201
|
Tong J, Nguyen L, Vidal A, Simon SA, Skene JHP, McIntosh TJ. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to Raft bilayers. Biophys J 2007; 94:125-33. [PMID: 17827240 PMCID: PMC2134862 DOI: 10.1529/biophysj.107.110536] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) is critical for a number of physiological functions, and its presence in membrane microdomains (rafts) appears to be important for several of these spatially localized events. However, lipids like PIP(2) that contain polyunsaturated hydrocarbon chains are usually excluded from rafts, which are enriched in phospholipids (such as sphingomyelin) containing saturated or monounsaturated chains. Here we tested a mechanism by which multivalent PIP(2) molecules could be transferred into rafts through electrostatic interactions with polybasic cytoplasmic proteins, such as GAP-43, which bind to rafts via their acylated N-termini. We analyzed the interactions between lipid membranes containing raft microdomains and a peptide (GAP-43P) containing the linked N-terminus and the basic effector domain of GAP-43. In the absence or presence of nonacylated GAP-43P, PIP(2) was found primarily in detergent-soluble membranes thought to correspond to nonraft microdomains. However, when GAP-43P was acylated by palmitoyl coenzyme A, both the peptide and PIP(2) were greatly enriched in detergent-resistant membranes that correspond to rafts; acylation of GAP-43P changed the free energy of transfer of PIP(2) from detergent-soluble membranes to detergent-resistant membranes by -1.3 kcal/mol. Confocal microscopy of intact giant unilamellar vesicles verified that in the absence of GAP-43P PIP(2) was in nonraft microdomains, whereas acylated GAP-43P laterally sequestered PIP(2) into rafts. These data indicate that sequestration of PIP(2) to raft microdomains could involve interactions with acylated basic proteins such as GAP-43.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
202
|
Abstract
Oxidant stress, induced under a variety of conditions, is known to lead to the molecular reprogramming of the tissue-fixed macrophage. This reprogramming is associated with an altered response to subsequent inflammatory stimuli, such as lipopolysaccharide (LPS), leading to enhanced liberation of proinflammatory chemokines and cytokines. Due to this altered response, dysregulated immunity ensues, leading to the development of clinical syndromes such as multiple organ dysfunction syndrome (MODS). Although the mechanisms responsible for this altered macrophage activity by oxidant stress remains complex and poorly elucidated, it appears, based on recent research, that early and direct alterations within lipid rafts are responsible. This early and direct interaction with lipid rafts by oxidants leads to the mobilization of annexin VI from lipid raft constructs, leading to the release of calcium. This increased cytosolic concentration of this secondary messenger, in turn, results in the activation of calcium-dependent kinases, leading to further alterations in lipid raft lipids and eventually lipid raft proteins. Due to these lipid raft compositional changes, preassembly of receptor complexes occur, leading to enhanced proinflammatory activation. Within this review, the complexity of oxidant-induced reprogramming within the tissue fixed macrophage as currently understood is explained.
Collapse
Affiliation(s)
- Joseph Cuschieri
- University of Washington, Department of Surgery, Seattle, Washington 98104, USA.
| | | |
Collapse
|
203
|
Eisenberg S, Henis YI. Interactions of Ras proteins with the plasma membrane and their roles in signaling. Cell Signal 2007; 20:31-9. [PMID: 17888630 DOI: 10.1016/j.cellsig.2007.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 07/18/2007] [Indexed: 12/21/2022]
Abstract
The complex dynamic structure of the plasma membrane plays critical roles in cellular signaling; interactions with the membrane lipid milieu, spatial segregation within and between cellular membranes and/or targeting to specific membrane-associated scaffolds are intimately involved in many signal transduction pathways. In this review, we focus on the membrane interactions of Ras proteins. These small GTPases play central roles in the regulation of cell growth and proliferation, and their excessive activation is commonly encountered in human tumors. Ras proteins associate with the membrane continuously via C-terminal lipidation and additional interactions in both their inactive and active forms; this association, as well as the targeting of specific Ras isoforms to plasma membrane microdomains and to intracellular organelles, have recently been implicated in Ras signaling and oncogenic potential. We discuss biochemical and biophysical evidence for the roles of specific domains of Ras proteins in mediating their association with the plasma membrane, and consider the potential effects of lateral segregation and interactions with membrane-associated protein assemblies on the signaling outcomes.
Collapse
Affiliation(s)
- Sharon Eisenberg
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
204
|
Prinetti A, Prioni S, Loberto N, Aureli M, Chigorno V, Sonnino S. Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes. Biochim Biophys Acta Gen Subj 2007; 1780:585-96. [PMID: 17889439 DOI: 10.1016/j.bbagen.2007.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/26/2007] [Accepted: 08/02/2007] [Indexed: 12/11/2022]
Abstract
Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas.
Collapse
Affiliation(s)
- Alessandro Prinetti
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy.
| | | | | | | | | | | |
Collapse
|
205
|
Avramidou A, Kroczek C, Lang C, Schuh W, Jäck HM, Mielenz D. The novel adaptor protein Swiprosin-1 enhances BCR signals and contributes to BCR-induced apoptosis. Cell Death Differ 2007; 14:1936-47. [PMID: 17673920 DOI: 10.1038/sj.cdd.4402206] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
B-cell receptor (BCR) signals are essential for B-cell differentiation, homeostasis and negative selection, which are regulated by the strength and quality of BCR signals. Recently, we identified a new adaptor protein, Swiprosin-1, in lipid rafts of B-cell lines that undergo apoptosis after BCR stimulation. During murine B-cell development, Swiprosin-1 exhibited highest expression in immature B cells of the bone marrow, but was also expressed in resting and activated splenic B cells and in non-lymphoid tissue, especially in the brain. Ectopic expression of Swiprosin-1 in the immature murine B-cell line WEHI231 enhanced spontaneous and BCR-induced apoptosis. In contrast, short hairpin RNA (shRNA)-mediated downregulation of Swiprosin-1 impaired specifically spontaneous and BCR-elicited apoptosis, but not BCR-induced G1 cell cycle arrest and upregulation of the cell cycle inhibitor p27(Kip1). In accordance, Swiprosin-1 abundance regulated net cell growth of WEHI231 cell populations through reciprocal regulation of Bcl-xL, but not Bim, thereby controlling spontaneous apoptosis. Swiprosin-1-enhanced apoptosis was blocked through nuclear factor kappaB-activating stimuli, namely B-cell-activating factor of the TNF family, anti-CD40 and lipopolysaccharide (LPS). This correlated with enhanced BCR-induced IkappaB-alpha phosphorylation and degradation in cells expressing a Swiprosin-1-specific shRNA. Finally, ectopic Swiprosin-1 expression enhanced BCR-induced cell death in primary, LPS-stimulated splenic B cells. Hence, Swiprosin-1 may regulate lifespan and BCR signaling thresholds in immature B cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Animals
- Apoptosis
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Calcium-Binding Proteins/chemistry
- Cell Cycle
- Cell Line
- Cell Proliferation
- Cells, Cultured
- G1 Phase
- Humans
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- NF-kappa B/metabolism
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- RNA Interference
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- A Avramidou
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
206
|
Yuyama K, Sekino-Suzuki N, Sanai Y, Kasahara K. Translocation of activated heterotrimeric G protein Galpha(o) to ganglioside-enriched detergent-resistant membrane rafts in developing cerebellum. J Biol Chem 2007; 282:26392-400. [PMID: 17623667 DOI: 10.1074/jbc.m705046200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of gangliosides with specific proteins in the central nervous system was examined by co-immunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 immunoprecipitated phosphoproteins of 40, 53, 56, and 80 kDa from the rat cerebellum. Of these proteins, the 40-kDa protein was identified as the alpha-subunit of a heterotrimeric G protein, G(o) (Galpha(o)). Using sucrose density gradient analysis of cerebellar membranes, Galpha(o), but not Gbetagamma, was observed in detergent-resistant membrane (DRM) raft fractions in which GD3 was abundant after the addition of guanosine 5'-O-(thiotriphosphate) (GTPgammaS), which stabilizes G(o) in its active form. On the other hand, both Galpha(o) and Gbetagamma were excluded from the DRM raft fractions in the presence of guanyl-5'-yl thiophosphate, which stabilizes G(o) in its inactive form. Only Galpha(o) was observed in the DRM fractions from the cerebellum on postnatal day 7, but not from that in adult. After pertussis toxin treatment, Galpha(o) was not observed in the DRM fractions, even from the cerebellum on postnatal day 7. These results indicate the activation-dependent translocation of Galpha(o) into the DRM rafts. Furthermore, Galpha(o) was concentrated in the neuronal growth cones. Treatment with stromal cell-derived factor-1alpha, a physiological ligand for the G protein-coupled receptor, stimulated [(35)S]GTPgammaS binding to Galpha(o) and caused Galpha(o) translocation to the DRM fractions and RhoA translocation to the membrane fraction, leading to the growth cone collapse of cerebellar granule neurons. The collapse was partly prevented by pretreatment with the cholesterol-sequestering and raft-disrupting agent methyl-beta-cyclodextrin. These results demonstrate the involvement of signal-dependent Galpha(o) translocation to the DRM in the growth cone behavior of cerebellar granule neurons.
