201
|
Liu J, Jin X, Qiu C, Han P, Wang Y, Zhao J, Wu J, Yan N, Song X. Integrated Transcriptomics-Proteomics Analysis Identifies Molecular Phenotypic Alterations Associated with Colorectal Cancer. J Proteome Res 2024; 23:175-184. [PMID: 37909265 DOI: 10.1021/acs.jproteome.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Understanding the pathogenesis and finding diagnostic markers for colorectal cancer (CRC) are the key to its diagnosis and treatment. Integrated transcriptomics and proteomics analysis can be used to characterize alterations of molecular phenotypes and reveal the hidden pathogenesis of CRC. This study employed a novel strategy integrating transcriptomics and proteomics to identify pathological molecular pathways and diagnostic biomarkers of CRC. First, differentially expressed proteins and coexpressed genes generated from weighted gene coexpression network analysis (WGCNA) were intersected to obtain key genes of the CRC phenotype. In total, 63 key genes were identified, and pathway enrichment analysis showed that the process of coagulation and peptidase regulator activity could both play important roles in the development of CRC. Second, protein-protein interaction analysis was then conducted on these key genes to find the central genes involved in the metabolic pathways underpinning CRC. Finally, Itih3 and Lrg1 were further screened out as diagnostic biomarkers of CRC by applying statistical analysis on central genes combining transcriptomics and proteomics data. The deep involvement of central genes in tumorigenesis demonstrates the accuracy and reliability of this novel transcriptomics-proteomics integration strategy in biomarker discovery. The identified candidate biomarkers and enriched metabolic pathways provide insights for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xinghua Jin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chengchao Qiu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ping Han
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yixuan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Neng Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
202
|
Zhou W, Su M, Jiang T, Yang Q, Sun Q, Xu K, Shi J, Yang C, Ding N, Li Y, Xu J. SORC: an integrated spatial omics resource in cancer. Nucleic Acids Res 2024; 52:D1429-D1437. [PMID: 37811897 PMCID: PMC10768140 DOI: 10.1093/nar/gkad820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
The interactions between tumor cells and the microenvironment play pivotal roles in the initiation, progression and metastasis of cancer. The advent of spatial transcriptomics data offers an opportunity to unravel the intricate dynamics of cellular states and cell-cell interactions in cancer. Herein, we have developed an integrated spatial omics resource in cancer (SORC, http://bio-bigdata.hrbmu.edu.cn/SORC), which interactively visualizes and analyzes the spatial transcriptomics data in cancer. We manually curated currently available spatial transcriptomics datasets for 17 types of cancer, comprising 722 899 spots across 269 slices. Furthermore, we matched reference single-cell RNA sequencing data in the majority of spatial transcriptomics datasets, involving 334 379 cells and 46 distinct cell types. SORC offers five major analytical modules that address the primary requirements of spatial transcriptomics analysis, including slice annotation, identification of spatially variable genes, co-occurrence of immune cells and tumor cells, functional analysis and cell-cell communications. All these spatial transcriptomics data and in-depth analyses have been integrated into easy-to-browse and explore pages, visualized through intuitive tables and various image formats. In summary, SORC serves as a valuable resource for providing an unprecedented spatially resolved cellular map of cancer and identifying specific genes and functional pathways to enhance our understanding of the tumor microenvironment.
Collapse
Affiliation(s)
- Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Minghai Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Qingyi Yang
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Qisen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jingyi Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Changbo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
203
|
Wang G, Wu S, Xiong Z, Qu H, Fang X, Bao Y. CROST: a comprehensive repository of spatial transcriptomics. Nucleic Acids Res 2024; 52:D882-D890. [PMID: 37791883 PMCID: PMC10773281 DOI: 10.1093/nar/gkad782] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
The development of spatial transcriptome sequencing technology has revolutionized our comprehension of complex tissues and propelled life and health sciences into an era of spatial omics. However, the current availability of databases for accessing and analyzing spatial transcriptomic data is limited. In response, we have established CROST (https://ngdc.cncb.ac.cn/crost), a comprehensive repository of spatial transcriptomics. CROST encompasses high-quality samples and houses 182 spatial transcriptomic datasets from diverse species, organs, and diseases, comprising 1033 sub-datasets and 48 043 tumor-related spatially variable genes (SVGs). Additionally, it encompasses a standardized spatial transcriptome data processing pipeline, integrates single-cell RNA sequencing deconvolution spatial transcriptomics data, and evaluates correlation, colocalization, intercellular communication, and biological function annotation analyses. Moreover, CROST integrates the transcriptome, epigenome, and genome to explore tumor-associated SVGs and provides a comprehensive understanding of their roles in cancer progression and prognosis. Furthermore, CROST provides two online tools, single-sample gene set enrichment analysis and SpatialAP, for users to annotate and analyze the uploaded spatial transcriptomics data. The user-friendly interface of CROST facilitates browsing, searching, analyzing, visualizing, and downloading desired information. Collectively, CROST offers fresh and comprehensive insights into tissue structure and a foundation for understanding multiple biological mechanisms in diseases, particularly in tumor tissues.
