 8. RESULTS An increase in time in range (TIR) was observed with a median of 76% (P<.001) at 4 weeks, which was maintained after one year (+8% in the total group). Overall, 73.24% of patients achieved a TIR above 70%. The subgroup with an initial TIR of less than 56% increased it by 14.4%. After one year there was a 0.3% reduction in HbA1c. Level 1 hypoglycaemia, level 1 and level 2 hyperglycaemia, mean glucose (GM) and coefficient of variation (CV) decreased. Auto mode stayed on 97% of the time and no dropouts occurred. Caregivers had a perception of better glycaemic control and less need to monitor blood glucose variations during the night. None of them would switch back to the previous system and they feel safe with the new system. CONCLUSIONS The Tandem Control-IQ advanced hybrid system was shown to be effective one year after its implementation with improvement in all glucometric parameters and HbA1c, as well as night-time rest in caregivers.
Collapse
Affiliation(s)
- Andrés Mingorance Delgado
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) - Diabetes y enfermedades metabólicas asociadas, Alicante, Spain; Unidad de Endocrinología y Diabetes Pediátrica, Servicio de Pediatría, Hospital General Universitario Dr. Balmis, Alicante, Spain.
| | - Fernando Lucas
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) - Diabetes y enfermedades metabólicas asociadas, Alicante, Spain; Unidad de Diabetes, Servicio de Endocrinología, Hospital General Universitario Dr. Balmis, Alicante, Spain
| |
Collapse
|
231
|
Zaino B, Goel R, Devaragudi S, Prakash A, Vaghamashi Y, Sethi Y, Patel N, Kaka N. Diabetic neuropathy: Pathogenesis and evolving principles of management. Dis Mon 2023; 69:101582. [PMID: 37164794 DOI: 10.1016/j.disamonth.2023.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The global rise of prediabetes and diabetes has spawned an epidemic of complications associated with these conditions. Neuropathy is the most common consequence, with distal symmetric polyneuropathy (DSP) being the most prevalent. Diabetic neuropathy (DN) is a debilitating consequence of diabetes mellitus resulting in the highest morbidity and death, besides imposing a substantial financial burden on the patient. Loss of sensory function commencing distally in the lower limbs, accompanied by discomfort and considerable morbidity, characterizes diabetic neuropathy. The clinical evaluation and therapeutic options for diabetic peripheral neuropathy are multifaceted. At least fifty percent of people with diabetes acquire diabetic neuropathy over time. Good glycemic control halts the evolution in individuals with Type 1 diabetes mellitus. These results have prompted fresh attempts to comprehend the origin and develop new guidelines for prevention and treatment. New recommendations have also been established for the treatment of painful DN using separate classes of medications, with an emphasis on avoiding the use of opioids. Although our comprehension of the intricacies of diabetic neuropathy has progressed significantly over the past decade, the unique processes driving the neuropathy in type 1 and type 2 diabetes remain unexplained. Currently, glycemic control and pain management are the only effective therapies. While glucose management significantly reduces neuropathy development in type 1 diabetics, the effect is considerably lower in type 2 diabetics. Evidence supports the use of anticonvulsants and antidepressants for diabetic peripheral neuropathy pain treatment. However, the absence of disease-modifying medications for diabetic DSP necessitates the identification of unrecognized modifiable risk factors. It is imperative to identify the 'missed' risk factors and targets, allowing comprehensive, individualized care for patients.
Collapse
Affiliation(s)
- Basem Zaino
- Tishreen University, Syria; PearResearch, India
| | - Rashika Goel
- Punjab Institute of Medical Sciences, India; PearResearch, India
| | - Sanjana Devaragudi
- Apollo Institute of Medical Sciences and Research, Hyderabad, India; PearResearch, India
| | - Ananya Prakash
- Narayana Institute of Cardiac Sciences, Bangalore, India; PearResearch, India
| | - Yogeshkumar Vaghamashi
- Bicol Christian College of Medicine, Legazpi city, Philippines; Narayana Institute of Cardiac Sciences, Bangalore, India
| | - Yashendra Sethi
- PearResearch, India; Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Neil Patel
- PearResearch, India; GMERS Medical College Himmatnagar, India.
| | - Nirja Kaka
- PearResearch, India; GMERS Medical College Himmatnagar, India
| |
Collapse
|
232
|
Peters E, Itani M, Kristensen AG, Terkelsen AJ, Krøigård T, Tankisi H, Jensen TS, Finnerup NB, Gylfadottir SS. Cardiovascular autonomic neuropathy in patients with type 2 diabetes with and without sensorimotor polyneuropathy. J Peripher Nerv Syst 2023; 28:450-459. [PMID: 37449440 DOI: 10.1111/jns.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular autonomic neuropathy (CAN) in patients with diabetes is associated with poor prognosis. We aimed to assess signs of CAN and autonomic symptoms and to investigate the impact of sensorimotor neuropathy on CAN by examining type 2 diabetes patients with (DPN [distal sensorimotor polyneuropathy]) and without distal sensorimotor polyneuropathy (noDPN) and healthy controls (HC). Secondarily, we aimed to describe the characteristics of patients with CAN. METHODS A population of 374 subjects from a previously described cohort of the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) were included. Subjects were examined with the Vagus™ device for the diagnosis of CAN, where two or more abnormal cardiovascular autonomic reflex tests indicate definite CAN. Autonomic symptoms were assessed with Composite Autonomic Symptom Score 31 (COMPASS 31) questionnaire. DPN was defined according to the Toronto consensus panel definition. RESULTS Definite CAN was present in 22% with DPN, 7% without DPN and 3% of HC, and 91% of patients with definite CAN had DPN. Patients with DPN and definite CAN reported higher COMPASS 31 scores compared to patients with noDPN (20.0 vs. 8.3, p < 0.001) and no CAN (22.1 vs. 12.3, p = 0.01). CAN was associated with HbA1c and age in a multivariate logistic regression analysis but was not associated with IEFND or triglycerides. INTERPRETATION One in five patients with DPN have CAN and specific CAN characteristics may help identify patients at risk for developing this severe diabetic complication. Autonomic symptoms were strongly associated with having both DPN and CAN, but too unspecific for diagnosing CAN.