Collapse
Affiliation(s)
- Kohei Yuyama
- Biomembrane Signaling Project 2, Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, 3-18-22 Honkomagome Bunkyo-ku, Tokyo, 113-8613 Japan
| | | | | | | |
Collapse
|
207
|
Sugama J, Yu JZ, Rasenick MM, Nakahata N. Mastoparan inhibits beta-adrenoceptor-G(s) signaling by changing the localization of Galpha(s) in lipid rafts. Cell Signal 2007; 19:2247-54. [PMID: 17692506 DOI: 10.1016/j.cellsig.2007.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/21/2007] [Indexed: 11/19/2022]
Abstract
Mastoparan, a wasp venom toxin, has various pharmacological activities, the mechanisms of which are still unknown. To clarify the action of mastoparan on G protein-coupled receptor-mediated signaling, we previously examined the effect of mastoparan on G(q)-mediated signaling and demonstrated that mastoparan binds to gangliosides causing a decrease in Galpha(q/11) content in lipid rafts, and resulting in the inhibition of G(q)-mediated phosphoinositide hydrolysis (Sugama et al., Mol. Pharmacol., 68, 1466, 2005). In the present study, we examined the effect of mastoparan on beta-adrenoceptor-G(s) signaling in 1321N1 human astrocytoma cells. Mastoparan inhibited isoproterenol-induced elevation of cyclic AMP in a concentration-dependent manner. Although mastoparan is known to be an activator of G(i), pertussis toxin only slightly attenuated mastoparan-induced inhibition of cyclic AMP elevation, suggesting that a major part of the inhibition of cyclic AMP elevation induced by mastoparan is not mediated by Galpha(i). By contrast, mastoparan-induced inhibition of cyclic AMP elevation was clearly attenuated by preincubation of the cells with ganglioside mixtures. Moreover, mastoparan changed the localization of Galpha(s) in lipid rafts without disrupting the structure of lipid rafts. Fluorescent staining analysis showed that mastoparan released GFP-Galpha(s) from plasma membranes into the cytosol. These results suggest that the mastoparan-induced suppression of cyclic AMP elevation is mainly caused by changing the localization of Galpha(s) in lipid rafts into a compartment in the cellular interior where it is not available to activate adenylyl cyclase.
Collapse
Affiliation(s)
- Jun Sugama
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
208
|
Lee J, Sugden B. A membrane leucine heptad contributes to trafficking, signaling, and transformation by latent membrane protein 1. J Virol 2007; 81:9121-30. [PMID: 17581993 PMCID: PMC1951399 DOI: 10.1128/jvi.00136-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein Barr virus (EBV) is important for maintaining proliferation of EBV-infected B cells. LMP1, unlike its cellular counterpart, CD40, signals without a ligand and is largely internal to the plasma membrane. In order to understand how LMP1 initiates its ligand-independent signaling, we focused on a leucine heptad in LMP1's first membrane-spanning domain that was shown to be necessary for LMP1's signaling through NF-kappaB. LZ1EBV, a recombinant EBV genetically altered to express LZ1, a derivative of LMP1 in which a leucine heptad was replaced with alanines, transformed B cells with 56% of wild-type (wt) EBV's efficiency, demonstrating the importance of this heptad. To elucidate the mechanism by which this domain contributes to the functions of LMP1, the properties of the wt and LZ1 were compared in transfected cells. LZ1 failed to home to lipid rafts as efficiently as did wt LMP1. The distribution of tagged derivatives of LZ1 also differed from that of wt LMP1 in transfected cells. LZ1's defect in homing to lipid rafts and altered trafficking likely underlie the defect in transformation of LZ1EBV. While the third and fourth membrane-spanning domains of LMP1 foster its trafficking to the Golgi, the leucine heptad within the first membrane-spanning domain contributes to its trafficking, particularly to internal rafts. B cells that are successfully transformed by LZ1EBV have the same average number of viral genomes and the same fraction of cells with capped LZ1 at the cell surface but express 50% more of the LZ1 allele than wt infected cells.
Collapse
Affiliation(s)
- Jisook Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
209
|
Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H. Lipidated ras and rab peptides and proteins--synthesis, structure, and function. Angew Chem Int Ed Engl 2007; 45:6622-46. [PMID: 17031879 DOI: 10.1002/anie.200600855] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemical biology can be defined as the study of biological phenomena from a chemical approach. Based on the analysis of relevant biological phenomena and their structural foundation, unsolved problems are identified and tackled through a combination of chemistry and biology. Thus, new synthetic methods and strategies are developed and employed for the construction of compounds that are used to investigate biological procedures. Solid-phase synthesis has emerged as the preferred method for the synthesis of lipidated peptides, which can be chemoselectively ligated to proteins of the Ras superfamily. The generated peptides and proteins have solved biological questions in the field of the Ras-superfamily GTPases that are not amendable to chemical or biological techniques alone.
Collapse
Affiliation(s)
- Luc Brunsveld
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
210
|
Renner U, Glebov K, Lang T, Papusheva E, Balakrishnan S, Keller B, Richter DW, Jahn R, Ponimaskin E. Localization of the mouse 5-hydroxytryptamine(1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol Pharmacol 2007; 72:502-13. [PMID: 17540717 DOI: 10.1124/mol.107.037085] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we have used wild-type and palmitoylation-deficient mouse 5-hydroxytryptamine(1A) receptor (5-HT1A) receptors fused to the yellow fluorescent protein- and the cyan fluorescent protein (CFP)-tagged alpha(i3) subunit of heterotrimeric G-protein to study spatiotemporal distribution of the 5-HT1A-mediated signaling in living cells. We also addressed the question on the molecular mechanisms by which receptor palmitoylation may regulate communication between receptors and G(i)-proteins. Our data demonstrate that activation of the 5-HT1A receptor caused a partial release of Galpha(i) protein into the cytoplasm and that this translocation is accompanied by a significant increase of the intracellular Ca(2+) concentration. In contrast, acylation-deficient 5-HT1A mutants failed to reproduce both Galpha(i3)-CFP relocation and changes in [Ca(2+)](i) upon agonist stimulation. By using gradient centrifugation and copatching assays, we also demonstrate that a significant fraction of the 5-HT1A receptor resides in membrane rafts, whereas the yield of the palmitoylation-deficient receptor in these membrane microdomains is reduced considerably. Our results suggest that receptor palmitoylation serves as a targeting signal responsible for the retention of the 5-HT1A receptor in membrane rafts. More importantly, the raft localization of the 5-HT1A receptor seems to be involved in receptor-mediated signaling.
Collapse
Affiliation(s)
- Ute Renner
- Abteilung Neuro- und Sinnesphysiologie, Physiologisches Institut, Universität Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Paar C, Wurm S, Pfarr W, Sonnleitner A, Wechselberger C. Prion protein resides in membrane microclusters of the immunological synapse during lymphocyte activation. Eur J Cell Biol 2007; 86:253-64. [PMID: 17449139 DOI: 10.1016/j.ejcb.2007.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/19/2007] [Accepted: 03/07/2007] [Indexed: 12/22/2022] Open
Abstract
Expression of prion protein (PrP) has been reported for a variety of cell types including neuronal cells, haematopoietic stem cells, antigen-presenting cells, as well as lymphocytes. However, besides this widespread occurrence little is known about the physiological roles exhibited by this enigmatic protein. In this study, the contribution of PrP to the classical T-lymphocyte activation process was characterized by clustering the T-cell receptor component CD3epsilon as well as PrP with soluble and surface-immobilized antibodies, respectively. We present evidence that PrP is a component of signaling structures recently described as plasma membrane microclusters established during T-lymphocyte activation. The formation of immunological synapses, however, did not depend on the presence of PrP as proven by siRNA knockdown experiments, indicating very subtle physiological roles of PrP in vivo within the immune system.