Collapse
Affiliation(s)
- Guoliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xiong
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
204
|
Shaw TI, Wagner J, Tian L, Wickman E, Poudel S, Wang J, Paul R, Koo SC, Lu M, Sheppard H, Fan Y, O’Neil F, Lau CC, Zhou X, Zhang J, Gottschalk S. Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression. RESEARCH SQUARE 2024:rs.3.rs-3821632. [PMID: 38260279 PMCID: PMC10802740 DOI: 10.21203/rs.3.rs-3821632/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Immunotherapy with CAR T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons (CSE) present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify CSE targets, we analyzed 1,532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We found 2,933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n=148) or the alternatively spliced (AS) isoform (n=9) level. Expression of selected AS targets, including the EDB domain of FN1 (EDB), and gene targets, such as COL11A1, were validated in pediatric PDX tumors. We generated CAR T cells specific to EDB or COL11A1 and demonstrated that COL11A1-CAR T-cells have potent antitumor activity. The full target list, explorable via an interactive web portal (https://cseminer.stjude.org/), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.
Collapse
Affiliation(s)
- Timothy I Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robin Paul
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Selene C. Koo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francis O’Neil
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Ching C. Lau
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
205
|
Li X, Xiao X, Wang Y, Gu G, Li T, Wang Y, Li C, Zhang P, Ji N, Zhang Y, Zhang L. Expression of Interleukin-13 Receptor Alpha 2 in Brainstem Gliomas. Cancers (Basel) 2024; 16:228. [PMID: 38201655 PMCID: PMC10777982 DOI: 10.3390/cancers16010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The objective of this study was to investigate IL13Ra2 expression in brainstem glioma (BSG) and its correlation with key markers, functions, and prognostic implications, evaluating its therapeutic potential. A total of 80 tumor samples from BSG patients were analyzed. Multiplex immunofluorescence was used to examine six markers-IL13Ra2, H3.3K27M, CD133, Ki67, HLA-1, and CD4-establishing relationships between IL13Ra2 and these markers. Survival analysis, employing Kaplan-Meier and Cox proportional hazard regression models, encompassed 66 patients with complete follow-up. RNA-Seq data from a previously published study involving 98 patients were analyzed using the DESeq2 library to determine differential gene expression between groups. Gene Ontology (GO) enrichment and single-sample gene set enrichment analysis (ssGSEA) via the clusterProfiler library were used to delineate the gene functions of differentially expressed genes (DEGs). Nearly all the BSG patients displayed varying IL13Ra2 expression, with 45.0% (36/80) exhibiting over a 20% increase. Elevated IL13Ra2 levels were notably observed in pontine gliomas, diffuse intrinsic pontine gliomas (DIPGs), H3F3A-mutant gliomas, and WHO IV gliomas. IL13Ra2 expression was strongly correlated with H3.3K27M mutant protein, Ki67, and CD133. Patients with IL13Ra2 expression >20% showed shorter overall survival compared to those with ≤20% IL13Ra2 expression. The Cox proportional hazard regression model identified H3F3A mutations, rather than IL13Ra2 expression, as an independent prognostic factor. Analysis of RNA-Seq data from our prior cohort confirmed IL13Ra2's correlation with H3.3, CD133, and Ki67 levels. Widespread IL13Ra2 expression in BSG, particularly elevated in the H3F3A mutant group, was strongly correlated with H3F3A mutations, increased proliferation, and heightened tumor stemness. IL13Ra2 represents a promising therapeutic target for BSGs, potentially benefiting patients with H3K27M mutations, DIPGs, WHO Grade IV, and pontine location-specific BSGs, particularly those with H3K27M mutations.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (X.L.); (X.X.); (Y.W.); (G.G.); (T.L.); (Y.W.); (C.L.); (P.Z.); (N.J.)
