201
|
Traub B, Roth A, Kornmann M, Knippschild U, Bischof J. Stress-activated kinases as therapeutic targets in pancreatic cancer. World J Gastroenterol 2021; 27:4963-4984. [PMID: 34497429 PMCID: PMC8384741 DOI: 10.3748/wjg.v27.i30.4963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a dismal disease with high incidence and poor survival rates. With the aim to improve overall survival of pancreatic cancer patients, new therapeutic approaches are urgently needed. Protein kinases are key regulatory players in basically all stages of development, maintaining physiologic functions but also being involved in pathogenic processes. c-Jun N-terminal kinases (JNK) and p38 kinases, representatives of the mitogen-activated protein kinases, as well as the casein kinase 1 (CK1) family of protein kinases are important mediators of adequate response to cellular stress following inflammatory and metabolic stressors, DNA damage, and others. In their physiologic roles, they are responsible for the regulation of cell cycle progression, cell proliferation and differentiation, and apoptosis. Dysregulation of the underlying pathways consequently has been identified in various cancer types, including pancreatic cancer. Pharmacological targeting of those pathways has been the field of interest for several years. While success in earlier studies was limited due to lacking specificity and off-target effects, more recent improvements in small molecule inhibitor design against stress-activated protein kinases and their use in combination therapies have shown promising in vitro results. Consequently, targeting of JNK, p38, and CK1 protein kinase family members may actually be of particular interest in the field of precision medicine in patients with highly deregulated kinase pathways related to these kinases. However, further studies are warranted, especially involving in vivo investigation and clinical trials, in order to advance inhibition of stress-activated kinases to the field of translational medicine.
Collapse
Affiliation(s)
- Benno Traub
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Marko Kornmann
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| |
Collapse
|
202
|
Effect of Dickkopf-1 (Dkk-1) and SP600125, a JNK Inhibitor, on Wnt Signaling in Canine Prostate Cancer Growth and Bone Metastases. Vet Sci 2021; 8:vetsci8080153. [PMID: 34437475 PMCID: PMC8402794 DOI: 10.3390/vetsci8080153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Human Dickkopf-1 (Dkk-1) upregulates a noncanonical Wnt/JNK pathway, resulting in osteoclast stimulation, cell proliferation, and epithelial-to-mesenchymal transition (EMT) of cancer cells. Ace-1-Dkk-1, a canine prostate cancer (PCa) cell line overexpressing Dkk-1, was used to investigate Wnt signaling pathways in PCa tumor growth. SP600125, a JNK inhibitor, was used to examine whether it would decrease tumor growth and bone tumor phenotype in canine PCa cells in vitro and in vivo. Ace-1-VectorYFP-Luc and Ace-1-Dkk-1YFP-Luc cells were transplanted subcutaneously, while Ace-1-Dkk-1YFP-Luc was transplanted intratibially into nude mice. The effects of Dkk-1 and SP600125 on cell proliferation, in vivo tumor growth, and bone tumor phenotype were investigated. The mRNA expression levels of Wnt/JNK-related genes were measured using RT-qPCR. Dkk-1 significantly increased the mRNA expression of Wnt/JNK-signaling-related genes. SP600125 significantly upregulated the mRNA expression of osteoblast differentiation genes and downregulated osteoclastic-bone-lysis-related genes in vitro. SP600125 significantly decreased tumor volume and induced spindle-shaped tumor cells in vivo. Mice bearing intratibial tumors had increased radiographic density of the intramedullary new bone, large foci of osteolysis, and increased cortical lysis with abundant periosteal new bone formation. Finally, SP600125 has the potential to serve as an alternative adjuvant therapy in some early-stage PCa patients, especially those with high Dkk-1 expression.
Collapse
|
203
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
204
|
Luo Y, Jiang N, May HI, Luo X, Ferdous A, Schiattarella GG, Chen G, Li Q, Li C, Rothermel BA, Jiang D, Lavandero S, Gillette TG, Hill JA. Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation 2021; 144:34-51. [PMID: 33821668 PMCID: PMC8247545 DOI: 10.1161/circulationaha.120.052384] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac hypertrophy is an independent risk factor for heart failure, a leading cause of morbidity and mortality globally. The calcineurin/NFAT (nuclear factor of activated T cells) pathway and the MAPK (mitogen-activated protein kinase)/Erk (extracellular signal-regulated kinase) pathway contribute to the pathogenesis of cardiac hypertrophy as an interdependent network of signaling cascades. How these pathways interact remains unclear and few direct targets responsible for the prohypertrophic role of NFAT have been described. METHODS By engineering cardiomyocyte-specific ETS2 (a member of the E26 transformation-specific sequence [ETS] domain family) knockout mice, we investigated the role of ETS2 in cardiac hypertrophy. Primary cardiomyocytes were used to evaluate ETS2 function in cell growth. RESULTS ETS2 is phosphorylated and activated by Erk1/2 on hypertrophic stimulation in both mouse (n=3) and human heart samples (n=8 to 19). Conditional deletion of ETS2 in mouse cardiomyocytes protects against pressure overload-induced cardiac hypertrophy (n=6 to 11). Silencing of ETS2 in the hearts of calcineurin transgenic mice significantly attenuates hypertrophic growth and contractile dysfunction (n=8). As a transcription factor, ETS2 is capable of binding to the promoters of hypertrophic marker genes, such as ANP, BNP, and Rcan1.4 (n=4). We report that ETS2 forms a complex with NFAT to stimulate transcriptional activity through increased NFAT binding to the promoters of at least 2 hypertrophy-stimulated genes: Rcan1.4 and microRNA-223 (=n4 to 6). Suppression of microRNA-223 in cardiomyocytes inhibits calcineurin-mediated cardiac hypertrophy (n=6), revealing microRNA-223 as a novel prohypertrophic target of the calcineurin/NFAT and Erk1/2-ETS2 pathways. CONCLUSIONS Our findings point to a critical role for ETS2 in calcineurin/NFAT pathway-driven cardiac hypertrophy and unveil a previously unknown molecular connection between the Erk1/2 activation of ETS2 and expression of NFAT/ETS2 target genes.
Collapse
Affiliation(s)
- Yuxuan Luo
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Nan Jiang
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Herman I. May
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Xiang Luo
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.J.)
- Advanced Center for Chronic Diseases, Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile (S.L.)
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, Chile (S.L.)
| | - Anwarul Ferdous
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G. Schiattarella
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Guihao Chen
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Qinfeng Li
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Chao Li
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Beverly A. Rothermel
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.J.)
| | - Sergio Lavandero
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Advanced Center for Chronic Diseases, Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile (S.L.)
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, Chile (S.L.)
| | - Thomas G. Gillette
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A. Hill
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
205
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
206
|
Li C, Shi L, Wang Y, Peng C, Wu L, Zhang Y, Du Z. High-fat diet exacerbates lead-induced blood-brain barrier disruption by disrupting tight junction integrity. ENVIRONMENTAL TOXICOLOGY 2021; 36:1412-1421. [PMID: 33749115 DOI: 10.1002/tox.23137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure to lead (Pb) can damage to the central nervous system (CNS) in humans. High-fat diet (HFD) also has been suggested to impair neurocognitive function. Blood-brain barrier (BBB) is a rigorous permeability barrier for maintaining homeostasis of CNS. The damage of BBB caused by tight junctions (TJs) disruption is central to the etiology of various CNS disorders. This study aimed to investigate whether HFD could exacerbate Pb exposure induced the destruction of BBB integrity by TJs disruption. To this end, we measured cell viability assay, trans-endothelial electrical resistance assay, horseradish peroxidase flux measurement, Western blot analysis, and immunofluorescence experiments. The results showed that palmitic acid (PA), the most common saturated fatty acid found in the human body, can increase the permeability of the BBB in vitro which formed in bEnd.3 cells induced by Pb exposure, and decrease the expression of TJs, such as zonula occludins-1 (ZO-1) and occludin. Besides, we found that PA could promote the up-regulation of matrix metalloproteinase (MMP)-9 expression and activate the c-Jun N-terminal kinase (JNK) pathway induced by Pb. MMP-9 inhibitor or JNK inhibitor could increase BBB integrity and up-regulate the expressions of ZO-1 and occludin after treatment, respectively. Moreover, the JNK inhibitor could down-regulate the expression of MMP-9. In conclusion, these results suggested that HFD exacerbates Pb-induced BBB disruption by disrupting TJs integrity. This may be because PA promotes the activation of JNK pathway and then up-regulated the expression of MMP-9 after Pb-exposure. It is suggested that people with HFD exposed to environmental Pb may cause more serious damage to the CNS.
Collapse
Affiliation(s)
- Chao Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Liang Shi
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yuanbo Wang
- Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, China
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Lei Wu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
- Laboratory Animal Center, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|
207
|
Inhibition of p38 Mitogen-Activated Protein Kinase Impairs Mayaro Virus Replication in Human Dermal Fibroblasts and HeLa Cells. Viruses 2021; 13:v13061156. [PMID: 34204188 PMCID: PMC8233896 DOI: 10.3390/v13061156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/31/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022] Open
Abstract
Mayaro virus (MAYV) hijacks the host’s cell machinery to effectively replicate. The mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 have emerged as crucial cellular factors implicated in different stages of the viral cycle. However, whether MAYV uses these MAPKs to competently replicate has not yet been determined. The aim of this study was to evaluate the impact of MAPK inhibition on MAYV replication using primary human dermal fibroblasts (HDFs) and HeLa cells. Viral yields in supernatants from MAYV-infected cells treated or untreated with inhibitors SB203580, SP600125, U0126, or Losmapimod were quantified using plaque assay. Additionally, viral protein expression was analyzed using immunoblot and immunofluorescence. Knockdown of p38⍺/p38β isoforms was performed in HDFs using the PROTACs molecule NR-7h. Our data demonstrated that HDFs are highly susceptible to MAYV infection. SB203580, a p38 inhibitor, reduced MAYV replication in a dose-dependent manner in both HDFs and HeLa cells. Additionally, SB203580 significantly decreased viral E1 protein expression. Similarly, knockdown or inhibition of p38⍺/p38β isoforms with NR-7h or Losmapimod, respectively, affected MAYV replication in a dose-dependent manner. Collectively, these findings suggest that p38 could play an important role in MAYV replication and could serve as a therapeutic target to control MAYV infection.