Collapse
Affiliation(s)
- Emil Peters
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mustapha Itani
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Alexander G Kristensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Astrid Juhl Terkelsen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Krøigård
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Troels S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Sandra Sif Gylfadottir
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
233
|
Attia MA, Soliman N, Eladl MA, Bilasy SE, El-Abaseri TB, Ali HS, Abbas F, Ibrahim D, Osman NMS, Hashish AA, Alshahrani A, Mohamed AS, Zaitone SA. Topiramate affords neuroprotection in diabetic neuropathy model via downregulating spinal GFAP/inflammatory burden and improving neurofilament production. Toxicol Mech Methods 2023; 33:563-577. [PMID: 36978280 DOI: 10.1080/15376516.2023.2196687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
The current study aimed to test the neuroprotective action of topiramate in mouse peripheral diabetic neuropathy (DN) and explored some mechanisms underlying this action. Mice were assigned as vehicle group, DN group, DN + topiramate 10-mg/kg and DN + topiramate 30-mg/kg. Mice were tested for allodynia and hyperalgesia and then spinal cord and sciatic nerves specimens were examined microscopically and neurofilament heavy chain (NEFH) immunostaining was performed. Results indicated that DN mice had lower the hotplate latency time (0.46-fold of latency to licking) and lower von-Frey test pain threshold (0.6-fold of filament size) while treatment with topiramate increased these values significantly. Sciatic nerves from DN control mice showed axonal degeneration while spinal cords showed elevated GFAP (5.6-fold) and inflammatory cytokines (∼3- to 4-fold) but lower plasticity as indicated by GAP-43 (0.25-fold). Topiramate produced neuroprotection and suppressed spinal cord GFAP/inflammation but enhanced GAP-43. This study reinforces topiramate as neuroprotection and explained some mechanisms included in alleviating neuropathy.
Collapse
Affiliation(s)
- Mohammed A Attia
- Department of Pharmacology, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nema Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shymaa E Bilasy
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- College of Dental Medicine, California Northstate University, Elk Grove, CA, USA
| | - Taghrid B El-Abaseri
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faten Abbas
- Physiology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dalia Ibrahim
- Physiology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noura M S Osman
- Department of Human Anatomy and Embryology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Abdullah A Hashish
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha, Saudi Arabia
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asma Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, KSA
| | - Abir S Mohamed
- Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Sawsan A Zaitone
- Deparment of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
234
|
Xu J, Chen Q, Cai M, Han X, Lu H. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry-based metabolomics study of diabetic distal symmetric polyneuropathy. J Diabetes Investig 2023; 14:1110-1120. [PMID: 37347226 PMCID: PMC10445193 DOI: 10.1111/jdi.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
AIMS/INTRODUCTION Distal symmetric polyneuropathy (DSPN) is a common complication of type 2 diabetes mellitus, but the underlining mechanisms have not yet been elucidated. The current study was designed to screen the feature metabolites classified as potential biomarkers, and to provide deeper insights into the underlying distinctive metabolic changes during disease progression. MATERIALS AND METHODS Plasma metabolite profiles were obtained by the ultra-high liquid chromatography coupled to tandem mass spectrometry method from healthy control participants, patients with type 2 diabetes mellitus and patients with DSPN. Potential biomarkers were selected through comprehensive analysis of statistically significant differences between groups. RESULTS Overall, 938 metabolites were identified. Among them, 12 metabolites (dimethylarginine, N6-acetyllysine, N-acetylhistidine, N,N,N-trimethyl-alanylproline betaine, cysteine, 7-methylguanine, N6-carbamoylthreonyladenosine, pseudouridine, 5-methylthioadenosine, N2,N2-dimethylguanosine, aconitate and C-glycosyl tryptophan) were identified as the specific biomarkers. The content of 12 metabolites were significantly higher in the DSPN group compared with the other two groups. Additionally, they showed good performance to discriminate the DSPN state. Correlation analyses showed that the levels of 12 metabolites might be more closely related to the glucose metabolic changes, followed by the levels of lipid metabolism. CONCLUSIONS The finding of the 12 signature metabolites might provide a novel perspective for the pathogenesis of DSPN. Future studies are required to test this observation further.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of EndocrinologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qingguang Chen
- Department of EndocrinologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mengjie Cai
- Department of EndocrinologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu Han
- Department of EndocrinologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hao Lu
- Department of EndocrinologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
235
|
Gelaw NB, Muche AA, Alem AZ, Gebi NB, Chekol YM, Tesfie TK, Tebeje TM. Development and validation of risk prediction model for diabetic neuropathy among diabetes mellitus patients at selected referral hospitals, in Amhara regional state Northwest Ethiopia, 2005-2021. PLoS One 2023; 18:e0276472. [PMID: 37643198 PMCID: PMC10465000 DOI: 10.1371/journal.pone.0276472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Diabetic neuropathy is the most common complication in both Type-1 and Type-2 DM patients with more than one half of all patients developing nerve dysfunction in their lifetime. Although, risk prediction model was developed for diabetic neuropathy in developed countries, It is not applicable in clinical practice, due to poor data, methodological problems, inappropriately analyzed and reported. To date, no risk prediction model developed for diabetic neuropathy among DM in Ethiopia, Therefore, this study aimed prediction the risk of diabetic neuropathy among DM patients, used for guiding in clinical decision making for clinicians. OBJECTIVE Development and validation of risk prediction model for diabetic neuropathy among diabetes mellitus patients at selected referral hospitals, in Amhara regional state Northwest Ethiopia, 2005-2021. METHODS A retrospective follow up study was conducted with a total of 808 DM patients were enrolled from January 1,2005 to December 30,2021 at two selected referral hospitals in Amhara regional state. Multi-stage sampling techniques were used and the data was collected by checklist from medical records by Kobo collect and exported to STATA version-17 for analysis. Lasso method were used to select predictors and entered to multivariable logistic regression with P-value<0.05 was used for nomogram development. Model performance was assessed by AUC and calibration plot. Internal validation was done through bootstrapping method and decision curve analysis was performed to evaluate net benefit of model. RESULTS The incidence proportion of diabetic neuropathy among DM patients was 21.29% (95% CI; 18.59, 24.25). In multivariable logistic regression glycemic control, other comorbidities, physical activity, hypertension, alcohol drinking, type of treatment, white blood cells and red blood cells count were statistically significant. Nomogram was developed, has discriminating power AUC; 73.2% (95% CI; 69.0%, 77.3%) and calibration test (P-value = 0.45). It was internally validated by bootstrapping method with discrimination performance 71.7 (95% CI; 67.2%, 75.9%). It had less optimism coefficient (0.015). To make nomogram accessible, mobile based tool were developed. In machine learning, classification and regression tree has discriminating performance of 70.2% (95% CI; 65.8%, 74.6%). The model had high net benefit at different threshold probabilities in both nomogram and classification and regression tree. CONCLUSION The developed nomogram and decision tree, has good level of accuracy and well calibration, easily individualized prediction of diabetic neuropathy. Both models had added net benefit in clinical practice and to be clinically applicable mobile based tool were developed.