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
206
|
Weng J, Wu XF, Shao P, Liu XP, Wang CX. Medicine for chronic atrophic gastritis: a systematic review, meta- and network pharmacology analysis. Ann Med 2024; 55:2299352. [PMID: 38170849 PMCID: PMC10769149 DOI: 10.1080/07853890.2023.2299352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE The aim of this study is to determine the effectiveness and reliability of adding traditional Chinese medicine (TCM) in the clinical intervention and explore mechanisms of action for chronic atrophic gastritis (CAG) through meta- and network pharmacology analysis (NPAs). METHODS A predefined search strategy was used to retrieve literature from PubMed, Embase database, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese BioMedical Literature Database (CBM), Wan Fang Data and China Science and Technology Journal Database (VIP). After applying inclusion and exclusion criteria, a total of 12 randomized controlled trials (RCTs) were included for meta-analysis to provide clinical evidence of the intervention effects. A network meta-analysis using Bayesian networks was conducted to observe the relative effects of different intervention measures and possible ranking of effects. The composition of the TCM formulation in the experimental group was analysed, and association rule mining was performed to identify hub herbal medicines. Target genes for CAG were searched in GeneCards, Online Mendelian Inheritance in Man, PharmGKB, Therapeutic Target Database and DrugBank. A regulatory network was constructed to connect the target genes with active ingredients of the hub herbal medicines. Enrichment analyses were performed using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to examine the central targets from a comprehensive viewpoint. Protein-protein interaction networks (PPINs) were constructed to identify hub genes and conduct molecular docking with differentially expressed genes (DEGs) and corresponding active molecules. RESULTS A total of 1140 participants from 12 RCTs were included in the statistical analysis, confirming that the experimental group receiving the addition of TCM intervention had better clinical efficacy. Seven hub TCMs (Paeonia lactiflora, Atractylodes macrocephala, Pinellia ternata, Citrus reticulata, Codonopsis pilosula, Salvia miltiorrhiza and Coptis chinensis) were identified through association rule analysis of all included TCMs. Thirteen hub genes (CDKN1A, CASP3, STAT1, TP53, JUN, MAPK1, STAT3, MAPK3, MYC, HIF1A, FOS, MAPK14 and AKT1) were obtained from 90 gene PPINs. Differential gene expression analysis between the disease and normal gastric tissue identified MAPK1 and MAPK3 as the significant genes. Molecular docking analysis revealed that naringenin, luteolin and quercetin were the main active compounds with good binding activities to the two hub targets. GO analysis demonstrated the function of the targets in protein binding, while KEGG analysis indicated their involvement in important pathways related to cancer. CONCLUSIONS The results of a meta-analysis of 12 RCTs indicate that TCM intervention can improve the clinical treatment efficacy of CAG. NPAs identified seven hub TCM and 13 target genes associated with their actions, while bioinformatics analysis identified two DEGs between normal and CAG gastric tissues. Finally, molecular docking was employed to reveal the mechanism of action of the active molecules in TCM on the DEGs. These findings not only reveal the mechanisms of action of the active components of the TCMs, but also provide support for the development of new drugs, ultimately blocking the progression from chronic gastritis to gastric cancer.
Collapse
Affiliation(s)
- Jiao Weng
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiu-fang Wu
- The Second Hospital Affiliated with Shenyang Medical University, Shenyang, China
| | - Peng Shao
- The Second Hospital Affiliated with Shenyang Medical University, Shenyang, China
| | - Xing-pu Liu
- The Second Hospital Affiliated with Shenyang Medical University, Shenyang, China
| | - Cai-xia Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
207
|
Xiao Y, Lin H, Li J, Wu J. Disulfidptosis-related prognostic signature correlates with immunotherapy response in colorectal cancer. Sci Rep 2024; 14:81. [PMID: 38168553 PMCID: PMC10762008 DOI: 10.1038/s41598-023-49954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Disulfidptosis (DSP), a form of cell death caused by disulphide stress, plays an important role in tumour progression. However, the mechanisms by which DSP regulates the tumour microenvironment remain unclear. Thus, we analysed the transcriptome profiles and clinical data, which were obtained from the TCGA database, of 540 patients with colorectal cancer. Compared with the patients with low DSP expression, those with high DSP expression exhibited significantly better survival outcomes; lower stromal and ESTIMATE scores; significantly higher numbers of CD4+ T cells, M2 macrophages, dendritic