Collapse
Affiliation(s)
- Christian Paar
- Upper Austrian Research GmbH, Center for Biomedical Nanotechnology, Scharitzerstrasse 6-8, A-4020 Linz, Austria
| | | | | | | | | |
Collapse
|
212
|
Pang DJ, Hayday AC, Bijlmakers MJ. CD8 Raft Localization Is Induced by Its Assembly into CD8αβ Heterodimers, Not CD8αα Homodimers. J Biol Chem 2007; 282:13884-94. [PMID: 17341584 DOI: 10.1074/jbc.m701027200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The coreceptor CD8 is expressed as a CD8alphabeta heterodimer on major histocompatibility complex class I-restricted TCRalphabeta T cells, and as a CD8alphaalpha homodimer on subsets of memory T cells, intraepithelial lymphocytes, natural killer cells, and dendritic cells. Although the role of CD8alphaalpha is not well understood, it is increasingly clear that this protein is not a functional homologue of CD8alphabeta. On major histocompatibility complex class I-restricted T cells, CD8alphabeta is a more efficient TCR coreceptor than CD8alphaalpha. This property has for the mouse protein been attributed to the recruitment of CD8alphabeta into lipid rafts, which is dependent on CD8beta palmitoylation. Here, these divergent distributions of CD8alphabeta and CD8alphaalpha are demonstrated for the human CD8 proteins as well. However, although palmitoylation of both CD8alpha and CD8beta chains was detected, this modification did not contribute to raft localization. In contrast, arginines in the cytoplasmic domain are crucial for raft localization of CD8betabeta. Most strikingly, the assembly of a non-raft localized CD8beta chain with a non-raft localized CD8alpha chain resulted in raft-localized CD8alphabeta heterodimers. Using chimeric CD8 proteins, this property of the heterodimer was found to be determined by the assembly of CD8alpha and CD8beta extracellular regions. The presence of two CD8alpha extracellular regions, on the other hand, appears to preclude raft localization. Thus, heterodimer formation and raft association are intimately linked for CD8alphabeta. These results emphasize that lipid raft localization is a key feature of human CD8alphabeta that clearly distinguishes it from CD8alphaalpha.
Collapse
MESH Headings
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line
- Dendritic Cells/immunology
- Dimerization
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunologic Memory/genetics
- Killer Cells, Natural/immunology
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Palmitic Acid/immunology
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Dick John Pang
- Peter Gorer Department of Immunobiology, King's College London, School of Medicine at Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | |
Collapse
|
213
|
Rajala RVS, Elliott MH, McClellan ME, Anderson RE. Localization of the insulin receptor and phosphoinositide 3-kinase in detergent-resistant membrane rafts of rod photoreceptor outer segments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:491-7. [PMID: 17249614 DOI: 10.1007/0-387-32442-9_68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, USA.
| | | | | | | |
Collapse
|
214
|
Callera GE, Montezano AC, Yogi A, Tostes RC, Touyz RM. Vascular signaling through cholesterol-rich domains: implications in hypertension. Curr Opin Nephrol Hypertens 2007; 16:90-104. [PMID: 17293683 DOI: 10.1097/mnh.0b013e328040bfbd] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Lipid rafts are emerging as key players in the integration of cellular responses. Alterations in these highly regulated signaling cascades are important in structural, mechanical and functional abnormalities that underlie vascular pathological processes. The present review focuses on recent advances in signal transduction through caveolae/lipid rafts, implicated in hypertensive processes. RECENT FINDINGS Caveolae/lipid rafts function as sites of dynamic regulatory events in receptor-induced signal transduction. Mediators of vascular function, including G-protein coupled receptors, Src family tyrosine kinases, receptor tyrosine kinases, protein phosphatases and nitric oxide synthase, are concentrated within these microdomains. The assembly of functionally active nicotinamide adenine dinucleotide phosphate oxidase and subsequent reactive oxygen species production are also dependent on interactions within the caveolae/lipid rafts. Recent findings have also demonstrated the importance of actin-cytoskeleton and focal adhesion sites for protein interactions with caveolae/lipid raft. SUMMARY Many vascular signaling processes are altered in hypertension. Whether these events involve lipid rafts/caveolae remains unclear. A better understanding of how signaling molecules compartmentalize in lipid rafts/caveolae will provide further insights into molecular mechanisms underlying vascular damage in cardiovascular disease.
Collapse
Affiliation(s)
- Glaucia E Callera
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ottawa, Canada.
| | | | | | | | | |
Collapse
|
215
|
Escribá PV, Wedegaertner PB, Goñi FM, Vögler O. Lipid–protein interactions in GPCR-associated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:836-52. [PMID: 17067547 DOI: 10.1016/j.bbamem.2006.09.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Molecular and Cellular Biomedicine, Institut Universitari d'Investigació en Ciències de la Salut, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | |
Collapse
|
216
|
Leyt J, Melamed-Book N, Vaerman JP, Cohen S, Weiss AM, Aroeti B. Cholesterol-sensitive modulation of transcytosis. Mol Biol Cell 2007; 18:2057-71. [PMID: 17392516 PMCID: PMC1877098 DOI: 10.1091/mbc.e06-08-0735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.
Collapse
Affiliation(s)
| | - Naomi Melamed-Book
- Confocal Unit, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Jean-Pierre Vaerman
- Experimental Medicine, Universite Catholique de Louvain and Christian de Duve Institute of Cell Pathology, B-1200 Brussels, Belgium; and
| | | | - Aryeh M. Weiss
- Confocal Unit, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
- School of Engineering, Bar Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
217
|
Delaunay JL, Breton M, Goding JW, Trugnan G, Maurice M. Differential detergent resistance of the apical and basolateral NPPases: relationship with polarized targeting. J Cell Sci 2007; 120:1009-16. [PMID: 17311850 DOI: 10.1242/jcs.002717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Targeting of glycosylphosphatidylinositol-anchored proteins to the apical surface of epithelial cells involves clustering in Triton X-100-resistant membrane microdomains or rafts. The role of these microdomains in sorting transmembrane proteins is more questionable because, unlike glycosylphosphatidylinositol-anchored proteins, apical transmembrane proteins are rather soluble in Triton X-100. They are, however, resistant to milder detergents such as Lubrol WX or Tween 20. It has been proposed that specific membrane microdomains, defined by resistance to these detergents, would carry transmembrane proteins to the apical surface. We have used MDCK cells stably transfected with the apical and basolateral pyrophosphatases/phosphodiesterases, NPP3 and NPP1, to examine the relationship between detergent resistance and apical targeting. The apically expressed wild-type NPP3 was insoluble in Lubrol WX whereas wild-type NPP1, which is expressed basolaterally, was essentially soluble. By using tail mutants and chimeric constructs that combine the cytoplasmic, transmembrane and extracellular domains of NPP1 and NPP3, we show that there is not a strict correlation between detergent resistance and apical targeting. Lubrol resistance is an intrinsic property of NPP3, which is acquired early during the biosynthetic process irrespective of its final destination, and depends on positively charged residues in its cytoplasmic tail.
Collapse
|
218
|
Barbat C, Trucy M, Sorice M, Garofalo T, Manganelli V, Fischer A, Mazerolles F. p56lck, LFA-1 and PI3K but not SHP-2 interact with GM1- or GM3-enriched microdomains in a CD4-p56lck association-dependent manner. Biochem J 2007; 402:471-81. [PMID: 17123354 PMCID: PMC1863576 DOI: 10.1042/bj20061061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/14/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
We previously showed that the association of CD4 and G(M3) ganglioside induced by CD4 ligand binding was required for the down-regulation of adhesion and that aggregation of ganglioside-enriched domains was accompanied by transient co-localization of LFA-1 (lymphocyte function-associated antigen-1), PI3K (phosphoinositide 3-kinase) and CD4. We also showed that these proteins co-localized with the G(M1) ganglioside that partially co-localized with G(M3) in these domains. In the present study, we show that CD4-p56(lck) association in CD4 signalling is required for the redistribution of p56(lck), PI3K and LFA-1 in ganglioside-enriched domains, since ganglioside aggregation and recruitment of these proteins were not observed in a T-cell line (A201) expressing the mutant form of CD4 that does not bind p56(lck). In addition, we show that although these proteins associated in different ways with G(M1) and G(M3), all of the associations were dependent on CD4-p56(lck) association. Gangliosides could associate with these proteins that differ in affinity binding and could be modified following CD4 signalling. Our results suggest that through these associations, gangliosides transiently sequestrate these proteins and consequently inhibit LFA-1-dependent adhesion. Furthermore, while structural diversity of gangliosides may allow association with distinct proteins, we show that the tyrosine phosphatase SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2), also required for the down-regulation of LFA-1-dependent adhesion, transiently and partially co-localized with PI3K and p56(lck) in detergent-insoluble membranes without association with G(M1) or G(M3). We propose that CD4 ligation and binding with p56(lck) and their interaction with G(M3) and/or G(M1) gangliosides induce recruitment of distinct proteins important for CD4 signalling to form a multimolecular signalling complex.