Collapse
Affiliation(s)
- Negalgn Byadgie Gelaw
- Department of Public Health, Mizan Aman College of Health Sciences, Mizan-Aman, Ethiopia
| | - Achenef Asmamaw Muche
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Adugnaw Zeleke Alem
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Nebiyu Bekele Gebi
- Department of Internal Medicine, School of Medicine, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Yazachew Moges Chekol
- Department of Health Information Technology, Mizan Aman College of Health Sciences, Mizan-Aman, Ethiopia
| | - Tigabu Kidie Tesfie
- Department of Public Health, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tsion Mulat Tebeje
- Unit of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
| |
Collapse
|
236
|
Gao X, Ren C, Li L, Zhao H, Liu K, Zhuang M, Lv X, Zhi X, Jiang H, Chen Q, Zhao X, Li Y. Pharmacological action of Hedysarum polysaccharides: a review. Front Pharmacol 2023; 14:1119224. [PMID: 37701035 PMCID: PMC10494935 DOI: 10.3389/fphar.2023.1119224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/10/2023] [Indexed: 09/14/2023] Open
Abstract
Hedysarum, a traditional Chinese herbal medicine and food with a long history of clinical application, is used to improve health conditions and treat various diseases. Hedysarum polysaccharides (HPS), flavonoids, saponins, and alkaloids, are the primary components of Hedysarum. HPS is the most important natural active ingredient of Hedysarum, which has many pharmacological effects. Currently, HPS exhibits significant promise in drug development for various ailments such as tumors, diabetes, cardiovascular diseases, Alzheimer's disease, and fibrosis. This review paper discusses the extraction, separation, and content determination techniques of HPS, along with the investigation of its chemical constituents. More importantly, we reviewed the anti-inflammatory pharmacological effects of HPS, such as inhibition of inflammatory factors and NF-κB signaling pathway; antitumor activity through apoptosis induction in tumor cells and blocking tumor cell proliferation and metastasis; antioxidant effects; regulation of various cytokines and immune cells; regulation of blood sugar levels, such as in type I and type II diabetes and in diabetic complications; improvement in symptoms of Alzheimer disease; anti-aging and anti-fibrosis properties; and improvement in cerebral ischemia-reperfusion injury. This review paper establishes the theoretical foundation for future studies on the structure, mechanism, and clinical use of HPS.
Collapse
Affiliation(s)
- Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Linyu Li
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huilin Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Mengjie Zhuang
- Xinjiang Medical University School of Basic Medicine, Urumqi, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Province Key Laboratory of Chinese Medicine for the Prevention and Treatment of Chronic Diseases, Lanzhou, China
- Key Clinical Specialty of the National Health Commission of the People’s Republic of China, Key Specialized Cardiovascular Laboratory National Administration of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
237
|
Zhu GC, Chen YW, Tsai KL, Wang JJ, Hung CH, Schmid AB. Swimming exercise attenuates mechanical hypersensitivity and mitigates peripheral nerve degeneration in rats with painful diabetic neuropathy (PDN). Neurosci Lett 2023; 812:137406. [PMID: 37480979 DOI: 10.1016/j.neulet.2023.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND This study aimed to assess the effectiveness of swimming exercise in alleviating mechanical hypersensitivity and peripheral nerve degeneration associated with a pre-clinical model of painful diabetic neuropathy (PDN). METHODS This study is a pre-clinical study conducted using the streptozocin (STZ)-induced PDN rat model. Rats were randomly allocated to three groups: a vehicle group of non-diabetic rats (Vehicle, n = 9), a group of rats with PDN (PDN, n = 8), and a group of rats with PDN that performed a swimming exercise program (PDN-SW, n = 10). The swimming exercise program included daily 30-minute swimming exercise, 5 days per week for 4 weeks. Von Frey testing was used to monitor hindpaw mechanical sensitivity over 4 weeks. Assessment of cutaneous peripheral nerve fiber integrity was performed after the 4-week study period via immunohistochemistry for protein gene product 9.5-positive (PGP9.5+) intra-epidermal nerve fiber density (IENFD) in hind-paw skin biopsies by a blinded investigator. RESULTS The results showed that swimming exercise mitigated but did not fully reverse mechanical hypersensitivity in rats with PDN. Immunohistochemical testing revealed that the rats in the PDN-SW group retained higher PGP9.5+ IENFD compared to the PDN group but did not reach normal levels of the Vehicle group. CONCLUSIONS The results of this study indicate that swimming exercise can mitigate mechanical hypersensitivity and degeneration of peripheral nerve fibers in rats with experimental PDN.