Collapse
|
208
|
Kasuya Y, Kim JD, Hatano M, Tatsumi K, Matsuda S. Pathophysiological Roles of Stress-Activated Protein Kinases in Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22116041. [PMID: 34204949 PMCID: PMC8199902 DOI: 10.3390/ijms22116041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most symptomatic progressive fibrotic lung diseases, in which patients have an extremely poor prognosis. Therefore, understanding the precise molecular mechanisms underlying pulmonary fibrosis is necessary for the development of new therapeutic options. Stress-activated protein kinases (SAPKs), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) are ubiquitously expressed in various types of cells and activated in response to cellular environmental stresses, including inflammatory and apoptotic stimuli. Type II alveolar epithelial cells, fibroblasts, and macrophages are known to participate in the progression of pulmonary fibrosis. SAPKs can control fibrogenesis by regulating the cellular processes and molecular functions in various types of lung cells (including cells of the epithelium, interstitial connective tissue, blood vessels, and hematopoietic and lymphoid tissue), all aspects of which remain to be elucidated. We recently reported that the stepwise elevation of intrinsic p38 signaling in the lungs is correlated with a worsening severity of bleomycin-induced fibrosis, indicating an importance of this pathway in the progression of pulmonary fibrosis. In addition, a transcriptome analysis of RNA-sequencing data from this unique model demonstrated that several lines of mechanisms are involved in the pathogenesis of pulmonary fibrosis, which provides a basis for further studies. Here, we review the accumulating evidence for the spatial and temporal roles of SAPKs in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-432-262-193; Fax: +81-432-262-196
| | - Jun-Dal Kim
- Department of Research and Development, Institute of Natural Medicine (INM), University of Toyama, Toyama 930-0194, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
209
|
Tang Y, Yang G, Li Y, Wang M, Li G, Hu Y. Protective effects of SP600125 on mice infected with H1N1 influenza A virus. Arch Virol 2021; 166:2151-2158. [PMID: 34014386 PMCID: PMC8134817 DOI: 10.1007/s00705-021-05103-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/07/2021] [Indexed: 11/30/2022]
Abstract
Influenza A virus (IAV) can cause high morbidity and mortality globally every year. Myriad host kinases and their related signaling pathways are involved in IAV infection, and the important role of the c-Jun N-terminal kinase signaling pathway during infection has been demonstrated. SP600125, an inhibitor of c-Jun N-terminal kinase, was found in our previous study to suppress IAV replication in vitro. In this study, we established a mouse model of H1N1 IAV infection and treated the mice with SP600125 to study its protective effect. The results showed that SP600125 treatment reduced the pulmonary inflammatory response, lung injury, and pulmonary viral load and increased the survival rate of H1N1-infected mice. Our data confirm the crucial role of c-Jun N terminal kinase in H1N1 virus replication and inflammatory responses in vivo. Hence, we speculate that SP600125 has a potential antiviral therapeutic benefit against IAV infection.
Collapse
Affiliation(s)
- Yuling Tang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Guanghui Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Yuxiang Li
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Gebin Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
210
|
Liu Y, Chang J, Yang C, Zhang T, Chen X, Shi R, Liang Y, Xia Q, Ma S. Genome-wide CRISPR-Cas9 screening in Bombyx mori reveals the toxicological mechanisms of environmental pollutants, fluoride and cadmium. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124666. [PMID: 33279320 DOI: 10.1016/j.jhazmat.2020.124666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Fluoride and cadmium, two typical environmental pollutants, have been extensively existed in the ecosystem and severely injured various organisms including humans. To explore the toxicological properties and the toxicological mechanism of fluoride and cadmium in silkworm, we perform a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) -based functional genomic screen, which can directly measure the genetic requirement of genes in response to the pollutants. Our screen identifies 751 NaF-resistance genes, 753 NaF-sensitive genes, 757 CdCl2-resistance genes, and 725 CdCl2-sensitive genes. The top-ranked resistant genes are experimentally verified and the results show that their loss conferred resistance to fluoride or cadmium. Functional analysis of the resistant- and sensitive-genes demonstrates enrichment of multiple signaling pathways, among which the MAPK signaling pathway and DNA damage and repair are both required for fluoride- or cadmium-induced cell death, whereas the Toll and Imd signaling pathway and Autophagy are fluoride- or cadmium-specific. Moreover, we confirm that these pathways are truly involved in the toxicological mechanism in both cultured cells and individual tissues. Our results supply potential targets for rescuing the biohazards of fluoride and cadmium in silkworm, and reveal the feasible toxicological mechanism, which highlights the role of functional genomic screens in elucidating the toxicity mechanisms of environmental pollutants.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Chengfei Yang
- Department of Urology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiaoxu Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Yan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
211
|
Huang W, Liu H, Pan Y, Yang H, Lin J, Zhang H. Mechanical stretching of the pulmonary vein mediates pulmonary hypertension due to left heart disease by regulating SAC/MAPK pathway and the expression of IL-6 and TNF-α. J Cardiothorac Surg 2021; 16:127. [PMID: 33971931 PMCID: PMC8107413 DOI: 10.1186/s13019-021-01471-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/05/2021] [Indexed: 01/09/2023] Open
Abstract
Background This study aimed to explore whether the mechanical stretching-induced expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in pulmonary veins occurred through the stretch-activated channel (SAC)/ mitogen-activated protein kinases (MAPKs) pathway. Methods Sixty male Sprague-Dawley rats were divided into three sham groups and seven model groups. A metal clip was placed on the ascending aorta in the model group to establish PH-LHD rat model. The sham group received a similar operation without ascending aorta clamped. On day 25, pulmonary vein was given mechanical stretching with 0 g, 2.0 g tension in two model groups and two sham groups. Another four model groups were given 2.0 g tension after MAPKs pathway inhibitors soaked. The last sham group and model group rats’ pulmonary veins, pulmonary artery and lung tissues were obtained on day 35. Pulmonary vein, pulmonary artery and lung tissue were evaluated by echocardiography, HE staining, immunohistochemistry and western blotting respectively. Results On day 25, left heart weight, right ventricular pressure (35.339 cmH2O) and left atrial pressure (13.657 cmH2O) were increased in model group than those in sham group. Echocardiography showed left heart failure in the PH-LHD group (Interventrieular septum dimension 1.716 mm, left ventricular internal end diastolic dimension 4.888 mm, left ventricular posterior wall thickness in diastole 1.749 mm, ejection fraction 76.917%). But there was no difference in lung tissue between the sham group and PH-LHD group as showed by HE staining. Our results showed that the expression of IL-6 and TNF-α was highly expressed in PH-LHD rats’ serum and pulmonary vein, which were further increased after 2.0 g tension was given and were decreased after SAC/MAPKs inhibitors treatment. Meanwhile, on day 25, immunohistochemistry analysis showed the expression of IL-6 and TNF-α was higher in the PH-LHD rats’ pulmonary vein than that in pulmonary artery and lung tissue, and these expressions in pulmonary vein of PH-LHD group were also higher than that in sham group. However, on day 35, IL-6 and TNF-α were all increased in the pulmonary veins, arteries and lung tissues. Besides, our results uncovered that SAC/MAPKs pathway were upregulating in PH-LHD rats’ pulmonary vein. Conclusion In conclusion, pulmonary vein mechanical stretching exacerbated PH-LHD possibly through the SAC/MAPKs pathway and upregulating expression of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China.,Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, Fujian Province, People's Republic of China
| | - Hongjin Liu
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Yichao Pan
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hongwei Yang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Jing Lin
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Hui Zhang
- Department of Intensive Care Unit, Union Hospital, Fujian Medical University, Fuzhou, 350004, Fujian Province, People's Republic of China.
| |
Collapse
|
212
|
Zhang Y, Ma B, Hao S, Wang J, Zhang R, Ishfaq M, Shi C, Yuan L, Li R, Li C, Liu F. Drug-induced liver injury: Oltipraz and C2-ceramide intervene HNF-1α/GSTA1 expression via JNK signaling pathway. J Appl Toxicol 2021; 41:2011-2020. [PMID: 33959992 DOI: 10.1002/jat.4181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Drug-induced liver injury (DILI) is a serious and frequently occurring issue in drug development. The c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in many diseases; hepatocyte nuclear factor-1α (HNF-1α) and glutathione S-transferase A1 (GSTA1) are important in regulating liver-specific genes expressions and affecting drug metabolism. Oltipraz is used to treat liver cirrhosis by improving liver function, and C2-ceramide is a pro-apoptotic lipid that regulates multiple signaling pathways. In this study, we investigated the function of the JNK signaling pathway with HNF-1α and GSTA1 in a cellular model of DILI and whether oltipraz and C2-ceramide exert effects via the JNK pathway. The results showed that inhibiting JNK could ameliorate APAP-induced hepatocyte injury, reduced oxidative stress, suppressed JNK and c-Jun activation, and hepatocyte apoptosis. Meanwhile, the mRNA and protein expressions of HNF-1α and GSTA1 were increased significantly compared to control conditions. The effect of oltipraz (8 μmol/L) was similar to a JNK inhibitor and significantly increased HNF-1α/GSTA1 expression, but oltipraz combined with JNK inhibitor did not show a synergistic effect. Although C2-ceramide (8 μmol/L) aggravated hepatocyte injury and apoptosis, exacerbated oxidative stress, increased phosphorylation of JNK and c-Jun, and markedly decreased HNF-1α/GSTA1 expression, C2-ceramide combined with JNK inhibitor could partially alleviate these alterations. These results demonstrated that the JNK signaling pathway with HNF-1α/GSTA1 are involved in the process of DILI. Inhibiting JNK up-regulated HNF-1α and GSTA1 expressions which could attenuate hepatocyte injury. Oltipraz and C2-ceramide might affect the expression of HNF-1α/GSTA1 though JNK signaling.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingke Ma
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuangshuang Hao
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiaqi Wang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruichen Zhang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chenxi Shi
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liang Yuan
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changwen Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fangping Liu
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
213
|
Giraud F, Pereira E, Anizon F, Moreau P. Recent Advances in Pain Management: Relevant Protein Kinases and Their Inhibitors. Molecules 2021; 26:molecules26092696. [PMID: 34064521 PMCID: PMC8124620 DOI: 10.3390/molecules26092696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to underline the protein kinases that have been established, either in fundamental approach or clinical trials, as potential biological targets in pain management. Protein kinases are presented according to their group in the human kinome: TK (Trk, RET, EGFR, JAK, VEGFR, SFK, BCR-Abl), CMGC (p38 MAPK, MEK, ERK, JNK, ASK1, CDK, CLK2, DYRK1A, GSK3, CK2), AGC (PKA, PKB, PKC, PKMζ, PKG, ROCK), CAMK, CK1 and atypical/other protein kinases (IKK, mTOR). Examples of small molecule inhibitors of these biological targets, demonstrating an analgesic effect, are described. Altogether, this review demonstrates the fundamental role that protein kinase inhibitors could play in the development of new pain treatments.
