201
|
Lehnert J, Khadra A. How Pulsatile Kisspeptin Stimulation and GnRH Autocrine Feedback Can Drive GnRH Secretion: A Modeling Investigation. Endocrinology 2019; 160:1289-1306. [PMID: 30874725 DOI: 10.1210/en.2018-00947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/09/2019] [Indexed: 02/03/2023]
Abstract
Pulsatile secretion of GnRH from hypothalamic GnRH neurons tightly regulates the release of mammalian reproductive hormones. Although key factors such as electrical activity and stimulation by kisspeptin have been extensively studied, the underlying mechanisms that regulate GnRH release are still not fully understood. Previously developed mathematical models studied hormonal release and electrical properties of GnRH neurons separately, but they never integrated both components. Herein, we present a more complete biophysical model to investigate how electrical activity and hormonal release interact. The model consists of two components: an electrical submodel comprised of a modified Izhikevich formalism incorporating several key ionic currents to reproduce GnRH neuronal bursting behavior, and a hormonal submodel that incorporates pulsatile kisspeptin stimulation and a GnRH autocrine feedback mechanism. Using the model, we examine the electrical activity of GnRH neurons and how kisspeptin affects GnRH pulsatility. The model reproduces the noise-driven bursting behavior of GnRH neurons as well as the experimentally observed electrophysiological effects induced by GnRH and kisspeptin. Specifically, the model reveals that external application of GnRH causes a transient hyperpolarization followed by an increase in firing frequency, whereas administration of kisspeptin leads to long-lasting depolarization of the neuron. The model also shows that GnRH release follows a pulsatile profile similar to that observed experimentally and that kisspeptin and GnRH exhibit ∼7-1 locking in their pulsatility. These results suggest that external kisspeptin stimulation with a period of ∼8 minutes drives the autocrine mechanism beyond a threshold to generate pronounced GnRH pulses every hour.
Collapse
Affiliation(s)
- Jonas Lehnert
- Department of Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
202
|
Wang L, Vanacker C, Burger LL, Barnes T, Shah YM, Myers MG, Moenter SM. Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction. eLife 2019; 8:e43999. [PMID: 30946012 PMCID: PMC6491090 DOI: 10.7554/elife.43999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and positive feedbacks are postulated to be mediated by kisspeptin neurons in arcuate and anteroventral periventricular (AVPV) nuclei, respectively. Kisspeptin-specific ERα knockout mice exhibit disrupted LH pulses and surges. This knockout approach is neither location-specific nor temporally controlled. We utilized CRISPR-Cas9 to disrupt ERα in adulthood. Mice with ERα disruption in AVPV kisspeptin neurons have typical reproductive cycles but blunted LH surges, associated with decreased excitability of these neurons. Mice with ERα knocked down in arcuate kisspeptin neurons showed disrupted cyclicity, associated with increased glutamatergic transmission to these neurons. These observations suggest that activational effects of estradiol regulate surge generation and maintain cyclicity through AVPV and arcuate kisspeptin neurons, respectively, independent from its role in the development of hypothalamic kisspeptin neurons or puberty onset.
Collapse
Affiliation(s)
- Luhong Wang
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
| | - Charlotte Vanacker
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
| | - Laura L Burger
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
| | - Tammy Barnes
- Department of Internal MedicineUniversity of MichiganAnn ArborUnited States
| | - Yatrik M Shah
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
| | - Martin G Myers
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
- Department of Internal MedicineUniversity of MichiganAnn ArborUnited States
| | - Suzanne M Moenter
- Department of Internal MedicineUniversity of MichiganAnn ArborUnited States
- Department of Obstetrics & GynecologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
203
|
Krajewski-Hall SJ, Miranda Dos Santos F, McMullen NT, Blackmore EM, Rance NE. Glutamatergic Neurokinin 3 Receptor Neurons in the Median Preoptic Nucleus Modulate Heat-Defense Pathways in Female Mice. Endocrinology 2019; 160:803-816. [PMID: 30753503 PMCID: PMC6424091 DOI: 10.1210/en.2018-00934] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
We have proposed that arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin (KNDy neurons) contribute to hot flushes via projections to neurokinin 3 receptor (NK3R)-expressing neurons in the median preoptic nucleus (MnPO). To characterize the thermoregulatory role of MnPO NK3R neurons in female mice, we ablated these neurons using injections of saporin toxin conjugated to a selective NK3R agonist. Loss of MnPO NK3R neurons increased the core temperature (TCORE) during the light phase, with the frequency distributions indicating a regulated shift in the balance point. The increase in TCORE in the ablated mice occurred despite changes in the ambient temperature and regardless of estrogen status. We next determined whether an acute increase in ambient temperature or higher TCORE would induce Fos in preoptic enhanced green fluorescent protein (EGFP)-immunoreactive neurons in Tacr3-EGFP mice. Fos activation was increased in the MnPO but no induction of Fos was found in NK3R (EGFP-immunoreactive) neurons. Thus, MnPO NK3R neurons are not activated by warm thermosensors in the skin or viscera and are not warm-sensitive neurons. Finally, RNAscope was used to determine whether Tacr3 (NK3R) mRNA was coexpressed with vesicular glutamate transporter 2 or vesicular γ-aminobutyric acid (GABA) transporter mRNA, markers of glutamatergic and GABAergic neurotransmission, respectively. In the MnPO, 94% of NK3R neurons were glutamatergic, but in the adjacent medial preoptic area, 97% of NK3R neurons were GABAergic. Thus, NK3R neurons in the MnPO are glutamatergic and play a role in reducing TCORE but are not activated by warm thermal stimuli (internal or external). These findings suggest that KNDy neurons modulate thermosensory pathways for heat defense indirectly via a subpopulation of glutamatergic MnPO neurons that express NK3R.
Collapse
Affiliation(s)
| | | | - Nathaniel T McMullen
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Elise M Blackmore
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona
| | - Naomi E Rance
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Neurology, University of Arizona College of Medicine, Tucson, Arizona
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona
| |
Collapse
|
204
|
Zavala E, Wedgwood KCA, Voliotis M, Tabak J, Spiga F, Lightman SL, Tsaneva-Atanasova K. Mathematical Modelling of Endocrine Systems. Trends Endocrinol Metab 2019; 30:244-257. [PMID: 30799185 PMCID: PMC6425086 DOI: 10.1016/j.tem.2019.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Hormone rhythms are ubiquitous and essential to sustain normal physiological functions. Combined mathematical modelling and experimental approaches have shown that these rhythms result from regulatory processes occurring at multiple levels of organisation and require continuous dynamic equilibration, particularly in response to stimuli. We review how such an interdisciplinary approach has been successfully applied to unravel complex regulatory mechanisms in the metabolic, stress, and reproductive axes. We discuss how this strategy is likely to be instrumental for making progress in emerging areas such as chronobiology and network physiology. Ultimately, we envisage that the insight provided by mathematical models could lead to novel experimental tools able to continuously adapt parameters to gradual physiological changes and the design of clinical interventions to restore normal endocrine function.