Collapse
Affiliation(s)
- Guan-Cheng Zhu
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Wen Chen
- Department of Physical Therapy, China Medical University, Taichung, Taiwan, ROC
| | - Kun-Ling Tsai
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan, ROC
| | - Ching-Hsia Hung
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, ROC.
| | - Annina B Schmid
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| |
Collapse
|
238
|
Sempere-Bigorra M, Julián-Rochina I, Pérez-Ros P, Navarro-Flores E, Martínez-Arnau FM, Cauli O. Relationship between Cognitive Impairment and Depressive Symptoms with Somatosensory Functions in Diabetic and Non-Diabetic Older Adults and Its Impact on Quality of Life. Life (Basel) 2023; 13:1790. [PMID: 37763194 PMCID: PMC10532541 DOI: 10.3390/life13091790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is an inevitable process that impacts the peripheral and central nervous systems and is considered one of the strongest risk factors for neurodegenerative diseases. In addition, when it also presents with diabetes mellitus, the risk of neurological damage may be further increased. This current study aimed to explore the relationships between peripheral sensory system decline and cognitive functions, the symptoms of depression, and quality of life (QoL) as metrics of central nervous system impairment in institutionalized older adults. A total of 95 individuals participated in this case-control study, which included diabetics and non-diabetics. The superficial sensory pathway was assessed in terms of thermal sensation, nociception, and non-discriminative touch, and the deep sensory pathway was evaluated by assessing vibration and light touch-pressure sensations. To assess function at the intellectual level, the Mini-Mental State Examination (MMSE) and Trail Making Test (TMT) cognitive functional tests were used, while the symptoms of depression and QoL were explored by employing the Yesavage Geriatric Depression Scale and EuroQol 5D questionnaire (EQ-5D), respectively. In the overall population analyses, altered thermal sensation was significantly associated with cognitive impairment (CI; p < 0.05). In turn, bivariate analyses and a binary logistic regression showed that the symptoms of depression and QoL were significantly related to altered vibratory sensation when assessed using a medical tuning fork (p < 0.05). In the group of diabetic patients, those with CI also had significantly lower thermal sensation (p < 0.05) and non-discriminative touch sensation, although this was only a trend (p = 0.055). Diabetics with depression had a significantly worse non-discriminative touch (p < 0.05) and vibratory sensation when tested with a tuning fork (p < 0.05). In addition, poorer QoL was associated with reduced sensitivity to heat (p < 0.05), light touch pressure (p < 0.05), and vibrations when assessed either with a tuning fork (p < 0.05) or a biothesiometer (p < 0.05). In contrast, no relationships were found between sensory functions and cognitive assessments in non-diabetic patients. These findings indicate that superficial sensitivity damage was related to CI, while deep sensation alterations were related to depression and poor QoL, with diabetes apparently further strengthening these relationships.
Collapse
Affiliation(s)
- Mar Sempere-Bigorra
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| | - Iván Julián-Rochina
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| | - Pilar Pérez-Ros
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| | - Emmanuel Navarro-Flores
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| | - Francisco Miguel Martínez-Arnau
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
- Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Omar Cauli
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain; (M.S.-B.); (I.J.-R.); (P.P.-R.); (E.N.-F.)
- Frailty Research Organized Group (FROG), Department of Nursing, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
239
|
Hsieh RY, Huang IC, Chen C, Sung JY. Effects of Oral Alpha-Lipoic Acid Treatment on Diabetic Polyneuropathy: A Meta-Analysis and Systematic Review. Nutrients 2023; 15:3634. [PMID: 37630823 PMCID: PMC10458197 DOI: 10.3390/nu15163634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Alpha-lipoic acid (ALA) was found to improve the symptoms in patients with diabetic sensorimotor peripheral neuropathy (DSPN) by reducing oxidative stress and ameliorating microcirculation. Our meta-analysis is aimed at evaluating the effects of oral-administered ALA versus a placebo in patients with DSPN and determining the optimal dosage for this treatment. We systematically reviewed randomized controlled trials (RCTs) in the PubMed, Embase, and Cochrane databases to determine the efficacy of oral ALA for patients with DSPN. The primary outcome was total symptoms' score (TSS), and secondary outcomes were the neurological disability score (NDS), neuropathy impaired score (NIS), NIS-lower limb (NIS-LL), vibration perception threshold (VPT), nerve conduction study (NCS) results, and global satisfaction. A subgroup analysis of the ALA dosage (600, 1200, and 1800 mg/day) was also conducted. Ten RCTs (1242 patients) were included. ALA treatment produced favorable results for TSS (a dose-related trend was observed), NDS, and the global satisfaction score. For VAS, VPT, NIS-LL, and NCS results, ALA did not produce favorable results. ALA treatment had favorable effects on DSPN by reducing sensory symptoms, and it resulted in a dose-dependent response relative to the placebo for TSS and the global satisfaction score. The use of ALA to prevent neurological symptoms should be further researched.