Collapse
Key Words
- adhesion molecule
- cd4 t-cell
- ganglioside
- lymphocyte function-associated antigen-1 (lfa-1)
- phosphoinositide 3-kinase (pi3k)
- raft
- ab, antibody
- au, arbitrary units
- ctxb, cholera toxin
- drm, detergent-resistant membrane
- gamig, goat anti-mouse ig
- hla, human leucocyte antigen
- hptlc, high-performance tlc
- hrp, horseradish peroxidase
- lfa-1, lymphocyte function-associated antigen-1
- mab, monoclonal ab
- pi3k, phosphoinositide 3-kinase
- pdk1, phosphoinositide-dependent kinase-1
- pns, post-nuclear supernatant
- rn, relative number
- shp-2, src homology 2 domain-containing protein tyrosine phosphatase 2
- tcr, t-cell receptor
- tritc, tetramethylrhodamine β-isothiocyanate
Collapse
Affiliation(s)
- Christiane Barbat
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| | - Maylis Trucy
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| | - Maurizio Sorice
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tina Garofalo
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Valeria Manganelli
- ‡Dipartimento di Medicina Sperimentale, Università ‘La Sapienza’, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alain Fischer
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
- §Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants-Malades, Paris, F-75015, France
| | - Fabienne Mazerolles
- *Inserm, U768, Paris, F-75015, France
- †Université Paris Descartes, Faculté de Médecine René Descartes, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, Paris, F-75015, France
| |
Collapse
|
219
|
Maeda Y, Tashima Y, Houjou T, Fujita M, Yoko-o T, Jigami Y, Taguchi R, Kinoshita T. Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell 2007; 18:1497-506. [PMID: 17314402 PMCID: PMC1838968 DOI: 10.1091/mbc.e06-10-0885] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Whereas most of the cellular phosphatidylinositol (PI) contain unsaturated fatty chains and are excluded from rafts, GPI-anchored proteins (APs) unusually contain two saturated fatty chains in their PI moiety, and they are typically found within lipid rafts. However, the origin of the saturated chains and whether they are essential for raft association are unclear. Here, we report that GPI-APs, with two saturated fatty chains, are generated from those bearing an unsaturated chain by fatty acid remodeling that occurs most likely in the Golgi and requires post-GPI-attachment to proteins (PGAP)2 and PGAP3. The surface GPI-APs isolated from the PGAP2 and -3 double-mutant Chinese hamster ovary (CHO) cells had unsaturated chains, such as oleic, arachidonic, and docosatetraenoic acids in the sn-2 position, whereas those from wild-type CHO cells had exclusively stearic acid, a saturated chain, indicating that the sn-2 chain is exchanged to a saturated chain. We then assessed the association of GPI-APs with lipid rafts. Recovery of unremodeled GPI-APs from the double-mutant cells in the detergent-resistant membrane fraction was very low, indicating that GPI-APs become competent to be incorporated into lipid rafts by PGAP3- and PGAP2-mediated fatty acid remodeling. We also show that the remodeling requires the preceding PGAP1-mediated deacylation from inositol of GPI-APs in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yusuke Maeda
- *Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yuko Tashima
- *Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toshiaki Houjou
- Graduate School of Medicine, University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan; and
| | - Morihisa Fujita
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Takehiko Yoko-o
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshifumi Jigami
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryo Taguchi
- Graduate School of Medicine, University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan; and
| | - Taroh Kinoshita
- *Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
220
|
García-García E, Brown EJ, Rosales C. Transmembrane Mutations to FcγRIIA Alter Its Association with Lipid Rafts: Implications for Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2007; 178:3048-58. [PMID: 17312151 DOI: 10.4049/jimmunol.178.5.3048] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many immunoreceptors have been reported to associate with lipid rafts upon ligand binding. The way in which this association is regulated is still obscure. We investigated the roles for various domains of the human immunoreceptor FcgammaRIIA in regulating its association with lipid rafts by determining the resistance of unligated, or ligated and cross-linked, receptors to solubilization by the nonionic detergent Triton X-100, when expressed in RBL-2H3 cells. Deletion of the cytoplasmic domain, or destruction of the cytoplasmic palmitoylation site, had no effect on the association of the receptor with lipid rafts. A transmembrane mutant, A224S, lost the ability to associate with lipid rafts upon receptor cross-linking, whereas transmembrane mutants VA231-2MM and VVAL234-7GISF showed constitutive lipid raft association. Wild-type (WT) FcgammaRIIA and all transmembrane mutants activated Syk, regardless of their association with lipid rafts. WT FcgammaRIIA and mutants that associated with lipid rafts efficiently activated NF-kappaB, in an ERK-dependent manner. In contrast, WT FcgammaRIIA and the A224S mutant both presented efficient phagocytosis, while VA231-2MM and VVAL234-7GISF mutants presented lower phagocytosis, suggesting that phagocytosis may proceed independently of lipid raft association. These data identify the transmembrane domain of FcgammaRIIA as responsible for regulating its inducible association with lipid rafts and suggest that FcgammaRIIA-mediated responses, like NF-kappaB activation or phagocytosis, can be modulated by lipid raft association of the ligated receptor.
Collapse
Affiliation(s)
- Erick García-García
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City D.F.-04510, Mexico
| | | | | |
Collapse
|
221
|
Poloso NJ, Denzin LK, Roche PA. CDw78 defines MHC class II-peptide complexes that require Ii chain-dependent lysosomal trafficking, not localization to a specific tetraspanin membrane microdomain. THE JOURNAL OF IMMUNOLOGY 2007; 177:5451-8. [PMID: 17015731 DOI: 10.4049/jimmunol.177.8.5451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II molecules (MHC-II) associate with detergent-resistant membrane microdomains, termed lipid rafts, which affects the function of these molecules during Ag presentation to CD4+ T cells. Recently, it has been proposed that MHC-II also associates with another type of membrane microdomain, termed tetraspan microdomains. These microdomains are defined by association of molecules to a family of proteins that contain four-transmembrane regions, called tetraspanins. It has been suggested that MHC-II associated with tetraspanins are selectively identified by a mAb to a MHC-II determinant, CDw78. In this report, we have re-examined this issue of CDw78 expression and MHC-II-association with tetraspanins in human dendritic cells, a variety of human B cell lines, and MHC-II-expressing HeLa cells. We find no correlation between the expression of CDw78 and the expression of tetraspanins CD81, CD82, CD53, CD9, and CD37. Furthermore, we find that the relative amount of tetraspanins bound to CDw78-reactive MHC-II is indistinguishable from the amount bound to peptide-loaded MHC-II. We found that expression of CDw78 required coexpression of MHC-II together with its chaperone Ii chain. In addition, analysis of a panel of MHC-II-expressing B cell lines revealed that different alleles of HLA-DR express different amounts of CDw78 reactivity. We conclude that CDw78 defines a conformation of MHC-II bound to peptides that are acquired through trafficking to lysosomal Ag-processing compartments and not MHC-II-associated with tetraspanins.
Collapse
Affiliation(s)
- Neil J Poloso
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
222
|
Cho NH, Kingston D, Chang H, Kwon EK, Kim JM, Lee JH, Chu H, Choi MS, Kim IS, Jung JU. Association of herpesvirus saimiri tip with lipid raft is essential for downregulation of T-cell receptor and CD4 coreceptor. J Virol 2007; 80:108-18. [PMID: 16352535 PMCID: PMC1317525 DOI: 10.1128/jvi.80.1.108-118.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipid rafts are membrane microdomains that are proposed to function as platforms for both receptor signaling and trafficking. Our previous studies have demonstrated that Tip of herpesvirus saimiri (HVS), which is a T-lymphotropic tumor virus, is constitutively targeted to lipid rafts and interacts with cellular Lck tyrosine kinase and p80 WD repeat-containing endosomal protein. Through the interactions with Lck and p80, HVS Tip modulates diverse T-cell functions, which leads to the downregulation of T-cell receptor (TCR) and CD4 coreceptor surface expression, the inhibition of TCR signal transduction, and the activation of STAT3 transcription factor. In this study, we investigated the functional significance of Tip association with lipid rafts. We found that Tip expression remarkably increased lipid raft fractions in human T cells by enhancing the recruitment of lipid raft-resident proteins. Genetic analysis showed that the carboxyl-terminal transmembrane, but not p80 and Lck interaction, of Tip was required for the lipid raft localization and that lipid raft localization of Tip was necessary for the efficient downregulation of TCR and CD4 surface expression. Correlated with this, treatment with Filipin III, a lipid raft-disrupting agent, effectively reversed the downregulation of CD3 and CD4 surface expression induced by Tip. On the other hand, Tip mutants that were no longer present in lipid rafts were still capable of inhibiting TCR signaling and activating STAT3 transcription factor activity as efficiently as wild-type (wt) Tip. These results indicate that the association of Tip with lipid rafts is essential for the downregulation of TCR and CD4 surface expression but not for the inhibition of TCR signal transduction and the activation of STAT3 transcription factor. These results also suggest that the signaling and targeting activities of HVS Tip rely on functionally and genetically separable mechanisms, which may independently modulate T-cell function for viral persistence or pathogenesis.
