201
|
Tian J, Dai SB, Jiang SS, Yang WY, Yan YQ, Lin ZH, Dong JX, Liu Y, Zheng R, Chen Y, Zhang BR, Pu JL. Specific immune status in Parkinson's disease at different ages of onset. NPJ Parkinsons Dis 2022; 8:5. [PMID: 35013369 PMCID: PMC8748464 DOI: 10.1038/s41531-021-00271-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that innate and adaptive immunity play a crucial role in Parkinson's disease (PD). However, studies regarding specific immune cell classification in the peripheral blood in PD remain lacking. Therefore, we aimed to explore the different immune status in patients with PD at different ages of onset. We included 22 patients; among them were 10 who had early-onset PD (EOPD) and 12 had late-onset PD (LOPD) and 10 young healthy controls (YHCs) and 8 elder HCs (EHCs). Mass cytometry staining technology was used to perform accurate immunotyping of cell populations in the peripheral blood. Motor symptoms and cognitive function were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) III score and Mini-mental State Examination (MMSE) score, respectively. T test and ANOVA statistical analysis were performed on the frequency of annotated cell population. Linear regression model was used to analyze the correlation between clusters and clinical symptoms. We characterized 60 cell clusters and discovered that the immune signature of PD consists of cluster changes, including decreased effector CD8+ T cells, lower cytotoxicity natural killer (NK) cells and increased activated monocytes in PD patients. In summary, we found that CD8+ T cells, NK cells, and monocytes were associated with PD. Furthermore, there may be some differences in the immune status of patients with EOPD and LOPD, suggesting differences in the pathogenesis between these groups.
Collapse
Affiliation(s)
- Jun Tian
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shao-Bing Dai
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Si-Si Jiang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Yi Yang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Qun Yan
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhi-Hao Lin
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Xian Dong
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Liu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Zheng
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Chen
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jia-Li Pu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
202
|
Parkinson's Disease Subtyping Using Clinical Features and Biomarkers: Literature Review and Preliminary Study of Subtype Clustering. Diagnostics (Basel) 2022; 12:diagnostics12010112. [PMID: 35054279 PMCID: PMC8774435 DOI: 10.3390/diagnostics12010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The second most common progressive neurodegenerative disorder, Parkinson’s disease (PD), is characterized by a broad spectrum of symptoms that are associated with its progression. Several studies have attempted to classify PD according to its clinical manifestations and establish objective biomarkers for early diagnosis and for predicting the prognosis of the disease. Recent comprehensive research on the classification of PD using clinical phenotypes has included factors such as dominance, severity, and prognosis of motor and non-motor symptoms and biomarkers. Additionally, neuroimaging studies have attempted to reveal the pathological substrate for motor symptoms. Genetic and transcriptomic studies have contributed to our understanding of the underlying molecular pathogenic mechanisms and provided a basis for classifying PD. Moreover, an understanding of the heterogeneity of clinical manifestations in PD is required for a personalized medicine approach. Herein, we discuss the possible subtypes of PD based on clinical features, neuroimaging, and biomarkers for developing personalized medicine for PD. In addition, we conduct a preliminary clustering using gait features for subtyping PD. We believe that subtyping may facilitate the development of therapeutic strategies for PD.
Collapse
|
203
|
Huang L, Han Y, Zhou Q, Sun Z, Yan J. Isoliquiritigenin attenuates neuroinflammation in mice model of Parkinson's disease by promoting Nrf2/NQO-1 pathway. Transl Neurosci 2022; 13:301-308. [PMID: 36160039 PMCID: PMC9468679 DOI: 10.1515/tnsci-2022-0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that severely affects the quality of life of patients. There is no specific drug for PD up to now. Previous studies have shown that neuroinflammation plays an important role in the pathogenesis of PD. Isoliquiritigenin (ILG) is thought to have a variety of biological activities including anti-inflammatory. However, to date, no studies have reported the role of ILG on neuroinflammation in PD in vivo. This study aimed to investigate the effect of ILG on PD in vivo and its mechanism, and to provide an experimental basis for clinical treatment of PD. Our results showed that ILG at a concentration of 20 mg/kg was effective in reducing the number of rotations in PD mice. In addition, ILG increased the expression of tyrosine hydroxylase and decreased the expression of α-synuclein. The results also showed that ILG reduced the expression of Iba1, IL-1β, IL-6, and TNF-α. Not only that, ILG also upregulated the expression of Nrf2 and NQO-1 in vivo. Our results suggest that ILG significantly attenuates neurological deficits in PD, and the mechanism may be through the activation of the Nrf2/NQO-1 signaling pathway to reduce neuroinflammation. Moreover, our findings provide a new therapeutic strategy for PD.
Collapse
Affiliation(s)
- Lijuan Huang
- Nursing College of Xiangnan University, Affiliated Hospital of Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Yan Han
- Department of General Practice, Affiliated Hospital of Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Qingmin Zhou
- Department of Gastroenterology, Affiliated Hospital of Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Zhihao Sun
- Clinical College of Xiangnan University, Affiliated Hospital of Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Jianhui Yan
- Department of General Practice, Affiliated Hospital of Xiangnan University, Chenzhou 423000, Hunan Province, China
| |
Collapse
|
204
|
Dommershuijsen LJ, Ruiter R, Erler NS, Rizopoulos D, Ikram MA, Ikram MK. Peripheral Immune Cell Numbers and C-Reactive Protein in Parkinson's Disease: Results from a Population-Based Study. JOURNAL OF PARKINSON'S DISEASE 2022; 12:667-678. [PMID: 34897101 PMCID: PMC8925126 DOI: 10.3233/jpd-212914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
BACKGROUND The immune system is known to be involved in Parkinson's disease (PD) pathogenesis, but the temporal relationship between peripheral immune responses and PD remains unknown. OBJECTIVE We determined the association between peripheral immune cell numbers, C-reactive protein (CRP), and prevalent as well as incident PD. METHODS This study was embedded in the population-based setting of the Rotterdam Study. We repeatedly measured peripheral immune cell numbers (differential leukocyte count and platelet count, granulocyte-to-lymphocyte ratio [GLR], platelet-to-lymphocyte ratio [PLR], and adapted systemic immune-inflammation index [adapted SII]) and CRP between 1990 and 2016. Participants were continuously followed-up for PD until 2018. We estimated the association of the markers with prevalent and incident PD using logistic regression models and joint models, respectively. Models were adjusted for age, sex, smoking, body mass index, and medication use. Odds ratios (OR) and hazard ratios (HR) are shown per doubling of the marker. RESULTS A total of 12,642 participants were included in this study. The mean age (standard deviation) was 65.1 (9.8) years and 57.5%were women. Participants with a higher lymphocyte count were less likely to have prevalent PD (adjusted OR: 0.34, 95%CI 0.17-0.68). Participants with a higher GLR, PLR, and adapted SII were more likely to have prevalent PD, but these effects were explained by the lymphocyte count. The peripheral immune cell numbers and CRP were not significantly associated with the risk of incident PD. CONCLUSION We found participants with a higher lymphocyte count to be less likely to have prevalent PD, but we did not find an association between peripheral immune cell numbers nor CRP and the risk of incident PD.
Collapse
Affiliation(s)
| | - Rikje Ruiter
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Nicole S. Erler
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Dimitris Rizopoulos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M. Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Correspondence to: M. Kamran Ikram, MD, PhD, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands. Tel.: +31 107043488; E-mail:
| |
Collapse
|
205
|
Zhou ZD, Saw WT, Ho PGH, Zhang ZW, Zeng L, Chang YY, Sun AXY, Ma DR, Wang HY, Zhou L, Lim KL, Tan EK. The role of tyrosine hydroxylase-dopamine pathway in Parkinson's disease pathogenesis. Cell Mol Life Sci 2022; 79:599. [PMID: 36409355 PMCID: PMC9678997 DOI: 10.1007/s00018-022-04574-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by selective and progressive dopamine (DA) neuron loss in the substantia nigra and other brain regions, with the presence of Lewy body formation. Most PD cases are sporadic, whereas monogenic forms of PD have been linked to multiple genes, including Leucine kinase repeat 2 (LRRK2) and PTEN-induced kinase 1 (PINK1), two protein kinase genes involved in multiple signaling pathways. There is increasing evidence to suggest that endogenous DA and DA-dependent neurodegeneration have a pathophysiologic role in sporadic and familial PD. METHODS We generated patient-derived dopaminergic neurons and human midbrain-like organoids (hMLOs), transgenic (TG) mouse and Drosophila models, expressing both mutant and wild-type (WT) LRRK2 and PINK1. Using these models, we examined the effect of LRRK2 and PINK1 on tyrosine hydroxylase (TH)-DA pathway. RESULTS We demonstrated that PD-linked LRRK2 mutations were able to modulate TH-DA pathway, resulting in up-regulation of DA early in the disease which subsequently led to neurodegeneration. The LRRK2-induced DA toxicity and degeneration were abrogated by wild-type (WT) PINK1 (but not PINK1 mutations), and early treatment with a clinical-grade drug, α-methyl-L-tyrosine (α-MT), a TH inhibitor, was able to reverse the pathologies in human neurons and TG Drosophila models. We also identified opposing effects between LRRK2 and PINK1 on TH expression, suggesting that functional balance between these two genes may regulate the TH-DA pathway. CONCLUSIONS Our findings highlight the vital role of the TH-DA pathway in PD pathogenesis. LRRK2 and PINK1 have opposing effects on the TH-DA pathway, and its balance affects DA neuron survival. LRRK2 or PINK1 mutations can disrupt this balance, promoting DA neuron demise. Our findings provide support for potential clinical trials using TH-DA pathway inhibitors in early or prodromic PD.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Wuan Ting Saw
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Patrick Ghim Hoe Ho
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Zhi Wei Zhang
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Li Zeng
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Ya Yin Chang
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Alfred Xu Yang Sun
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Dong Rui Ma
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Hong Yan Wang
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| | - Lei Zhou
- Ocular Proteomics Laboratory, Singapore Eye Research Institute, Singapore, 169856 Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Kah Leong Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Developmental of Stem Cell Biology and Regenerative Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232 Singapore
| | - Eng-King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Department of Neurology, Singapore General Hospital, National Neuroscience Institute, Outram Road, Singapore, 169608 Singapore
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857 Singapore
| |
Collapse
|
206
|
Bloem BR, Brundin P, Harms A, Lindestam Arlehamn C, Tan EK, Williams-Gray CH. Linking Immune Activation and Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S1-S3. [PMID: 36155531 DOI: 10.3233/jpd-229005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Bastiaan R Bloem
- Radboud University Nijmegen Medical Center, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Department of Neurology, Nijmegen, the Netherlands
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Ashley Harms
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, UAB | The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cecilia Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Duke NUS Medical School, Singapore, Singapore
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
207
|
Fleming SM, Davis A, Simons E. Targeting alpha-synuclein via the immune system in Parkinson's disease: Current vaccine therapies. Neuropharmacology 2022; 202:108870. [PMID: 34742741 DOI: 10.1016/j.neuropharm.2021.108870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is defined pathologically by the abnormal accumulation of the presynaptic protein alpha-synuclein (aSyn) in the form of Lewy bodies and Lewy neurites and loss of midbrain dopaminergic neurons in the substantia nigra pars compacta. Because of aSyn's involvement in both sporadic and familial forms of PD, it has become a key target for the development of novel therapeutics. Aberrant aSyn is associated with multiple mechanisms of neuronal dysfunction and degeneration including inflammation, impaired mitochondrial function, altered protein degradation systems, and oxidative stress. Inflammation, in particular, has emerged as a potential significant contributor early in the disease making it an attractive target for disease modification and neuroprotection. Thus, immunotherapies targeting aSyn are currently being investigated in pre-clinical and clinical trials. The focus of this review is to highlight the role of aSyn in neuroinflammation and discuss the current status of aSyn-directed immunotherapies in pre-clinical and clinical trials for PD.