Collapse
Affiliation(s)
- Ruey-Yu Hsieh
- Department of Neurology, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - I-Chen Huang
- Department of Neurology, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chiehfeng Chen
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei 110, Taiwan
| | - Jia-Ying Sung
- Department of Neurology, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
240
|
Cheng MK, Guo YY, Kang XN, Zhang L, Wang D, Ren HH, Yuan G. Advances in cardiovascular-related biomarkers to predict diabetic peripheral neuropathy. World J Diabetes 2023; 14:1226-1233. [PMID: 37664477 PMCID: PMC10473952 DOI: 10.4239/wjd.v14.i8.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common chronic complication of diabetes mellitus. One of the most common types is distal symmetric poly-neuropathy, which begins as bilateral symmetry pain and hyperesthesia and gradually progresses into hypoesthesia with nerve fibre disorder and is frequently accompanied by depression and anxiety. Notably, more than half of patients with DPN can be asymptomatic, which tends to delay early detection. Furthermore, the study of adverse outcomes showed that DPN is a prominent risk factor for foot ulceration, gangrene and nontraumatic amputation, which decreases quality of life. Thus, it is essential to develop convenient diagnostic biomarkers with high sensitivity for screening and early intervention. It has been reported that there may be common pathways for microvascular and macrovascular complications of diabetes. The pathogenesis of both disorders involves vascular endothelial dys-function. Emerging evidence indicates that traditional and novel cardiovascular-related biomarkers have the potential to characterize patients by subclinical disease status and improve risk prediction. Additionally, beyond traditional cardiovascular-related biomarkers, novel cardiovascular-related biomarkers have been linked to diabetes and its complications. In this review, we evaluate the association between major traditional and nontraditional car-diovascular-related biomarkers of DPN, such as cardiac troponin T, B-type natriuretic peptide, C-reactive protein, myeloperoxidase, and homocysteine, and assess the evidence for early risk factor-based management strategies to reduce the incidence and slow the progression of DPN.
Collapse
Affiliation(s)
- Meng-Ke Cheng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Yao-Yao Guo
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Nan Kang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Lu Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Dan Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Hui-Hui Ren
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
241
|
Lyu X, Hu Y, Shi S, Wang S, Li H, Wang Y, Zhou K. Hydrogel Bioelectronics for Health Monitoring. BIOSENSORS 2023; 13:815. [PMID: 37622901 PMCID: PMC10452556 DOI: 10.3390/bios13080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are considered an ideal platform for personalized healthcare due to their unique characteristics, such as their outstanding softness, appealing biocompatibility, excellent mechanical properties, etc. Owing to the high similarity between hydrogels and biological tissues, hydrogels have emerged as a promising material candidate for next generation bioelectronic interfaces. In this review, we discuss (i) the introduction of hydrogel and its traditional applications, (ii) the work principles of hydrogel in bioelectronics, (iii) the recent advances in hydrogel bioelectronics for health monitoring, and (iv) the outlook for future hydrogel bioelectronics' development.
Collapse
Affiliation(s)
- Xinyan Lyu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Yan Hu
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| | - Shuai Shi
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| | - Siyuan Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Haowen Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
| | - Kun Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| |
Collapse
|
242
|
Bhattacharya R, Saini S, Ghosh S, Roy P, Ali N, Parvez MK, Al-Dosari MS, Mishra AK, Singh LR. Organosulfurs, S-allyl cysteine and N-acetyl cysteine sequester di-carbonyls and reduces carbonyl stress in HT22 cells. Sci Rep 2023; 13:13071. [PMID: 37567958 PMCID: PMC10421908 DOI: 10.1038/s41598-023-40291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetes, characterized by high blood glucose level, is a progressive metabolic disease that leads to serious health complications. One of the major pathological consequences associated with diabetes is the accumulation of highly reactive carbonyl compounds called advanced glycation end products (AGEs). Most of the AGEs are dicarbonyls and have the potential to covalently modify proteins especially at the lysine residues in a non-enzymatic fashion (a process termed as glycation) resulting in the functional impairment and/or toxic gain in function. Therefore, non-toxic small molecules that can inhibit glycation are of interest for the therapeutic intervention of diabetes. In the present communication, we have investigated the effect of organosulfurs (S-allyl cysteine, SAC and N-acetyl cysteine, NAC) that are major principal components of Allium sativa against the glycation of different proteins. We discovered that both SAC and NAC are potent anti-glycating agents. We also found that both SAC and NAC reduce ROS level and inhibit apoptosis caused by protein glycation.
Collapse
Affiliation(s)
- Reshmee Bhattacharya
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsanbuk-Do, Republic of Korea.
| | | |
Collapse
|
243
|
Ising E, Åhrman E, Thomsen NOB, Åkesson A, Malmström J, Dahlin LB. Quantification of heat shock proteins in the posterior interosseous nerve among subjects with type 1 and type 2 diabetes compared to healthy controls. Front Neurosci 2023; 17:1227557. [PMID: 37614345 PMCID: PMC10442572 DOI: 10.3389/fnins.2023.1227557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Diabetic peripheral neuropathy (DPN) is a common complication of both type 1 (T1D) and type 2 diabetes (T2D). No cure for DPN is available, but several potential targets have been proposed for treatment. Heat shock proteins (HSPs) are known to respond to both hyper- and hypoglycemia. DPN can be diagnosed using electrophysiology and studied using peripheral nerve biopsies. Aim This study aimed to analyze the presence and patterns of HSPs in peripheral nerve biopsies from subjects with T1D, T2D, and healthy controls. Methods Posterior interosseous nerves (PIN) from a total of 56 subjects with T1D (n = 9), with T2D (n = 24), and without diabetes (i.e., healthy controls, n = 23) were harvested under local anesthesia and prepared for quantitative mass spectrometry analysis. Protein intensities were associated with electrophysiology data of the ulnar nerve and morphometry of the same PIN, and differences in protein intensities between groups were analyzed. Results In total, 32 different HSPs were identified and quantified in the nerve specimens. No statistically significant differences were observed regarding protein intensities between groups. Furthermore, protein intensities did not correlate with amplitude or conduction velocity in the ulnar nerve or with the myelinated nerve fiber density of PIN. Conclusion Quantitative proteomics can be used to study HSPs in nerve biopsies, but no clear differences in protein quantities were observed between groups in this cohort.