Collapse
Affiliation(s)
- Nam-Hyuk Cho
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Sorek N, Poraty L, Sternberg H, Bar E, Lewinsohn E, Yalovsky S. Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase. Mol Cell Biol 2007; 27:2144-54. [PMID: 17242203 PMCID: PMC1820497 DOI: 10.1128/mcb.02347-06] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane by virtue of posttranslational lipid modifications. The relationship between ROP activation status and membrane localization has not been established. Here we demonstrate that endogenous ROPs, as well as a transgenic His(6)-green fluorescent protein (GFP)-AtROP6 fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, an activated His(6)-GFP-Atrop6(CA) mutant protein accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPgammaS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 isoforms were purified from Arabidopsis plants, and their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids. The acyl lipids were identified as palmitic and stearic acids. In agreement, activated His(6)-GFP-Atrop6(CA)mS(156) in which cysteine(156) was mutated into serine accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6 and possibly other ROPs are transiently S acylated, which induces their partitioning into detergent-resistant membranes.
Collapse
Affiliation(s)
- Nadav Sorek
- Department of Plant Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
224
|
Ishikawa H, Tsuyama N, Obata M, M Kawano M. Mitogenic signals initiated via interleukin-6 receptor complexes in cooperation with other transmembrane molecules in myelomas. ACTA ACUST UNITED AC 2007; 46:55-66. [PMID: 17142955 DOI: 10.3960/jslrt.46.55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines exert multiple biological functions through binding to their specific receptors that triggers activation of intracellular signaling cascades. The cytokine-mediated signals may produce variable and even opposing effects on different cell types, depending on cellular context that is also dictated by the differentiation stage of the cell. Multiple myeloma (MM) is a monoclonal proliferative disorder of human plasma cells. Myeloma cells appear to include mixed subpopulations in accordance with the expression of their surface antigens, such as CD45. Although interleukin-6 (IL-6) is widely accepted as the most relevant growth factor for myeloma cells, only a few subpopulations of tumor cells, such as CD45(+) immature cells, proliferate in response to IL-6. The activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for IL-6-induced proliferation of myeloma cells that requires the src family kinase activation associated with a rapid translocation of CD45 to lipid rafts. The CD45 expression renders myeloma cells competent for not only mitogenic but also apoptotic stimuli, resulting in either proliferation or apoptosis of CD45(+) myeloma cells dependently upon the circumstantial stimuli. In contrast, in CD45(-) myeloma cells highly expressing IL-6 receptor alpha chain (IL-6Ralpha), IL-6Ralpha and insulin-like growth factor (IGF)-I receptors exist on plasma membrane in close proximity, facilitating efficient assembly of two receptors in response to IL-6. The synergistic effects of IL-6Ralpha on IGF-I receptor-mediated signals provide a novel insight into a Jak-independent IL-6 signaling mechanism of receptor cross talk in human myeloma cells. Furthermore, the signaling cross talk between the cytokine receptor, IL-6Ralpha/gp130 and the growth factor receptor tyrosine kinase, fibroblast growth factor receptor (FGFR) 3 appears in myeloma cells carrying t(4;14)(p16.3;q32). In this review we propose several mechanisms of the IL-6-induced cell proliferation that is strictly dependent upon the cellular context in myelomas.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | | | |
Collapse
|
225
|
Yuyama K, Sekino-Suzuki N, Kasahara K. Signal Transduction of Heterotrimeric G Proteins in Lipid Rafts. TRENDS GLYCOSCI GLYC 2007. [DOI: 10.4052/tigg.19.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
226
|
Abstract
Lipid rafts are liquid-ordered (lo) phase microdomains proposed to exist in biological membranes. Rafts have been widely studied by isolating lo-phase detergent-resistant membranes (DRMs) from cells. Recent findings have shown that DRMs are not the same as preexisting rafts, prompting a major revision of the raft model. Nevertheless, raft-targeting signals identified by DRM analysis are often required for protein function, implicating rafts in a variety of cell processes.
Collapse
Affiliation(s)
- Deborah A Brown
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
227
|
Fleming EH, Kolokoltsov AA, Davey RA, Nichols JE, Roberts NJ. Respiratory syncytial virus F envelope protein associates with lipid rafts without a requirement for other virus proteins. J Virol 2006; 80:12160-70. [PMID: 17005642 PMCID: PMC1676292 DOI: 10.1128/jvi.00643-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 09/15/2006] [Indexed: 01/16/2023] Open
Abstract
Like many enveloped viruses, human respiratory syncytial virus (RSV) assembles at and buds from lipid rafts. Translocation of the envelope proteins to these membrane subdomains is essential for production of infectious virus, but the targeting mechanism is poorly understood and it is not known if other virus proteins are required. Here we demonstrate that F protein of RSV intrinsically targets to lipid rafts without a requirement for any other virus protein, including the SH and G envelope proteins. Recombinant virus deficient in SH and G but retaining F protein expression was used to demonstrate that F protein still localized in rafts in both A549 and HEp-2 cells. Expression of a recombinant F gene by use of plasmid vectors demonstrated that F contains its own targeting domain and localized to rafts in the absence of other virus proteins. The domain responsible for translocation was then mapped. Unlike most other virus envelope proteins, F is unusual since the target signal is not contained within the cytoplasmic domain nor did it involve fatty acid modified residues. Furthermore, exchange of the transmembrane domain with that of the vesicular stomatitis virus G protein, a nonraft protein, did not alter F protein raft localization. Taken together, these data suggest that domains present in the extracellular portion of the protein are responsible for lipid raft targeting of the RSV F protein.
Collapse
Affiliation(s)
- Elisa H Fleming
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | | | | | | | | |
Collapse
|
228
|
Laliberte JP, McGinnes LW, Peeples ME, Morrison TG. Integrity of membrane lipid rafts is necessary for the ordered assembly and release of infectious Newcastle disease virus particles. J Virol 2006; 80:10652-62. [PMID: 17041223 PMCID: PMC1641742 DOI: 10.1128/jvi.01183-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/05/2006] [Indexed: 11/20/2022] Open
Abstract
Membrane lipid raft domains are thought to be sites of assembly for many enveloped viruses. The roles of both classical lipid rafts and lipid rafts associated with the membrane cytoskeleton in the assembly of Newcastle disease virus (NDV) were investigated. The lipid raft-associated proteins caveolin-1, flotillin-2, and actin were incorporated into virions, while the non-lipid raft-associated transferrin receptor was excluded. Kinetic analyses of the distribution of viral proteins in lipid rafts, as defined by detergent-resistant membranes (DRMs), in non-lipid raft membranes, and in virions showed an accumulation of HN, F, and NP viral proteins in lipid rafts early after synthesis. Subsequently, these proteins exited the DRMs and were recovered quantitatively in purified virions, while levels of these proteins in detergent-soluble cell fractions remained relatively constant. Cholesterol depletion of infected cells drastically altered the association of viral proteins with DRMs and resulted in an enhanced release of virus particles with reduced infectivity. Decreased infectivity was not due to effects on subsequent virus entry, since the extraction of cholesterol from intact virus did not significantly reduce infectivity. Particles released from cholesterol-depleted cells had very heterogeneous densities and altered ratios of NP and glycoproteins, demonstrating structural abnormalities which potentially contributed to their lowered infectivity. Taken together, these results indicate that lipid rafts, including cytoskeleton-associated lipid rafts, are sites of NDV assembly and that these domains are important for ordered assembly and release of infectious Newcastle disease virus particles.
Collapse
Affiliation(s)
- Jason P Laliberte
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
229
|
Narayan SB, Rakheja D, Tan L, Pastor JV, Bennett MJ. CLN3P, the Batten's disease protein, is a novel palmitoyl-protein Delta-9 desaturase. Ann Neurol 2006; 60:570-577. [PMID: 17036287 DOI: 10.1002/ana.20975] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Batten's disease, one of the most common recessively inherited, untreatable, neurodegenerative diseases of humans, is characterized by progressive neuronal loss and intraneuronal proteolipid storage. Although the gene for the disorder was cloned more than a decade ago, the function of the encoded protein, CLN3P, has not been defined thus far. METHODS Sequence analysis using the Pfam server identified a low stringency match to a fatty acid desaturase domain in the N-terminal sequence of CLN3P. We developed a fatty acid desaturase assay based on measurement of desaturase products by gas chromatography/mass spectrometry. RESULTS We show that CLN3P is a novel palmitoyl-protein Delta-9 desaturase, which converts membrane-associated palmitoylated proteins to their respective palmitoleated derivatives. We have further demonstrated that this palmitoyl-protein Delta-9 desaturase activity is deficient in cln3(-/-) mouse pancreas and is completely ablated in neuroblastoma cells by RNA inhibition. INTERPRETATION We propose that palmitoyl-protein desaturation defines a new mechanism of proteolipid modification, and that deficiency of this process leads to the signs and symptoms of Batten's disease.