Collapse
Affiliation(s)
- Eder Zavala
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QD, UK; Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter EX4 4QD, UK; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK.
| | - Kyle C A Wedgwood
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QD, UK; Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter EX4 4QD, UK; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Margaritis Voliotis
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QD, UK; Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter EX4 4QD, UK; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Joël Tabak
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK
| | - Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, UK
| | - Stafford L Lightman
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QD, UK; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QD, UK; Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter EX4 4QD, UK; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
205
|
Young J, Xu C, Papadakis GE, Acierno JS, Maione L, Hietamäki J, Raivio T, Pitteloud N. Clinical Management of Congenital Hypogonadotropic Hypogonadism. Endocr Rev 2019; 40:669-710. [PMID: 30698671 DOI: 10.1210/er.2018-00116] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
The initiation and maintenance of reproductive capacity in humans is dependent on pulsatile secretion of the hypothalamic hormone GnRH. Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder that results from the failure of the normal episodic GnRH secretion, leading to delayed puberty and infertility. CHH can be associated with an absent sense of smell, also termed Kallmann syndrome, or with other anomalies. CHH is characterized by rich genetic heterogeneity, with mutations in >30 genes identified to date acting either alone or in combination. CHH can be challenging to diagnose, particularly in early adolescence where the clinical picture mirrors that of constitutional delay of growth and puberty. Timely diagnosis and treatment will induce puberty, leading to improved sexual, bone, metabolic, and psychological health. In most cases, patients require lifelong treatment, yet a notable portion of male patients (∼10% to 20%) exhibit a spontaneous recovery of their reproductive function. Finally, fertility can be induced with pulsatile GnRH treatment or gonadotropin regimens in most patients. In summary, this review is a comprehensive synthesis of the current literature available regarding the diagnosis, patient management, and genetic foundations of CHH relative to normal reproductive development.
Collapse
Affiliation(s)
- Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France.,INSERM Unité 1185, Le Kremlin-Bicêtre, France
| | - Cheng Xu
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Georgios E Papadakis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - James S Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France.,INSERM Unité 1185, Le Kremlin-Bicêtre, France
| | - Johanna Hietamäki
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taneli Raivio
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
206
|
Yeo SH, Kyle V, Blouet C, Jones S, Colledge WH. Mapping neuronal inputs to Kiss1 neurons in the arcuate nucleus of the mouse. PLoS One 2019; 14:e0213927. [PMID: 30917148 PMCID: PMC6436706 DOI: 10.1371/journal.pone.0213927] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
The normal function of the mammalian reproductive axis is strongly influenced by physiological, metabolic and environmental factors. Kisspeptin neuropeptides, encoded by the Kiss1 gene, are potent regulators of the mammalian reproductive axis by stimulating gonadodropin releasing hormone secretion from the hypothalamus. To understand how the reproductive axis is modulated by higher order neuronal inputs we have mapped the afferent circuits into arcuate (ARC) Kiss1 neurons. We used a transgenic mouse that expresses the CRE recombinase in Kiss1 neurons for conditional viral tracing with genetically modified viruses. CRE-mediated activation of these viruses in Kiss1 neurons allows the virus to move transynaptically to label neurons with primary or secondary afferent inputs into the Kiss1 neurons. Several regions of the brain showed synaptic connectivity to arcuate Kiss1 neurons including proopiomelanocortin neurons in the ARC itself, kisspeptin neurons in the anteroventral periventricular nucleus, vasopressin neurons in the supraoptic and suprachiasmatic nuclei, thyrotropin releasing neurons in the paraventricular nucleus and unidentified neurons in other regions including the subfornical organ, amygdala, interpeduncular nucleus, ventral premammilary nucleus, basal nucleus of stria terminalis and the visual, somatosensory and piriform regions of the cortex. These data provide an insight into how the activity of Kiss1 neurons may be regulated by metabolic signals and provide a detailed neuroanatomical map for future functional studies.
Collapse
Affiliation(s)
- Shel-Hwa Yeo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Kyle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Susan Jones
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - William Henry Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
207
|
Han SY, Kane G, Cheong I, Herbison AE. Characterization of GnRH Pulse Generator Activity in Male Mice Using GCaMP Fiber Photometry. Endocrinology 2019; 160:557-567. [PMID: 30649269 DOI: 10.1210/en.2018-01047] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 11/19/2022]
Abstract
Kisspeptin neurons located in the hypothalamic arcuate nucleus are thought to represent the GnRH pulse generator responsible for driving pulsatile LH secretion. The recent development of GCaMP6 fiber photometry technology has made it possible to perform long-term recordings of the population activity of the arcuate nucleus kisspeptin (ARNKISS) neurons in conscious-behaving mice. Using this approach, we show that ARNKISS neurons in intact male mice exhibit episodes of synchronized activity that last ∼2 minutes and have a mean inter-episode interval of 166 minutes, with a very wide range (43 to 347 minutes). Gonadectomy resulted in dramatic changes in the dynamics of ARNKISS neuron behavior with temporally distinct alterations in synchronization episode (SE) amplitude (sevenfold increase), inter-SE frequency (range, 2 to 58 minutes), and duration (up to 28 minutes), including the frequent appearance of seemingly unstable clusters of doublet and triplet SEs. The combination of photometry with repeated blood sampling revealed a perfect correlation between ARNKISS neuron population SEs and LH pulses in intact and short-term gonadectomized (GDX) mice. No differences were detected in SE frequency across 24 hours in either intact or GDX mice. These observations further support a role for ARNKISS neurons as the GnRH pulse generator and show that it operates in a stochastic manner without diurnal variation in both intact and GDX male mice. The removal of gonadal steroids has multiple time-dependent effects upon ARNKISS neuron synchronizations, indicating their critical role in shaping pulse generator behavior.
Collapse
Affiliation(s)
- Su Young Han
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Grace Kane
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Isaiah Cheong
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
208
|
Kisspeptin Neurons in the Arcuate Nucleus of the Hypothalamus Orchestrate Circadian Rhythms and Metabolism. Curr Biol 2019; 29:592-604.e4. [PMID: 30744968 DOI: 10.1016/j.cub.2019.01.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
Successful reproduction in female mammals is precisely timed and must be able to withstand the metabolic demand of pregnancy and lactation. We show that kisspeptin-expressing neurons in the arcuate hypothalamus (Kiss1ARH) of female mice control the daily timing of food intake, along with the circadian regulation of locomotor activity, sleep, and core body temperature. Toxin-induced silencing of Kiss1ARH neurons shifts wakefulness and food consumption to the light phase and induces weight gain. Toxin-silenced mice are less physically active and have attenuated temperature rhythms. Because the rhythm of the master clock in the suprachiasmatic nucleus (SCN) appears to be intact, we hypothesize that Kiss1ARH neurons signal to neurons downstream of the master clock to modulate the output of the SCN. We conclude that, in addition to their well-established role in regulating fertility, Kiss1ARH neurons are a critical component of the hypothalamic circadian oscillator network that times overt rhythms of physiology and behavior.
Collapse
|
209
|
Sugimoto A, Tsuchida H, Ieda N, Ikegami K, Inoue N, Uenoyama Y, Tsukamura H. Somatostatin-Somatostatin Receptor 2 Signaling Mediates LH Pulse Suppression in Lactating Rats. Endocrinology 2019; 160:473-483. [PMID: 30544226 DOI: 10.1210/en.2018-00882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023]
Abstract
Follicular development and ovulation are profoundly suppressed during lactation in mammals. This suppression is suggested to be mainly due to the suckling-induced inhibition of kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and consequent inhibition of pulsatile GnRH/LH release. We examined whether central somatostatin (SST) signaling mediates the suckling-induced suppression of pulsatile LH secretion. SST has been reported to be expressed in the posterior intralaminar thalamic nucleus (PIL), where the suckling stimulus is postulated to be relayed to the hypothalamus during lactation. SST inhibitory receptors (SSTRs) are abundantly expressed in the ARC, where kisspeptin/neurokinin B/dynorphin A (KNDy) neurons are located. Histological and quantitative studies revealed that the suckling stimulus increased the number of SST-expressing cells in the PIL, and Sstr2 expression in the ARC. Furthermore, a central injection of an SSTR2 antagonist caused a significant increase in pulsatile LH release in lactating rats. Double labeling of Sstr2 and the neurokinin B gene, as a marker for ARC KNDy neurons, showed Sstr2 expression was abundantly detected in the ARC, but few KNDy neurons coexpressed Sstr2 in lactating rats. Taken together, these findings suggest the suckling-induced activation of SST-SSTR2 signaling mediates, at least in part, the suppression of pulsatile LH secretion during lactation in rats, probably via the indirect effects of SST on KNDy neurons. These results provide a new aspect on the role of central SST-SSTR signaling in understanding the mechanism underlying lactational anestrus.