Collapse
|
214
|
Alotaibi AG, Li JV, Gooderham NJ. Tumour necrosis factor-α (TNF-α) enhances dietary carcinogen-induced DNA damage in colorectal cancer epithelial cells through activation of JNK signaling pathway. Toxicology 2021; 457:152806. [PMID: 33961948 PMCID: PMC8211460 DOI: 10.1016/j.tox.2021.152806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer death. Benzo[a]pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazol [4,5-b] pyridine (PhIP) present in cooked meat are pro-carcinogens and considered to be potential risk factors for CRC. Their carcinogenic and mutagenic effects require metabolic activation primarily by cytochrome P450 1 family enzymes (CYPs); the expression of these enzymes can be modulated by aryl hydrocarbon receptor (AhR) activation and the tumour microenvironment, involving mediators of inflammation. In this study, we hypothesized that tumour necrosis factor-α (TNF-α), a key mediator of inflammation, modulates BaP- and PhIP-induced DNA damage in colon cancer epithelial cells. Importantly, we observed that TNF-α alone (0.1-100 pg/ml) induced DNA damage (micronuclei formation) in HCT-116 cells and co-treatment of TNF-α with BaP or PhIP showed higher levels of DNA damage compared to the individual single treatments. TNF-α alone or in combination with BaP or PhIP did not affect the expression levels of CYP1A1 and CYP1B1 (target genes of AhR signaling pathways). The DNA damage induced by TNF-α was elevated in p53 null HTC-116 cells compared to wild type cells, suggesting that TNF-α-induced DNA damage is suppressed by functional p53. In contrast, p53 status failed to affect BaP and PhIP induced micronucleus frequency. Furthermore, JNK and NF-κB signaling pathway were activated by TNF-α treatment but only inhibition of JNK significantly reduced TNF-α-induced DNA damage. Collectively, these findings suggest that TNF-α induced DNA damage involves JNK signaling pathway rather than AhR and NF-κB pathways in colon cancer epithelial cells.
Collapse
Affiliation(s)
- Aminah G Alotaibi
- Section of Biomolecular Medicine; National Centre for Genomic Technology, King Abdulaziz City for Science and Technology, KACST, Riyadh, Saudi Arabia
| | - Jia V Li
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
215
|
Drube S, Müller S, Weber F, Wegner P, Böttcher‐Loschinski R, Gaestel M, Hutloff A, Kamradt T, Andreas N. IL-3 is essential for ICOS-L stabilization on mast cells, and sustains the IL-33-induced RORγt + T reg generation via enhanced IL-6 induction. Immunology 2021; 163:86-97. [PMID: 33427298 PMCID: PMC8044339 DOI: 10.1111/imm.13305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
IL-33 is a member of the IL-1 family. By binding to its receptor ST2 (IL-33R) on mast cells, IL-33 induces the MyD88-dependent activation of the TAK1-IKK2 signalling module resulting in activation of the MAP kinases p38, JNK1/2 and ERK1/2, and of NFκB. Depending on the kinases activated in these pathways, the IL-33-induced signalling is essential for production of IL-6 or IL-2. This was shown to control the dichotomy between RORγt+ and Helios+ Tregs , respectively. SCF, the ligand of c-Kit (CD117), can enhance these effects. Here, we show that IL-3, another growth factor for mast cells, is essential for the expression of ICOS-L on BMMCs, and costimulation with IL-3 potentiated the IL-33-induced IL-6 production similar to SCF. In contrast to the enhanced IL-2 production by SCF-induced modulation of the IL-33 signalling, IL-3 blocked the production of IL-2. Consequently, IL-3 shifted the IL-33-induced Treg dichotomy towards RORγt+ Tregs at the expense of RORγt- Helios+ Tregs . However, ICOS-L expression was downregulated by IL-33. In line with that, ICOS-L did not play any important role in the Treg modulation by IL-3/IL-33-activated mast cells. These findings demonstrate that different from the mast cell growth factor SCF, IL-3 can alter the IL-33-induced and mast cell-dependent regulation of Treg subpopulations by modulating mast cell-derived cytokine profiles.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | - Sylvia Müller
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | - Franziska Weber
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | - Philine Wegner
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | | | - Matthias Gaestel
- Institut für ZellbiochemieMedizinische Hochschule HannoverHannoverGermany
| | - Andreas Hutloff
- Institut für Immunologie und Institut für Klinische MolekularbiologieUniversitätsklinikum Schleswig‐HolsteinKielGermany
| | - Thomas Kamradt
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| | - Nico Andreas
- Institut für ImmunologieUniversitätsklinikum JenaJenaGermany
| |
Collapse
|
216
|
Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, Macdonald A. E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ 2021; 28:1669-1687. [PMID: 33303976 PMCID: PMC8166842 DOI: 10.1038/s41418-020-00693-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy worldwide, contributing to ~5% of all human cancers including almost all cases of cervical cancer and a growing number of ano-genital and oral cancers. HPV-induced malignancy is primarily driven by the viral oncogenes, E6 and E7, which manipulate host cellular pathways to increase cell proliferation and enhance cell survival, ultimately predisposing infected cells to malignant transformation. Consequently, a more detailed understanding of viral-host interactions in HPV-associated disease offers the potential to identify novel therapeutic targets. Here, we identify that the c-Jun N-terminal kinase (JNK) signalling pathway is activated in cervical disease and in cervical cancer. The HPV E6 oncogene induces JNK1/2 phosphorylation in a manner that requires the E6 PDZ binding motif. We show that blockade of JNK1/2 signalling using small molecule inhibitors, or knockdown of the canonical JNK substrate c-Jun, reduces cell proliferation and induces apoptosis in cervical cancer cells. We further demonstrate that this phenotype is at least partially driven by JNK-dependent activation of EGFR signalling via increased expression of EGFR and the EGFR ligands EGF and HB-EGF. JNK/c-Jun signalling promoted the invasive potential of cervical cancer cells and was required for the expression of the epithelial to mesenchymal transition (EMT)-associated transcription factor Slug and the mesenchymal marker Vimentin. Furthermore, JNK/c-Jun signalling is required for the constitutive expression of HPV E6 and E7, which are essential for cervical cancer cell growth and survival. Together, these data demonstrate a positive feedback loop between the EGFR signalling pathway and HPV E6/E7 expression, identifying a regulatory mechanism in which HPV drives EGFR signalling to promote proliferation, survival and EMT. Thus, our study has identified a novel therapeutic target that may be beneficial for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ethan L. Morgan
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.94365.3d0000 0001 2297 5165Present Address: Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD USA
| | - James A. Scarth
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Molly R. Patterson
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Christopher W. Wasson
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Present Address: Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, St-James University Teaching Hospital, Leeds, West Yorkshire UK
| | - Georgia C. Hemingway
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Diego Barba-Moreno
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Andrew Macdonald
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| |
Collapse
|
217
|
Wei Z, Fei Y, Wang Q, Hou J, Cai X, Yang Y, Chen T, Xu Q, Wang Y, Li YG. Loss of Camk2n1 aggravates cardiac remodeling and malignant ventricular arrhythmia after myocardial infarction in mice via NLRP3 inflammasome activation. Free Radic Biol Med 2021; 167:243-257. [PMID: 33746041 DOI: 10.1016/j.freeradbiomed.2021.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
AIMS Inflammation response and subsequent ventricular remodeling are critically involved in the development of ventricular arrhythmia post myocardial infarction (MI). However, as the vital endogenous inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII), the effects of CaMKII inhibitor 1 (Camk2n1) on the process of arrhythmia substrate generation following MI remains unclear. In this study, we investigated the role of Camk2n1 in ventricular arrhythmia post-MI and the underlying mechanisms. METHODS AND RESULTS Camk2n1 was mainly expressed in cardiomyocytes and inhibited the phosphorylation of CaMKIIδ in the infarcted border zone. Compared to wild type (WT) littermates mice, Camk2n1 knockout mice (Camk2n1-/-) manifested exacerbated cardiac dysfunction, larger fibrosis area, higher incidence of premature ventricular contractions (PVCs) and higher vulnerability to ventricular tachycardia (VT) or ventricular fibrillation (VF) after MI. The results of RNA sequencing (RNA-seq) identified that excessive activation of NLRP3 inflammasome was responsible for aggravated inflammation response which led to adverse cardiac remodeling in Camk2n1-/- mice subjected to MI. More importantly, both in vivo and in vitro experiments verified that aggravated NLRP3 inflammasome activation occurred via CaMKIIδ-p38/JNK pathway in Camk2n1-/- mice. CONCLUSIONS Collectively, our results highlight the importance of Camk2n1 in alleviating ventricular remodeling and malignant ventricular arrhythmia post-MI by reducing cardiomyocytes inflammation activation via CaMKIIδ-p38/JNK-NLRP3 inflammasome pathway, targeting Camk2n1 might serve as a novel therapeutic strategy after MI.
Collapse
Affiliation(s)
- Zhixing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwen Hou
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xingxing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuli Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taizhong Chen
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanfu Xu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
218
|
Ding S, Yu Q, Wang J, Zhu L, Li T, Guo X, Zhang X. Activation of ATF3/AP-1 signaling pathway is required for P2X3-induced endometriosis pain. Hum Reprod 2021; 35:1130-1144. [PMID: 32303740 DOI: 10.1093/humrep/deaa061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does P2X ligand-gated ion channel 3 (P2X3) play a role in endometriosis pain? SUMMARY ANSWER Upregulation of P2X3 in dorsal root ganglia (DRG) tissues via the activating transcription factor 3 (ATF3)/activator protein (AP)-1 pathway contributed to endometriosis-associated hyperalgesia, which could be attenuated by the chitosan oligosaccharide stearic acid (CSOSA)/liposomes (LPs)/SP600125 delivery system. WHAT IS KNOWN ALREADY Infiltrating nerve fibers and elevated nociceptors in endometriotic lesions are associated with endometriosis pain. P2X3 has been demonstrated to play an important role in neuropathic pain. STUDY DESIGN, SIZE, DURATION A rat model of endometriosis was used to investigate the signaling pathways involved in P2X3-induced pain. PARTICIPANTS/MATERIALS, SETTING, METHODS Degrees of hyperalgesia, endogenous adenosine 5'-triphosphate (ATP) contents and P2X3 expression levels in endometriotic lesions and DRG tissues were detected in a rat model of endometriosis. The expression levels of ATF3 and P2X3 were measured using qRT-PCR, western blot analysis and immunofluorescence analysis after adenosine 5'-diphosphate (ADP) exposure in DRG cells. Plasmids encoding ATF3 and its siRNA were used to investigate the role of ATF3 on ADP-induced P2X3 upregulation. The activity of ATF binding to the P2X3 promoter was evaluated by using chromatin immunoprecipitation (CHIP) and luciferase assays. SP600125, an inhibitor of c-JUN N-terminal kinase, was wrapped in CSOSA/LPs delivery system and its inhibitory effects on ADP-induced upregulation of P2X3 in DRG cells and endometriosis-induced hyperalgesia in rats were tested. MAIN RESULTS AND THE ROLE OF CHANCE The concentrations of endogenous ATP and expression levels of P2X3 were significantly increased in both endometriotic lesions and DRG tissues in endometriosis rat models and were found to be positively correlated with the severity of hyperalgesia. In DRG cells, P2X3 expression levels were elevated by ADP stimulation, but dramatically inhibited by blocking ATF3 with its siRNA and SP600125. CHIP and luciferase assay showed that ADP increased the binding of ATF3 to the P2X3 promoter, resulting in an increase in P2X3 expression levels. In the CSOSA/LPs/SP600125 delivery system, the drug could be effectively concentrated in endometriotic lesions, and it could alleviate endometriosis-induced hyperalgesia, reduce the size of endometriotic lesions and attenuate upregulated P2X3 expression levels in endometriosis rat models. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Changes in the sensitivity and function of P2X3 caused by endometriosis need to be further investigated. WIDER IMPLICATIONS OF THE FINDINGS This study indicates that ATP and the P2X3 receptor are involved in endometriosis pain, thus providing a novel therapeutic approach for the treatment of endometriosis pain by targeting the P2X3 receptor. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by National Key R&D Program of China (Grant No. 2017YFC1001202) and National Natural Science Foundation of China (Grant Nos. 81974225, 81671429 and 81471433). There are no competing interests.