Collapse
Affiliation(s)
- Srinivas B Narayan
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
230
|
Fridberg A, Buchanan KT, Engman DM. Flagellar membrane trafficking in kinetoplastids. Parasitol Res 2006; 100:205-12. [PMID: 17058110 DOI: 10.1007/s00436-006-0329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Alina Fridberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Ward Building 6-140, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
231
|
Abstract
Virus entry, assembly, and budding are important processes in the replication cycle of a virus. Viruses are dependent on host living cells for their replication. Viruses use the proliferative mechanism of host cells for replication of viral components. Lipid rafts, specific membrane microdomains play a critical role in virus replication because localizing and concentrating viral components in the microdomains for entry, assembly, and budding of various types of virus. In this review, we describe the involvement of membrane lipid rafts in the virus replication cycle with our current findings for understanding the role of membrane lipid rafts in virus infection.
Collapse
Affiliation(s)
- Takashi Suzuki
- COE Program in the 21st Century, Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| | | |
Collapse
|
232
|
Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H. Lipidierte Ras- und Rab-Peptide und -Proteine: Synthese, Struktur und Funktion. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600855] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
233
|
Horton MR, Rädler J, Gast AP. Phase behavior and the partitioning of caveolin-1 scaffolding domain peptides in model lipid bilayers. J Colloid Interface Sci 2006; 304:67-76. [PMID: 17022989 DOI: 10.1016/j.jcis.2006.08.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/25/2006] [Accepted: 08/28/2006] [Indexed: 02/05/2023]
Abstract
The membrane binding and model lipid raft interaction of synthetic peptides derived from the caveolin scaffolding domain (CSD) of the protein caveolin-1 have been investigated. CSD peptides bind preferentially to liquid-disordered domains in model lipid bilayers composed of cholesterol and an equimolar ratio of dioleoylphosphatidylcholine (DOPC) and brain sphingomyelin. Three caveolin-1 peptides were studied: the scaffolding domain (residues 83-101), a water-insoluble construct containing residues 89-101, and a water-soluble construct containing residues 89-101. Confocal and fluorescence microscopy investigation shows that the caveolin-1 peptides bind to the more fluid cholesterol-poor phase. The binding of the water-soluble peptide to lipid bilayers was measured using fluorescence correlation spectroscopy (FCS). We measured molar partition coefficients of 10(4) M(-1) between the soluble peptide and phase-separated lipid bilayers and 10(3) M(-1) between the soluble peptide and bilayers with a single liquid phase. Partial phase diagrams for our phase-separating lipid mixture with added caveolin-1 peptides were measured using fluorescence microscopy. The water-soluble peptide did not change the phase morphology or the miscibility transition in giant unilamellar vesicles (GUVs); however, the water-insoluble and full-length CSD peptides lowered the liquid-liquid melting temperature.
Collapse
Affiliation(s)
- Margaret R Horton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
234
|
Corcoran JA, Salsman J, de Antueno R, Touhami A, Jericho MH, Clancy EK, Duncan R. The p14 Fusion-associated Small Transmembrane (FAST) Protein Effects Membrane Fusion from a Subset of Membrane Microdomains. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84093-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
235
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
236
|
Abstract
Lipid rafts are membrane microdomains rich in cholesterol and glycosphingolipids that have been implicated in the regulation of intracellular protein trafficking. During exocytosis, a class of proteins termed SNAREs mediate secretory granule-plasma membrane fusion. To investigate the role of lipid rafts in secretory granule exocytosis, we examined the raft association of SNARE proteins and SNARE complexes in rat basophilic leukemia (RBL) mast cells. The SNARE protein SNAP-23 co-localized with a lipid raft marker and was present in detergent-insoluble lipid raft microdomains in RBL cells. By contrast, only small amounts (<20%) of the plasma membrane SNARE syntaxin 4 or the granule-associated SNARE vesicle-associated membrane protein (VAMP)-2 were present in these microdomains. Despite this, essentially all syntaxin 4 and most of VAMP-2 in these rafts were present in SNARE complexes containing SNAP-23, while essentially none of these complexes were present in nonraft membranes. Whereas SNAP-23 is membrane anchored by palmitoylation, the association of the transmembrane protein syntaxin 4 with lipid rafts was because of its binding to SNAP-23. After stimulating mast cells exocytosis, the amount of syntaxin 4 and VAMP-2 present in rafts increased twofold, and these proteins were now present in raft-associated phospho-SNAP-23/syntaxin 4/VAMP-2 complexes, revealing differential association of SNARE fusion complexes during the process of regulated exocytosis.
Collapse
Affiliation(s)
- Niti Puri
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
237
|
Yu Z, Beer C, Koester M, Wirth M. Caveolin-1 interacts with the Gag precursor of murine leukaemia virus and modulates virus production. Virol J 2006; 3:73. [PMID: 16956408 PMCID: PMC1570462 DOI: 10.1186/1743-422x-3-73] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 09/06/2006] [Indexed: 11/23/2022] Open
Abstract
Background Retroviral Gag determines virus assembly at the plasma membrane and the formation of virus-like particles in intracellular multivesicular bodies. Thereby, retroviruses exploit by interaction with cellular partners the cellular machineries for vesicular transport in various ways. Results The retroviral Gag precursor protein drives assembly of murine leukaemia viruses (MLV) at the plasma membrane (PM) and the formation of virus like particles in multivesicular bodies (MVBs). In our study we show that caveolin-1 (Cav-1), a multifunctional membrane-associated protein, co-localizes with Gag in a punctate pattern at the PM of infected NIH 3T3 cells. We provide evidence that Cav-1 interacts with the matrix protein (MA) of the Gag precursor. This interaction is mediated by a Cav-1 binding domain (CBD) within the N-terminus of MA. Interestingly, the CBD motif identified within MA is highly conserved among most other γ-retroviruses. Furthermore, Cav-1 is incorporated into MLV released from NIH 3T3 cells. Overexpression of a GFP fusion protein containing the putative CBD of the retroviral MA resulted in a considerable decrease in production of infectious retrovirus. Moreover, expression of a dominant-negative Cav-1 mutant affected retroviral titres significantly. Conclusion This study demonstrates that Cav-1 interacts with MLV Gag, co-localizes with Gag at the PM and affects the production of infectious virus. The results strongly suggest a role for Cav-1 in the process of virus assembly.
Collapse
Affiliation(s)
- Zheng Yu
- Molecular Biotechnology Division, German Research Centre for Biotechnology, GBF, Mascheroder Weg 1, Braunschweig, Germany
| | - Christiane Beer
- Molecular Biotechnology Division, German Research Centre for Biotechnology, GBF, Mascheroder Weg 1, Braunschweig, Germany
- Department of Molecular Biology, Aarhus University, C.F. Mollers Alle 130, Aarhus, Denmark
| | - Mario Koester
- Molecular Biotechnology Division, German Research Centre for Biotechnology, GBF, Mascheroder Weg 1, Braunschweig, Germany
| | - Manfred Wirth
- Molecular Biotechnology Division, German Research Centre for Biotechnology, GBF, Mascheroder Weg 1, Braunschweig, Germany
| |
Collapse
|
238
|
Greaves J, Chamberlain LH. Dual role of the cysteine-string domain in membrane binding and palmitoylation-dependent sorting of the molecular chaperone cysteine-string protein. Mol Biol Cell 2006; 17:4748-59. [PMID: 16943324 PMCID: PMC1635403 DOI: 10.1091/mbc.e06-03-0183] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
S-palmitoylation occurs on intracellular membranes and, therefore, membrane anchoring of proteins must precede palmitate transfer. However, a number of palmitoylated proteins lack any obvious membrane targeting motifs and it is unclear how this class of proteins become membrane associated before palmitoylation. Cysteine-string protein (CSP), which is extensively palmitoylated on a "string" of 14 cysteine residues, is an example of such a protein. In this study, we have investigated the mechanisms that govern initial membrane targeting, palmitoylation, and membrane trafficking of CSP. We identified a hydrophobic 31 amino acid domain, which includes the cysteine-string, as a membrane-targeting motif that associates predominantly with endoplasmic reticulum (ER) membranes. Cysteine residues in this domain are not merely sites for the addition of palmitate groups, but play an essential role in membrane recognition before palmitoylation. Membrane association of the cysteine-string domain is not sufficient to trigger palmitoylation, which requires additional downstream residues that may regulate the membrane orientation of the cysteine-string domain. CSP palmitoylation-deficient mutants remain "trapped" in the ER, suggesting that palmitoylation may regulate ER exit and correct intracellular sorting of CSP. These results reveal a dual function of the cysteine-string domain: initial membrane binding and palmitoylation-dependent sorting.