Collapse
Affiliation(s)
- Erik Ising
- Department of Clinical Sciences—Pediatric Endocrinology, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Emma Åhrman
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Niels O. B. Thomsen
- Department of Translational Medicine—Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Anna Åkesson
- Clinical Studies Sweden—Forum South, Skåne University Hospital, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Biomedical and Clinical Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
244
|
Eid SA, O’Brien PD, Kretzler KH, Jang DG, Mendelson FE, Hayes JM, Carter A, Zhang H, Pennathur S, Brosius FC, Koubek EJ, Feldman EL. Dietary interventions improve diabetic kidney disease, but not peripheral neuropathy, in a db/db mouse model of type 2 diabetes. FASEB J 2023; 37:e23115. [PMID: 37490006 PMCID: PMC10372884 DOI: 10.1096/fj.202300354r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Patients with type 2 diabetes often develop the microvascular complications of diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN), which decrease quality of life and increase mortality. Unfortunately, treatment options for DKD and DPN are limited. Lifestyle interventions, such as changes to diet, have been proposed as non-pharmacological treatment options for preventing or improving DKD and DPN. However, there are no reported studies simultaneously evaluating the therapeutic efficacy of varying dietary interventions in a type 2 diabetes mouse model of both DKD and DPN. Therefore, we compared the efficacy of a 12-week regimen of three dietary interventions, low carbohydrate, caloric restriction, and alternate day fasting, for preventing complications in a db/db type 2 diabetes mouse model by performing metabolic, DKD, and DPN phenotyping. All three dietary interventions promoted weight loss, ameliorated glycemic status, and improved DKD, but did not impact percent fat mass and DPN. Multiple regression analysis identified a negative correlation between fat mass and motor nerve conduction velocity. Collectively, our data indicate that these three dietary interventions improved weight and glycemic status and alleviated DKD but not DPN. Moreover, diets that decrease fat mass may be a promising non-pharmacological approach to improve DPN in type 2 diabetes given the negative correlation between fat mass and motor nerve conduction velocity.
Collapse
Affiliation(s)
- Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | | | | | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Andrew Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Frank C. Brosius
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Medicine, University of Arizona, Tucson, AZ, 85721 USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| |
Collapse
|
245
|
Zhu HM, Liu N, Sun DX, Luo L. Machine-learning algorithm-based prediction of a diagnostic model based on oxidative stress-related genes involved in immune infiltration in diabetic nephropathy patients. Front Immunol 2023; 14:1202298. [PMID: 37554330 PMCID: PMC10406381 DOI: 10.3389/fimmu.2023.1202298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Diabetic nephropathy (DN) is the most prevalent microvascular consequence of diabetes and has recently risen to the position of the world's second biggest cause of end-stage renal diseases. Growing studies suggest that oxidative stress (OS) responses are connected to the advancement of DN. This study aimed to developed a novel diagnostic model based on OS-related genes. The differentially expressed oxidative stress-related genes (DE-OSRGs) experiments required two human gene expression datasets, which were given by the GEO database (GSE30528 and GSE96804, respectively). The potential diagnostic genes were identified using the SVM-RFE assays and the LASSO regression model. CIBERSORT was used to determine the compositional patterns of the 22 different kinds of immune cell fraction seen in DN. These estimates were based on the combined cohorts. DN serum samples and normal samples were both subjected to RT-PCR in order to investigate the degree to which certain genes were expressed. In this study, we were able to locate 774 DE-OSRGs in DN. The three marker genes (DUSP1, PRDX6 and S100A8) were discovered via machine learning on two different machines. The high diagnostic value was validated by ROC tests, which focused on distinguishing DN samples from normal samples. The results of the CIBERSORT study suggested that DUSP1, PRDX6, and S100A8 may be associated to the alterations that occur in the immunological microenvironment of DN patients. Besides, the results of RT-PCR indicated that the expression of DUSP1, PRDX6, and S100A8 was much lower in DN serum samples compared normal serum samples. The diagnostic value of the proposed model was likewise verified in our cohort, with an area under the curve of 9.946. Overall, DUSP1, PRDX6, and S100A8 were identified to be the three diagnostic characteristic genes of DN. It's possible that combining these genes will be effective in diagnosing DN and determining the extent of immune cell infiltration.
Collapse
Affiliation(s)
- Heng-Mei Zhu
- Department of Nephrology, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Na Liu
- Department of Nephrology, the Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Dong-Xuan Sun
- Department of Nephrology, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Liang Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
246
|
Akhtar S, Hassan F, Saqlain SR, Ali A, Hussain S. The prevalence of peripheral neuropathy among the patients with diabetes in Pakistan: a systematic review and meta-analysis. Sci Rep 2023; 13:11744. [PMID: 37474792 PMCID: PMC10359406 DOI: 10.1038/s41598-023-39037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
The most frequent complication of diabetes is peripheral neuropathy. The estimated prevalence of peripheral neuropathy in people with diabetes varies substantially between published studies in Pakistan. We conducted this meta-analysis to summarize the prevalence of peripheral neuropathy in people with diabetes. Different electronic databases were systematically searched using keywords and MeSH terms. Random-effects meta-analysis was conducted to pool the prevalence of peripheral neuropathy in people with diabetes in Pakistan. Heterogeneity was investigated by random-effects meta-regression and stratification. Two independent authors reviewed studies, extracted data, and conducted the risk of bias analysis. Nineteen studies with a total of 8487 diabetic patients were included. The overall pooled prevalence of diabetic peripheral neuropathy was 43.16% (95% CI 32.93-53.69%), with significant heterogeneity between estimates. The prevalence of peripheral neuropathy among those newly diagnosed with diabetes was 26.52% (95% CI 14.97-39.96%, n = 5). According to the subgroup meta-analysis, the pooled prevalence of diabetic peripheral neuropathy was highest in Khyber Pakhtunkhwa (55.29%; 95% CI 23.91-84.50%), followed by Sindh (40.04%; 95% CI 24.00-57.25%), and the lowest was found in Punjab (34.90%; 95% CI 15.05-57.95%). A significant association was found between the pooled prevalence estimate and the duration of diabetes. The results of this meta-analysis indicate a relatively high prevalence of peripheral neuropathy in people with diabetes in Pakistan. The study protocol has been registered in the PROSPERO, with the registration number CRD42022371617.