Collapse
Affiliation(s)
- Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, USA.
| | - Ashley Davis
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, USA
| | - Emily Simons
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, USA
| |
Collapse
|
208
|
Miao Q, Chai Z, Song LJ, Wang Q, Song GB, Wang J, Yu JZ, Xiao BG, Ma CG. The neuroprotective effects and transdifferentiation of astrocytes into dopaminergic neurons of Ginkgolide K on Parkinson's disease mice. J Neuroimmunol 2022; 364:577806. [DOI: 10.1016/j.jneuroim.2022.577806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
|
209
|
Chen J, Chen Y, Du X, Liu G, Fei X, Peng JR, Zhang X, Xiao F, Wang X, Yang X, Feng Z. Integrative Studies of Human Cord Blood Derived Mononuclear Cells and Umbilical Cord Derived Mesenchyme Stem Cells in Ameliorating Bronchopulmonary Dysplasia. Front Cell Dev Biol 2021; 9:679866. [PMID: 34858969 PMCID: PMC8631197 DOI: 10.3389/fcell.2021.679866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common pulmonary complication observed in preterm infants that is composed of multifactorial pathogenesis. Current strategies, albeit successful in moderately reducing morbidity and mortality of BPD, failed to draw overall satisfactory conclusion. Here, using a typical mouse model mimicking hallmarks of BPD, we revealed that both cord blood-derived mononuclear cells (CB-MNCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) are efficient in alleviating BPD. Notably, infusion of CB-MNCs has more prominent effects in preventing alveolar simplification and pulmonary vessel loss, restoring pulmonary respiratory functions and balancing inflammatory responses. To further elucidate the underlying mechanisms within the divergent therapeutic effects of UC-MSC and CB-MNC, we systematically investigated the long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) and circular RNA (circRNA)-miRNA-mRNA networks by whole-transcriptome sequencing. Importantly, pathway analysis integrating Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)/gene set enrichment analysis (GSEA) method indicates that the competing endogenous RNA (ceRNA) network is mainly related to the regulation of GTPase activity (GO: 0043087), extracellular signal-regulated kinase 1 (ERK1) and ERK2 signal cascade (GO: 0070371), chromosome regulation (GO: 0007059), and cell cycle control (GO: 0044770). Through rigorous selection of the lncRNA/circRNA-based ceRNA network, we demonstrated that the hub genes reside in UC-MSC- and CB-MNC-infused networks directed to the function of cell adhesion, motor transportation (Cdk13, Lrrn2), immune homeostasis balance, and autophagy (Homer3, Prkcd) relatively. Our studies illustrate the first comprehensive mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA networks in stem cell-infused BPD model, which will be valuable in identifying reliable biomarkers or therapeutic targets for BPD pathogenesis and shed new light in the priming and conditioning of UC-MSCs or CB-MNCs in the treatment of neonatal lung injury.
Collapse
Affiliation(s)
- Jia Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Yuhan Chen
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xue Du
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China.,The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guojun Liu
- Shandong Qilu Stem Cell Engineering Co., Ltd., Jinan, China
| | - Xiaowei Fei
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jian Ru Peng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xing Zhang
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xue Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Yang
- Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Zhichun Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neonatology, Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China.,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China.,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China.,The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
210
|
Lama J, Buhidma Y, Fletcher E, Duty S. Animal models of Parkinson's disease: a guide to selecting the optimal model for your research. Neuronal Signal 2021; 5:NS20210026. [PMID: 34956652 PMCID: PMC8661507 DOI: 10.1042/ns20210026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem disorder characterised by α-synuclein (SNCA) pathology, degeneration of nigrostriatal dopaminergic neurons, multifactorial pathogenetic mechanisms and expression of a plethora of motor and non-motor symptoms. Animal models of PD have already been instructive in helping us unravel some of these aspects. However, much remains to be discovered, requiring continued interrogation by the research community. In contrast with the situation for many neurological disorders, PD benefits from of a wide range of available animal models (pharmacological, toxin, genetic and α-synuclein) but this makes selection of the optimal one for a given study difficult. This is especially so when a study demands a model that displays a specific combination of features. While many excellent reviews of animal models already exist, this review takes a different approach with the intention of more readily informing this decision-making process. We have considered each feature of PD in turn - aetiology, pathology, pathogenesis, motor dysfunctions and non-motor symptoms (NMS) - highlighting those animal models that replicate each. By compiling easily accessible tables and a summary figure, we aim to provide the reader with a simple, go-to resource for selecting the optimal animal model of PD to suit their research needs.
Collapse
Affiliation(s)
- Joana Lama
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Yazead Buhidma
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Edward J.R. Fletcher
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| | - Susan Duty
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age Related Diseases, Wolfson Wing, Hodgkin Building, Guy’s Campus, London SE1 1UL, U.K
| |
Collapse
|
211
|
Trophoblast glycoprotein is a new candidate gene for Parkinson’s disease. NPJ Parkinsons Dis 2021; 7:110. [PMID: 34876581 PMCID: PMC8651753 DOI: 10.1038/s41531-021-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
AbstractParkinson’s disease (PD) is a movement disorder caused by progressive degeneration of the midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta (SNc). Despite intense research efforts over the past decades, the etiology of PD remains largely unknown. Here, we discovered the involvement of trophoblast glycoprotein (Tpbg) in the development of PD-like phenotypes in mice. Tpbg expression was detected in the ventral midbrain during embryonic development and in mDA neurons in adulthood. Genetic ablation of Tpbg resulted in mild degeneration of mDA neurons in aged mice (12–14 months) with behavioral deficits reminiscent of PD symptoms. Through in silico analysis, we predicted potential TPBG-interacting partners whose functions were relevant to PD pathogenesis; this result was substantiated by transcriptomic analysis of the SNc of aged Tpbg knockout mice. These findings suggest that Tpbg is a new candidate gene associated with PD and provide a new insight into PD pathogenesis.
Collapse
|
212
|
Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener 2021; 10:47. [PMID: 34814947 PMCID: PMC8609261 DOI: 10.1186/s40035-021-00271-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is an incurable, devastating disorder that is characterized by pathological protein aggregation and neurodegeneration in the substantia nigra. In recent years, growing evidence has implicated the gut environment and the gut-brain axis in the pathogenesis and progression of PD, especially in a subset of people who exhibit prodromal gastrointestinal dysfunction. Specifically, perturbations of gut homeostasis are hypothesized to contribute to α-synuclein aggregation in enteric neurons, which may spread to the brain over decades and eventually result in the characteristic central nervous system manifestations of PD, including neurodegeneration and motor impairments. However, the mechanisms linking gut disturbances and α-synuclein aggregation are still unclear. A plethora of research indicates that toll-like receptors (TLRs), especially TLR2 and TLR4, are critical mediators of gut homeostasis. Alongside their established role in innate immunity throughout the body, studies are increasingly demonstrating that TLR2 and TLR4 signalling shapes the development and function of the gut and the enteric nervous system. Notably, TLR2 and TLR4 are dysregulated in patients with PD, and may thus be central to early gut dysfunction in PD. To better understand the putative contribution of intestinal TLR2 and TLR4 dysfunction to early α-synuclein aggregation and PD, we critically discuss the role of TLR2 and TLR4 in normal gut function as well as evidence for altered TLR2 and TLR4 signalling in PD, by reviewing clinical, animal model and in vitro research. Growing evidence on the immunological aetiology of α-synuclein aggregation is also discussed, with a focus on the interactions of α-synuclein with TLR2 and TLR4. We propose a conceptual model of PD pathogenesis in which microbial dysbiosis alters the permeability of the intestinal barrier as well as TLR2 and TLR4 signalling, ultimately leading to a positive feedback loop of chronic gut dysfunction promoting α-synuclein aggregation in enteric and vagal neurons. In turn, α-synuclein aggregates may then migrate to the brain via peripheral nerves, such as the vagal nerve, to contribute to neuroinflammation and neurodegeneration typically associated with PD.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Biological Science, University of Western Australia, Crawley, WA, Australia.