Collapse
Affiliation(s)
- Jennifer Greaves
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
239
|
Corcoran JA, Salsman J, de Antueno R, Touhami A, Jericho MH, Clancy EK, Duncan R. The p14 fusion-associated small transmembrane (FAST) protein effects membrane fusion from a subset of membrane microdomains. J Biol Chem 2006; 281:31778-89. [PMID: 16936325 DOI: 10.1074/jbc.m602566200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reovirus fusion-associated small transmembrane (FAST) proteins are a unique family of viral membrane fusion proteins. These nonstructural viral proteins induce efficient cell-cell rather than virus-cell membrane fusion. We analyzed the lipid environment in which the reptilian reovirus p14 FAST protein resides to determine the influence of the cell membrane on the fusion activity of the FAST proteins. Topographical mapping of the surface of fusogenic p14-containing liposomes by atomic force microscopy under aqueous conditions revealed that p14 resides almost exclusively in thickened membrane microdomains. In transfected cells, p14 was found in both Lubrol WX- and Triton X-100-resistant membrane complexes. Cholesterol depletion of donor cell membranes led to preferential disruption of p14 association with Lubrol WX (but not Triton X-100)-resistant membranes and decreased cell-cell fusion activity, both of which were reversed upon subsequent cholesterol repletion. Furthermore, co-patching analysis by fluorescence microscopy indicated that p14 did not co-localize with classical lipid-anchored raft markers. These data suggest that the p14 FAST protein associates with heterogeneous membrane microdomains, a distinct subset of which is defined by cholesterol-dependent Lubrol WX resistance and which may be more relevant to the membrane fusion process.
Collapse
Affiliation(s)
- Jennifer A Corcoran
- Departmentnof Microbiology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
240
|
Loomis JS, Courtney RJ, Wills JW. Packaging determinants in the UL11 tegument protein of herpes simplex virus type 1. J Virol 2006; 80:10534-41. [PMID: 16928743 PMCID: PMC1641780 DOI: 10.1128/jvi.01172-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The UL11 gene of herpes simplex virus type 1 encodes a 96-amino-acid tegument protein that is myristylated, palmitylated, and phosphorylated and is found on the cytoplasmic faces of nuclear, Golgi apparatus-derived, and plasma membranes of infected cells. Although this protein is thought to play a role in virus budding, its specific function is unknown. Purified virions were found to contain approximately 700 copies of the UL11 protein per particle, making it an abundant component of the tegument. Moreover, comparisons of cell-associated and virion-associated UL11 showed that packaging is selective for underphosphorylated forms, as has been reported for several other tegument proteins. Although the mechanism by which UL11 is packaged is unknown, previous studies have identified several sequence motifs in the protein that are important for membrane binding, intracellular trafficking, and interaction with UL16, another tegument protein. To ascertain whether any of these motifs are needed for packaging, a transfection/infection-based assay was used in which mutant forms of the protein must compete with the wild type. In this assay, the entire C-terminal half of UL11 was found to be dispensable. In the N-terminal half, the sites of myristylation and palmitylation, which enable membrane-binding and Golgi apparatus-specific targeting, were found to be essential for efficient packaging. The acidic cluster motif, which is not needed for Golgi apparatus-specific targeting but is involved in recycling the protein from the plasma membrane and for the interaction with UL16, was found to be essential, too. Thus, something other than mere localization of UL11 to Golgi apparatus-derived membranes is needed for packaging. The critical factor is unlikely to be the interaction with UL16 because other mutants that fail to bind this protein (due to removal of the dileucine-like motif or substitutions with foreign acidic clusters) were efficiently packaged. Collectively, these results suggest that UL11 packaging is not driven by a passive mechanism but instead requires trafficking through a specific pathway.
Collapse
Affiliation(s)
- Joshua S Loomis
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Dr., P.O. Box 850, Hershey, PA 17033, USA
| | | | | |
Collapse
|
241
|
Derdak SV, Kueng HJ, Leb VM, Neunkirchner A, Schmetterer KG, Bielek E, Majdic O, Knapp W, Seed B, Pickl WF. Direct stimulation of T lymphocytes by immunosomes: virus-like particles decorated with T cell receptor/CD3 ligands plus costimulatory molecules. Proc Natl Acad Sci U S A 2006; 103:13144-9. [PMID: 16924110 PMCID: PMC1559767 DOI: 10.1073/pnas.0602283103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many infectious viruses coevolved with the vertebrate immune system. During the assembly of enveloped viruses, lipid ordered domains of the host cell plasma membrane, called lipid rafts, frequently function as a natural meeting point for viral proteins. The role of lipid rafts in the organization of complex combinations of immune receptors during antigen presentation and T cell signaling is widely recognized. In our studies, we determined whether lipid rafts, virus budding, and molecular interactions during T cell activation could be brought into a novel context to create artificial antigen-presenting particles. We show here that cell-free virus-like particles (VLP) expressing a surrogate TCR/CD3 ligand (OKT3scFv) and the costimulator CD80 polyclonally activate human T cells independently of accessory cells. VLP expressing the glycoprotein epitope 33-41 of the lymphocytic choriomeningitis virus in the context of H-2D(b) activate and expand naïve, antigen-specific CD8(+) T lymphocytes and differentiate them into cytotoxic effector cells. Efficient targeting of T cell ligands to lipid rafts and ultimately to VLP is achieved by C-terminal introduction of glycosyl phosphatidyl inositol acceptor sequences, replacing transmembrane and intracellular domains. In this work, basic functions of immunostimulatory molecules meet virus biology and translate into a reductionist antigen-specific T lymphocyte-stimulating vehicle, which we refer to as immunosomes. A large variety of agonistic and antagonistic accessory molecules on genuine antigen-presenting cells may complicate the predictable manipulation of T cells as well as the analysis of selected receptor combinations, making immunosomes potentially useful reagents for such purposes in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Edith Bielek
- Histology and Embryology, Medical University of Vienna, 1090 Vienna, Austria; and
| | | | | | - Brian Seed
- Department of Molecular Biology, Harvard Medical School, Boston, MA 02114
| | - Winfried F. Pickl
- Institutes of *Immunology and
- To whom correspondence should be addressed at:
Institute of Immunology, Center for Hygiene and Medical Microbiology, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria. E-mail:
| |
Collapse
|
242
|
Yu GY, Lee KJ, Gao L, Lai MMC. Palmitoylation and polymerization of hepatitis C virus NS4B protein. J Virol 2006; 80:6013-23. [PMID: 16731940 PMCID: PMC1472571 DOI: 10.1128/jvi.00053-06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatitis C Virus (HCV) NS4B protein induces a specialized membrane structure which may serve as the replication platform for HCV RNA replication. In the present study, we demonstrated that NS4B has lipid modifications (palmitoylation) on two cysteine residues (cysteines 257 and 261) at the C-terminal end. Site-specific mutagenesis of these cysteine residues on individual NS4B proteins and on an HCV subgenomic replicon showed that the lipid modifications, particularly of Cys261, are important for protein-protein interaction in the formation of the HCV RNA replication complex. We further demonstrated that NS4B can undergo polymerization. The main polymerization determinants were mapped in the N-terminal cytosolic domain of NS4B protein; however, the lipid modifications on the C terminus also facilitate the polymerization process. The lipid modification and the polymerization activity could be two properties of NS4B important for its induction of the specialized membrane structure involved in viral RNA replication.
Collapse
Affiliation(s)
- Guann-Yi Yu
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033-1054, USA
| | | | | | | |
Collapse
|
243
|
Wadehra M, Natarajan S, Seligson DB, Williams CJ, Hummer AJ, Hedvat C, Braun J, Soslow RA. Expression of epithelial membrane protein-2 is associated with endometrial adenocarcinoma of unfavorable outcome. Cancer 2006; 107:90-8. [PMID: 16736513 DOI: 10.1002/cncr.21957] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Epithelial membrane protein 2 (EMP2) is an estrus-regulated tetraspan protein that is required for endometrial competence in blastocyst implantation. EMP2 controls surface levels of several classes of integrin and other cell-interaction molecules, and their trafficking to glycolipid-enriched lipid raft domains is important in receptor signaling. These features suggest that EMP2 may contribute to neoplastic traits of endometrial cancer. The objective of this study was to determine the prevalence of EMP2 expression in endometrial neoplasms and its clinical significance. METHODS EMP2 immunophenotype, histologic diagnosis, grade, the presence of lymphovascular invasion, disease stage, and clinical follow-up were determined for 99 endometrial cancers. RESULTS Significant EMP2 expression (EMP2 positive) was observed in 12 of 99 cancers (9 endometrioid [6 International Federation of Gynecology and Obstetrics Grade 3], 1 serous, 1 mixed endometrioid and serous, and 1 mixed endometrioid and clear cell), and weak EMP2 expression was observed in 11 cancers. EMP2-positive tumors were more likely than others to be myometrium invasive, high stage, and recurrent, persistent, or fatal. The overall median survival for patients with EMP2-positive tumor was only 23 months, whereas the medial survival was not reached for patients with EMP2-weak and EMP2-negative tumors. The median disease-free interval was only 11 months for patients with EMP2-positive tumors and was not reached for patients with EMP2-weak and EMP2-negative tumors. A multivariate analysis of disease-free survival demonstrated independent, negative prognostic significance for EMP2 expression, high stage, and high-risk histologic subtypes. CONCLUSIONS EMP2 expression is a feature of some prognostically unfavorable endometrial cancers. Its utility for clinical decision making and its biologic role in endometrial cancer deserves further study in a larger series of patients.