Collapse
Affiliation(s)
- Sohail Akhtar
- Department of Mathematics and Statistics, The University of Haripur, Haripur, KP, Pakistan.
| | - Fazal Hassan
- Department of Mathematics and Statistics, The University of Haripur, Haripur, KP, Pakistan
| | | | - Aqsa Ali
- Department of Statistics, GC University Lahore, Lahore, Punjab, Pakistan
| | - Sardar Hussain
- Department of Statistics, Quaid Azam University, Islamabad, Pakistan
| |
Collapse
|
247
|
Scholz O, Huß E, Otter S, Herebian D, Hamacher A, Levy LM, Hristeva S, Sanz M, Ajani H, Puentes AR, Hoffmann T, Hogeback J, Unger A, Terheyden S, Reina do Fundo M, Dewidar B, Roden M, Lammert E. Protection of pancreatic islets from oxidative cell death by a peripherally-active morphinan with increased drug safety. Mol Metab 2023:101775. [PMID: 37451343 PMCID: PMC10403733 DOI: 10.1016/j.molmet.2023.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVE Dextromethorphan (DXM) is a commonly used antitussive medication with positive effects in people with type 2 diabetes mellitus, since it increases glucose tolerance and protects pancreatic islets from cell death. However, its use as an antidiabetic medication is limited due to its central nervous side effects and potential use as a recreational drug. Therefore, we recently modified DXM chemically to reduce its blood-brain barrier (BBB) penetration and central side effects. However, our best compound interacted with the cardiac potassium channel hERG (human ether-à-go-go-related gene product) and the μ-opioid receptor (MOR). Thus, the goal of this study was to reduce the interaction of our compound with these targets, while maintaining its beneficial properties. METHODS Receptor and channel binding assays were conducted to evaluate the drug safety of our DXM derivative. Pancreatic islets were used to investigate the effect of the compound on insulin secretion and islet cell survival. Via liquor collection from the brain and a behavioral assay, we analyzed the BBB permeability. By performing intraperitoneal and oral glucose tolerance tests as well as pharmacokinetic analyses, the antidiabetic potential and elimination half-life were investigated, respectively. To analyze the islet cell-protective effect, we used fluorescence microscopy as well as flow cytometric analyses. RESULTS Here, we report the design and synthesis of an optimized, orally available BBB-impermeable DXM derivative with lesser binding to hERG and MOR than previous ones. We also show that the new compound substantially enhances glucose-stimulated insulin secretion (GSIS) from mouse and human islets and glucose tolerance in mice as well as protects pancreatic islets from cell death induced by reactive oxygen species and that it amplifies the effects of tirzepatide on GSIS and islet cell viability. CONCLUSIONS We succeeded to design and synthesize a novel morphinan derivative that is BBB-impermeable, glucose-lowering and islet cell-protective and has good drug safety despite its morphinan and imidazole structures.
Collapse
Affiliation(s)
- Okka Scholz
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Elena Huß
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Silke Otter
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anna Hamacher
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | | | | | - Miguel Sanz
- Taros Chemicals GmbH & Co. KG, D-44227 Dortmund, Germany
| | - Haresh Ajani
- Taros Chemicals GmbH & Co. KG, D-44227 Dortmund, Germany
| | | | | | - Jens Hogeback
- A&M Labor für Analytik und Metabolismusforschung Service GmbH, D-50126 Bergheim, Germany
| | - Anke Unger
- Lead Discovery Center GmbH & Co. KG, D-44227 Dortmund, Germany
| | | | - Michelle Reina do Fundo
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Bedair Dewidar
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany.
| |
Collapse
|
248
|
Chalotra R, Gupta T, Chib S, Amanat M, Kumar P, Singh R. Treatment of diabetic complications: do flavonoids holds the keys? Crit Rev Food Sci Nutr 2023; 64:11091-11112. [PMID: 37435788 DOI: 10.1080/10408398.2023.2232868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Diabetes mellitus (DM) is an endocrinological disorder in which blood sugar levels get elevated and if unmanaged, it leads to several critical complications. Existing therapies or drugs are not able to attain absolute control of DM. Moreover, associated side/adverse effects associated with pharmacotherapy further worsen the Quality of life of patients. Present review is focused on therapeutical potential of flavonoids in management of diabetes and diabetic complications. Plenteous literature has established significant potential of flavonoids in the treatment of diabetes and diabetic complications. A number of flavonoids are found to be effective in treatment of not only diabetes but progression of diabetic complication was also found to be attenuated with the use of flavonoids. Moreover, SAR studies of some flavonoids also indicated the that efficacy of flavonoids is increased with a change in functional group of flavonoids in the treatment of diabetes and diabetic complications. A number of clinical trials are into action to investigate the therapeutic potential of flavonoids as first-line drugs or as adjuvants for treatment of diabetes and diabetic complications.. Owing to their diverse mechanism of action, efficacy and safety, flavonoids may be conscripted as potential candidate for treatment of diabetic complications.