cells, and neutrophils; higher expression of immune checkpoint-related genes; and lower Tregs and HLA-DQB2 levels. A prognostic signature established based on DSP-related genes demonstrated an increase in risk score with a higher clinical stage. Risk scores negatively correlated with dendritic cells, eosinophils, and CD4+ T cells and significantly positively correlated with Treg cells. Patients with higher risk scores experienced significantly worse survival outcomes and immunotherapy non-response. Our nomogram model, combining clinicopathological features and risk scores, exhibited robust prognostic and predictive power. In conclusion, DSP-related genes actively participated in regulating the tumour microenvironment. Thus, they can serve as biomarkers to provide targeted treatment for colorectal cancer.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Hancui Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jinluan Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
208
|
Zhou F, Wang M, Wang Z, Li W, Lu X. Screening of novel tumor-associated antigens for lung adenocarcinoma mRNA vaccine development based on pyroptosis phenotype genes. BMC Cancer 2024; 24:28. [PMID: 38166691 PMCID: PMC10763439 DOI: 10.1186/s12885-023-11757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to identify new pyroptosis-associated tumor antigens for use in mRNA vaccines and the screening of sensitive LUAD populations suitable for vaccination. The association between tumor immune infiltrating cell abundance and potential tumor antigens was investigated and visualized using the analysis modules of gene expression, clinical outcomes, and somatic copy number variation. In addition, the pyroptosis-related genes (PRGs) were clustered, the relative pyroptosis subtypes (PSs) and gene modules were identified, and the prognostic value of the PSs was examined. The expression of key PRGs in two lung adenocarcinoma cell lines was verified by RT-qPCR. Four tumor pyroptosis-associated antigens, CARD8, NAIP, NLRP1, and NLRP3, were screened as potential candidates for LUAD mRNA vaccine development. In the construction of consensus clusters for PRGs, two PSs, PS1 and PS2, were classified, in which patients with PS1 LUAD had a better prognosis. In contrast, patients with PS2 LUAD may have better responsiveness to mRNA vaccine treatment. The key PRGs can be regarded as biomarkers to predict the LUAD prognosis and identify patients suitable for mRNA vaccines. The RT-qPCR results showed that the expression levels of CSMD3, LRP1B, MUC16 and TTN were significantly increased in the two lung adenocarcinoma cell lines, while the expression levels of CARD8, TP53 and ZFHX4 were significantly reduced. The antigens CARD8, NAIP, NLRP1, and NLRP3, which are associated with tumor pyroptosis, could be candidate molecules for LUAD mRNA vaccine development. Patients with PS2 LUAD may be suitable candidates for mRNA vaccine treatment.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Meng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China
| | - Xike Lu
- Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, 261 Taierzhuang South Road, Jinnan District, Tianjin, 300222, China.
| |
Collapse
|
209
|
Yin R, Gao J, Liu Y. Mechanisms analysis for Formononetin counteracted-Osimertinib resistance in non-small cell lung cancer cells: From the insight into the gene transcriptional level. Chem Biol Drug Des 2024; 103:e14435. [PMID: 38230781 DOI: 10.1111/cbdd.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
Formononetin is one of the main isoflavone components, which has strong anti-cancer effects in non-small cell lung cancer (NSCLC). However, the potentials and the mechanisms of Formononetin to counteract the Osimertinib resistance in NSCLC are unclear. In this study, Formononetin-induced cell apoptosis, cell proliferation, and clonal formation were detected in Osimertinib-resistant NSCLC cells (H1975_OR). RNA sequencing analysis was conducted to study the gene expression profiles of Formononetin-induced H1975_OR cells. The results indicated that Formononetin could significantly induce cell apoptosis, whereas dramatically inhibited cell proliferation and clonal formation on H1975_OR cells. Furthermore, a total of 4309 differentially expressed genes (DEGs) between Formononetin-treated and nontreated H1975_OR cells were had been detected. Gene Ontology (GO) annotation enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and the Gene Set Enrichment Analysis (GSEA) showed that Formononetin affected the expression of genes involving in anatomical structure morphogenesis, anatomical structure development, and multicellular organism development via regulating inflammation- and metabolism-related signaling pathways. Taken together, our study preliminarily revealed the mechanisms of Formononetin to counteract the Osimertinib resistance in NSCLC cells from the transcriptional level and provided a potential treatment method for Osimertinib-resistant NSCLC patients.