Collapse
Affiliation(s)
- Shaojie Ding
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Qin Yu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Jianzhang Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Libo Zhu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Tiantian Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Xinyue Guo
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Xinmei Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| |
Collapse
|
219
|
Kim W, Tokuda H, Tanabe K, Yamaguchi S, Hioki T, Tachi J, Matsushima-Nishiwaki R, Kozawa O, Iida H. Acetaminophen reduces osteoprotegerin synthesis stimulated by PGE 2 and PGF 2α in osteoblasts: attenuation of SAPK/JNK but not p38 MAPK or p44/p42 MAPK. Biomed Res 2021; 42:77-84. [PMID: 33840687 DOI: 10.2220/biomedres.42.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acetaminophen is one of the most widely used analgesic and antipyretic medicines, whose long-period use has reportedly been associated with an increased risk of bone fracture. However, the mechanism underlying this undesired effect remains to be investigated. The homeostatic control of bone tissue depends on the interaction between osteoblasts and osteoclasts. Osteoprotegerin produced by osteoblasts is known to play an essential role in suppressing osteoclast induction. We have previously reported that prostaglandin (PG) E2 and PGF2α induce osteoprotegerin synthesis through p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of acetaminophen on the osteoprotegerin synthesis induced by PGE2 and PGF2α in MC3T3-E1 cells. Acetaminophen significantly suppressed the osteoprotegerin release stimulated by PGE2 and PGF2α. The PGE2-induced expression of osteoprotegerin mRNA was also reduced by acetaminophen. Acetaminophen markedly downregulated the phosphorylation of SAPK/JNK stimulated by PGE2 and PGF2α, but not those of p38 MAPK or p44/p42 MAPK. SP600125, an inhibitor of SAPK/JNK, suppressed the levels of PGE2- and PGF2α-upregulated osteoprotegerin mRNA expression. Taken together, these results strongly suggest that acetaminophen reduces the PGE2- and PGF2α-stimulated synthesis of osteoprotegerin in osteoblasts, and that the suppressive effect is exerted via attenuation of SAPK/JNK. These findings provide a molecular basis for the possible effect of acetaminophen on bone tissue metabolism.
Collapse
Affiliation(s)
- Woo Kim
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine.,Department of Pharmacology, Gifu University Graduate School of Medicine
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine.,Department of Clinical Laboratory/Medical Genome Center, National Center for Geriatrics and Gerontology
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine
| | - Shinobu Yamaguchi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine
| | - Tomoyuki Hioki
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine.,Department of Dermatology, Kizawa Memorial Hospital
| | - Junko Tachi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine.,Department of Pharmacology, Gifu University Graduate School of Medicine
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine
| |
Collapse
|
220
|
Carriba P, Davies AM. Signalling Pathways Mediating the Effects of CD40-Activated CD40L Reverse Signalling on Inhibitory Medium Spiny Neuron Neurite Growth. Cells 2021; 10:829. [PMID: 33917019 PMCID: PMC8067729 DOI: 10.3390/cells10040829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 01/16/2023] Open
Abstract
CD40-activated CD40L-mediated reverse signalling is a major physiological regulator of neurite growth from excitatory and inhibitory neurons in the developing central nervous system (CNS). Whereas in excitatory pyramidal neurons, CD40L reverse signalling promotes the growth and elaboration of dendrites and axons, in inhibitory GABAergic striatal medium spiny neurons (MSNs), it restricts neurite growth and branching. In pyramidal neurons, we previously reported that CD40L reverse signalling activates an interconnected and interdependent signalling network involving protein kinase C (PKC), extracellular regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK) signalling pathways that regulates dendrite and axon growth. Here, we have studied whether these signalling pathways also influence neurite growth from striatal inhibitory MSNs. To unequivocally activate CD40L reverse signalling, we treated MSN cultures from CD40-deficient mice with CD40-Fc. Here, we report that activation of CD40L reverse signalling in these cultures also increased the phosphorylation of PKC, ERK1/2, and JNK. Using pharmacological activators and inhibitors of these signalling pathways singularly and in combination, we have shown that, as in pyramidal neurons, these signalling pathways work in an interconnected and interdependent network to regulate the neurite growth, but their functions, relationships, and interdependencies are different from those observed in pyramidal neurons. Furthermore, immunoprecipitation studies showed that stimulation of CD40L reverse signalling recruits the catalytic fragment of Syk tyrosine kinase, but in contrast to pyramidal neurons, PKC does not participate in this recruitment. Our findings show that distinctive networks of three signalling pathways mediate the opposite effects of CD40L reverse signalling on neurite growth in excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- Paulina Carriba
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Alun M Davies
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
221
|
Brunt L, Greicius G, Rogers S, Evans BD, Virshup DM, Wedgwood KCA, Scholpp S. Vangl2 promotes the formation of long cytonemes to enable distant Wnt/β-catenin signaling. Nat Commun 2021; 12:2058. [PMID: 33824332 PMCID: PMC8024337 DOI: 10.1038/s41467-021-22393-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Wnt signaling regulates cell proliferation and cell differentiation as well as migration and polarity during development. However, it is still unclear how the Wnt ligand distribution is precisely controlled to fulfil these functions. Here, we show that the planar cell polarity protein Vangl2 regulates the distribution of Wnt by cytonemes. In zebrafish epiblast cells, mouse intestinal telocytes and human gastric cancer cells, Vangl2 activation generates extremely long cytonemes, which branch and deliver Wnt protein to multiple cells. The Vangl2-activated cytonemes increase Wnt/β-catenin signaling in the surrounding cells. Concordantly, Vangl2 inhibition causes fewer and shorter cytonemes to be formed and reduces paracrine Wnt/β-catenin signaling. A mathematical model simulating these Vangl2 functions on cytonemes in zebrafish gastrulation predicts a shift of the signaling gradient, altered tissue patterning, and a loss of tissue domain sharpness. We confirmed these predictions during anteroposterior patterning in the zebrafish neural plate. In summary, we demonstrate that Vangl2 is fundamental to paracrine Wnt/β-catenin signaling by controlling cytoneme behaviour.
Collapse
Affiliation(s)
- Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Gediminas Greicius
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Benjamin D Evans
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- School of Psychological Science, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Kyle C A Wedgwood
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
222
|
Rehfeldt SCH, Laufer S, Goettert MI. A Highly Selective In Vitro JNK3 Inhibitor, FMU200, Restores Mitochondrial Membrane Potential and Reduces Oxidative Stress and Apoptosis in SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22073701. [PMID: 33918172 PMCID: PMC8037381 DOI: 10.3390/ijms22073701] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Current treatments for neurodegenerative diseases (ND) are symptomatic and do not affect disease progression. Slowing this progression remains a crucial unmet need for patients and their families. c-Jun N-terminal kinase 3 (JNK3) are related to several ND hallmarks including apoptosis, oxidative stress, excitotoxicity, mitochondrial dysfunction, and neuroinflammation. JNK inhibitors can play an important role in addressing neuroprotection. This research aims to evaluate the neuroprotective, anti-inflammatory, and antioxidant effects of a synthetic compound (FMU200) with known JNK3 inhibitory activity in SH-SY5Y and RAW264.7 cell lines. SH-SY5Y cells were pretreated with FMU200 and cell damage was induced by 6-hydroxydopamine (6-OHDA) or hydrogen peroxide (H2O2). Cell viability and neuroprotective effect were assessed with an MTT assay. Flow cytometric analysis was performed to evaluate cell apoptosis. The H2O2-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) were evaluated by DCFDA and JC-1 assays, respectively. The anti-inflammatory effect was determined in LPS-induced RAW264.7 cells by ELISA assay. In undifferentiated SH-SY5Y cells, FMU200 decreased neurotoxicity induced by 6-OHDA in approximately 20%. In RA-differentiated cells, FMU200 diminished cell death in approximately 40% and 90% after 24 and 48 h treatment, respectively. FMU200 reduced both early and late apoptotic cells, decreased ROS levels, restored mitochondrial membrane potential, and downregulated JNK phosphorylation after H2O2 exposure. In LPS-stimulated RAW264.7 cells, FMU200 reduced TNF-α levels after a 3 h treatment. FMU200 protects neuroblastoma SH-SY5Y cells against 6-OHDA- and H2O2-induced apoptosis, which may result from suppressing the JNK pathways. Our findings show that FMU200 can be a useful candidate for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), D-72076 Tübingen, Germany
- Correspondence: (S.L.); (M.I.G.); Tel.: +55-(51)3714-7000 (ext. 5445) (M.I.G.)