Collapse
Affiliation(s)
- Arisa Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hitomi Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Nahoko Ieda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
210
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
211
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Central Mechanism Controlling Pubertal Onset in Mammals: A Triggering Role of Kisspeptin. Front Endocrinol (Lausanne) 2019; 10:312. [PMID: 31164866 PMCID: PMC6536648 DOI: 10.3389/fendo.2019.00312] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/30/2019] [Indexed: 01/29/2023] Open
Abstract
Pubertal onset is thought to be timed by an increase in pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in mammals. The underlying mechanism of pubertal onset in mammals is still an open question. Evidence accumulated in the last 15 years suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus play a key role in pubertal onset by triggering pulsatile GnRH/gonadotropin secretin in mammals. Specifically, KNDy neurons are now considered a part of GnRH pulse generator, in which neurokinin B facilitates and dynorphin A inhibits, the synchronized discharge of KNDy neurons in autocrine and/or paracrine manners. Kisspeptin serves as a potent secretagogue of GnRH secretion and thus its release is fundamental to pubertal increase in GnRH/gonadotropin secretion in mammals. Proposed mechanisms inhibiting Kiss1 (kisspeptin gene) expression during childhood to juvenile varies from species to species: we envisage that negative feedback action of estrogen plays a key role in the inhibition of Kiss1 expression in KNDy neurons in rodents and sheep, whereas estrogen-independent inhibition of kisspeptin secretion by γ-amino butyric acid or neuropeptide Y are suggested to be responsible for the pre-pubertal suppression of GnRH/gonadotropin secretion in primates. Taken together, the timing of pubertal onset is postulated to be controlled by upstream regulators for kisspeptin biosynthesis and secretion in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Yoshihisa Uenoyama
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
212
|
Lainez NM, Coss D. Leukemia Inhibitory Factor Represses GnRH Gene Expression via cFOS during Inflammation in Male Mice. Neuroendocrinology 2019; 108:291-307. [PMID: 30630179 PMCID: PMC6561803 DOI: 10.1159/000496754] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanisms whereby neuroinflammation negatively affects neuronal function in the hypothalamus are not clear. Our previous study determined that obesity-mediated chronic inflammation elicits sex-specific impairment in reproductive function via reduction in spine density in gonadotropin-releasing hormone (GnRH) neurons. Neuroinflammation and subsequent decrease in GnRH neuron spine density was specific for male mice, while protection in females was independent of ovarian estrogens. METHODS To examine if neuroinflammation-induced cytokines can directly regulate GnRH gene expression, herein we examined signaling pathways and mechanisms in males in vivo and in GnRH-expressing cell line, GT1-7. RESULTS GnRH neurons express cytokine receptors, and chronic or acute neuroinflammation represses GnRH gene expression in vivo. Leukemia inhibitory factor (LIF) in particular represses GnRH expression in GT1-7 cells, while other cytokines do not. STAT3 and MAPK pathways are activated following LIF treatment, but only MAPK pathway, specifically p38α, is sufficient to repress the GnRH gene. LIF induces cFOS that represses the GnRH gene via the -1,793 site in the enhancer region. In vivo, following high-fat diet, cFOS is induced in GnRH neurons and neurons juxtaposed to the leaky blood brain barrier of the organum vasculosum of the lamina terminalis, but not in the neurons further away. CONCLUSION Our results indicate that the increase in LIF due to neuroinflammation induces cFOS and represses the GnRH gene. Therefore, in addition to synaptic changes in GnRH neurons, neuroinflammatory cytokines directly regulate gene expression and reproductive function, and the specificity for neuronal targets may stem from the proximity to the fenestrated capillaries.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA,
| |
Collapse
|
213
|
Simonneaux V. A Kiss to drive rhythms in reproduction. Eur J Neurosci 2018; 51:509-530. [DOI: 10.1111/ejn.14287] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Valérie Simonneaux
- Institut des Neurosciences Cellulaires et IntégrativesCNRSUniversité de Strasbourg Strasbourg France
| |
Collapse
|
214
|
Roa J, Tena-Sempere M. Unique Features of a Unique Cell: The Wonder World of GnRH Neurons. Endocrinology 2018; 159:3895-3896. [PMID: 30335124 DOI: 10.1210/en.2018-00870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba and Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- FiDiPro Program, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba and Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- FiDiPro Program, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
215
|
Schafer D, Kane G, Colledge WH, Piet R, Herbison AE. Sex- and sub region-dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. J Neuroendocrinol 2018; 30:e12660. [PMID: 30422333 DOI: 10.1111/jne.12660] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 02/04/2023]
Abstract
A population of kisspeptin neurones located in the hypothalamic arcuate nucleus (ARN) very likely represent the gonadotrophin-releasing hormone pulse generator responsible for driving pulsatile luteinising hormone secretion in mammals. As such, it has become important to understand the neural inputs that modulate the activity of ARN kisspeptin (ARNKISS ) neurones. Using a transgenic GCaMP6 mouse model allowing the intracellular calcium levels ([Ca2+ ]i ) of individual ARNKISS neurones to be assessed simultaneously, we examined whether the circadian neuropeptides vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) modulated the activity of ARNKISS neurones directly. To validate this methodology, we initially evaluated the effects of neurokinin B (NKB) on [Ca2+ ]i in kisspeptin neurones residing within the rostral, middle and caudal ARN subregions of adult male and female mice. All experiments were undertaken in the presence of tetrodotoxin and ionotropic amino acid antagonists. NKB was found to evoke an abrupt increase in [Ca2+ ]i in 95%-100% of kisspeptin neurones throughout the ARN of both sexes. By contrast, both VIP and AVP were found to primarily activate kisspeptin neurones located in the caudal ARN of female mice. Although 58% and 59% of caudal ARN kisspeptin neurones responded to AVP and VIP, respectively, in female mice, only 0%-8% of kisspeptin neurones located in other ARN subregions responded in females and 0%-12% of cells in any subregion in males (P < 0.05). These observations demonstrate unexpected sex differences and marked heterogeneity in functional neuropeptide receptor expression amongst ARNKISS neurones organised on a rostro-caudal basis. The functional significance of this unexpected influence of VIP and AVP on ARNKISS neurones remains to be established.
Collapse
Affiliation(s)
- Danielle Schafer
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Grace Kane
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - William H Colledge
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
216
|
Walters KA, Gilchrist RB, Ledger WL, Teede HJ, Handelsman DJ, Campbell RE. New Perspectives on the Pathogenesis of PCOS: Neuroendocrine Origins. Trends Endocrinol Metab 2018; 29:841-852. [PMID: 30195991 DOI: 10.1016/j.tem.2018.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/25/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition in reproductive-aged women. It is characterized by reproductive, endocrine, metabolic, and psychological features. The cause of PCOS is unknown, thus there is no cure and its management remains suboptimal because it relies on the ad hoc empirical management of symptoms only. We review here the strong support for PCOS having a neuroendocrine origin. In particular, we focus on the role of aberrant hypothalamic-pituitary function and associated hyperandrogenism, and their role as major drivers of the mechanisms underpinning the development of PCOS. This important information now provides a target site and a potential mechanism for the future development of novel, targeted, and mechanism-based effective therapies for the treatment of PCOS.