Collapse
Affiliation(s)
- Runyang Yin
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jing Gao
- First Clinical Medical College, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yang Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
210
|
Chen Y, Shen C, Wu J, Yan X, Huang Q. Role of immune related genes in predicting prognosis and immune response in patients with hepatocellular carcinoma. J Biochem Mol Toxicol 2024; 38:e23519. [PMID: 37665680 DOI: 10.1002/jbt.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/25/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Immunotherapy has developed rapidly in recent years. This study aimed to establish a prognostic signature for immune-related genes (IRGs) and explore related potential immunotherapies. The RNA-seq transcriptome profiles and clinicopathological information of patients were obtained from The Cancer Genome Atlas. Differentially expressed IRGs in tumors and normal tissues were screened and a risk score signature was constructed to predict the prognosis in patients with hepatocellular carcinoma (HCC). Receiver operating characteristic curves, survival analyses, and correlation analyses were used to explore the clinical application of this model. We further analyzed the differences in clinical characteristics, immune infiltration, somatic mutations, and treatment sensitivity between the high- and low-risk populations characterized by the prognostic models. The immune cell infiltration score and immune-related pathway activity were calculated using the single sample gene set enrichment analysis (ssGSEA) set enrichment analysis. Gene ontology (GO), Kyoto encyclopedia of genes and genomes, and GSEA were used to explore the underlying mechanisms. We constructed a nine-IRG formula to predict the prognosis in HCC patients. The higher the risk score, the higher the malignancy of the tumor and the worse the prognosis. There were significant differences in immune related processes between the high- and low-risk groups. TP53 and CTNNB1 mutations were significantly different between different risk groups. The expression of model gene was closely related to the sensitivity of tumor cells to chemotherapeutic drugs. This risk score model, which is helpful for the individualized treatment of patients with different risk factors, could be a reliable prognostic tool for HCC patients.
Collapse
Affiliation(s)
- Yi Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Chuchen Shen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Juju Wu
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Xiaodan Yan
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Qin Huang
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| |
Collapse
|
211
|
Song G, Wu H, Chen H, Zhang S, Hu Q, Lai H, Fuller C, Yang G, Chi H. hdWGCNA and Cellular Communication Identify Active NK Cell Subtypes in Alzheimer's Disease and Screen for Diagnostic Markers through Machine Learning. Curr Alzheimer Res 2024; 21:120-140. [PMID: 38808722 DOI: 10.2174/0115672050314171240527064514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a recognized complex and severe neurodegenerative disorder, presenting a significant challenge to global health. Its hallmark pathological features include the deposition of β-amyloid plaques and the formation of neurofibrillary tangles. Given this context, it becomes imperative to develop an early and accurate biomarker model for AD diagnosis, employing machine learning and bioinformatics analysis. METHODS In this study, single-cell data analysis was employed to identify cellular subtypes that exhibited significant differences between the diseased and control groups. Following the identification of NK cells, hdWGCNA analysis and cellular communication analysis were conducted to pinpoint NK cell subset with the most robust communication effects. Subsequently, three machine learning algorithms-LASSO, Random Forest, and SVM-RFE-were employed to jointly screen for NK cell subset modular genes highly associated with AD. A logistic regression diagnostic model was then designed based on these characterized genes. Additionally, a protein-protein interaction (PPI) networks of model genes was established. Furthermore, unsupervised cluster analysis was conducted to classify AD subtypes based on the model genes, followed by the analysis of immune infiltration in the different subtypes. Finally, Spearman correlation coefficient analysis was utilized to explore the correlation between model genes and immune cells, as well as inflammatory factors. RESULTS We have successfully identified three genes (RPLP2, RPSA, and RPL18A) that exhibit a high association with AD. The nomogram based on these genes provides practical assistance in diagnosing and predicting patients' outcomes. The interconnected genes screened through PPI are intricately linked to ribosome metabolism and the COVID-19 pathway. Utilizing the expression of modular genes, unsupervised cluster analysis unveiled three distinct AD subtypes. Particularly noteworthy is subtype C3, characterized by high expression, which correlates with immune cell infiltration and elevated levels of inflammatory factors. Hence, it can be inferred that the establishment of an immune environment in AD patients is closely intertwined with the heightened expression of model genes. CONCLUSION This study has not only established a valuable diagnostic model for AD patients but has also delved deeply into the pivotal role of model genes in shaping the immune environment of individuals with AD. These findings offer crucial insights into early AD diagnosis and patient management strategies.
Collapse
Affiliation(s)
- Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Haoyang Wu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qingwen Hu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haotian Lai
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Claire Fuller
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, MD, USA
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
212
|
Rueda M, Leist IC, Gut IG. Convert-Pheno: A software toolkit for the interconversion of standard data models for phenotypic data. J Biomed Inform 2024; 149:104558. [PMID: 38035971 DOI: 10.1016/j.jbi.2023.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Efficient sharing and integration of phenotypic data is crucial for advancing biomedical research and enhancing patient outcomes in precision medicine and public health. To achieve this, the health data community has developed standards to promote the harmonization of variable names and values. However, the use of diverse standards across different research centers can hinder progress. Here we present Convert-Pheno, an open-source software toolkit that enables the interconversion of common data models for phenotypic data such as Beacon v2 Models, CDISC-ODM, OMOP-CDM, Phenopackets v2, and REDCap. Along with the software, we have created a detailed documentation that includes information on deployment and installation.