- Neurodegenerative Disorders Research Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Ralph and Patricia Sarich Neuroscience Research Institute, Curtin University, Nedlands, WA, Australia
| | - Ryan S Anderton
- Faculty of Medicine, Nursing and Midwifery and Faculty of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
213
|
Golli T, Kastrin A, Pokorn M, Rener-Primec Z. Immunosuppression and immunization: Vaccination in pediatric patients with neuromuscular diseases treated with steroids or immune-modulating drugs. Eur J Paediatr Neurol 2021; 35:158-164. [PMID: 34752936 DOI: 10.1016/j.ejpn.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Modulating the immune response has proven to be beneficial in different neurologic diseases, even in those not perceived thus far to be autoimmune. METHODS Extensive literature search has been done for available data on vaccine safety, efficacy and immunization recommendations in patients with neuromuscular disease in general and when receiving immune-modulating treatments. RESULTS Vaccinations have been associated with some neuromuscular diseases, but these occurrences are very rare and should not influence the general vaccination recommendations for the pediatric population and for the especially vulnerable patient populations, such as neuromuscular disease patients. Specific guidelines for the immunization of children with neuromuscular diseases in general and those on immune-suppressive treatments were not found, but most guidelines and standards of care for specific neuromuscular diseases recognize and stress the importance of vaccinations, some giving more specific instructions. CONCLUSION With just a few exceptions, vaccines are safe in this group of patients and they should receive the same immunizations and according to the same schedule, as all children. Live vaccines should not be administered in patients receiving high dose steroid or immune-modulating drugs such as anti-B cell treatments (rituximab), high dose methotrexate, azathioprine or 6-mercaptopurine. Whenever possible, all live vaccines should be administered prior to long term immune-suppressant treatments. Additional vaccines are recommended in this risk population of children (influenza, pneumococcal, varicella).
Collapse
Affiliation(s)
- Tanja Golli
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital Ljubljana, University Medical Center Ljubljana, Slovenia; Department of Paediatrics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Andrej Kastrin
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Marko Pokorn
- University Children's Hospital, University Medical Center Ljubljana, Slovenia; Department of Infectious Diseases and Epidemiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Zvonka Rener-Primec
- Department of Child, Adolescent and Developmental Neurology, University Children's Hospital Ljubljana, University Medical Center Ljubljana, Slovenia; Department of Paediatrics, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
214
|
Tsukita K, Sakamaki-Tsukita H, Takahashi R. Lower Circulating Lymphocyte Count Predicts ApoE ε4-Related Cognitive Decline in Parkinson's Disease. Mov Disord 2021; 36:2969-2971. [PMID: 34647353 PMCID: PMC9293429 DOI: 10.1002/mds.28799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 01/13/2023] Open
Affiliation(s)
- Kazuto Tsukita
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.,Division of Sleep Medicine, Kansai Electric Power Medical Research Institute, Osaka, Japan
| | | | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
215
|
Zhang C, Zhao M, Wang B, Su Z, Guo B, Qin L, Zhang W, Zheng R. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson's disease. Redox Biol 2021; 47:102134. [PMID: 34600334 PMCID: PMC8487081 DOI: 10.1016/j.redox.2021.102134] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder that is characterized by motor symptoms as a result of a loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), accompanied by chronic neuroinflammation, oxidative stress, formation of α-synuclein aggregates. Celastrol, a potent anti-inflammatory and anti-oxidative pentacyclic triterpene, has emerged as a neuroprotective agent. However, the mechanisms by which celastrol is neuroprotective in PD remain elusive. Here we show that celastrol protects against dopamine neuron loss, mitigates neuroinflammation, and relieves motor deficits in MPTP-induced PD mouse model and AAV-mediated human α-synuclein overexpression PD model. Whole-genome deep sequencing analysis revealed that Nrf2, NLRP3 and caspase-1 in SNc may be associated with the neuroprotective actions of celastrol in PD. By using multiple genetically modified mice (Nrf2-KO, NLRP3-KO and Caspase-1-KO), we identified that celastrol inhibits NLRP3 inflammasome activation, relieves motor deficits and nigrostriatal dopaminergic degeneration through Nrf2-NLRP3-caspase-1 pathway. Taken together, these findings suggest that Nrf2-NLRP3-caspase-1 axis may serve as a key target of celastrol in PD treatment, and highlight the favorable properties of celastrol for neuroprotection, making celastrol as a promising disease-modifying agent for PD.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Miao Zhao
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Zhijie Su
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Bingbing Guo
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Lihua Qin
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China; Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing, China.
| |
Collapse
|
216
|
McDonagh Hull P, Lashewicz BM, Fritzler MJ. High intelligence may exacerbate paediatric inflammatory response to SARS-CoV-2 infection. Med Hypotheses 2021; 155:110677. [PMID: 34560443 PMCID: PMC8426136 DOI: 10.1016/j.mehy.2021.110677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
The body's innate and acquiredimmunesystems are critical in responses to a wide spectrum of assaults, including SARS-CoV-2 infection. We identify studies of autoimmunity to support our hypothesis that a high intelligence quotient (IQ) may put children at increased risk for severe COVID-19 sequelae; especially those whose viral load is high and/or who develop multisystem inflammatory syndrome in children (MIS-C). MIS-C is associated with a higher risk of COVID-19 morbidity and death, even in otherwise healthy children. As information and evidence about SARS-CoV-2 infection continue to expand, our hypothesis suggests adding a potentially intriguing piece to the pandemic puzzle for further investigation. Drawing on a select review of published research and case reports, we discuss immune dysregulation in paediatric patients with a high IQ, including post-infection cytokine expression in the myocardium. Further, we provide a review of 27 paediatric (≤19 years; median age 16) cases of severe COVID-19 outcomes, drawn from media sources published between March and September 2020, in which we identify possible evidence of a 'hyper brain, hyper body' response to infection. We aver these cases are noteworthy given that paediatric death with COVID-19 disease is remarkably rare, and the estimated prevalence of a high IQ (or giftedness) is only 2% in the general population. These observations warrant prospective and retrospective studies of autoinflammatory markers and mechanisms to elucidate any special psychoneuroimmunological vulnerability in children with a high IQ, as such studies may raise implications for how and when prophylactic medical care is provided to children.
Collapse
Affiliation(s)
- Pauline McDonagh Hull
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Bonnie M Lashewicz
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
217
|
Bologna M, Truong D, Jankovic J. The etiopathogenetic and pathophysiological spectrum of parkinsonism. J Neurol Sci 2021; 433:120012. [PMID: 34642022 DOI: 10.1016/j.jns.2021.120012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/05/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Parkinsonism is a syndrome characterized by bradykinesia, rigidity, and tremor. Parkinsonism is a common manifestation of Parkinson's disease and other neurodegenerative diseases referred to as atypical parkinsonism. However, a growing body of clinical and scientific evidence indicates that parkinsonism may be part of the phenomenological spectrum of various neurological conditions to a greater degree than expected by chance. These include neurodegenerative conditions not traditionally classified as movement disorders, e.g., dementia and motor neuron diseases. In addition, parkinsonism may characterize a wide range of central nervous system diseases, e.g., autoimmune diseases, infectious diseases, cerebrospinal fluid disorders (e.g., normal pressure hydrocephalus), cerebrovascular diseases, and other conditions. Several pathophysiological mechanisms have been identified in Parkinson's disease and atypical parkinsonism. Conversely, it is not entirely clear to what extent the same mechanisms and key brain areas are also involved in parkinsonism due to a broader etiopathogenetic spectrum. We aimed to provide a comprehensive and up-to-date overview of the various etiopathogenetic and pathophysiological mechanisms of parkinsonism in a wide spectrum of neurological conditions, with a particular focus on the role of the basal ganglia involvement. The paper also highlights potential implications in the diagnostic approach and therapeutic management of patients. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Daniel Truong
- Truong Neuroscience Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA; Department of Neurosciences, UC Riverside, Riverside, CA, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
218
|
Paul KC, Binder AM, Horvath S, Kusters C, Yan Q, Rosario ID, Yu Y, Bronstein J, Ritz B. Accelerated hematopoietic mitotic aging measured by DNA methylation, blood cell lineage, and Parkinson's disease. BMC Genomics 2021; 22:696. [PMID: 34565328 PMCID: PMC8474781 DOI: 10.1186/s12864-021-08009-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aging and inflammation are important components of Parkinson's disease (PD) pathogenesis and both are associated with changes in hematopoiesis and blood cell composition. DNA methylation (DNAm) presents a mechanism to investigate inflammation, aging, and hematopoiesis in PD, using epigenetic mitotic aging and aging clocks. Here, we aimed to define the influence of blood cell lineage on epigenetic mitotic age and then investigate mitotic age acceleration with PD, while considering epigenetic age acceleration biomarkers. RESULTS We estimated epigenetic mitotic age using the "epiTOC" epigenetic mitotic clock in 10 different blood cell populations and in a population-based study of PD with whole-blood. Within subject analysis of the flow-sorted purified blood cell types DNAm showed a clear separation of epigenetic mitotic age by cell lineage, with the mitotic age significantly lower in myeloid versus lymphoid cells (p = 2.1e-11). PD status was strongly associated with accelerated epigenetic mitotic aging (AccelEpiTOC) after controlling for cell composition (OR = 2.11, 95 % CI = 1.56, 2.86, p = 1.6e-6). AccelEpiTOC was also positively correlated with extrinsic epigenetic age acceleration, a DNAm aging biomarker related to immune system aging (with cell composition adjustment: R = 0.27, p = 6.5e-14), and both were independently associated with PD. Among PD patients, AccelEpiTOC measured at baseline was also associated with longitudinal motor and cognitive symptom decline. CONCLUSIONS The current study presents a first look at epigenetic mitotic aging in PD and our findings suggest accelerated hematopoietic cell mitosis, possibly reflecting immune pathway imbalances, in early PD that may also be related to motor and cognitive progression.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Alexandra M Binder
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Cynthia Kusters
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Yu Yu
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Jeff Bronstein
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Beate Ritz
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| |
Collapse
|
219
|
Navarro E, Udine E, Lopes KDP, Parks M, Riboldi G, Schilder BM, Humphrey J, Snijders GJL, Vialle RA, Zhuang M, Sikder T, Argyrou C, Allan A, Chao MJ, Farrell K, Henderson B, Simon S, Raymond D, Elango S, Ortega RA, Shanker V, Swan M, Zhu CW, Ramdhani R, Walker RH, Tse W, Sano M, Pereira AC, Ahfeldt T, Goate AM, Bressman S, Crary JF, de Witte L, Frucht S, Saunders-Pullman R, Raj T. Dysregulation of mitochondrial and proteolysosomal genes in Parkinson's disease myeloid cells. NATURE AGING 2021; 1:850-863. [PMID: 35005630 PMCID: PMC8728893 DOI: 10.1038/s43587-021-00110-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022]
Abstract
An increasing number of identified Parkinson's disease (PD) risk loci contain genes highly expressed in innate immune cells, yet their role in pathology is not understood. We hypothesize that PD susceptibility genes modulate disease risk by influencing gene expression within immune cells. To address this, we have generated transcriptomic profiles of monocytes from 230 individuals with sporadic PD and healthy subjects. We observed a dysregulation of mitochondrial and proteasomal pathways. We also generated transcriptomic profiles of primary microglia from brains of 55 subjects and observed discordant transcriptomic signatures of mitochondrial genes in PD monocytes and microglia. We further identified 17 PD susceptibility genes whose expression, relative to each risk allele, is altered in monocytes. These findings reveal widespread transcriptomic alterations in PD monocytes, with some being distinct from microglia, and facilitate efforts to understand the roles of myeloid cells in PD as well as the development of biomarkers.