Collapse
Affiliation(s)
- Kirsty A Walters
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia; https://research.unsw.edu.au/people/dr-kirsty-walters.
| | - Robert B Gilchrist
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - William L Ledger
- Fertility and Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation, Monash Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| | - Rebecca E Campbell
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
217
|
Roelfsema F, Yang RJ, Liu PY, Takahashi PY, Veldhuis JD. Feedback on LH in Testosterone-Clamped Men Depends on the Mode of Testosterone Administration and Body Composition. J Endocr Soc 2018; 3:235-249. [PMID: 30623162 PMCID: PMC6320245 DOI: 10.1210/js.2018-00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 11/19/2022] Open
Abstract
Context Quantitative studies of the short-term feedback of testosterone (T) on luteinizing hormone (LH) secretion in healthy men are relatively rare. Such studies require the shutting down of endogenous T secretion and the imposition of experimentally controlled IV T addback. Objective To evaluate whether pulsatile and continuous T delivery confers equivalent negative feedback on LH secretion. Design This was a placebo-controlled, blinded, and prospectively randomized crossover study comprising 16 healthy men [age range 23 to 54 years and a body mass index (BMI) between 22.3 and 34.2 kg/m2]. Subjects received ketoconazole to block endogenous T secretion and received continuous or 90-minute pulses of IV T addback. Setting The study was performed in a Clinical Translational Research Unit. Interventions Subjects underwent 14 hours of blood sampling at 10-minute intervals, with a bolus IV injection of 33 ng/kg gonadotropin-releasing hormone (GnRH). Main Outcome Measures Log-transformed LH and T concentration ratios before and after GnRH administration. Results Despite higher T concentrations during pulsatile T feedback, LH concentrations and secretion rates, whether driven by endogenous or exogenous GnRH, were similar to those during continuous T infusion, indicating diminished pulsatile T feedback. Feedback correlated negatively with BMI. Under controlled T feedback, basal but not pulsatile LH secretion correlated negatively with CT-estimated visceral fat mass. Conclusion Feedback by pulsatile T delivery has diminished inhibitory strength compared with continuous infusion. Feedback is negatively correlated with BMI.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section Endocrinology and Metabolism, Leiden University Medical Center, Leiden, Netherlands
| | - Rebecca J Yang
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| | - Peter Y Liu
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota.,Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Harbor-University of California Los Angeles Medical Center, and Los Angeles Biomedical Research Institute, Los Angeles, California
| | - Paul Y Takahashi
- Department of Primary Care Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
218
|
Han SY, Clarkson J, Piet R, Herbison AE. Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology 2018; 159:3822-3833. [PMID: 30304401 DOI: 10.1210/en.2018-00594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 11/19/2022]
Abstract
Developments in optical imaging and optogenetics are transforming the functional investigation of neuronal networks throughout the brain. Recent studies in the neuroendocrine field have used genetic mouse models combined with a variety of light-activated optical tools as well as GCaMP calcium imaging to interrogate the neural circuitry controlling hormone secretion. The present review highlights the benefits and caveats of these approaches for undertaking both acute brain slice and functional studies in vivo. We focus on the use of channelrhodopsin and the inhibitory optogenetic tools, archaerhodopsin and halorhodopsin, in addition to GCaMP imaging of individual cells in vitro and neural populations in vivo using fiber photometry. We also address issues around the use of genetic vs viral delivery of encoded proteins to specific Cre-expressing cell populations, their quantification, and the use of conscious vs anesthetized animal models. To date, optogenetics and GCaMP imaging have proven useful in dissecting functional circuitry within the brain and are likely to become essential investigative tools for deciphering the different neural networks controlling hormone secretion.
Collapse
Affiliation(s)
- Su Young Han
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
219
|
Herbison AE. The Gonadotropin-Releasing Hormone Pulse Generator. Endocrinology 2018; 159:3723-3736. [PMID: 30272161 DOI: 10.1210/en.2018-00653] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
The pulsatile release of GnRH and LH secretion is essential for fertility in all mammals. Pulses of LH occur approximately every hour in follicular-phase females and every 2 to 3 hours in luteal-phase females and males. Many studies over the last 50 years have sought to identify the nature and mechanism of the "GnRH pulse generator" responsible for pulsatile LH release. This review examines the characteristics of pulsatile hormone release and summarizes investigations that have led to our present understanding of the GnRH pulse generator. There is presently little compelling evidence for an intrinsic mechanism of pulse generation involving interactions between GnRH neuron cell bodies. Rather, data support the presence of an extrinsic pulse generator located within the arcuate nucleus, and attention has focused on the kisspeptin neurons and their projections to GnRH neuron dendrons concentrated around the median eminence. Sufficient evidence has been gathered in rodents to conclude that a subpopulation of arcuate kisspeptin neurons is, indeed, the GnRH pulse generator. Findings in other species are generally compatible with this view and suggest that arcuate/infundibular kisspeptin neurons represent the mammalian GnRH pulse generator. With hindsight, it is likely that past arcuate nucleus multiunit activity recordings have been from kisspeptin neurons. Despite advances in identifying the cells forming the pulse generator, almost nothing is known about their mechanisms of synchronicity and the afferent hormonal and transmitter modulation required to establish the normal patterns of LH pulsatility in mammals.
Collapse
Affiliation(s)
- Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
220
|
Leng G, MacGregor DJ. Models in neuroendocrinology. Math Biosci 2018; 305:29-41. [DOI: 10.1016/j.mbs.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
|
221
|
Yang JA, Hughes JK, Parra RA, Volk KM, Kauffman AS. Stress rapidly suppresses in vivo LH pulses and increases activation of RFRP-3 neurons in male mice. J Endocrinol 2018; 239:339-350. [PMID: 30382693 PMCID: PMC6214202 DOI: 10.1530/joe-18-0449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Restraint stress is a psychosocial stressor that suppresses reproductive status, including LH pulsatile secretion, but the neuroendocrine mechanisms underlying this inhibition remains unclear. Reproductive neural populations upstream of gonadotropin-releasing hormone (GnRH) neurons, such as kisspeptin, neurokinin B and RFRP-3 (GnIH) neurons, are possible targets for psychosocial stress to inhibit LH pulses, but this has not been well examined, especially in mice in which prior technical limitations prevented assessment of in vivo LH pulse secretion dynamics. Here, we examined whether one-time acute restraint stress alters in vivo LH pulsatility and reproductive neural populations in male mice, and what the time-course is for such alterations. We found that endogenous LH pulses in castrated male mice are robustly and rapidly suppressed by one-time, acute restraint stress, with suppression observed as quickly as 12–18 min. This rapid LH suppression parallels with increased in vivo corticosterone levels within 15 min of restraint stress. Although Kiss1, Tac2 and Rfrp gene expression in the hypothalamus did not significantly change after 90 or 180 min restraint stress, arcuate Kiss1 neural activation was significantly decreased after 180 min. Interestingly, hypothalamic Rfrp neuronal activation was strongly increased at early times after restraint stress initiation, but was attenuated to levels lower than controls by 180 min of restraint stress. Thus, the male neuroendocrine reproductive axis is quite sensitive to short-term stress exposure, with significantly decreased pulsatile LH secretion and increased hypothalamic Rfrp neuronal activation occurring rapidly, within minutes, and decreased Kiss1 neuronal activation also occurring after longer stress durations.