Collapse
Affiliation(s)
- Manuel Rueda
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain.
| | - Ivo C Leist
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
213
|
Lecaudey LA, Netzer R, Wibberg D, Busche T, Bloecher N. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx. Toxicon 2024; 237:107556. [PMID: 38072317 DOI: 10.1016/j.toxicon.2023.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Cnidarians thriving in biofouling communities on aquaculture net pens represent a significant health risk for farmed finfish due to their stinging cells. The toxins coming into contact with the fish, during net cleaning, can adversely affect their behavior, welfare, and survival, with a particularly serious health risk for the gills, causing direct tissue damage such as formation of thrombi and increasing risks of secondary infections. The hydroid Ectopleura larynx is one of the most common fouling organisms in Northern Europe. However, despite its significant economic, environmental, and operational impact on finfish aquaculture, biological information on this species is scarce and its venom composition has never been investigated. In this study, we generated a whole transcriptome of E. larynx, and identified its putative expressed venom toxin proteins (predicted toxin proteins, not functionally characterized) based on in silico transcriptome annotation mining and protein sequence analysis. The results uncovered a broad and diverse repertoire of putative toxin proteins for this hydroid species. Its toxic arsenal appears to include a wide and complex selection of toxin proteins, covering a large panel of potential biological functions that play important roles in envenomation. The putative toxins identified in this species, such as neurotoxins, GTPase toxins, metalloprotease toxins, ion channel impairing toxins, hemorrhagic toxins, serine protease toxins, phospholipase toxins, pore-forming toxins, and multifunction toxins may cause various major deleterious effects in prey, predators, and competitors. These results provide valuable new insights into the venom composition of cnidarians, and venomous marine organisms in general, and offer new opportunities for further research into novel and valuable bioactive molecules for medicine, agronomics and biotechnology.
Collapse
Affiliation(s)
| | - Roman Netzer
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany; Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Nina Bloecher
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| |
Collapse
|
214
|
Du D, Qin C, Sun M, Lv F, Li W, Liu S. The Potential Mechanism of Eriodictyol in Treating Alzheimer's Disease: A Study on Computer-assisted Investigational Strategies. Curr Pharm Des 2024; 30:2086-2107. [PMID: 38920073 DOI: 10.2174/0113816128304628240526071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND At present, drug development for treating Alzheimer's disease (AD) is still highly challenging. Eriodictyol (ERD) has shown great potential in treating AD, but its molecular mechanism is unknown. OBJECTIVE We aimed to explore the potential targets and mechanisms of ERD in the treatment of AD through network pharmacology, molecular docking, and molecular dynamics simulations. METHODS ERD-related targets were predicted based on the CTD, SEA, PharmMapper, Swiss TargetPrediction, and ETCM databases, and AD-related targets were predicted through the TTD, OMIM, DrugBank, GeneCards, Disgenet, and PharmGKB databases. Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomics analyses (KEGG) were used to analyse the potential targets and key pathways of the anti-AD effect of ERD. Subsequently, potential DEGs affected by AD were analysed using the AlzData database, and their relationships with ERD were evaluated through molecular docking and molecular dynamics simulations. RESULTS A total of 198 ERD-related targets, 3716 AD-related targets, and 122 intersecting targets were identified. GO annotation analysis revealed 1497 biological processes, 78 cellular components, and 132 molecular functions of 15 core targets. KEGG enrichment analysis identified 168 signalling pathways. We ultimately identified 9 DEGs associated with AD through analysis of the AlzData data. Molecular docking results showed good affinity between the selected targets and ERD, with PTGS2, HSP90AA1, and BCL2. The interactions were confirmed by molecular dynamics simulations. CONCLUSION ERD exerts anti-AD effects through multiple targets, pathways, and levels, providing a theoretical foundation and valuable reference for the development of ERD as a natural anti-AD drug.