Collapse
Affiliation(s)
- Elisa Navarro
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan Udine
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katia de Paiva Lopes
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Parks
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulietta Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University Langone Health, New York, NY, USA
- Universita degli Studi di Milano, Molecular and Translational Medicine, Milan, Italy
| | - Brian M Schilder
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gijsje J L Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, NY, Bronx, USA
| | - Ricardo A Vialle
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maojuan Zhuang
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tamjeed Sikder
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charalambos Argyrou
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Allan
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael J Chao
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kurt Farrell
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brooklyn Henderson
- The Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Sarah Simon
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deborah Raymond
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonya Elango
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto A Ortega
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vicki Shanker
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Swan
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn W Zhu
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Centers, James J. Peters VA Medical Center, New York, NY, USA
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ritesh Ramdhani
- Department of Neurology, Zucker School of Medicine at Hofstra Northwell, New York, NY, USA
| | - Ruth H Walker
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Winona Tse
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sano
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Centers, James J. Peters VA Medical Center, New York, NY, USA
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana C Pereira
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susan Bressman
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lotje de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, NY, Bronx, USA
| | - Steven Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Rachel Saunders-Pullman
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
220
|
Liao H, Winkler J, Wißfeld J, Shahraz A, Klaus C, Neumann H. Low molecular weight polysialic acid prevents lipopolysaccharide-induced inflammatory dopaminergic neurodegeneration in humanized SIGLEC11 transgenic mice. Glia 2021; 69:2845-2862. [PMID: 34406679 DOI: 10.1002/glia.24073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
Parkinson's disease is one of the most common neurodegenerative diseases in the elderly population, with a pathophysiology linked to neuroinflammation, complement activation, and oxidative damage. Soluble polysialic acid with an average degree of polymerization 20 (polySia avDP20) prevents inflammation and oxidative burst in human macrophages via sialic acid-binding immunoglobulin like lectin-11 (SIGLEC11) receptor and interferes with alternative complement activation. Here, we confirmed the anti-inflammatory capacity of polySia avDP20 on cultured murine embryonic stem cell-derived microglia and analyzed the effect of polySia avDP20 in a lipopolysaccharide-triggered animal model of Parkinson's disease. We demonstrated a neuroprotective effect of intraperitoneally applied polySia avDP20 in humanized SIGLEC11 transgenic mice after repeated systemic challenge with lipopolysaccharide. Pathway enrichment analysis of the brain transcriptome on day 19 after disease initiation showed that intraperitoneal application of 10 μg/g body weight polySia avDP20 prevented excessive inflammation. In line with these data, polySia avDP20 attenuated the lipopolysaccharide-triggered increase in mRNA levels of immune-related genes (Il1b, Cd14, Myd88, Fcer1g, Itgam, C4, Cybb, Iba1 and Cd68) and cell death-related genes (Casp8, Ripk1 and Ripk3) in the brains of SIGLEC11 transgenic mice on day 19, but not on day 5. Moreover, immunohistochemistry demonstrated that polySia avDP20 reduced the lipopolysaccharide-induced increase in immunoreactivity of IBA1 and CD68 in the substantia nigra pars reticulata in SIGLEC11 transgenic and wild type mice on day 19. Furthermore, treatment with polySia avDP20 prevented the loss of dopaminergic neurons in the substantia nigra pars compacta induced by lipopolysaccharide challenge in both SIGLEC11 transgenic and wild type mice on day 19. Thus, our data demonstrate that polySia avDP20 ameliorates inflammatory dopaminergic neurodegeneration and therefore is a promising drug candidate to prevent Parkinson's disease-related inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Huan Liao
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Jonas Winkler
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Jannis Wißfeld
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Anahita Shahraz
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Christine Klaus
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Harald Neumann
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
221
|
Naito T, Satake W, Ogawa K, Suzuki K, Hirata J, Foo JN, Tan E, Toda T, Okada Y. Trans-Ethnic Fine-Mapping of the Major Histocompatibility Complex Region Linked to Parkinson's Disease. Mov Disord 2021; 36:1805-1814. [PMID: 33973677 PMCID: PMC8453830 DOI: 10.1002/mds.28583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite evidence for the role of human leukocyte antigen (HLA) in the genetic predisposition to Parkinson's disease (PD), the complex haplotype structure and highly polymorphic feature of the major histocompatibility complex (MHC) region has hampered a unified insight on the genetic risk of PD. In addition, a majority of the reports focused on Europeans, lacking evidence on other populations. OBJECTIVES The aim of this study is to elucidate the genetic features of the MHC region associated with PD risk in trans-ethnic cohorts. METHODS We conducted trans-ethnic fine-mapping of the MHC region for European populations (14,650 cases and 1,288,625 controls) and East Asian populations (7712 cases and 27,372 controls). We adopted a hybrid fine-mapping approach including both HLA genotype imputation of genome-wide association study (GWAS) data and direct imputation of HLA variant risk from the GWAS summary statistics. RESULTS Through trans-ethnic MHC fine-mapping, we identified the strongest associations at amino acid position 13 of HLA-DRβ1 (P = 6.0 × 10-15 ), which explains the majority of the risk in HLA-DRB1. In silico prediction revealed that HLA-DRB1 alleles with histidine at amino acid position 13 (His13) had significantly weaker binding affinity to an α-synuclein epitope than other alleles (P = 9.6 × 10-4 ). Stepwise conditional analysis suggested additional independent associations at Ala69 in HLA-B (P = 1.0 × 10-7 ). A subanalysis in Europeans suggested additional independent associations at non-HLA genes in the class III MHC region (EHMT2; P = 2.5 × 10-7 ). CONCLUSIONS Our study highlights the shared and distinct genetic features of the MHC region in patients with PD across ethnicities. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tatsuhiko Naito
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Wataru Satake
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kotaro Ogawa
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Department of NeurologyOsaka University Graduate School of MedicineSuitaJapan
| | - Ken Suzuki
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
| | - Jun Hirata
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Pharmaceutical Discovery Research LaboratoriesTeijin Pharma LimitedHinoJapan
| | - Jia Nee Foo
- Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
- Human Genetics, Genome Institute of Singapore, A*STARSingaporeSingapore
| | - Eng‐King Tan
- Department of Neurology, National Neuroscience InstituteSingapore General HospitalSingaporeSingapore
- Duke‐National University of Singapore Medical SchoolSingaporeSingapore
| | - Tatsushi Toda
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yukinori Okada
- Department of Statistical GeneticsOsaka University Graduate School of MedicineSuitaJapan
- Laboratory of Statistical Immunology, Immunology Frontier Research CenterOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
| |
Collapse
|
222
|
Thomas GEC, Zarkali A, Ryten M, Shmueli K, Gil-Martinez AL, Leyland LA, McColgan P, Acosta-Cabronero J, Lees AJ, Weil RS. Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson's disease. Brain 2021; 144:1787-1798. [PMID: 33704443 PMCID: PMC8320305 DOI: 10.1093/brain/awab084] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms responsible for the selective vulnerability of specific neuronal populations in Parkinson's disease are poorly understood. Oxidative stress secondary to brain iron accumulation is one postulated mechanism. We measured iron deposition in 180 cortical regions of 96 patients with Parkinson's disease and 35 control subjects using quantitative susceptibility mapping. We estimated the expression of 15 745 genes in the same regions using transcriptomic data from the Allen Human Brain Atlas. Using partial least squares regression, we then identified the profile of gene transcription in the healthy brain that underlies increased cortical iron in patients with Parkinson's disease relative to controls. Applying gene ontological tools, we investigated the biological processes and cell types associated with this transcriptomic profile and identified the sets of genes with spatial expression profiles in control brains that correlated significantly with the spatial pattern of cortical iron deposition in Parkinson's disease. Gene ontological analyses revealed that these genes were enriched for biological processes relating to heavy metal detoxification, synaptic function and nervous system development and were predominantly expressed in astrocytes and glutamatergic neurons. Furthermore, we demonstrated that the genes differentially expressed in Parkinson's disease are associated with the pattern of cortical expression identified in this study. Our findings provide mechanistic insights into regional selective vulnerabilities in Parkinson's disease, particularly the processes involving iron accumulation.