Collapse
Affiliation(s)
- Jennifer A. Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jessica K. Hughes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Ruby A. Parra
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Katrina M. Volk
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
| | - Alexander S. Kauffman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
222
|
Kelly MJ, Qiu J, Rønnekleiv OK. TRPCing around the hypothalamus. Front Neuroendocrinol 2018; 51:116-124. [PMID: 29859883 PMCID: PMC6175656 DOI: 10.1016/j.yfrne.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/13/2023]
Abstract
All of the canonical transient receptor potential channels (TRPC) with the exception of TRPC 2 are expressed in hypothalamic neurons and are involved in multiple homeostatic functions. Although the metabotropic glutamate receptors have been shown to be coupled to TRPC channel activation in cortical and sub-cortical brain regions, in the hypothalamus multiple amine and peptidergic G protein-coupled receptors (GPCRs) and growth factor/cytokine receptors are linked to activation of TRPC channels that are vital for reproduction, temperature regulation, arousal and energy homeostasis. In addition to the neurotransmitters, circulating hormones like insulin and leptin through their cognate receptors activate TRPC channels in POMC neurons. Many of the post-synaptic effects of the neurotransmitters and hormones are regulated in different physiological states by expression of TRPC channels in the post-synaptic neurons. Therefore, TRPC channels are key targets not only for neurotransmitters but circulating hormones in their vital role to control multiple hypothalamic functions, which is the focus of this review.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA.
| | - Jian Qiu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
223
|
Abstract
Reproduction is fundamental for the survival of all species and requires meticulous synchronisation of a diverse complement of neural, endocrine and related behaviours. The reproductive hormone kisspeptin (encoded by the KISS1/Kiss1 gene) is now a well-established orchestrator of reproductive hormones, acting upstream of gonadotrophin-releasing hormone (GnRH) at the apex of the hypothalamic–pituitary–gonadal (HPG) reproductive axis. Beyond the hypothalamus, kisspeptin is also expressed in limbic and paralimbic brain regions, which are areas of the neurobiological network implicated in sexual and emotional behaviours. We are now forming a more comprehensive appreciation of extra-hypothalamic kisspeptin signalling and the complex role of kisspeptin as an upstream mediator of reproductive behaviours, including olfactory-driven partner preference, copulatory behaviour, audition, mood and emotion. An increasing body of research from zebrafish to humans has implicated kisspeptin in the integration of reproductive hormones with an overall positive influence on these reproductive behaviours. In this review, we critically appraise the current literature regarding kisspeptin and its control of reproductive behaviour. Collectively, these data significantly enhance our understanding of the integration of reproductive hormones and behaviour and provide the foundation for kisspeptin-based therapies to treat related disorders of body and mind.
Collapse
Affiliation(s)
- Edouard G A Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| |
Collapse
|
224
|
Le Tissier P, Fiordelisio Coll T, Mollard P. The Processes of Anterior Pituitary Hormone Pulse Generation. Endocrinology 2018; 159:3524-3535. [PMID: 30020429 DOI: 10.1210/en.2018-00508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
More than 60 years ago, Geoffrey Harris described his "neurohumoral theory," in which the regulation of pituitary hormone secretion was a "simple" hierarchal relationship, with the hypothalamus as the controller. In models based on this theory, the electrical activity of hypothalamic neurons determines the release of hypophysiotropic hormones into the portal circulation, and the pituitary simply responds with secretion of a pulse of hormone into the bloodstream. The development of methodologies allowing the monitoring of the activities of members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the mechanisms generating hypothalamic and pituitary pulses. These have revealed that whereas hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion varies between pituitary axes. The organization of pituitary cells has a key role in the modification of their response to hypophysiotropic factors that can lead to a memory of previous demand and enhanced function. Feedback can lead to oscillatory hormone output that is independent of pulses of hypophysiotropic factors and instead, results from the temporal relationship between pituitary output and target organ response. Thus, the mechanisms underlying the generation of pulses cannot be generalized, and the circularity of feedforward and feedback interactions must be considered to understand both normal physiological function and pathology. We describe some examples of the clinical implications of recognizing the importance of the pituitary and target organs in pulse generation and suggest avenues for future research in both the short and long term.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
| |
Collapse
|
225
|
Harter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol 2018; 238:R173-R183. [PMID: 30042117 DOI: 10.1530/joe-18-0108] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
Kisspeptin is a neuropeptide with a critical role in the function of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin is produced by two major populations of neurons located in the hypothalamus, the rostral periventricular region of the third ventricle (RP3V) and arcuate nucleus (ARC). These neurons project to and activate gonadotrophin-releasing hormone (GnRH) neurons (acting via the kisspeptin receptor, Kiss1r) in the hypothalamus and stimulate the secretion of GnRH. Gonadal sex steroids stimulate kisspeptin neurons in the RP3V, but inhibit kisspeptin neurons in the ARC, which is the underlying mechanism for positive- and negative feedback respectively, and it is now commonly accepted that the ARC kisspeptin neurons act as the GnRH pulse generator. Due to kisspeptin's profound effect on the HPG axis, a focus of recent research has been on afferent inputs to kisspeptin neurons and one specific area of interest has been energy balance, which is thought to facilitate effects such as suppressing fertility in those with under- or severe over-nutrition. Alternatively, evidence is building for a direct role for kisspeptin in regulating energy balance and metabolism. Kiss1r-knockout (KO) mice exhibit increased adiposity and reduced energy expenditure. Although the mechanisms underlying these observations are currently unknown, Kiss1r is expressed in adipose tissue and potentially brown adipose tissue (BAT) and Kiss1rKO mice exhibit reduced energy expenditure. Recent studies are now looking at the effects of kisspeptin signalling on behaviour, with clinical evidence emerging of kisspeptin affecting sexual behaviour, further investigation of potential neuronal pathways are warranted.
Collapse
Affiliation(s)
- Campbell J L Harter
- School of Human SciencesThe University of Western Australia, Perth, Western Australia, Australia
| | - Georgia S Kavanagh
- School of Human SciencesThe University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy T Smith
- School of Human SciencesThe University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
226
|
Moore AM, Coolen LM, Porter DT, Goodman RL, Lehman MN. KNDy Cells Revisited. Endocrinology 2018; 159:3219-3234. [PMID: 30010844 PMCID: PMC6098225 DOI: 10.1210/en.2018-00389] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022]
Abstract
In the past decade since kisspeptin/neurokinin B/dynorphin (KNDy) cells were first identified in the mammalian hypothalamus, a plethora of new research has emerged adding insights into the role of this neuronal population in reproductive neuroendocrine function, including the basis for GnRH pulse generation and the mechanisms underlying the steroid feedback control of GnRH secretion. In this mini-review, we provide an update of evidence regarding the roles of KNDy peptides and their postsynaptic receptors in producing episodic GnRH release and assess the relative contribution of KNDy neurons to the "GnRH pulse generator." In addition, we examine recent work investigating the role of KNDy neurons as mediators of steroid hormone negative feedback and review evidence for their involvement in the preovulatory GnRH/LH surge, taking into account species differences that exist among rodents, ruminants, and primates. Finally, we summarize emerging roles of KNDy neurons in other aspects of reproductive function and in nonreproductive functions and discuss critical unresolved questions in our understanding of KNDy neurobiology.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Physics and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Danielle T Porter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robert L Goodman
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, West Virginia
| | - Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
227
|
Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2018; 86:3-17. [PMID: 29223677 DOI: 10.1016/j.metabol.2017.11.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Reproduction is controlled by the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons play a central role in this axis through production of GnRH, which binds to a membrane receptor on pituitary gonadotrophs and stimulates the biosynthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Multiple factors affect GnRH neuron migration, GnRH gene expression, GnRH pulse generator, GnRH secretion, GnRH receptor expression, and gonadotropin synthesis and release. Among them anosmin is involved in the guidance of the GnRH neuron migration, and a loss-of-function mutation in its gene leads to a failure of their migration from the olfactory placode to the hypothalamus, with consequent anosmic hypogonadotropic hypogonadism (Kallmann syndrome). There are also cases of hypogonadotropic hypogonadim with normal sense of smell, due to mutations of other genes. Another protein, kisspeptin plays a crucial role in the regulation of GnRH pulse generator and the pubertal development. GnRH is the main hypothalamic regulator of the release of gonadotropins. Finally, FSH and LH are the essential hormonal regulators of testicular functions, acting through their receptors in Sertoli and Leydig cells, respectively. The main features of the male HPG axis will be described in this review.