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil;
- Correspondence: (S.L.); (M.I.G.); Tel.: +55-(51)3714-7000 (ext. 5445) (M.I.G.)
| |
Collapse
|
223
|
Chang Y, He J, Ma B, Ishfaq M, Wang J, Zhang R, Yuan L, Liu J, Li C, Liu F. Prevention of acetaminophen-induced hepatocyte injury: JNK inhibition and GSTA1 involvement. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00119-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
224
|
Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021; 901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome is a multifactorial disease associated with increased risk of cardiovascular disorders, type 2 diabetes mellitus, fatty liver disease, etc. Various stress stimuli such as reactive oxygen species, endoplasmic reticulum stress, mitochondrial dysfunction, increased cytokines, or free fatty acids are known to aggravate progressive development of hyperglycemia and hyperlipidemia. Although the exact mechanism contributing to altered metabolism is unclear. Evidence suggests stress kinase role to be a crucial one in metabolic syndrome. Stress kinase, c-jun N-terminal kinase activation (JNK) is involved in various metabolic manifestations including obesity, insulin resistance, fatty liver disease as well as cardiometabolic disorders. It emerged as a foremost mediator in regulating metabolism in the liver, skeletal muscle, adipose tissue as well as pancreatic β cells. It has three isoforms each having a unique and tissue-specific role in altered metabolism. Current findings based on genetic manipulation or chemical inhibition studies identified JNK isoforms to play a central role in the regulation of whole-body metabolism, suggesting it to be a novel therapeutic target. Hence, it is imperative to elucidate its role in metabolic syndrome onset and progression. The purpose of this review is to elucidate in vitro and in vivo implications of JNK signaling along with the therapeutic strategy to inhibit specific isoform. Since metabolic syndrome is an array of diseases and complex pathway, carefully examining each tissue will be important for specific treatment strategies.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
225
|
Liu X, Blazejewski SM, Bennison SA, Toyo-oka K. Glutathione S-transferase Pi (Gstp) proteins regulate neuritogenesis in the developing cerebral cortex. Hum Mol Genet 2021; 30:30-45. [PMID: 33437989 PMCID: PMC8033146 DOI: 10.1093/hmg/ddab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
GSTP proteins are metabolic enzymes involved in the removal of oxidative stress and intracellular signaling and also have inhibitory effects on JNK activity. However, the functions of Gstp proteins in the developing brain are unknown. In mice, there are three Gstp proteins, Gstp1, 2 and 3, whereas there is only one GSTP in humans. By reverse transcription-polymerase chain reaction (RT-PCR) analysis, we found that Gstp1 was expressed beginning at E15.5 in the cortex, but Gstp2 and 3 started expressing at E18.5. Gstp 1 and 2 knockdown (KD) caused decreased neurite number in cortical neurons, implicating them in neurite initiation. Using in utero electroporation (IUE) to knock down Gstp1 and 2 in layer 2/3 pyramidal neurons in vivo, we found abnormal swelling of the apical dendrite at P3 and reduced neurite number at P15. Using time-lapse live imaging, we found that the apical dendrite orientation was skewed compared with the control. We explored the molecular mechanism and found that JNK inhibition rescued reduced neurite number caused by Gstp knockdown, indicating that Gstp regulates neurite formation through JNK signaling. Thus, we found novel functions of Gstp proteins in neurite initiation during cortical development. These findings not only provide novel functions of Gstp proteins in neuritogenesis during cortical development but also help us to understand the complexity of neurite formation.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| |
Collapse
|
226
|
You KS, Yi YW, Cho J, Seong YS. Dual Inhibition of AKT and MEK Pathways Potentiates the Anti-Cancer Effect of Gefitinib in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:1205. [PMID: 33801977 PMCID: PMC8000364 DOI: 10.3390/cancers13061205] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
There is an unmet medical need for the development of new targeted therapeutic strategies for triple-negative breast cancer (TNBC). With drug combination screenings, we found that the triple combination of the protein kinase inhibitors (PKIs) of the epidermal growth factor receptor (EGFR), v-akt murine thymoma viral oncogene homolog (AKT), and MAPK/ERK kinase (MEK) is effective in inducing apoptosis in TNBC cells. A set of PKIs were first screened in combination with gefitinib in the TNBC cell line, MDA-MB-231. The AKT inhibitor, AT7867, was identified and further analyzed in two mesenchymal stem-like (MSL) subtype TNBC cells, MDA-MB-231 and HS578T. A combination of gefitinib and AT7867 reduced the proliferation and long-term survival of MSL TNBC cells. However, gefitinib and AT7867 induced the activation of the rat sarcoma (RAS)/ v-raf-1 murine leukemia viral oncogene homolog (RAF)/MEK/ extracellular signal-regulated kinase (ERK) pathway. To inhibit this pathway, MEK/ERK inhibitors were further screened in MDA-MB-231 cells in the presence of gefitinib and AT7867. As a result, we identified that the MEK inhibitor, PD-0325901, further enhanced the anti-proliferative and anti-clonogenic effects of gefitinib and AT7867 by inducing apoptosis. Our results suggest that the dual inhibition of the AKT and MEK pathways is a novel potential therapeutic strategy for targeting EGFR in TNBC cells.
Collapse
Affiliation(s)
- Kyu Sic You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| |
Collapse
|
227
|
Asaad M, Kaisar Ali M, Abo-Kadoum MA, Lambert N, Gong Z, Wang H, Uae M, Nazou SAE, Kuang Z, Xie J. Mycobacterium tuberculosis PPE10 (Rv0442c) alters host cell apoptosis and cytokine profile via linear ubiquitin chain assembly complex HOIP-NF-κB signaling axis. Int Immunopharmacol 2021; 94:107363. [PMID: 33667868 DOI: 10.1016/j.intimp.2020.107363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis infection remains one of the top ten causes of deaths worldwide. M. tuberculosis genome devoted 10% capacity for highly repeated PE/PPE genes family. To explore the role of PPE10 in host-pathogen interaction, PPE10 encoding gene Rv0442c was heterologously expressed in the nonpathogenic M. smegmatis strain. PPE10 altered the bacterial cell surface properties, colony morphology, and biofilm formation. Ms_PPE10 showed more resistance to stress conditions such as diamide, and low pH, as well as higher survival within the macrophage. Moreover, the host's cell apoptosis was regulated via decreased expression of caspases, IL-1, IL-6, and TNF-α through the Linear Ubiquitin Chain Assembly Complex (LUBAC) HOIP-NF-κB signaling axis. The study revealed novel insights into the mechanism of action of the PPE family.
Collapse
Affiliation(s)
- Mohammed Asaad
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China; Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Md Kaisar Ali
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - M A Abo-Kadoum
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University Assuit branch, Egypt
| | - Nzungize Lambert
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Zhen Gong
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Hao Wang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Moure Uae
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Stech A E Nazou
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Zhongmei Kuang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China.
| |
Collapse
|
228
|
Geng H, Lan R, Liu Y, Chen W, Wu M, Saikumar P, Weinberg JM, Venkatachalam MA. Proximal tubule LPA1 and LPA2 receptors use divergent signaling pathways to additively increase profibrotic cytokine secretion. Am J Physiol Renal Physiol 2021; 320:F359-F374. [PMID: 33427061 PMCID: PMC7988817 DOI: 10.1152/ajprenal.00494.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) increases platelet-derived growth factor-B (PDGFB) and connective tissue growth factor (CTGF) production and secretion by proximal tubule (PT) cells through LPA2 receptor-Gqα-αvβ6-integrin-mediated activation of transforming growth factor-β1 (TGFB1). LPA2, β6-integrin, PDGFB, and CTGF increase in kidneys after ischemia-reperfusion injury (IRI), coinciding with fibrosis. The TGFB1 receptor antagonist SD-208 prevents increases of β6-integrin, TGFB1-SMAD signaling, and PDGFB/CTGF expression after IRI and ameliorates fibrosis (Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH, Violette SM, Weinberg JM, Saikumar P, Venkatachalam MA. Am J Pathol 181: 1236-1249, 2012; Geng H, Lan R, Wang G, Siddiqi AR, Naski MC, Brooks AI, Barnes JL, Saikumar P, Weinberg JM, Venkatachalam MA. Am J Pathol 174: 1291-1308, 2009). We report now that LPA1 receptor signaling through epidermal growth factor receptor (EGFR)-ERK1/2-activator protein-1 cooperates with LPA2-dependent TGFB1 signaling to additively increase PDGFB/CTGF production and secretion by PT cells. Conversely, inhibition of both pathways results in greater suppression of PDGFB/CTGF production and secretion and promotes greater PT cellular differentiation than inhibiting one pathway alone. Antagonism of the LPA-generating enzyme autotaxin suppressed signaling through both pathways. After IRI, kidneys showed not only more LPA2, nuclear SMAD2/3, and PDGFB/CTGF but also increased LPA1 and autotaxin proteins, together with enhanced EGFR/ERK1/2 activation. Remarkably, the TGFB1 receptor antagonist SD-208 prevented all of these abnormalities excepting increased LPA2. SD-208 inhibits only one arm of LPA signaling: LPA2-Gqα-αvβ6-integrin-dependent production of active TGFB1 and its receptor-bound downstream effects. Consequently, far-reaching protection by SD-208 against IRI-induced signaling alterations and tubule-interstitial pathology is not fully explained by our data. TGFB1-dependent feedforward modulation of LPA1 signaling is one possibility. SD-208 effects may also involve mitigation of injury caused by IRI-induced TGFB1 signaling in endothelial cells and monocytes. Our results have translational implications for using TGFB1 receptor antagonists, LPA1 and LPA2 inhibitors concurrently, and autotaxin inhibitors in acute kidney injury to prevent the development of chronic kidney disease.
Collapse
Affiliation(s)
- Hui Geng
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Yaguang Liu
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Wei Chen
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Meng Wu
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Pothana Saikumar
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Joel M Weinberg
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | | |
Collapse
|
229
|
Akhtar S, Abbas M, Naeem K, Faheem M, Nadeem H, Mehmood A. Benzimidazole Derivative Ameliorates Opioid-Mediated Tolerance during Anticancer- Induced Neuropathic Pain in Mice. Anticancer Agents Med Chem 2021; 21:365-371. [PMID: 32819235 DOI: 10.2174/1871520620999200818155031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is known to be the second significant cause of death worldwide. Chemotherapeutic agents such as platinum-based compounds are frequently used single-handedly or accompanied by additional chemotherapies to treat cancer patients. Chemotherapy-induced peripheral painful neuropathy is seen in around 40% of patients who are treated with platinum-based compounds, including cisplatin. This not only decreases the quality of life of patients but also patients' compliance with cisplatin. OBJECTIVES Nalbuphine, an opioid, is frequently used to treat acute and chronic pain, coupled with cisplatin in cancer patients. However, long term use of nalbuphine induces tolerance to its analgesic effects. We employed the same strategy to induce tolerance in mice. METHODS Here, we investigated analgesic effects of 2-[(pyrrolidin-1-yl) methyl]-1H-benzimidazole (BNZ), a benzimidazole derivative, on nalbuphine-induced tolerance during cisplatin-induced neuropathic pain using hot plate test, tail-flick tests and von Frey filament in mouse models. Furthermore, we investigated the effects of BNZ on the expression of Tumor Necrosis Factor-alpha (TNF-α) in the spinal cord. RESULTS The results showed that BNZ reduced tolerance to analgesic effects of nalbuphine and TNF-α expression in mice. CONCLUSION BNZ could be a potential drug candidate for the management of nalbuphine-induced tolerance in cisplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Sana Akhtar
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Komal Naeem
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Amber Mehmood
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
230
|
Li G, Qi W, Li X, Zhao J, Luo M, Chen J. Recent Advances in c-Jun N-Terminal Kinase (JNK) Inhibitors. Curr Med Chem 2021; 28:607-627. [PMID: 32039671 DOI: 10.2174/0929867327666200210144114] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
c-Jun N-Terminal Kinases (JNKs), members of the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, play a key role in the pathogenesis of many diseases including cancer, inflammation, Parkinson's disease, Alzheimer's disease, cardiovascular disease, obesity, and diabetes. Therefore, JNKs represent new and excellent target by therapeutic agents. Many JNK inhibitors based on different molecular scaffolds have been discovered in the past decade. However, only a few of them have advanced to clinical trials. The major obstacle for the development of JNK inhibitors as therapeutic agents is the JNKisoform selectivity. In this review, we describe the recent development of JNK inhibitors, including ATP competitive and ATP non-competitive (allosteric) inhibitors, bidentatebinding inhibitors and dual inhibitors, the challenges, and the future direction of JNK inhibitors as potential therapeutic agents.