Collapse
Affiliation(s)
| | | | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1B 5EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, WC1N 1EH, UK
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, UCL, London, WC1E 6BT, UK
| | - Ana Luisa Gil-Martinez
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1B 5EH, UK
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, WC1N 1EH, UK
| | | | - Peter McColgan
- Huntington’s Disease Centre, UCL Institute of Neurology, London, WC1B 5EH, UK
| | | | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, London, WC1N 1PJ, UK
| | - Rimona S Weil
- Dementia Research Centre, UCL, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK
- Movement Disorders Consortium, UCL, London, WC1N 3BG, UK
| |
Collapse
|
223
|
Wang P, Yao L, Luo M, Zhou W, Jin X, Xu Z, Yan S, Li Y, Xu C, Cheng R, Huang Y, Lin X, Ma K, Cao H, Liu H, Xue G, Han F, Nie H, Jiang Q. Single-cell transcriptome and TCR profiling reveal activated and expanded T cell populations in Parkinson's disease. Cell Discov 2021; 7:52. [PMID: 34282123 PMCID: PMC8289849 DOI: 10.1038/s41421-021-00280-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Given the chronic inflammatory nature of Parkinson's disease (PD), T cell immunity may be important for disease onset. Here, we performed single-cell transcriptome and TCR sequencing, and conducted integrative analyses to decode composition, function and lineage relationship of T cells in the blood and cerebrospinal fluid of PD. Combined expression and TCR-based lineage tracking, we discovered a large population of CD8+ T cells showing continuous progression from central memory to terminal effector T cells in PD patients. Additionally, we identified a group of cytotoxic CD4+ T cells (CD4 CTLs) remarkably expanded in PD patients, which derived from Th1 cells by TCR-based fate decision. Finally, we screened putative TCR-antigen pairs that existed in both blood and cerebrospinal fluid of PD patients to provide potential evidence for peripheral T cells to participate in neuronal degeneration. Our study provides valuable insights and rich resources for understanding the adaptive immune response in PD.
Collapse
Affiliation(s)
- Pingping Wang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Lifen Yao
- grid.412596.d0000 0004 1797 9737Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang China
| | - Meng Luo
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Wenyang Zhou
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Xiyun Jin
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Zhaochun Xu
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Shi Yan
- grid.412596.d0000 0004 1797 9737Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang China
| | - Yiqun Li
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Chang Xu
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Rui Cheng
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Yan Huang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Xiaoyu Lin
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Kexin Ma
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Huimin Cao
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Hongxin Liu
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Guangfu Xue
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Fang Han
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Huan Nie
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China
| | - Qinghua Jiang
- grid.19373.3f0000 0001 0193 3564School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin, Heilongjiang China
| |
Collapse
|
224
|
Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther 2021; 6:247. [PMID: 34210954 PMCID: PMC8249422 DOI: 10.1038/s41392-021-00650-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are protein complexes of the innate immune system that initiate inflammation in response to either exogenous pathogens or endogenous danger signals. Inflammasome multiprotein complexes are composed of three parts: a sensor protein, an adaptor, and pro-caspase-1. Activation of the inflammasome leads to the activation of caspase-1, which cleaves pro-inflammatory cytokines such as IL-1β and IL-18, leading to pyroptosis. Effectors of the inflammasome not only provide protection against infectious pathogens, but also mediate control over sterile insults. Aberrant inflammasome signaling has been implicated in the development of cardiovascular and metabolic diseases, cancer, and neurodegenerative disorders. Here, we review the role of the inflammasome as a double-edged sword in various diseases, and the outcomes can be either good or bad depending on the disease, as well as the genetic background. We highlight inflammasome memory and the two-shot activation process. We also propose the M- and N-type inflammation model, and discuss how the inflammasome pathway may be targeted for the development of novel therapy.
Collapse
|
225
|
Dong L, Zheng YM, Luo XG, He ZY. High Inflammatory Tendency Induced by Malignant Stimulation Through Imbalance of CD28 and CTLA-4/PD-1 Contributes to Dopamine Neuron Injury. J Inflamm Res 2021; 14:2471-2482. [PMID: 34140795 PMCID: PMC8203269 DOI: 10.2147/jir.s316439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Background Parkinson’s disease is a common neurodegenerative disease in the elderly. The incidence of various cancers in Parkinson’s disease patients is significantly lower than in healthy people. Parkinson’s disease patients are individuals with a high tendency for inflammation, whose peripheral immune system is represented in an activated state. We hypothesized that the hyperinflammatory predisposition of Parkinson’s disease patients is pathogenic. Methods DBA/1 mice were used to simulate “highly inflammatory individuals”, and the carcinogen DEN was used to induce malignancy. Hematoxylin & eosin (H&E) staining was used to observe the formation of lung tumors. Apoptosis of neurons was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immunohistochemistry and flow cytometry were used to observe CD4, CD28, major histocompatibility complex II (MHCII), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), and programmed death 1 (PD-1). The ionized calcium binding adaptor molecule-1 (IBA-1) + inducible nitric oxide synthase (iNOS) was used to label M1 microglia, and IBA-1 + arginase 1 (Arg1) was used to label M2 microglia by immunofluorescence. The expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and anti-inflammatory cytokines IL-10 and IL-4 was detected by ELISA. Results DBA/1 mice with high inflammatory tendency showed a continuous increase of peripheral inflammation, promoting intracranial inflammation, decreasing the tumor incidence and increasing the neurodegeneration under induction of malignant change. CD28 and CTLA-4/PD-1 reduced the T-cell-dominated inflammatory response, reduced the intracerebral inflammatory response, protected from neurodegeneration, and increased the incidence of tumor. Combination of CTLA-4 and PD-1 blocker can overactivate T cells, worsen peripheral and intracranial inflammation, reduce the incidence of tumor, cause damage to dopamine neurons, and promote the occurrence of neurodegeneration. Conclusion High inflammatory tendency induced by malignant stimulation through the imbalance of CD28 and CTLA-4/PD-1 leads to dopamine neuron injury.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu-Min Zheng
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiao-Guang Luo
- Department of Neurology, The First Affiliated Hospital of South University of Science and Technology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Zhi-Yi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
226
|
Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLoS One 2021; 16:e0252325. [PMID: 34106956 PMCID: PMC8189458 DOI: 10.1371/journal.pone.0252325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple mutations have been described in the human GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase) that degrades glucosylceramide and is pivotal in glycosphingolipid substrate metabolism. Depletion of GCase, typically by homozygous mutations in GBA1, is linked to the lysosomal storage disorder Gaucher’s disease (GD) and distinct or heterozygous mutations in GBA1 are associated with increased Parkinson’s disease (PD) risk. While numerous genes have been linked to heritable PD, GBA1 mutations in aggregate are the single greatest risk factor for development of idiopathic PD. The importance of GCase in PD necessitates preclinical models in which to study GCase-related mechanisms and novel therapeutic approaches, as well as to elucidate the molecular mechanisms leading to enhanced PD risk in GBA1 mutation carriers. The aim of this study was to develop and characterize a novel GBA1 mouse model and to facilitate wide accessibility of the model with phenotypic data. Herein we describe the results of molecular, biochemical, histological, and behavioral phenotyping analyses in a GBA1 D409V knock-in (KI) mouse. This mouse model exhibited significantly decreased GCase activity in liver and brain, with substantial increases in glycosphingolipid substrates in the liver. While no changes in the number of dopamine neurons in the substantia nigra were noted, subtle changes in striatal neurotransmitters were observed in GBA1 D409V KI mice. Alpha-synuclein pathology and inflammation were not observed in the nigrostriatal system of this model. In summary, the GBA1 D409V KI mouse model provides an ideal model for studies aimed at pharmacodynamic assessments of potential therapies aiming to restore GCase.