Collapse
Affiliation(s)
- Athina Kaprara
- Unit of Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, Greece.
| | | |
Collapse
|
228
|
Moore AM, Prescott M, Czieselsky K, Desroziers E, Yip SH, Campbell RE, Herbison AE. Synaptic Innervation of the GnRH Neuron Distal Dendron in Female Mice. Endocrinology 2018; 159:3200-3208. [PMID: 30010812 DOI: 10.1210/en.2018-00505] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/05/2018] [Indexed: 11/19/2022]
Abstract
GnRH neuron cell bodies are scattered throughout the basal forebrain but funnel their projections to the median eminence to release GnRH into the pituitary portal system to control fertility. Prior studies have shown that GnRH neurons located in the anterior hypothalamus send projections to the median eminence that have characteristics of both dendrites and axons. These unusual structures have been termed "dendrons." To address whether the dendron is unique to anterior hypothalamic GnRH neurons or is also a characteristic of more rostral GnRH neurons, we used viral vector‒mediated GnRH neuron‒specific tract-tracing coupled with CLARITY optical clearing. Individual rostral preoptic area GnRH neurons in female mice were identified to elaborate processes up to 4 mm in length that exhibited spines and projected all the way to the median eminence before branching into multiple short axons. The synaptic innervation patterns of distal GnRH neuron dendrons and their short axons in the vicinity of the median eminence were examined using electron microscopy. This revealed the presence of a high density of synaptic inputs to distal dendrons at the border of the median eminence. In contrast, no synapses were detected on any GnRH neuron axons. These studies demonstrate that GnRH neurons in the rostral preoptic area project dendrons to the edge of the median eminence, whereupon they branch into multiple short axons responsible for GnRH secretion. The dense synaptic innervation of these distal dendrons likely represents an efficient mechanism for controlling GnRH secretion required for fertility.
Collapse
Affiliation(s)
- Aleisha M Moore
- Centre for Neuroendocrinology, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Mel Prescott
- Centre for Neuroendocrinology, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Katja Czieselsky
- Centre for Neuroendocrinology, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Elodie Desroziers
- Centre for Neuroendocrinology, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Siew Hoong Yip
- Centre for Neuroendocrinology, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology, Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
229
|
Qiu J, Rivera HM, Bosch MA, Padilla SL, Stincic TL, Palmiter RD, Kelly MJ, Rønnekleiv OK. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. eLife 2018; 7:e35656. [PMID: 30079889 PMCID: PMC6103748 DOI: 10.7554/elife.35656] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
The neuropeptides tachykinin2 (Tac2) and kisspeptin (Kiss1) in hypothalamic arcuate nucleus Kiss1 (Kiss1ARH) neurons are essential for pulsatile release of GnRH and reproduction. Since 17β-estradiol (E2) decreases Kiss1 and Tac2 mRNA expression in Kiss1ARH neurons, the role of Kiss1ARH neurons during E2-driven anorexigenic states and their coordination of POMC and NPY/AgRP feeding circuits have been largely ignored. Presently, we show that E2 augmented the excitability of Kiss1ARH neurons by amplifying Cacna1g, Hcn1 and Hcn2 mRNA expression and T-type calcium and h-currents. E2 increased Slc17a6 mRNA expression and glutamatergic synaptic input to arcuate neurons, which excited POMC and inhibited NPY/AgRP neurons via metabotropic receptors. Deleting Slc17a6 in Kiss1 neurons eliminated glutamate release and led to conditioned place preference for sucrose in E2-treated KO female mice. Therefore, the E2-driven increase in Kiss1 neuronal excitability and glutamate neurotransmission may play a key role in governing the motivational drive for palatable food in females.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Heidi M Rivera
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Martha A Bosch
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Stephanie L Padilla
- Department of BiochemistryHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Todd L Stincic
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Richard D Palmiter
- Department of BiochemistryHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Martin J Kelly
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
- Division of NeuroscienceOregon National Primate Research Center, Oregon Health and Science UniversityBeavertonUnited States
| | - Oline K Rønnekleiv
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
- Division of NeuroscienceOregon National Primate Research Center, Oregon Health and Science UniversityBeavertonUnited States
| |
Collapse
|
230
|
Spergel DJ. Neuropeptidergic modulation of GnRH neuronal activity and GnRH secretion controlling reproduction: insights from recent mouse studies. Cell Tissue Res 2018; 375:179-191. [DOI: 10.1007/s00441-018-2893-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
|
231
|
Estradiol Increases Glutamate and GABA Neurotransmission into GnRH Neurons via Retrograde NO-Signaling in Proestrous Mice during the Positive Estradiol Feedback Period. eNeuro 2018; 5:eN-NWR-0057-18. [PMID: 30079374 PMCID: PMC6073979 DOI: 10.1523/eneuro.0057-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Surge release of gonadotropin-releasing hormone (GnRH) is essential in the activation of pituitary gonadal unit at proestrus afternoon preceded by the rise of serum 17β-estradiol (E2) level during positive feedback period. Here, we describe a mechanism of positive estradiol feedback regulation acting directly on GnRH-green fluorescent protein (GFP) neurons of mice. Whole-cell clamp and loose patch recordings revealed that a high physiological dose of estradiol (200 pM), significantly increased firing rate at proestrus afternoon. The mPSC frequency at proestrus afternoon also increased, whereas it decreased at metestrus afternoon and had no effect at proestrus morning. Inhibition of the estrogen receptor β (ERβ), intracellular blockade of the Src kinase and phosphatidylinositol 3 kinase (PI3K) and scavenge of nitric oxide (NO) inside GnRH neurons prevented the facilitatory estradiol effect indicating involvement of the ERβ/Src/PI3K/Akt/nNOS pathway in this fast, direct stimulatory effect. Immunohistochemistry localized soluble guanylate cyclase, the main NO receptor, in both glutamatergic and GABAergic terminals innervating GnRH neurons. Accordingly, estradiol facilitated neurotransmissions to GnRH neurons via both GABAA-R and glutamate/AMPA/kainate-R. These results indicate that estradiol acts directly on GnRH neurons via the ERβ/Akt/nNOS pathway at proestrus afternoon generating NO that retrogradely accelerates GABA and glutamate release from the presynaptic terminals contacting GnRH neurons. The newly explored mechanism might contribute to the regulation of the GnRH surge, a fundamental prerequisite of the ovulation.