Collapse
Affiliation(s)
- Dan Du
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Chunmeng Qin
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Feng Lv
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Songqing Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| |
Collapse
|
215
|
Yu G, Lin Y, Wang J, Zhou L, Lu Y, Fei X, Gu X, Song S, Wang J, Liu Y, Yang Q, Zhan M, Seo SY, Xu B. Screening of tumor antigens and immunogenic cell death landscapes of prostate adenocarcinoma for exploration of mRNA vaccine. Expert Rev Vaccines 2024; 23:830-844. [PMID: 39193620 DOI: 10.1080/14760584.2024.2396086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND In this study, effective antigens of mRNA vaccine were excavated from the perspective of ICD, and ICD subtypes of PRAD were further distinguished to establish an ICD landscape, thereby determining suitable vaccine recipients. RESEARCH DESIGN AND METHODS TCGA and MSKCC databases were applied to acquire RNA-seq data and corresponding clinical data of 554 and 131 patients, respectively. GEPIA was employed to measure prognostic indices. Then, a comparison of genetic alterations was performed utilizing cBioPortal, and correlation of identified ICD antigens with immune infiltrating cells was analyzed employing TIMER. Moreover, ICD subtypes were identified by means of consensus cluster, and ICD landscape of PRAD was depicted utilizing graph learning-based dimensional reduction. RESULTS In total, 4 PRAD antigens were identified in PRAD, including FUS, LMNB2, RNPC3, and ZNF700, which had association with adverse prognosis and infiltration of APCs. PRAD patients were classified as two ICD subtypes based on their differences in molecular, cellular, and clinical features. Furthermore, ICD modulators and immune checkpoints were also differentially expressed between two ICD subtype tumors. Finally, the ICD landscape of PRAD showed substantial heterogeneity among individual patients. CONCLUSIONS In summary, the research may provide a theoretical foundation for developing mRNA vaccine against PRAD as well as determining appropriate vaccine recipients.
Collapse
Affiliation(s)
- Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuansheng Lin
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jianqing Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Zhou
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingying Lu
- University Hospital, Department of Logistics Support, East China University of Science and Technology, Shanghai, China
| | - Xiang Fei
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Xin Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shangqing Song
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangyi Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Seung-Yong Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
216
|
Geng S, Chen L, Lin W, Wan F, Le Z, Hu W, Chen H, Liu X, Huang Q, Zhang H, Lu JJ, Kong L. Exploring the Therapeutic Potential of Triptonide in Salivary Adenoid Cystic Carcinoma: A Comprehensive Approach Involving Network Pharmacology and Experimental Validation. Curr Pharm Des 2024; 30:2276-2289. [PMID: 38910414 DOI: 10.2174/0113816128315277240610052453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Salivary Adenoid Cystic Carcinoma (ACC) is characterized by a highly invasive and slow-growing pattern, and its etiology remains unidentified. Triptonide (TN) has demonstrated efficacy as a pharmacotherapeutic agent against ACC. Nonetheless, the specific targets and mechanism of molecular action underlying the effectiveness of TN in treating ACC have not been elucidated. OBJECTIVES By integrating network pharmacology within laboratory experiments, this research delves into the prospective targets and molecular mechanisms associated with the application of TN in treating ACC. METHODS Initially, pertinent targets associated with TN against ACC were acquired from public databases. Subsequently, a combination of network pharmacology and bioinformatics analysis was utilized to screen the top 10 hub targets and key signal pathways of TN-treating ACC. Finally, in vitro experiments involving various molecular assays were conducted to evaluate the biological phenotypes of cells following TN treatment, encompassing assessments of apoptosis levels, plate migration, and other parameters, thereby validating pivotal genes and pathways. RESULTS A total of 23 pertinent targets for TN in relation to ACC were identified, with the top 10 hub genes being MAPK8, PTGS2, RELA, MAPK14, NR3C1, HDAC1, PPARG, NFKBIA, AR, and PGR. There was a significant correlation between the TNF signaling pathway and the treatment of ACC with TN. In vitro experiments demonstrated that TN treatment elevated RELA phosphorylation while concurrently reducing MAPK14 phosphorylation and inducing G2/M arrest. TN exhibited the ability to enhance the apoptosis rate through increased caspase-3 activity, elevated levels of Reactive Oxygen Species (ROS), mitochondrial dysfunction, and inhibition of cell migration. CONCLUSION There is a potential therapeutic role for TN in the treatment of ACC through the activation of the TNF signaling pathway. Among the identified candidates, MAPK8, HDAC1, PTGS2, RELA, NR3C1, PPARG, NFKBIA, AR, and PGR emerge as the most pertinent therapeutic targets for TN in the context of ACC treatment.