Collapse
Affiliation(s)
- Gang Li
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, China
| | - Wenqing Qi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis TN 38105, United States
| | - Xiaoxun Li
- Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu 611731, China
| | - Jinwu Zhao
- School of Pharmacy, Guangdong Medical University, Songshan Lake Science and Technology Industry Park, Dongguan 523808, China
| | - Meihua Luo
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, China
| | - Jianjun Chen
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, China
| |
Collapse
|
231
|
Guo W, Zhao Y, Li H, Lei L. NCOA4-mediated ferritinophagy promoted inflammatory responses in periodontitis. J Periodontal Res 2021; 56:523-534. [PMID: 33533512 DOI: 10.1111/jre.12852] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND/OBJECTIVES Iron homeostasis plays a crucial role in the combat against pathogen invasion. Ferrous iron can trigger generous production of reactive oxygen species (ROS) by Fenton reaction. Nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor to deliver ferritin to lysosome, may trigger release of ferritin-bound iron into the cytosol. The aim of the present study was to explore whether NCOA4-mediated ferritinophagy participated in the pathogenesis of periodontitis, and its role in promoting the periodontal inflammation. METHODS Inflamed and healthy periodontal tissues were harvested for immunobiological staining of ferritinophagy-related genes in the periodontal tissues, while real-time quantitative PCR (qPCR) was utilized to detect mRNA transcription. Periodontal ligament fibroblasts (PDLFs) were isolated and infected with Porphyromonas gingivalis. The mRNA transcription and protein expression of genes involved in the iron metabolism, including NCOA4, transferrin receptor 1 (TFR1), and ferroportin (SLC40A1) were detected by qPCR and western blot. Levels of labile iron pool and ROS production were detected by flow cytometry and confocal endoscopy. Small interference RNA was utilized to knock down NCOA4. RESULTS Elevated expression of NCOA4, ferritin heavy chain, and light chain were observed in the diseased periodontal tissues. P. gingivalis infection promoted expression of TFR1, NCOA4, and microtubule-associated protein 1-light chain 3 B (LC3B), enhanced levels of intracellular labile iron pool and ROS production. NCOA4 knockdown reduced ROS generation in PDLFs in response to P. gingivalis and mitigated production of pro-inflammatory monocyte chemoattractant protein-1 and interleukin 6. P. gingivalis triggered activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase signaling pathway. In addition, inhibitors of JNK, SP600125, and inhibitors of p38, SB203580 blocked NCOA4 transcription. CONCLUSION NCOA4-ferritinophagy participated in the progress of periodontitis progression. P. gingvalis-triggered ferritinophagy aggravated production of ROS and inflammatory responses in PDLFS. These findings suggest iron homeostasis plays an important role in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Wei Guo
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunhe Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
232
|
Coates MS, Alton EWFW, Rapeport GW, Davies JC, Ito K. Pseudomonas aeruginosa induces p38MAP kinase-dependent IL-6 and CXCL8 release from bronchial epithelial cells via a Syk kinase pathway. PLoS One 2021; 16:e0246050. [PMID: 33524056 PMCID: PMC7850485 DOI: 10.1371/journal.pone.0246050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) infection is a major cause of airway inflammation in immunocompromised and cystic fibrosis (CF) patients. Mitogen-activated protein (MAP) and tyrosine kinases are integral to inflammatory responses and are therefore potential targets for novel anti-inflammatory therapies. We have determined the involvement of specific kinases in Pa-induced inflammation. The effects of kinase inhibitors against p38MAPK, MEK 1/2, JNK 1/2, Syk or c-Src, a combination of a p38MAPK with Syk inhibitor, or a novel narrow spectrum kinase inhibitor (NSKI), were evaluated against the release of the proinflammatory cytokine/chemokine, IL-6 and CXCL8 from BEAS-2B and CFBE41o- epithelial cells by Pa. Effects of a Syk inhibitor against phosphorylation of the MAPKs were also evaluated. IL-6 and CXCL8 release by Pa were significantly inhibited by p38MAPK and Syk inhibitors (p<0.05). Phosphorylation of HSP27, but not ERK or JNK, was significantly inhibited by Syk kinase inhibition. A combination of p38MAPK and Syk inhibitors showed synergy against IL-6 and CXCL8 induction and an NSKI completely inhibited IL-6 and CXCL8 at low concentrations. Pa-induced inflammation is dependent on p38MAPK primarily, and Syk partially, which is upstream of p38MAPK. The NSKI suggests that inhibiting specific combinations of kinases is a potent potential therapy for Pa-induced inflammation.
Collapse
Affiliation(s)
- Matthew S. Coates
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| | - Eric W. F. W. Alton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Garth W. Rapeport
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Pulmocide Ltd, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Pulmocide Ltd, London, United Kingdom
| |
Collapse
|
233
|
Sun HW, Wu WC, Chen HT, Xu YT, Yang YY, Chen J, Yu XJ, Wang Z, Shuang ZY, Zheng L. Glutamine Deprivation Promotes the Generation and Mobilization of MDSCs by Enhancing Expression of G-CSF and GM-CSF. Front Immunol 2021; 11:616367. [PMID: 33603745 PMCID: PMC7884351 DOI: 10.3389/fimmu.2020.616367] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Solid tumors are often challenged by hypoxic and nutrient-deprived tumor microenvironments (TME) as tumors progress, due to limited perfusion and rapid nutrient consumption. While cancer cells can demonstrate the ability to survive in nutrient-deprived conditions through multiple intrinsic alterations, it is poorly understood how nutrient-deprived cancer cells co-opt the TME to promote cancer cell survival and tumor progression. In the present study, we found that glutamine deprivation markedly potentiated the expression of G-CSF and GM-CSF in mouse mammary cancer cells. The IRE1α-JNK pathway, which is activated by glutamine starvation, was found to be important for the upregulation of these cytokines. G-CSF and GM-CSF are well-known facilitators of myelopoiesis and mobilization of hematopoietic progenitor cells (HPC). Consistently, as tumors progressed, we found that several myeloid HPC compartments were gradually decreased in the bone marrow but were significantly increased in the spleen. Mechanistically, the HPC-maintaining capacity of the bone marrow was significantly impaired in tumor-bearing mice, with lower expression of HPC maintaining genes (i.e., CXCL12, SCF, ANGPT1, and VCAM1), and reduced levels of mesenchymal stem cells and CXCL12-producing cells. Furthermore, the mobilized HPCs that displayed the capacity for myelopoiesis were also found to accumulate in tumor tissue. Tumor-infiltrating HPCs were highly proliferative and served as important sources of immunosuppressive myeloid-derived suppressor cells (MDSCs) in the TME. Our work has identified an important role for glutamine starvation in regulating the expression of G-CSF and GM-CSF, and in facilitating the generation of immunosuppressive MDSCs in breast cancer.
Collapse
Affiliation(s)
- Hong-Wei Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Chao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hai-Tian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi-Tuo Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan-Yan Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xing-Juan Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Yu Shuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
234
|
Zang YQ, Zhai YQ, Feng YY, Ju XY, Zuo F. Molecular mechanisms of quinalizarin induces apoptosis and G0/G1 cell cycle of human esophageal cancer HCE-4 cells depends on MAPK, STAT3, and NF-κB signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:276-286. [PMID: 33030807 DOI: 10.1002/tox.23033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Quinalizarin (Quina) is one of the main components of many herbal medicines and has good anti-tumor activity. However, the exact mode of cytotoxic action and signaling pathways on Quina in human esophageal cancer has not yet been confirmed. In this study, we explored the anticancer effect of Quina against human esophageal cancer HCE-4 cells and the underlying mechanisms. The results of the Cell Counting Kit-8 (CCK-8) assay showed that Quina inhibited the viability of human esophageal cancer HCE-4 cells in a dose-dependent and time-dependent manner. It also inhibited HCE-4 cells proliferation and induced apoptosis by increasing the levels of Bad, caspase-3, and PARP, decreasing the level of Bcl-2. The results of the cell cycle analysis suggested that Quina arrested HCE-4 cells in the G0/G1 cycle by downregulating cyclin-dependent (CDK) 2/4, cyclin D1/E and upregulating the levels of p21 and p27. We also found that Quina activated mitogen-activated protein kinase (MAPK) and inhibited the signal transducer and activator of transcription-3 (STAT3) and nuclear factor kappa B (NF-κB) signaling pathways. Furthermore, Quina significantly increased intracellular reactive oxygen species (ROS) level. The pretreatment of N-acetyl-L-cysteine (NAC) blocked the apoptosis induced by Quina and inhibited the activities of MAPK, STAT3, and NF-κB signaling pathways. These results indicate that Quina induces the apoptosis in HCE-4 cells, which is via accumulating ROS generation and regulating MAPK, STAT3, and NF-κB. In conclusion, this study demonstrated that Quina have good therapeutic effects on human esophageal cancer cells.
Collapse
Affiliation(s)
- Yan-Qing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu-Qing Zhai
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan-Yu Feng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xue-Ying Ju
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
235
|
Mycobacterium tuberculosis Rv0580c Impedes the Intracellular Survival of Recombinant Mycobacteria, Manipulates the Cytokines, and Induces ER Stress and Apoptosis in Host Macrophages via NF-κB and p38/JNK Signaling. Pathogens 2021; 10:pathogens10020143. [PMID: 33535567 PMCID: PMC7912736 DOI: 10.3390/pathogens10020143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis (M. tb) genome encodes a large number of hypothetical proteins, which need to investigate their role in physiology, virulence, pathogenesis, and host interaction. To explore the role of hypothetical protein Rv0580c, we constructed the recombinant Mycobacterium smegmatis (M. smegmatis) strain, which expressed the Rv0580c protein heterologously. We observed that Rv0580c expressing M. smegmatis strain (Ms_Rv0580c) altered the colony morphology and increased the cell wall permeability, leading to this recombinant strain becoming susceptible to acidic stress, oxidative stress, cell wall-perturbing stress, and multiple antibiotics. The intracellular survival of Ms_Rv0580c was reduced in THP-1 macrophages. Ms_Rv0580c up-regulated the IFN-γ expression via NF-κB and JNK signaling, and down-regulated IL-10 expression via NF-κB signaling in THP-1 macrophages as compared to control. Moreover, Ms_Rv0580c up-regulated the expression of HIF-1α and ER stress marker genes via the NF-κB/JNK axis and JNK/p38 axis, respectively, and boosted the mitochondria-independent apoptosis in macrophages, which might be lead to eliminate the intracellular bacilli. This study explores the crucial role of Rv0580c protein in the physiology and novel host-pathogen interactions of mycobacteria.