Collapse
|
227
|
Muñoz-Delgado L, Macías-García D, Jesús S, Martín-Rodríguez JF, Labrador-Espinosa MÁ, Jiménez-Jaraba MV, Adarmes-Gómez A, Carrillo F, Mir P. Peripheral Immune Profile and Neutrophil-to-Lymphocyte Ratio in Parkinson's Disease. Mov Disord 2021; 36:2426-2430. [PMID: 34101890 DOI: 10.1002/mds.28685] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) in peripheral blood is a well-established inflammatory marker, but its role in Parkinson's disease (PD) remains unclear. OBJECTIVES To determine whether a different peripheral immune profile and NLR were present in PD patients. METHODS We conducted a case-control study that included 377 PD patients and 355 healthy controls (HCs). Leukocytes, subpopulations, and the NLR were measured. Multivariate linear regression analyses were applied to determine the differences between groups and the association between NLR and clinical characteristics in PD. A meta-analysis was performed to clarify the association between NLR and PD. RESULTS In our case-control study, the NLR was significantly higher in PD patients compared with HCs (2.47 ± 1.1 vs. 1.98 ± 0.91, P < 0.001). No association between NLR and age at onset, disease severity, or disease duration was found. The meta-analysis showed that the NLR was likely to be higher in PD patients. CONCLUSIONS PD patients had an altered peripheral immune profile and a higher NLR compared with HCs. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| | - Miguel Ángel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - María Valle Jiménez-Jaraba
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
228
|
Abstract
Cinnamon is an unusual tropical plant belonging to the Lauraceae family. It has been used for hundreds of years as a flavor additive, but it has also been used in natural Eastern medicine. Cinnamon extracts are vital oils that contain biologically active compounds, such as cinnamon aldehyde, cinnamic alcohol, cinnamic acid, and cinnamate. It has antioxidant, anti-inflammatory, and antibacterial properties and is used to treat diseases such as diabetes and cardiovascular disease. In folk medicine, cinnamon species have been used as medicine for respiratory and digestive disorders. Their potential for prophylactic and therapeutic use in Parkinson’s and Alzheimer’s disease has also been discovered. This review summarizes the available isolation methods and analytical techniques used to identify biologically active compounds present in cinnamon bark and leaves and the influence of these compounds in the treatment of disorders.
Collapse
|
229
|
Over L, Brüggemann N, Lohmann K. Therapies for Genetic Forms of Parkinson's Disease: Systematic Literature Review. J Neuromuscul Dis 2021; 8:341-356. [PMID: 33459660 PMCID: PMC8203229 DOI: 10.3233/jnd-200598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parkinson’s disease (PD) is a disabling neurological condition characterized by the loss of dopaminergic neurons. Currently, the treatment for PD is symptomatic and compensates for the endogenous loss of dopamine production. In cases where the pharmacological therapy is only partly beneficial or results in major wearing-off complications, surgical interventions such as deep brain stimulation may be an alternative treatment. The disease cause often remains unknown, but in some patients, a monogenic cause can be identified. Mutations in at least six genes, LRRK2, SNCA, and VPS35 (dominant forms) or Parkin/PRKN, PINK1, and DJ1/PARK7 (recessive forms) have been unequivocally linked to PD pathogenesis. We here systematically screened 8,576 publications on these monogenic PD forms. We identified 2,226 mutation carriers from 456 papers. Levodopa was the most widely applied treatment; only 34 patients were indicated to be untreated at the time of reporting. Notably, detailed treatment data was rarely mentioned including response quantification (good, moderate, minimal) in 951 and/or dose in 293 patients only. Based on available data, levodopa showed an overall good outcome, especially in LRRK2, VPS35, Parkin, and PINK1 mutation carriers (“good” response in 94.6–100%). Side effects of levodopa therapy were reported in ∼15–40%of levodopa-treated patients across genes with dyskinesias as the most frequent one. Non-levodopa medication was indicated to be administered to <200 patients with mainly good outcome. Only a few reports were available on outcomes of brain surgery. Here, most mutation carriers showed a good response. Importantly, none of the available treatments is harmful to one genetic form but effective in another one. In the light of different medication schemes, the progressive nature of PD, and side effects, an improvement of therapeutic options for PD is warranted including a treatabolome database to guide clinicians in treatment decisions. Further, novel disease-cause-modifying drugs are needed.
Collapse
Affiliation(s)
- Laura Over
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
230
|
Hypoxia, Acidification and Inflammation: Partners in Crime in Parkinson’s Disease Pathogenesis? IMMUNO 2021. [DOI: 10.3390/immuno1020006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Like in other neurodegenerative diseases, protein aggregation, mitochondrial dysfunction, oxidative stress and neuroinflammation are hallmarks of Parkinson’s disease (PD). Differentiating characteristics of PD include the central role of α-synuclein in the aggregation pathology, a distinct vulnerability of the striato-nigral system with the related motor symptoms, as well as specific mitochondrial deficits. Which molecular alterations cause neurodegeneration and drive PD pathogenesis is poorly understood. Here, we summarize evidence of the involvement of three interdependent factors in PD and suggest that their interplay is likely a trigger and/or aggravator of PD-related neurodegeneration: hypoxia, acidification and inflammation. We aim to integrate the existing knowledge on the well-established role of inflammation and immunity, the emerging interest in the contribution of hypoxic insults and the rather neglected effects of brain acidification in PD pathogenesis. Their tight association as an important aspect of the disease merits detailed investigation. Consequences of related injuries are discussed in the context of aging and the interaction of different brain cell types, in particular with regard to potential consequences on the vulnerability of dopaminergic neurons in the substantia nigra. A special focus is put on the identification of current knowledge gaps and we emphasize the importance of related insights from other research fields, such as cancer research and immunometabolism, for neurodegeneration research. The highlighted interplay of hypoxia, acidification and inflammation is likely also of relevance for other neurodegenerative diseases, despite disease-specific biochemical and metabolic alterations.
Collapse
|
231
|
Klinger D, Hill BL, Barda N, Halperin E, Gofrit ON, Greenblatt CL, Rappoport N, Linial M, Bercovier H. Bladder Cancer Immunotherapy by BCG Is Associated with a Significantly Reduced Risk of Alzheimer's Disease and Parkinson's Disease. Vaccines (Basel) 2021; 9:vaccines9050491. [PMID: 34064775 PMCID: PMC8151667 DOI: 10.3390/vaccines9050491] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Bacillus Calmette–Guerin (BCG) is a live attenuated form of Mycobacterium bovis that was developed 100 years ago as a vaccine against tuberculosis (TB) and has been used ever since to vaccinate children globally. It has also been used as the first-line treatment in patients with nonmuscle invasive bladder cancer (NMIBC), through repeated intravesical applications. Numerous studies have shown that BCG induces off-target immune effects in various pathologies. Accumulating data argue for the critical role of the immune system in the course of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this study, we tested whether repeated exposure to BCG during the treatment of NMIBC is associated with the risk of developing AD and PD. We presented a multi-center retrospective cohort study with patient data collected between 2000 and 2019 that included 12,185 bladder cancer (BC) patients, of which 2301 BCG-treated patients met all inclusion criteria, with a follow-up of 3.5 to 7 years. We considered the diagnosis date of AD and nonvascular dementia cases for BC patients. The BC patients were partitioned into those who underwent a transurethral resection of the bladder tumor followed by BCG therapy, and a disjoint group that had not received such treatment. By applying Cox proportional hazards (PH) regression and competing for risk analyses, we found that BCG treatment was associated with a significantly reduced risk of developing AD, especially in the population aged 75 years or older. The older population (≥75 years, 1578 BCG treated, and 5147 controls) showed a hazard ratio (HR) of 0.726 (95% CI: 0.529–0.996; p-value = 0.0473). While in a hospital-based cohort, BCG treatment resulted in an HR of 0.416 (95% CI: 0.203–0.853; p-value = 0.017), indicating a 58% lower risk of developing AD. The risk of developing PD showed the same trend with a 28% reduction in BCG-treated patients, while no BCG beneficial effect was observed for other age-related events such as Type 2 diabetes (T2D) and stroke. We attributed BCG’s beneficial effect on neurodegenerative diseases to a possible activation of long-term nonspecific immune effects. We proposed a prospective study in elderly people for testing intradermic BCG inoculation as a potential protective agent against AD and PD.
Collapse
Affiliation(s)
- Danielle Klinger
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Brian L. Hill
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095-1596, USA; (B.L.H.); (E.H.)
| | - Noam Barda
- Clalit Research Institute, Innovation Division, Clalit Health Services, Ramat-Gan 6578898, Israel;
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eran Halperin
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095-1596, USA; (B.L.H.); (E.H.)
| | - Ofer N. Gofrit
- Department of Urology, Hadassah University Hospital, Jerusalem 91904, Israel;
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (C.L.G.); (H.B.)
| | - Nadav Rappoport
- Department of Software and Information Systems Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Correspondence: ; Tel.: +972-54-882-0035
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (C.L.G.); (H.B.)
| |
Collapse
|
232
|
Insights into the Pathophysiology of Psychiatric Symptoms in Central Nervous System Disorders: Implications for Early and Differential Diagnosis. Int J Mol Sci 2021; 22:ijms22094440. [PMID: 33922780 PMCID: PMC8123079 DOI: 10.3390/ijms22094440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer’s disease, fronto-temporal dementia, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.