Collapse
Affiliation(s)
- Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F. Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 2006; 5:1396-411. [PMID: 16648627 DOI: 10.1074/mcp.m600044-mcp200] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains that play important roles in protein sorting, signal transduction, or infection by pathogens. Recent reports demonstrated the presence, in plants, of detergent-resistant fractions isolated from plasma membrane. Analysis of the lipidic composition of this fraction revealed its enrichment in sphingolipids and sterols and depletion in phospho- and glycerolipids as previously observed for animal microdomains. One-dimensional gel electrophoresis experiments indicated that these detergent-resistant fractions are able to recruit a specific set of plasma membrane proteins and exclude others. In the present study, we used mass spectrometry to give an extensive description of a tobacco plasma membrane fraction resistant to solubilization with Triton X-100. This led to the identification of 145 proteins whose functional and physicochemical characteristics were analyzed in silico. Parameters such as isoelectric point, molecular weight, number and length of transmembrane segments, or global hydrophobicity were analyzed and compared with the data available concerning plant plasma membrane proteins. Post-translational modifications, such as myristoylation, palmitoylation, or presence of a glycosylphosphatidylinositol anchor, were examined in relation to the presence of the corresponding proteins in these microdomains. From a functional point of view, this analysis indicated that if a primary function of the plasma membrane, such as transport, seems under-represented in the detergent-resistant fraction, others undergo a significant increase of their relative importance. Among these are signaling and response to biotic and abiotic stress, cellular trafficking, and cell wall metabolism. This suggests that these domains are likely to constitute, as in animal cells, signaling platforms involved in these physiological functions.
Collapse
Affiliation(s)
- Johanne Morel
- Laboratoire de Phytopharmacie, Unité Mixte de Recherche (UMR) 692 Institut National de la Recherche Agronomique (INRA)/Ecole Nationale d'Enseignement Supérieur Agronomique de Dijon (ENESAD)/Université de Bourgogne, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 2006; 103:11364-9. [PMID: 16840558 PMCID: PMC1544092 DOI: 10.1073/pnas.0602818103] [Citation(s) in RCA: 456] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the late phase of HIV type 1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to the plasma membrane of most hematopoietic cell types, where they colocalize at lipid rafts and assemble into immature virions. Membrane binding is mediated by the matrix (MA) domain of Gag, a 132-residue polypeptide containing an N-terminal myristyl group that can adopt sequestered and exposed conformations. Although exposure is known to promote membrane binding, the mechanism by which Gag is targeted to specific membranes has yet to be established. Recent studies have shown that phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P(2)], a factor that regulates localization of cellular proteins to the plasma membrane, also regulates Gag localization and assembly. Here we show that PI(4,5)P(2) binds directly to HIV-1 MA, inducing a conformational change that triggers myristate exposure. Related phosphatidylinositides PI, PI(3)P, PI(4)P, PI(5)P, and PI(3,5)P(2) do not bind MA with significant affinity or trigger myristate exposure. Structural studies reveal that PI(4,5)P(2) adopts an "extended lipid" conformation, in which the inositol head group and 2'-fatty acid chain bind to a hydrophobic cleft, and the 1'-fatty acid and exposed myristyl group bracket a conserved basic surface patch previously implicated in membrane binding. Our findings indicate that PI(4,5)P(2) acts as both a trigger of the myristyl switch and a membrane anchor and suggest a potential mechanism for targeting Gag to membrane rafts.
Collapse
Affiliation(s)
- Jamil S. Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Jaime Miller
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Janet Tai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Andrew Kim
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Ruba H. Ghanam
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Michael F. Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
246
|
Du F, Saitoh F, Tian QB, Miyazawa S, Endo S, Suzuki T. Mechanisms for association of Ca2+/calmodulin-dependent protein kinase II with lipid rafts. Biochem Biophys Res Commun 2006; 347:814-20. [PMID: 16872923 DOI: 10.1016/j.bbrc.2006.06.162] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
Localization of CaMKIIalpha in lipid rafts was demonstrated in both cultured neurons and mammalian cells transfected with plasmid with an insert of CaMKIIalpha cDNA by using sucrose gradient centrifugation and the sensitivity to a cholesterol-extractor, methyl-beta-cyclodextrin. CaMKIIalpha was targeted to lipid rafts possibly through protein-protein interactions via at least three domains (a.a. 261-309, 371-420, and 421-478). The multimeric structure of the full-length molecule also appeared to contribute to efficient lipid raft-targeting. Acylation of CaMKIIalpha did not appear to be a mechanism for the targeting.
Collapse
Affiliation(s)
- Feng Du
- Department of Neuroplasticity, Research Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | | |
Collapse
|
247
|
Hillyard DZ, Nutt CD, Thomson J, McDonald KJ, Wan RK, Cameron AJM, Mark PB, Jardine AG. Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation. Atherosclerosis 2006; 191:319-25. [PMID: 16814295 DOI: 10.1016/j.atherosclerosis.2006.05.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/19/2022]
Abstract
To investigate the potential determinants of the pleiotropic effects of statins, we measured NK cell cytotoxicity in samples from normal subjects and patients, including patients receiving statin therapy. In a multivariate analysis, NK cell cytotoxicity was related to total plasma cholesterol concentration rather than statin use. In vitro, we investigated the role of lipid modification, specifically the effects on membrane rafts and raft-dependent signal transduction. We demonstrate that statins reduce NK cell cytotoxicity and that membrane cholesterol depletion by cyclodextrins has a similar effect. In contrast, isoprenyl transferase inhibitors had little or no effect on NK cell function. We hypothesise that the pleiotropic effects of statins reflect changes in membrane cholesterol and, specifically, the density of membrane rafts. Moreover, there is likely to be a relationship between membrane cholesterol, membrane rafts and cell function that may be involved in the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Dianne Z Hillyard
- Renal Research Group, BHF Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Ganley IG, Pfeffer SR. Cholesterol accumulation sequesters Rab9 and disrupts late endosome function in NPC1-deficient cells. J Biol Chem 2006; 281:17890-9. [PMID: 16644737 PMCID: PMC3650718 DOI: 10.1074/jbc.m601679200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C disease is an autosomal recessive disorder that leads to massive accumulation of cholesterol and glycosphingolipids in late endosomes and lysosomes. To understand how cholesterol accumulation influences late endosome function, we investigated the effect of elevated cholesterol on Rab9-dependent export of mannose 6-phosphate receptors from this compartment. Endogenous Rab9 levels were elevated 1.8-fold in Niemann-Pick type C cells relative to wild type cells, and its half-life increased 1.6-fold, suggesting that Rab9 accumulation is caused by impaired protein turnover. Reduced Rab9 degradation was accompanied by stabilization on endosome membranes, as shown by a reduction in the capacity of Rab9 for guanine nucleotide dissociation inhibitor-mediated extraction from Niemann-Pick type C membranes. Cholesterol appeared to stabilize Rab9 directly, as liposomes loaded with prenylated Rab9 showed decreased extractability with increasing cholesterol content. Rab9 is likely sequestered in an inactive form on Niemann-Pick type C membranes, as cation-dependent mannose 6-phosphate receptors were missorted to the lysosome for degradation, a process that was reversed by overexpression of GFP-tagged Rab9. In addition to using primary fibroblasts isolated from Niemann-Pick type C patients, RNA interference was utilized to recapitulate the disease phenotype in cultured cells, greatly facilitating the analysis of cholesterol accumulation and late endosome function. We conclude that cholesterol contributes directly to the sequestration of Rab9 on Niemann-Pick type C cell membranes, which in turn, disrupts mannose 6-phosphate receptor trafficking.
Collapse
Affiliation(s)
- Ian G. Ganley
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| | - Suzanne R. Pfeffer
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| |
Collapse
|
249
|
Abstract
Signal transduction down the Ras/MAPK pathway, including that critical to T cell activation, proliferation, and differentiation, has been generally considered to occur at the plasma membrane. It is now clear that the plasma membrane does not represent the only platform for Ras/MAPK signaling. Moreover, the plasma membrane itself is no longer considered a uniform structure but rather a patchwork of microdomains that can compartmentalize signaling. Signaling on internal membranes was first recognized on endosomes. Genetically encoded fluorescent probes for signaling events such as GTP/GDP exchange on Ras have revealed signaling on a variety of intracellular membranes, including the Golgi apparatus. In fibroblasts, Ras is activated on the plasma membrane and Golgi with distinct kinetics. The pathway by which Golgi-associated Ras becomes activated involves PLCgamma and RasGRP1 and may also require retrograde trafficking of Ras from the plasma membrane to the Golgi as a consequence of depalmitoylation. Thus, the Ras/MAPK pathway represents a clear example of compartmentalized signaling.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, New York University Medical Center, New York, NY 10016-6402, USA.
| | | |
Collapse
|
250
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 718] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|