Collapse
|
232
|
McCosh RB, Kreisman MJ, Breen KM. Frequent Tail-tip Blood Sampling in Mice for the Assessment of Pulsatile Luteinizing Hormone Secretion. J Vis Exp 2018. [PMID: 30035764 DOI: 10.3791/57894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In many endocrine systems, circulating factors or hormones are not released continuously, but are secreted as a discrete pulse in response to a releasing factor. Single-point sampling measures are inadequate to fully understand the biological significance of the secretory pattern of pulsatile hormones either under normal physiologic conditions or during conditions of dysregulation. Luteinizing hormone (LH) is synthesized by the anterior pituitary gonadotrope cells and secreted in a pulsatile pattern which requires frequent collection of blood samples for pulse assessment. This has not been possible in mice until recently, due to the development of a high-sensitivity LH assay and advancement in a technique for frequent low-volume sample collection, initially described by Steyn and colleagues.1 Here we describe a protocol for the frequent peripheral blood sample collection from mice with sufficient handling acclimatization to detect pulsatile secretion of LH. The current protocol details an expanded acclimatization period that allows assessment of robust and continuous pulses of LH over multiple hours. In this protocol, the tip of the tail is clipped and blood is collected from the tail using a hand-held pipette. For assessment of pulsatile LH in gonadectomized mice, serial samples are collected every 5-6 min for 90-180 min. Importantly, the collection of blood and measurement of robust pulses of LH can be accomplished in awake, freely behaving mice, given adequate handling acclimatization and effort to minimize environmental stressors. Sufficient acclimatization can be achieved within 4-5 weeks prior to blood collection. This protocol highlights advances in the methodology to ensure collection of whole blood samples for assessment of pulsatile LH secretion patterns over multiple hours in the mouse, a powerful animal model for neuroendocrine research.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Reproductive Medicine, University of California, San Diego School of Medicine
| | - Michael J Kreisman
- Department of Reproductive Medicine, University of California, San Diego School of Medicine
| | - Kellie M Breen
- Department of Reproductive Medicine, University of California, San Diego School of Medicine;
| |
Collapse
|
233
|
Ross RA, Leon S, Madara JC, Schafer D, Fergani C, Maguire CA, Verstegen AMJ, Brengle E, Kong D, Herbison AE, Kaiser UB, Lowell BB, Navarro VM. PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. eLife 2018; 7:e35960. [PMID: 29905528 PMCID: PMC6013253 DOI: 10.7554/elife.35960] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/14/2018] [Indexed: 01/31/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) is a neuromodulator implicated in anxiety, metabolism and reproductive behavior. PACAP global knockout mice have decreased fertility and PACAP modulates LH release. However, its source and role at the hypothalamic level remain unknown. We demonstrate that PACAP-expressing neurons of the ventral premamillary nucleus of the hypothalamus (PMVPACAP) project to, and make direct contact with, kisspeptin neurons in the arcuate and AVPV/PeN nuclei and a subset of these neurons respond to PACAP exposure. Targeted deletion of PACAP from the PMV through stereotaxic virally mediated cre- injection or genetic cross to LepR-i-cre mice with Adcyap1fl/fl mice led to delayed puberty onset and impaired reproductive function in female, but not male, mice. We propose a new role for PACAP-expressing neurons in the PMV in the relay of nutritional state information to regulate GnRH release by modulating the activity of kisspeptin neurons, thereby regulating reproduction in female mice.
Collapse
Affiliation(s)
- Rachel A Ross
- Department of PsychiatryBeth Israel Deaconess Medical CenterBostonUnited States
- Department of PsychiatryMassachusetts General HospitalMassachusettsUnited States
- Harvard Medical SchoolMassachusettsUnited States
- McLean HospitalBostonUnited States
| | - Silvia Leon
- Harvard Medical SchoolMassachusettsUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and HypertensionBrigham and Women’s HospitalBostonUnited States
| | - Joseph C Madara
- Harvard Medical SchoolMassachusettsUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical CenterBostonUnited States
| | - Danielle Schafer
- Centre for Neuroendocrinology, Otago School of Medical SciencesUniversity of OtagoDunedinNew Zealand
| | - Chrysanthi Fergani
- Harvard Medical SchoolMassachusettsUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and HypertensionBrigham and Women’s HospitalBostonUnited States
| | - Caroline A Maguire
- Department of Medicine, Division of Endocrinology, Diabetes and HypertensionBrigham and Women’s HospitalBostonUnited States
| | - Anne MJ Verstegen
- Harvard Medical SchoolMassachusettsUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical CenterBostonUnited States
| | - Emily Brengle
- Department of Medicine, Division of Endocrinology, Diabetes and HypertensionBrigham and Women’s HospitalBostonUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical CenterBostonUnited States
| | - Dong Kong
- Department of NeuroscienceTufts University School of MedicineMassachusettsUnited States
- Sackler School of Graduate Biomedical SciencesTufts UniversityBostonUnited States
| | - Allan E Herbison
- Centre for Neuroendocrinology, Otago School of Medical SciencesUniversity of OtagoDunedinNew Zealand
| | - Ursula B Kaiser
- Harvard Medical SchoolMassachusettsUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and HypertensionBrigham and Women’s HospitalBostonUnited States
| | - Bradford B Lowell
- Harvard Medical SchoolMassachusettsUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical CenterBostonUnited States
| | - Victor M Navarro
- Harvard Medical SchoolMassachusettsUnited States
- Department of Medicine, Division of Endocrinology, Diabetes and HypertensionBrigham and Women’s HospitalBostonUnited States
| |
Collapse
|
234
|
Nestor CC, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Regulation of GnRH pulsatility in ewes. Reproduction 2018; 156:R83-R99. [PMID: 29880718 DOI: 10.1530/rep-18-0127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
Early work in ewes provided a wealth of information on the physiological regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by internal and external inputs. Identification of the neural systems involved, however, was limited by the lack of information on neural mechanisms underlying generation of GnRH pulses. Over the last decade, considerable evidence supported the hypothesis that a group of neurons in the arcuate nucleus that contain kisspeptin, neurokinin B and dynorphin (KNDy neurons) are responsible for synchronizing secretion of GnRH during each pulse in ewes. In this review, we describe our current understanding of the neural systems mediating the actions of ovarian steroids and three external inputs on GnRH pulsatility in light of the hypothesis that KNDy neurons play a key role in GnRH pulse generation. In breeding season adults, estradiol (E2) and progesterone decrease GnRH pulse amplitude and frequency, respectively, by actions on KNDy neurons, with E2 decreasing kisspeptin and progesterone increasing dynorphin release onto GnRH neurons. In pre-pubertal lambs, E2 inhibits GnRH pulse frequency by decreasing kisspeptin and increasing dynorphin release, actions that wane as the lamb matures to allow increased pulsatile GnRH secretion at puberty. Less is known about mediators of undernutrition and stress, although some evidence implicates kisspeptin and dynorphin, respectively, in the inhibition of GnRH pulse frequency by these factors. During the anoestrus, inhibitory photoperiod acting via melatonin activates A15 dopaminergic neurons that innervate KNDy neurons; E2 increases dopamine release from these neurons to inhibit KNDy neurons and suppress the frequency of kisspeptin and GnRH release.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Michelle N Bedenbaugh
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Lique M Coolen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael N Lehman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
235
|
Wolfe A, Hussain MA. The Emerging Role(s) for Kisspeptin in Metabolism in Mammals. Front Endocrinol (Lausanne) 2018; 9:184. [PMID: 29740399 PMCID: PMC5928256 DOI: 10.3389/fendo.2018.00184] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Kisspeptin was initially identified as a metastasis suppressor. Shortly after the initial discovery, a key physiologic role for kisspeptin emerged in the regulation of fertility, with kisspeptin acting as a neurotransmitter via the kisspeptin receptor, its cognate receptor, to regulate hypothalamic GnRH neurons, thereby affecting pituitary-gonadal function. Recent work has demonstrated a more expansive role for kisspeptin signaling in a variety of organ systems. Kisspeptin has been revealed as a significant player in regulating glucose homeostasis, feeding behavior, body composition as well as cardiac function. The direct impact of kisspeptin on peripheral metabolic tissues has only recently been recognized. Here, we review the emerging endocrine role of kisspeptin in regulating metabolic function. Controversies and current limitations in the field as well as areas of future studies toward kisspeptin's diverse array of functions will be highlighted.