Collapse
|
233
|
Mancini A, Ghiglieri V, Parnetti L, Calabresi P, Di Filippo M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front Immunol 2021; 12:644294. [PMID: 33953715 PMCID: PMC8091963 DOI: 10.3389/fimmu.2021.644294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
The basal ganglia network is represented by an interconnected group of subcortical nuclei traditionally thought to play a crucial role in motor learning and movement execution. During the last decades, knowledge about basal ganglia physiology significantly evolved and this network is now considered as a key regulator of important cognitive and emotional processes. Accordingly, the disruption of basal ganglia network dynamics represents a crucial pathogenic factor in many neurological and psychiatric disorders. The striatum is the input station of the circuit. Thanks to the synaptic properties of striatal medium spiny neurons (MSNs) and their ability to express synaptic plasticity, the striatum exerts a fundamental integrative and filtering role in the basal ganglia network, influencing the functional output of the whole circuit. Although it is currently established that the immune system is able to regulate neuronal transmission and plasticity in specific cortical areas, the role played by immune molecules and immune/glial cells in the modulation of intra-striatal connections and basal ganglia activity still needs to be clarified. In this manuscript, we review the available evidence of immune-based regulation of synaptic activity in the striatum, also discussing how an abnormal immune activation in this region could be involved in the pathogenesis of inflammatory and degenerative central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Section of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
234
|
Wang Q, Luo Y, Chaudhuri KR, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson's disease: mechanistic insights andtherapeutic options. Brain 2021; 144:2571-2593. [PMID: 33856024 DOI: 10.1093/brain/awab156] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Sven Pettersson
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore.,LKC School of Medicine, NTU, Singapore.,Sunway University, Department of Medical Sciences, Kuala Lumpur, Malaysia
| |
Collapse
|
235
|
George S, Tyson T, Rey NL, Sheridan R, Peelaerts W, Becker K, Schulz E, Meyerdirk L, Burmeister AR, von Linstow CU, Steiner JA, Galvis MLE, Ma J, Pospisilik JA, Labrie V, Brundin L, Brundin P. T Cells Limit Accumulation of Aggregate Pathology Following Intrastriatal Injection of α-Synuclein Fibrils. JOURNAL OF PARKINSONS DISEASE 2021; 11:585-603. [PMID: 33579871 PMCID: PMC8150548 DOI: 10.3233/jpd-202351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease.ObjectiveTo study the role of the adaptive immune system with respect to α-syn pathology. METHODS We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. RESULTS Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. CONCLUSION Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.
Collapse
Affiliation(s)
- Sonia George
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Rachael Sheridan
- Flow Cytometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Wouter Peelaerts
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Katelyn Becker
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Schulz
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Lindsay Meyerdirk
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Amanda R Burmeister
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| |
Collapse
|
236
|
Duwa R, Jeong JH, Yook S. Development of immunotherapy and nanoparticles-based strategies for the treatment of Parkinson’s disease. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00521-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
237
|
Central Activation of Alpha7 Nicotinic Signaling Attenuates LPS-Induced Neuroinflammation and Sickness Behavior in Adult but Not in Aged Animals. Molecules 2021; 26:molecules26082107. [PMID: 33916910 PMCID: PMC8067582 DOI: 10.3390/molecules26082107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported that lipopolysaccharide (LPS) challenge caused microglial-mediated neuroinflammation and sickness behavior that was amplified in aged mice. As α7 nAChRs are implicated in the "Cholinergic anti-inflammatory pathway", we aimed to determine how α7 nAChR stimulation modulates microglial phenotype in an LPS-induced neuroinflammation model in adult and aged mice. For this, BALB/c mice were injected intraperitoneally with LPS (0.33 mg/kg) and treated with the α7 nAChR agonist PNU282987, using different administration protocols. LPS challenge reduced body weight and induced lethargy and social withdrawal in adult mice. Peripheral (intraperitoneal) co-administration of the α7 nAChR agonist PNU282987 with LPS, attenuated body weight loss and sickness behavior associated with LPS challenge in adult mice, and reduced microglial activation with suppression of IL-1β and TNFα mRNA levels. Furthermore, central (intracerebroventricular) administration of the α7 nAChR agonist, even 2 h after LPS injection, attenuated the decrease in social exploratory behavior and microglial activation induced by peripheral administration of LPS, although this recovery was not achieved if activation of α7 nAChRs was performed peripherally. Finally, we observed that the positive results of central activation of α7 nAChRs were lost in aged mice. In conclusion, we provide evidence that stimulation of α7 nAChR signaling reduces microglial activation in an in vivo LPS-based model, but this cholinergic-dependent regulation seems to be dysfunctional in microglia of aged mice.
Collapse
|
238
|
Il-10 signaling reduces survival in mouse models of synucleinopathy. NPJ Parkinsons Dis 2021; 7:30. [PMID: 33741985 PMCID: PMC7979923 DOI: 10.1038/s41531-021-00169-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/28/2021] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease (PD) and related synucleinopathies are characterized by chronic neuroinflammation leading to the premise that anti-inflammatory therapies could ameliorate synucleinopathy and associated sequelae. To test this idea, we used recombinant adeno-associated viruses (AAV) to express the anti-inflammatory cytokine, Interleukin (Il)-10, in Line M83 transgenic mice that expresses the PD-associated A53T mutant human α-synuclein (αSyn). Contrary to our expectations, we observed that intraspinal Il-10 expression initiated at birth upregulated microgliosis and led to early death in homozygous M83+/+ mice. We further observed that Il-10 preconditioning led to reduced lifespan in the hemizygous M83+/- mice injected with preformed αSyn aggregates in hindlimb muscles. To determine the mechanistic basis for these adverse effects, we took advantage of the I87A variant Il-10 (vIl-10) that has predominantly immunosuppressive properties. Sustained intraspinal expression of vIl-10 in preformed αSyn-aggregate seeded M83+/- mice resulted in earlier death, accelerated αSyn pathology, pronounced microgliosis, and increased apoptosis compared to control mice. AAV-vIl-10 expression robustly induced p62 and neuronal LC3B accumulation in these mice, indicating that Il-10 signaling mediated preconditioning of the neuraxis can potentially exacerbate αSyn accumulation through autophagy dysfunction in the neurons. Together, our data demonstrate unexpected adverse effects of both Il-10 and its immunosuppressive variant, vIl-10, in a mouse model of PD, highlighting the pleiotropic functions of immune mediators and their complex role in non-cell autonomous signaling in neurodegenerative proteinopathies.
Collapse
|
239
|
Peripheral inflammation induces long-term changes in tyrosine hydroxylase activation in the substantia nigra. Neurochem Int 2021; 146:105022. [PMID: 33746005 DOI: 10.1016/j.neuint.2021.105022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
Inflammation plays a role in neuropathology. We hypothesised that inflammation, induced by a single intraperitoneal injection of lipopolysaccharide (LPS), would induce long-term changes in the regulation of tyrosine hydroxylase (TH) in the rat midbrain. The level of 12 cytokines was initially analysed from one day to six months after LPS injection to confirm that peripheral inflammation led to neuroinflammatory changes in the midbrain. In the substantia nigra (SN), the levels of 8 of the 12 measured cytokines was significantly increased at one day. Granulocyte-macrophage colony-stimulating factor showed a threefold increased level at 6 months. The ventral tegmental area (VTA) showed a completely different pattern, with no increases in the levels of the 12 cytokines at one day and no changes beyond one week. TH activity was determined using a tritiated water release assay, TH protein and phosphorylation levels (Ser19, Ser31 and Ser40) were determined using western blotting. TH-specific activity in the SN was unchanged at one day but was substantially increased at one week and one month with no concomitant increase in TH phosphorylation. Substantial changes in TH activation without changes in TH phosphorylation have not previously been observed in the brain in response to a range of stressors. TH-specific activity was increased in the SN, and in the caudate putamen, at 6 months and was associated with increased TH phosphorylation at Ser19 and Ser40 at both locations. TH-specific activity in the VTA showed only a transient increase at day one associated with increased phosphorylation at Ser19 and Ser31 but thereafter showed no changes. This study shows that inflammation induced by LPS generated two distinct long-term changes in TH activity in the SN that are caused by different mechanisms, but there were no long-term changes in the adjacent VTA.
Collapse
|
240
|
Nam Y, Moon GJ, Kim SR. Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22063064. [PMID: 33802760 PMCID: PMC8002454 DOI: 10.3390/ijms22063064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD.
Collapse
Affiliation(s)
- Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Gyeong Joon Moon
- Center for Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea;
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Ryong Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea;
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
241
|
Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, Peckham D, McDermott MF. Neurodegenerative Disease and the NLRP3 Inflammasome. Front Pharmacol 2021; 12:643254. [PMID: 33776778 PMCID: PMC7987926 DOI: 10.3389/fphar.2021.643254] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The prevalence of neurodegenerative disease has increased significantly in recent years, and with a rapidly aging global population, this trend is expected to continue. These diseases are characterised by a progressive neuronal loss in the brain or peripheral nervous system, and generally involve protein aggregation, as well as metabolic abnormalities and immune dysregulation. Although the vast majority of neurodegeneration is idiopathic, there are many known genetic and environmental triggers. In the past decade, research exploring low-grade systemic inflammation and its impact on the development and progression of neurodegenerative disease has increased. A particular research focus has been whether systemic inflammation arises only as a secondary effect of disease or is also a cause of pathology. The inflammasomes, and more specifically the NLRP3 inflammasome, a crucial component of the innate immune system, is usually activated in response to infection or tissue damage. Dysregulation of the NLRP3 inflammasome has been implicated in the progression of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. This review aims to summarise current literature on the role of the NLRP3 inflammasome in the pathogenesis of neurodegenerative diseases, and recent work investigating NLRP3 inflammasome inhibition as a potential future therapy.