Collapse
|
236
|
Singh R, Kaundal RK, Zhao B, Bouchareb R, Lebeche D. Resistin induces cardiac fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-Jun signaling. Pharmacol Res 2021; 167:105414. [PMID: 33524540 DOI: 10.1016/j.phrs.2020.105414] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
Cardiac fibrosis is characterized by excessive deposition of extracellular matrix proteins and myofibroblast differentiation. Our previous findings have implicated resistin in cardiac fibrosis; however, the molecular mechanisms underlying this process are still unclear. Here we investigated the role of resistin in fibroblast-to-myofibroblast differentiation and elucidated the pathways involved in this process. Fibroblast-to-myofibroblast transdifferentiation was induced with resistin or TGFβ1 in NIH-3T3 and adult cardiac fibroblasts. mRNA and protein expression of fibrotic markers were analyzed by qPCR and immunoblotting. Resistin-knockout mice, challenged with a high-fat diet (HFD) for 20 weeks to stimulate cardiac impairment, were analyzed for cardiac function and fibrosis using histologic and molecular methods. Cardiac fibroblasts stimulated with resistin displayed increased fibroblast-to-myofibroblast conversion, with increased levels of αSma, col1a1, Fn, Ccn2 and Mmp9, with remarkable differences in the actin network appearance. Mechanistically, resistin promotes fibroblast-to-myofibroblast transdifferentiation and fibrogenesis via JAK2/STAT3 and JNK/c-Jun signaling pathways, independent of TGFβ1. Resistin-null mice challenged with HFD showed an improvement in cardiac function and a decrease in tissue fibrosis and reduced mRNA levels of fibrogenic markers. These findings are the first to delineate the role of resistin in the process of cardiac fibroblast-to-myofibroblast differentiation via JAK/STAT3 and JNK/c-Jun pathways, potentially leading to stimulation of cardiac fibrosis.
Collapse
Affiliation(s)
- Rajvir Singh
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ravinder K Kaundal
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Baoyin Zhao
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rihab Bouchareb
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Diabetes, Obesity and Metabolism Institute, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
237
|
Lei L, Yang J, Zhang J, Zhang G. The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis. Redox Biol 2021; 42:101880. [PMID: 33541845 PMCID: PMC8113040 DOI: 10.1016/j.redox.2021.101880] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is emerging as an important contributor to the pathogenesis of colorectal cancer (CRC), however, the molecular mechanisms by which the disturbed redox balance regulates CRC development remain undefined. Using a liquid chromatography–tandem mass spectrometry-based lipidomics, we found that epoxyketooctadecenoic acid (EKODE), which is a lipid peroxidation product, was among the most dramatically increased lipid molecules in the colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. This is, at least in part, due to increased oxidative stress in colon tumors, as assessed by analyzing gene expression of oxidative markers in AOM/DSS-induced CRC mice and human CRC patients in the Cancer Genome Atlas (TCGA) database. Systemic, short-time treatment with low-dose EKODE increased the severity of DSS-induced colitis, caused intestinal barrier dysfunction and enhanced lipopolysaccharide (LPS)/bacterial translocation, and exacerbates the development of AOM/DSS-induced CRC in mice. Furthermore, treatment with EKODE, at nM doses, induced inflammatory responses via JNK-dependent mechanisms in both colon cancer cells and macrophage cells. Overall, these results demonstrate that the lipid peroxidation product EKODE is an important mediator of colonic inflammation and colon tumorigenesis, providing a novel mechanistic linkage between oxidative stress and CRC development.
Collapse
Affiliation(s)
- Lei Lei
- School of Medicine, Northwest University, Xi'an, China; Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
238
|
Turab Naqvi AA, Hasan GM, Hassan MI. Targeting Tau Hyperphosphorylation via Kinase Inhibition: Strategy to Address Alzheimer's Disease. Curr Top Med Chem 2021; 20:1059-1073. [PMID: 31903881 DOI: 10.2174/1568026620666200106125910] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/10/2023]
Abstract
Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer's disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi - 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj - 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi - 110025, India
| |
Collapse
|
239
|
Xu W, Mo Y, He Y, Fan Y, He G, Fu W, Chen S, Liu J, Liu W, Peng L, Xiao Y. A New Method for Chromosomes Preparation by ATP-Competitive Inhibitor SP600125 via Enhancement of Endomitosis in Fish. Front Bioeng Biotechnol 2021; 8:606496. [PMID: 33520960 PMCID: PMC7838586 DOI: 10.3389/fbioe.2020.606496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that 1,9-Pyrazoloanthrone, known as SP600125, can induce cell polyploidization. However, what is the phase of cell cycle arrest caused by SP600125 and the underlying regulation is still an interesting issue to be further addressed. Research in this article shows that SP600125 can block cell cycle progression at the prometaphase of mitosis and cause endomitosis. It is suggested that enhancement of the p53 signaling pathway and weakening of the spindle assembly checkpoint are associated with the SP600125-induced cell cycle arrest. Using preliminary SP600125 treatment, the samples of the cultured fish cells and the fish tissues display a great number of chromosome splitting phases. Summarily, SP600125 can provide a new protocol of chromosomes preparation for karyotype analysis owing to its interference with prometaphase of mitosis.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yanxiu Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China.,Department of Histology and Embryology, School of Basic Medical Science, Xiangnan University, Chenzhou, China
| | - Yu He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guomin He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
240
|
He W, Li J, Gong AY, Deng S, Li M, Wang Y, Mathy NW, Feng Y, Xiao L, Chen XM. Cryptosporidial Infection Suppresses Intestinal Epithelial Cell MAPK Signaling Impairing Host Anti-Parasitic Defense. Microorganisms 2021; 9:microorganisms9010151. [PMID: 33445463 PMCID: PMC7826584 DOI: 10.3390/microorganisms9010151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptosporidium is a genus of protozoan parasites that infect the gastrointestinal epithelium of a variety of vertebrate hosts. Intestinal epithelial cells are the first line of defense and play a critical role in orchestrating host immunity against Cryptosporidium infection. To counteract host defense response, Cryptosporidium has developed strategies of immune evasion to promote parasitic replication and survival within epithelial cells, but the underlying mechanisms are largely unclear. Using various models of intestinal cryptosporidiosis, we found that Cryptosporidium infection caused suppression of mitogen-activated protein kinase (MAPK) signaling in infected murine intestinal epithelial cells. Whereas expression levels of most genes encoding the key components of the MAPK signaling pathway were not changed in infected intestinal epithelial cells, we detected a significant downregulation of p38/Mapk, MAP kinase-activated protein kinase 2 (Mk2), and Mk3 genes in infected host cells. Suppression of MAPK signaling was associated with an impaired intestinal epithelial defense against C. parvum infection. Our data suggest that cryptosporidial infection may suppress intestinal epithelial cell MAPK signaling associated with the evasion of host antimicrobial defense.
Collapse
Affiliation(s)
- Wei He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.H.); (Y.F.); (L.X.)
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Juan Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Silu Deng
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Yang Wang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Nicholas W. Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.H.); (Y.F.); (L.X.)
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (W.H.); (Y.F.); (L.X.)
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68198-5880, USA; (J.L.); (A.-Y.G.); (S.D.); (M.L.); (Y.W.); (N.W.M.)
- Correspondence:
| |
Collapse
|
241
|
Debieu S, Solier S, Colombeau L, Versini A, Sindikubwabo F, Forrester A, Müller S, Cañeque T, Rodriguez R. Small Molecule Regulators of Ferroptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:81-121. [PMID: 34370289 DOI: 10.1007/978-3-030-62026-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a dedicated mode of cell death involving iron, reactive oxygen species and lipid peroxidation. Involved in processes such as glutathione metabolism, lysosomal iron retention or interference with lipid metabolism, leading either to activation or inhibition of ferroptosis. Given the implications of ferroptosis in diseases such as cancer, aging, Alzheimer and infectious diseases, new molecular mechanisms underlying ferroptosis and small molecules regulators that target those mechanisms have prompted a great deal of interest. Here, we discuss the current scenario of small molecules modulating ferroptosis and critically assess what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Sylvain Debieu
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Stéphanie Solier
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Ludovic Colombeau
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Antoine Versini
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Fabien Sindikubwabo
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Alison Forrester
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Sebastian Müller
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Tatiana Cañeque
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
- PSL Université Paris, Paris, France.
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France.
| |
Collapse
|
242
|
Huang G, Su J, Zhao W, Deng Z, Wang P, Dong H, Zhao H, Cai S. JNK modulates RAGE/β-catenin signaling and is essential for allergic airway inflammation in asthma. Toxicol Lett 2021; 336:57-67. [PMID: 33075463 DOI: 10.1016/j.toxlet.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 11/23/2022]
Abstract
As a leading cause of occupational asthma, toluene diisocyanate (TDI)-induced asthma is an inflammatory disease of the airways with one of the most significant characteristics involving inflammation, in which the receptor of advanced glycation end products (RAGE) plays an extremely important role. However, the mechanism underlying the upregulation of RAGE is still unknown. The aim of the present study was to examine whether JNK mediates β-catenin stabilization via activation of RAGE in asthma. Herein from the results by analyzing the blood from healthy donors and patients with asthma, it was found that the expression of RAGE and p-JNK is highly correlated and elevated concomitantly with the severity of bronchial asthma. Additionally, upon sensitizing and challenging the mice with TDI, we found that RAGE inhibitor (FPS-ZM1) and JNK inhibitor (SP600125) significantly reduced the TDI-induced asthma inflammation in vivo. Furthermore, SP600125 also considerably restored RAGE and p-JNK expression. Besides, the in vitro results from TDI-HSA treatment of 16HBE cells reveal that therapeutic inhibition of JNK reduced TDI driving RAGE expression and β-catenin translocation, while treatment with Anisomycin, a JNK agonist, showed the opposite effect. Moreover, genetic knockdown of RAGE does not contribute to JNK phosphorylation, indicating that JNK functions upstream of RAGE. Collectively, these findings highlight a role for JNK signaling in RAGE/β-catenin regulation and have important therapeutic implications for the treatment of TDI induced asthma.
Collapse
Affiliation(s)
- Guohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinwei Su
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhixuan Deng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
243
|
Abstract
Ras proteins mediate extracellular and cytoplasmic signaling networks via receptor tyrosine kinase. The Ras pathway induces activation of signaling molecules involved in cell proliferation and growth, cell survival and apoptosis, metabolism, and motility. Although Ras mutations in breast cancer are not frequently reported, hyperactivation of Ras signaling plays an important role in breast cancer growth and progression. Oncogenic Ras activation occurs via loss of Ras GTPase-activating proteins, overexpression of growth factor receptor, and stimulation by various cytokines. Effective control of oncogenic Ras is one of the therapeutic strategies in breast cancer. The mechanisms of intracellular localization, activation, and signaling pathway of Ras in cancer have been used to develop therapeutic candidates. Recent studies have reported an effective therapy for breast cancer by inhibition of enzymes involved in the posttranslational modification of Ras, such as farnesyltransferase and geranylgeranyltransferase 1, and anti-cancer therapies targeting the epidermal growth factor receptor (EGFR). Emerging targets involved in EGF-mediated Ras activity in breast cancer have shed new insight into Ras activation in breast cancer progression. These alternative mechanisms for Ras signaling pathway may suggest novel therapeutic approaches for targeting Ras in breast cancer. In spite of the difficulties in targeting Ras protein, important discoveries highlight the direct inhibition of Ras activity. Further studies may elucidate the effects of targeting Ras protein and the clinical relevance thereof.