Collapse
Affiliation(s)
- Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - Mehboob A. Hussain
- Department of Internal Medicine Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, United States
| |
Collapse
|
236
|
Lehman MN, Coolen LM, Steiner RA, Neal-Perry G, Wang L, Moenter SM, Moore AM, Goodman RL, Hwa-Yeo S, Padilla SL, Kauffman AS, Garcia J, Kelly MJ, Clarkson J, Radovick S, Babwah AV, Leon S, Tena-Sempere M, Comninos A, Seminara S, Dhillo WS, Levine J, Terasawa E, Negron A, Herbison AE. The 3 rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond":Unresolved questions, challenges and future directions for the field. J Neuroendocrinol 2018; 30:e12600. [PMID: 29656508 PMCID: PMC6461527 DOI: 10.1111/jne.12600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond" was held March 30-31 at the Rosen Centre Hotel in Orlando, Florida, providing an international forum for multidisciplinary scientists to meet and share cutting-edge research on kisspeptin biology and its relevance to human health and disease. The meeting built upon previous world conferences focused on the role of kisspeptin and associated peptides in the control of gonadotropin-releasing hormone (GnRH) secretion and reproduction. Based on recent discoveries, the scope of this meeting was expanded to include functions of kisspeptin and related peptides in other physiological systems including energy homeostasis, pregnancy, ovarian and uterine function, and thermoregulation. In addition, discussions addressed the translation of basic knowledge of kisspeptin biology to the treatment of disease, with the goal of seeking consensus about the best approaches to improve human health. The two-day meeting featured a non-traditional structure, with each day starting with poster sessions followed by lunch discussions and facilitated large-group sessions with short presentations to maximize the exchange of new, unpublished data. Topics were identified by a survey prior to the meeting, and focused on major unresolved questions, important controversies, and future directions in the field. Finally, career development activities provided mentoring for trainees and junior investigators, and networking opportunities for those individuals with established researchers in the field. Overall, the meeting was rated as a success by attendees and covered a wide range of lively and provocative discussion topics on the changing nature of the field of "kisspeptinology" and its future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michael N Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA
| | - Lique M Coolen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA
| | - Robert A Steiner
- Departments of Obstetrics, Gynecology and Physiology & Biophysics, University of Washington, Box 357290 Seattle, WA 98195-7290, USA
| | - Genevieve Neal-Perry
- Departments of Obstetrics, Gynecology and Physiology & Biophysics, University of Washington, Box 357290 Seattle, WA 98195-7290, USA
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aleisha M Moore
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Shel Hwa-Yeo
- Reproductive Physiology Group, Department of Physiology, Development, Neuroscience, University of Cambridge, Cambridge, UK
| | - Stephanie L Padilla
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Alexander S Kauffman
- University of California, San Diego, Department of Obstetrics& Gynecology and Reproductive Sciences, La Jolla, CA, USA
| | - James Garcia
- Endocrinology and Reproductive Physiology Training Program, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239 and Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Science, Dunedin, 9054, New Zealand
| | - Sally Radovick
- Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Andy V Babwah
- Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Silvia Leon
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Manuel Tena-Sempere
- Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba; and Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004Córdoba, Spain
| | - Alex Comninos
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Stephanie Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Jon Levine
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53715, USA
| | - Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ariel Negron
- Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Science, Dunedin, 9054, New Zealand
| |
Collapse
|
237
|
Franssen D, Tena-Sempere M. The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis. Best Pract Res Clin Endocrinol Metab 2018; 32:107-123. [PMID: 29678280 DOI: 10.1016/j.beem.2018.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kisspeptin receptor, Kiss1R, also known as Gpr54, is a G protein-coupled receptor (GPCR), deorphanized in 2001, when it was recognized as canonical receptor for the Kiss1-derived peptides, kisspeptins. In 2003, inactivating mutations of Kiss1R gene were first associated to lack of pubertal maturation and hypogonadotropic hypogonadism in humans and rodents. These seminal findings pointed out the previously unsuspected, essential role of Kiss1R and its ligands in control of reproductive maturation and function. This contention has been fully substantiated during the last decade by a wealth of clinical and experimental data, which has documented a fundamental function of the so-called Kiss1/Kiss1R system in the regulation of puberty onset, gonadotropin secretion and ovulation, as well as the metabolic and environmental modulation of fertility. In this review, we provide a succinct summary of some of the most salient facets of Kiss1R, as essential GPCR for the proper maturation and function of the reproductive axis.
Collapse
Affiliation(s)
- Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Cordoba, Spain; FiDiPro Program, Institute of Biomedicine, University of Turku, FIN-20520, Turku, Finland.
| |
Collapse
|
238
|
Piet R. Kv4 channels to kisspeptin neurons: 'Let's (not) go steady'. J Physiol 2018; 596:757-758. [PMID: 29331017 DOI: 10.1113/jp275673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
239
|
Cao XY, Hua X, Xiong JW, Zhu WT, Zhang J, Chen L. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice. Front Mol Neurosci 2018; 11:6. [PMID: 29403355 PMCID: PMC5780345 DOI: 10.3389/fnmol.2018.00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone (GnRH) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.
Collapse
Affiliation(s)
- Xin-Yuan Cao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xu Hua
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jian-Wei Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Wen-Ting Zhu
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- MOE and Shanghai Key Laboratory of Children's Environment Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
240
|
Yeo SH, Colledge WH. The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic-Pituitary-Gonadal Axis. Front Endocrinol (Lausanne) 2018; 9:188. [PMID: 29755406 PMCID: PMC5932150 DOI: 10.3389/fendo.2018.00188] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023] Open
Abstract
Kisspeptin-GPR54 signaling in the hypothalamus is required for reproduction and fertility in mammals. Kiss1 neurons are key regulators of gonadotropin-releasing hormone (GnRH) release and modulation of the hypothalamic-pituitary-gonadal (HPG) axis. Arcuate Kiss1 neurons project to GnRH nerve terminals in the median eminence, orchestrating the pulsatile secretion of luteinizing hormone (LH) through the intricate interaction between GnRH pulse frequency and the pituitary gonadotrophs. Arcuate Kiss1 neurons, also known as KNDy neurons in rodents and ruminants because of their co-expression of neurokinin B and dynorphin represent an ideal hub to receive afferent inputs from other brain regions in response to physiological and environmental changes, which can regulate the HPG axis. This review will focus on studies performed primarily in rodent and ruminant species to explore potential afferent inputs to Kiss1 neurons with emphasis on the arcuate region but also considering the rostral periventricular region of the third ventricle (RP3V). Specifically, we will discuss how these inputs can be modulated by hormonal, metabolic, and environmental factors to control gonadotropin secretion and fertility. We also summarize the methods and techniques that can be used to study functional inputs into Kiss1 neurons.
Collapse
|
241
|
Grattan DR. Coordination or Coincidence? The Relationship between Prolactin and Gonadotropin Secretion. Trends Endocrinol Metab 2018; 29:3-5. [PMID: 29203140 DOI: 10.1016/j.tem.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022]
Abstract
A recent paper demonstrates that kisspeptin can stimulate the secretion of both prolactin and luteinizing hormone (LH). This provides novel insight into mechanisms that could account for previous observations of concordant patterns of secretion of the two hormones, such as pulsatile secretion with simultaneous pulses, as well as the preovulatory surges of both prolactin and LH.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|