Collapse
Affiliation(s)
- Jonathan A. Holbrook
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Heledd H. Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Emily Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - James A. Poulter
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
| | - Caroline H. Williams-Gray
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St. James’s University Hospital, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
- Leeds Centre for Cystic Fibrosis, St James’s University Hospital, Leeds, United Kingdom
| | - Michael F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
242
|
Andersen MS, Bandres-Ciga S, Reynolds RH, Hardy J, Ryten M, Krohn L, Gan-Or Z, Holtman IR, Pihlstrøm L. Heritability Enrichment Implicates Microglia in Parkinson's Disease Pathogenesis. Ann Neurol 2021; 89:942-951. [PMID: 33502028 PMCID: PMC9017316 DOI: 10.1002/ana.26032] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Objective: Understanding how different parts of the immune system contribute to pathogenesis in Parkinson’s disease is a burning challenge with important therapeutic implications. We studied enrichment of common variant heritability for Parkinson’s disease stratified by immune and brain cell types. Methods: We used summary statistics from the most recent meta-analysis of genomewide association studies in Parkinson’s disease and partitioned heritability using linkage disequilibrium score regression, stratified for specific cell types, as defined by open chromatin regions. We also validated enrichment results using a polygenic risk score approach and intersected disease-associated variants with epigenetic data and expression quantitative loci to nominate and explore a putative microglial locus. Results: We found significant enrichment of Parkinson’s disease risk heritability in open chromatin regions of microglia and monocytes. Genomic annotations overlapped substantially between these 2 cell types, and only the enrichment signal for microglia remained significant in a joint model. We present evidence suggesting P2RY12, a key microglial gene and target for the antithrombotic agent clopidogrel, as the likely driver of a significant Parkinson’s disease association signal on chromosome 3. Interpretation: Our results provide further support for the importance of immune mechanisms in Parkinson’s disease pathogenesis, highlight microglial dysregulation as a contributing etiological factor, and nominate a targetable microglial gene candidate as a pathogenic player. Immune processes can be modulated by therapy, with potentially important clinical implications for future treatment in Parkinson’s disease.
Collapse
Affiliation(s)
- Maren Stolp Andersen
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.,Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK.,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,UCL Movement Disorders Centre, University College London, London, UK.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mina Ryten
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.,Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Lynne Krohn
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Department of Human Genetics, McGill University, Montreal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Inge R Holtman
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
243
|
Ma T, Wang F, Xu S, Huang JH. Meningeal immunity: Structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav Immun 2021; 93:264-276. [PMID: 33548498 DOI: 10.1016/j.bbi.2021.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
Meningeal immunity refers to immune surveillance and immune defense in the meningeal immune compartment, which depends on the unique position, structural composition of the meninges and functional characteristics of the meningeal immune cells. Recent research advances in meningeal immunity have demonstrated many new ways in which a sophisticated immune landscape affects central nervous system (CNS) function under physiological or pathological conditions. The proper function of the meningeal compartment might protect the CNS from pathogens or contribute to neurological disorders. Since the concept of meningeal immunity, especially the meningeal lymphatic system and the glymphatic system, is relatively new, we will provide a general review of the meninges' basic structural elements, organization, regulation, and functions with regards to meningeal immunity. At the same time, we will emphasize recent evidence for the role of meningeal immunity in neurodegenerative diseases. More importantly, we will speculate about the feasibility of the meningeal immune region as a drug target to provide some insights for future research of meningeal immunity.
Collapse
Affiliation(s)
- Tengyun Ma
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610060, PR China.
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health Center, Temple, TX 76502, United States; Department of Surgery, Texas A&M University College of Medicine, Temple, TX 76502, United States
| |
Collapse
|
244
|
Jensen MP, Jacobs BM, Dobson R, Bandres-Ciga S, Blauwendraat C, Schrag A, Noyce AJ. Lower Lymphocyte Count is Associated With Increased Risk of Parkinson's Disease. Ann Neurol 2021; 89:803-812. [PMID: 33527442 PMCID: PMC9012149 DOI: 10.1002/ana.26034] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Objectives: Patients with established Parkinson’s disease (PD) display differences in peripheral blood markers of immune function, including leukocyte differential counts, compared with controls. These differences may be useful biomarkers to predict PD and may shed light on pathogenesis. We sought to identify whether peripheral immune dysregulation was associated with increased risk of subsequent PD diagnosis. Methods: We examined the relationship between incident PD, baseline differential leukocyte count and other blood markers of acute inflammation in UK Biobank (UKB), a longitudinal cohort with ~500,000 participants. We used a range of sensitivity analyses and Mendelian randomization (MR) to further explore the nature of associations. Results: After excluding individuals with comorbidities which could influence biomarkers of inflammation, 465 incident PD cases and 312,125 controls remained. Lower lymphocyte count was associated with increased risk of subsequent PD diagnosis (per 1-SD decrease in lymphocyte count odds ratio [OR] = 1.18, 95% confidence interval [CI] = 1.07–1.32, padjusted = 0.01). There was some evidence that reductions in eosinophil counts, monocyte counts and C-reactive protein (CRP) were associated with increased PD risk, and that higher neutrophil count was also associated. Only the association between lower lymphocyte count and increased PD risk remained robust to sensitivity analyses. MR suggested that the effect of lower lymphocyte count on PD risk may be causal (per 1-SD decrease in lymphocyte count; ORMR = 1.09, 95% CI = 1.01–1.18, p = 0.02). Interpretation: We provide converging evidence from observational analyses in UKB and MR that lower lymphocyte count is associated with an increased risk of subsequent PD.
Collapse
Affiliation(s)
- Melanie P Jensen
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK
| | - Benjamin Meir Jacobs
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
245
|
Gonçalves VC, Cuenca-Bermejo L, Fernandez-Villalba E, Martin-Balbuena S, da Silva Fernandes MJ, Scorza CA, Herrero MT. Heart Matters: Cardiac Dysfunction and Other Autonomic Changes in Parkinson's Disease. Neuroscientist 2021; 28:530-542. [PMID: 33583239 DOI: 10.1177/1073858421990000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been more than 200 years since James Parkinson made the first descriptions of the disease that bears his name. Since then, knowledge about Parkinson's disease has been improved, and its pathophysiology, diagnosis, and treatments are well described in the scientific and medical literature. However, there is no way to prevent the disease from its progressive nature yet and only its symptoms can be minimized. It is known that the process of neurodegeneration begins before the onset of motor signs and symptoms of the disease, when diagnosis is usually made. Therefore, recognizing manifested non-motor symptoms can make an early diagnosis possible and lead to a better understanding of the disease. Autonomic dysfunctions are important non-motor manifestations of Parkinson's disease and affect the majority of patients. Importantly, heart failure is the third leading cause of death in people suffering from Parkinson's disease. Several evidences have shown the correlation between Parkinson's disease and the preexistence of cardiovascular diseases. Therefore, cardiovascular monitoring and identification of its dysfunctions can have a prodromal role for Parkinson's disease. This review presents studies of the literature that can lead to a better understanding of Parkinson's disease with special attention to its relation to heart and cardiovascular parameters.
Collapse
Affiliation(s)
- Valeria C Gonçalves
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain.,Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Emiliano Fernandez-Villalba
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Sebastian Martin-Balbuena
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Maria Jose da Silva Fernandes
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maria-Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| |
Collapse
|
246
|
Lee HS, Lobbestael E, Vermeire S, Sabino J, Cleynen I. Inflammatory bowel disease and Parkinson's disease: common pathophysiological links. Gut 2021; 70:408-417. [PMID: 33067333 DOI: 10.1136/gutjnl-2020-322429] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease and Parkinson's disease are chronic progressive disorders that mainly affect different organs: the gut and brain, respectively. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the 'gut-brain axis'. Moreover, recent population-based studies have shown that inflammatory bowel disease might increase the risk of Parkinson's disease. Although the precise mechanisms underlying gut-brain interactions remain elusive, some of the latest findings have begun to explain the link. Several genetic loci are shared between both disorders with a similar direction of effect on the risk of both diseases. The most interesting example is LRRK2 (leucine-rich repeat kinase 2), initially identified as a causal gene in Parkinson's disease, and recently also implicated in Crohn's disease. In this review, we highlight recent findings on the link between these seemingly unrelated diseases with shared genetic susceptibility. We discuss supporting and conflicting data obtained from epidemiological and genetic studies along with remaining questions and concerns. In addition, we discuss possible biological links including the gut-brain axis, microbiota, autoimmunity, mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Ho-Su Lee
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - João Sabino
- Department of Chronic diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
247
|
Huang S, Yuan H, Li W, Liu X, Zhang X, Xiang D, Luo S. Polygonatum sibiricum Polysaccharides Protect against MPP-Induced Neurotoxicity via the Akt/mTOR and Nrf2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8843899. [PMID: 33520086 PMCID: PMC7817274 DOI: 10.1155/2021/8843899] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
Polygonatum sibiricum, a well-known life-prolonging tonic in Chinese medicine, has been widely used for nourishing nerves in the orient, but the underlying molecular mechanisms remain unclear. In this study, we found that P. sibiricum polysaccharides (PSP) ameliorated 1-methyl-4-phenyl-1,2.3,6-tetrahydropyridine- (MPTP-) induced locomotor activity deficiency and dopaminergic neuronal loss in an in vivo Parkinson's disease (PD) mouse model. Additionally, PSP pretreatment inhibited N-methyl-4-phenylpyridine (MPP+) induced the production of reactive oxygen species, increasing the ratio of reduced glutathione/oxidized glutathione. In vitro experiments showed that PSP promoted the proliferation of N2a cells in a dose-dependent manner, while exhibiting effects against oxidative stress and neuronal apoptosis elicited by MPP+. These effects were found to be associated with the activation of Akt/mTOR-mediated p70S6K and 4E-BP1 signaling pathways, as well as nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (Gclc), and glutamate-cysteine ligase modulatory subunit (Gclm), resulting in antiapoptotic and antioxidative effects. Meanwhile, PSP exhibited no chronic toxicity in C57BJ/6 mice. Together, our results suggest that PSP can serve as a promising therapeutic candidate with neuroprotective properties in preventing PD.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Haiyan Yuan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| |
Collapse
|
248
|
Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy. Cell Mol Neurobiol 2021; 42:1283-1300. [PMID: 33387119 DOI: 10.1007/s10571-020-01027-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.
Collapse
|
249
|
Krokidis MG. Biomarker-Driven Analysis Using High-Throughput Approaches in Neuroinflammation and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:51-58. [DOI: 10.1007/978-3-030-78787-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
250
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|