Collapse
|
244
|
Zhang X, Sun W, He L, Wang L, Qiu K, Yin J. Global DNA methylation pattern involved in the modulation of differentiation potential of adipogenic and myogenic precursors in skeletal muscle of pigs. Stem Cell Res Ther 2020; 11:536. [PMID: 33308295 PMCID: PMC7731745 DOI: 10.1186/s13287-020-02053-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Skeletal muscle is a complex and heterogeneous tissue accounting for approximately 40% of body weight. Excessive ectopic lipid accumulation in the muscle fascicle would undermine the integrity of skeletal muscle in humans but endow muscle with marbling-related characteristics in farm animals. Therefore, the balance of myogenesis and adipogenesis is of great significance for skeletal muscle homeostasis. Significant DNA methylation occurs during myogenesis and adipogenesis; however, DNA methylation pattern of myogenic and adipogenic precursors derived from skeletal muscle remains unknown yet. Methods In this study, reduced representation bisulfite sequencing was performed to analyze genome-wide DNA methylation of adipogenic and myogenic precursors derived from the skeletal muscle of neonatal pigs. Integrated analysis of DNA methylation and transcription profiles was further conducted. Based on the results of pathway enrichment analysis, myogenic precursors were transfected with CACNA2D2-overexpression plasmids to explore the function of CACNA2D2 in myogenic differentiation. Results As a result, 11,361 differentially methylated regions mainly located in intergenic region and introns were identified. Furthermore, 153 genes with different DNA methylation and gene expression level between adipogenic and myogenic precursors were characterized. Subsequently, pathway enrichment analysis revealed that DNA methylation programing was involved in the regulation of adipogenic and myogenic differentiation potential through mediating the crosstalk among pathways including focal adhesion, regulation of actin cytoskeleton, MAPK signaling pathway, and calcium signaling pathway. In particular, we characterized a new role of CACNA2D2 in inhibiting myogenic differentiation by suppressing JNK/MAPK signaling pathway. Conclusions This study depicted a comprehensive landmark of DNA methylome of skeletal muscle-derived myogenic and adipogenic precursors, highlighted the critical role of CACNA2D2 in regulating myogenic differentiation, and illustrated the possible regulatory ways of DNA methylation on cell fate commitment and skeletal muscle homeostasis. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02053-3.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
245
|
Song Y, Hu G, Jia J, Yao M, Wang X, Lu W, Hutchins AP, Chen J, Ozato K, Yao H. DNA Damage Induces Dynamic Associations of BRD4/P-TEFb With Chromatin and Modulates Gene Transcription in a BRD4-Dependent and -Independent Manner. Front Mol Biosci 2020; 7:618088. [PMID: 33344510 PMCID: PMC7746802 DOI: 10.3389/fmolb.2020.618088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The bromodomain-containing protein BRD4 has been thought to transmit epigenetic information across cell divisions by binding to both mitotic chromosomes and interphase chromatin. UV-released BRD4 mediates the recruitment of active P-TEFb to the promoter, which enhances transcriptional elongation. However, the dynamic associations between BRD4 and P-TEFb and BRD4-mediated gene regulation after UV stress are largely unknown. In this study, we found that BRD4 dissociates from chromatin within 30 min after UV treatment and thereafter recruits chromatin. However, P-TEFb binds tightly to chromatin right after UV treatment, suggesting that no interactions occur between BRD4 and P-TEFb within 30 min after UV stress. BRD4 knockdown changes the distribution of P-TEFb among nuclear soluble and chromatin and downregulates the elongation activity of RNA polymerase II. Inhibition of JNK kinase but not other MAP kinases impedes the interactions between BRD4 and P-TEFb. RNA-seq and ChIP assays indicate that BRD4 both positively and negatively regulates gene transcription in cells treated with UV stress. These results reveal previously unrecognized dynamics of BRD4 and P-TEFb after UV stress and regulation of gene transcription by BRD4 acting as either activator or repressor in a context-dependent manner.
Collapse
Affiliation(s)
- Yawei Song
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Gongcheng Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jinping Jia
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mingze Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenliang Lu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
246
|
Abstract
Obesity is a health condition that has reached pandemic levels and is implicated in the development and progression of type 2 diabetes mellitus, cancer and heart failure. A key characteristic of obesity is the activation of stress-activated protein kinases (SAPKs), such as the p38 and JNK stress kinases, in several organs, including adipose tissue, liver, skeletal muscle, immune organs and the central nervous system. The correct timing, intensity and duration of SAPK activation contributes to cellular metabolic adaptation. By contrast, uncontrolled SAPK activation has been proposed to contribute to the complications of obesity. The stress kinase signalling pathways have therefore been identified as potential targets for the development of novel therapeutic approaches for metabolic syndrome. The past few decades have seen intense research efforts to determine how these kinases are regulated in a cell-specific manner and to define their contribution to the development of obesity and insulin resistance. Several studies have uncovered new and unexpected functions of the non-classical members of both pathways. Here, we provide an overview of the role of SAPKs in metabolic control and highlight important discoveries in the field.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
247
|
Nardi M, Baldelli S, Ciriolo MR, Costanzo P, Procopio A, Colica C. Oleuropein Aglycone Peracetylated (3,4-DHPEA-EA(P)) Attenuates H 2O 2-Mediated Cytotoxicity in C2C12 Myocytes via Inactivation of p-JNK/p-c-Jun Signaling Pathway. Molecules 2020; 25:E5472. [PMID: 33238414 PMCID: PMC7700591 DOI: 10.3390/molecules25225472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Oleuropein, a glycosylated secoiridoid present in olive leaves, is known to be an important antioxidant phenolic compound. We studied the antioxidant effect of low doses of oleuropein aglycone (3,4-DHPEA-EA) and oleuropein aglycone peracetylated (3,4-DHPEA-EA(P)) in murine C2C12 myocytes treated with hydrogen peroxide (H2O2). Both compounds were used at a concentration of 10 μM and were able to inhibit cell death induced by the H2O2 treatment, with 3,4-DHPEA-EA(P) being more. Under our experimental conditions, H2O2 efficiently induced the phosphorylated-active form of JNK and of its downstream target c-Jun. We demonstrated, by Western blot analysis, that 3,4-DHPEA-EA(P) was efficient in inhibiting the phospho-active form of JNK. This data suggests that the growth arrest and cell death of C2C12 proceeds via the JNK/c-Jun pathway. Moreover, we demonstrated that 3,4-DHPEA-EA(P) affects the myogenesis of C2C12 cells; because MyoD mRNA levels and the differentiation process are restored with 3,4-DHPEA-EA(P) after treatment. Overall, the results indicate that 3,4-DHPEA-EA(P) prevents ROS-mediated degenerative process by functioning as an efficient antioxidant.
Collapse
Affiliation(s)
- Monica Nardi
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, 00163 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Paola Costanzo
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Antonio Procopio
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy;
| |
Collapse
|
248
|
Wu J, Lai X, Cui G, Chen Q, Liu J, Kang Y, Zhang Y, Feng X, Hu C, Shao L. Dual effects of JNK activation in blood-milk barrier damage induced by zinc oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122809. [PMID: 32937690 DOI: 10.1016/j.jhazmat.2020.122809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/10/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have been extensively applied in our daily life. Humans are at high risk of being exposed to ZnO-NPs, which induce potentially adverse health effects. Although a growing number of studies have investigated the toxic effects of ZnO-NPs, the available data concerning ZnO-NP interactions with the blood-milk barrier (BMB) remain highly limited. Herein, we systematically investigated the damage to BMB integrity induced by ZnO-NPs and the mechanisms involved. ZnO-NPs that were intravenously injected into lactating dams accumulated in the mammary gland and entered into the breast milk, inducing disruption to BMB integrity and changes in the tight junction (TJ) and adherens junction (AJ) components. Furthermore, using an in vitro BMB model composed of EpH4-Ev cells, we verified that ZnO-NP-triggered ROS generation and the activation of MKK4 and JNK are the main mechanism of cell-cell junction damage. More interestingly, JNK activation played different roles in inducing changes in the TJ and AJ complex, and these effects did not need to activate the downstream c-Jun. These data provide more information for understanding ZnO-NP interactions with the BMB and raise concern for the daily use and the intravenous use of ZnO-NPs by lactating mothers.
Collapse
Affiliation(s)
- Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangman Cui
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
249
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
250
|
French AJ, Natesampillai S, Krogman A, Correia C, Peterson KL, Alto A, Chandrasekar AP, Misra A, Li Y, Kaufmann SH, Badley AD, Cummins NW. Reactivating latent HIV with PKC agonists induces resistance to apoptosis and is associated with phosphorylation and activation of BCL2. PLoS Pathog 2020; 16:e1008906. [PMID: 33075109 PMCID: PMC7595626 DOI: 10.1371/journal.ppat.1008906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/29/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Eradication of HIV-1 by the "kick and kill" strategy requires reactivation of latent virus to cause death of infected cells by either HIV-induced or immune-mediated apoptosis. To date this strategy has been unsuccessful, possibly due to insufficient cell death in reactivated cells to effectively reduce HIV-1 reservoir size. As a possible cause for this cell death resistance, we examined whether leading latency reversal agents (LRAs) affected apoptosis sensitivity of CD4 T cells. Multiple LRAs of different classes inhibited apoptosis in CD4 T cells. Protein kinase C (PKC) agonists bryostatin-1 and prostratin induced phosphorylation and enhanced neutralizing capability of the anti-apoptotic protein BCL2 in a PKC-dependent manner, leading to resistance to apoptosis induced by both intrinsic and extrinsic death stimuli. Furthermore, HIV-1 producing CD4 T cells expressed more BCL2 than uninfected cells, both in vivo and after ex vivo reactivation. Therefore, activation of BCL2 likely contributes to HIV-1 persistence after latency reversal with PKC agonists. The effects of LRAs on apoptosis sensitivity should be considered in designing HIV cure strategies predicated upon the "kick and kill" paradigm.
Collapse
Affiliation(s)
- Andrea J. French
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sekar Natesampillai
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ashton Krogman
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cristina Correia
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kevin L. Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alecia Alto
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aswath P. Chandrasekar
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anisha Misra
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Scott H. Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|