Collapse
Affiliation(s)
- Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Tanya Gupta
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Muhammed Amanat
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
249
|
Torres-Méndez JK, Niño-Narvión J, Martinez-Santos P, Diarte-Añazco EMG, Méndez-Lara KA, Del Olmo TV, Rotllan N, Julián MT, Alonso N, Mauricio D, Camacho M, Muñoz JP, Rossell J, Julve J. Nicotinamide Prevents Diabetic Brain Inflammation via NAD+-Dependent Deacetylation Mechanisms. Nutrients 2023; 15:3083. [PMID: 37513501 PMCID: PMC10383777 DOI: 10.3390/nu15143083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effect of nicotinamide (NAM) supplementation on the development of brain inflammation and microglial activation in a mouse model of type 1 diabetes mellitus. C57BL/6J male mice, which were made diabetic with five consecutive, low-dose (55 mg/kg i.p.) streptozotocin (STZ) injections. Diabetic mice were randomly distributed in different experimental groups and challenged to different doses of NAM (untreated, NAM low-dose, LD, 0.1%; NAM high-dose, HD, 0.25%) for 25 days. A control, non-diabetic group of mice was used as a reference. The NAD+ content was increased in the brains of NAM-treated mice compared with untreated diabetic mice (NAM LD: 3-fold; NAM HD: 3-fold, p-value < 0.05). Immunohistochemical staining revealed that markers of inflammation (TNFα: NAM LD: -35%; NAM HD: -46%; p-value < 0.05) and microglial activation (IBA-1: NAM LD: -29%; NAM HD: -50%; p-value < 0.05; BDKRB1: NAM LD: -36%; NAM HD: -37%; p-value < 0.05) in brains from NAM-treated diabetic mice were significantly decreased compared with non-treated T1D mice. This finding was accompanied by a concomitant alleviation of nuclear NFκB (p65) signaling in treated diabetic mice (NFκB (p65): NAM LD: -38%; NAM HD: -53%, p-value < 0.05). Notably, the acetylated form of the nuclear NFκB (p65) was significantly decreased in the brains of NAM-treated, diabetic mice (NAM LD: -48%; NAM HD: -63%, p-value < 0.05) and inversely correlated with NAD+ content (r = -0.50, p-value = 0.03), suggesting increased activity of NAD+-dependent deacetylases in the brains of treated mice. Thus, dietary NAM supplementation in diabetic T1D mice prevented brain inflammation via NAD+-dependent deacetylation mechanisms, suggesting an increased action of sirtuin signaling.
Collapse
Affiliation(s)
| | - Julia Niño-Narvión
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | | | | | | | | | - Noemi Rotllan
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Teresa Julián
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Didac Mauricio
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), 08500 Vic, Spain
| | - Mercedes Camacho
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Juan Pablo Muñoz
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joana Rossell
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
250
|
Chen T, Xing X, Huang L, Tu M, Lai X, Wen S, Cai J, Lin S, Zheng Y, Lin Y, Xu L, Qiu Y, Qiu L, Xu Y, Wu P. Efficacy and safety of high-dose intramuscular vitamin D 2 injection in type 2 diabetes mellitus with distal symmetric polyneuropathy combined with vitamin D insufficiency: study protocol for a multicenter, randomized, double-blinded, and placebo-controlled trial. Front Endocrinol (Lausanne) 2023; 14:1202917. [PMID: 37484958 PMCID: PMC10361572 DOI: 10.3389/fendo.2023.1202917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background Distal symmetric polyneuropathy (DSPN) is the most common chronic complication of type 2 diabetes mellitus (T2DM). DSPN may lead to more serious complications, such as diabetic foot ulcer, amputation, and reduced life expectancy. Observational studies have suggested that vitamin D deficiency may be associated with the development of DSPN in T2DM. However, interventional studies have found that low-dose vitamin D supplementation does not significantly improve neuropathy in DSPN. This study aims to evaluate the efficacy and safety of intramuscular injection of high-dose vitamin D (HDVD) in T2DM with DSPN combined with vitamin D insufficiency. Methods and analysis We will conduct a multicenter, randomized, double-blinded, and placebo-controlled trial in four large hospitals. All eligible participants will be randomly assigned to either the vitamin D2 supplement or placebo control group and injected intramuscularly monthly for 3 months. Additionally, anthropometric measurements and clinical data will be collected at baseline and 3 months. Adverse events will be collected at 1, 2, and 3 months. The primary outcome measure is the change in the mean Michigan Neuropathy Screening Instrument (MNSI) score at baseline and 3 months post-intervention. We will use the gold-standard liquid chromatography-tandem mass spectrometry method to distinguish between 25(OH)D2 and 25(OH)D3 levels. The MNSN score before the intervention will be used as a covariate to compare the changes between both groups before and after the intervention, and the analysis of covariance will be used to analyze the change in the MNSI score after HDVD supplementation. Discussion Glycemic control alone does not prevent the progression of DSPN in T2DM. Some studies have suggested that vitamin D may improve DSPN; however, the exact dose, method, and duration of vitamin D supplementation are unknown. Additionally, neuropathy repair requires HDVD supplementation to sustain adequate vitamin D levels. This once-a-month intramuscular method avoids daily medication; therefore, compliance is high. This study will be the first randomized controlled trial in China to analyze the efficacy and safety of HDVD supplementation for patients with T2DM and DSPN and will provide new ideas for pharmacological research and clinical treatment of diabetic neuropathy. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2200062266.
Collapse
Affiliation(s)
- Tao Chen
- Department of Endocrinology, Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Endocrinology and Metabolism, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaoyan Xing
- Department of Endocrinology and Metabolism, China-Japan Friendship Hospital, Beijing, China
| | - Lihua Huang
- Department of Tumor Radiotherapy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Mei Tu
- Department of Endocrinology and Metabolism, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaoli Lai
- Department of Endocrinology and Metabolism, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shidi Wen
- Department of Endocrinology and Metabolism, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jin Cai
- Department of Endocrinology and Metabolism, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shenglong Lin
- Department of Severe Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Youping Zheng
- Department of Ultrasound, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yuehui Lin
- Department of Endocrinology and Metabolism, Longyan Traditional Chinese Medicine Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Longyan, China
| | - Lijuan Xu
- Department of Endocrinology and Metabolism, Longyan Traditional Chinese Medicine Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Longyan, China
| | - Yuwen Qiu
- Department of Endocrinology and Metabolism, Longyan Shanghang County Hospital, Longyan, China
| | - Lumin Qiu
- Department of Endocrinology and Metabolism, Longyan Shanghang County Hospital, Longyan, China
| | - Yuebo Xu
- Department of Diabetes, Longyan Boai Hospital, Longyan, China
| | - Peiwen Wu
- Department of Endocrinology, Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|