Collapse
Affiliation(s)
- Shikai Geng
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Li Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Wanzun Lin
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Fangzhu Wan
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Ziyu Le
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Wei Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Huaiyuan Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Xingyu Liu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, China
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Haojiong Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
217
|
Rosenberg FM, Wardenaar R, Voorberg AN, Spierings DCJ, Schuttelaar MLA. Transcriptional differences between vesicular hand eczema and atopic dermatitis. Contact Dermatitis 2024; 90:23-31. [PMID: 37857578 DOI: 10.1111/cod.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Transcriptome analyses of vesicular hand eczema (VHE) indicated a large overlap with atopic dermatitis (AD). However, differentially expressed genes (DEGs) that differentiate VHE from AD are unknown. OBJECTIVE To identify distinctive transcriptional features of VHE in comparison to AD. METHODS We re-analysed RNA sequencing data of 10 lesional palmar VHE epidermal biopsies and performed DEG analyses. We adjusted the obtained DEG results of 57 lesional whole AD skin biopsies of the upper extremities or trunk to our criteria. Up- and down-regulated DEGs in both skin diseases, VHE-only, AD-only, and opposite regulated DEGs were identified. Enrichment analyses and Chi-squared tests were conducted to test for differences in gene set enrichment between both skin diseases. RESULTS Comparing 3028 DEGs in VHE (1645 up; 1383 down) with 5391 DEGs in AD (3842 up; 1549 down), revealed 1516 shared DEGs (1179 up; 337 down) and 1512 DEGs unique to VHE (466 up, 1046 down). Interferon signalling and necroptosis were significantly more prominent in VHE compared to AD. Downregulated genes identified only in VHE (like DNASE1L2, KRT2, KRT9 and KRT25) indicate an aberrant epidermal differentiation. CONCLUSION Our study indicates a common pathophysiology between VHE and AD, but also reveals transcriptional differences between VHE and AD.
Collapse
Affiliation(s)
- Fieke M Rosenberg
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Angelique N Voorberg
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie-Louise A Schuttelaar
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
218
|
Zhou M, Wang K, Jin Y, Liu J, Wang Y, Xue Y, Liu H, Chen Q, Cao Z, Jia X, Rui Y. Explore novel molecular mechanisms of FNDC5 in ischemia-reperfusion (I/R) injury by analyzing transcriptome changes in mouse model of skeletal muscle I/R injury with FNDC5 knockout. Cell Signal 2024; 113:110959. [PMID: 37918465 DOI: 10.1016/j.cellsig.2023.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Irisin, a myokine derived from proteolytic cleavage of the fibronectin type III domain-containing protein 5 (FNDC5) protein, is crucial in protecting tissues and organs from ischemia-reperfusion (I/R) injury. However, the underlying mechanism of its action remains elusive. In this study, we investigated the expression patterns of genes associated with FNDC5 knockout to gain insights into its molecular functions. METHODS We employed a mouse model of skeletal muscle I/R injury with FNDC5 knockout to examine the transcriptional profiles using RNA sequencing. Differentially expressed genes (DEGs) were identified and subjected to further analyses, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) network analysis, and miRNA-transcription factor network analysis. The bioinformatics findings were validated using qRT-PCR and Western blotting. RESULTS Comparative analysis of skeletal muscle transcriptomes between wild-type (WT; C57BL/6), WT-I/R, FNDC5 knockout (KO), and KO-I/R mice highlighted the significance of FNDC5 in both physiological conditions and I/R injury. Through PPI network analysis, we identified seven key genes (Col6a2, Acta2, Col4a5, Fap, Enpep, Mmp11, and Fosl1), which facilitated the construction of a TF-hub genes-miRNA regulatory network. Additionally, our results suggested that the PI3K-Akt pathway is predominantly involved in FNDC5 deletion-mediated I/R injury in skeletal muscle. Animal studies revealed reduced FNDC5 expression in skeletal muscle following I/R injury, and the gastrocnemius muscle with FNDC5 knockout exhibited larger infarct size and more severe tissue damage after I/R. Moreover, Western blot analysis confirmed the upregulation of Col6a2, Enpep, and Mmp11 protein levels following I/R, particularly in the KO-I/R group. Furthermore, FNDC5 deletion inhibited the PI3K-Akt signaling pathway. CONCLUSION This study demonstrates that FNDC5 deletion exacerbates skeletal muscle I/R injury, potentially involving the upregulation of Col6a2, Enpep, and Mmp11. Additionally, the findings suggest the involvement of the PI3K-Akt pathway in FNDC5 deletion-mediated skeletal muscle I/R injury, providing novel insights into the molecular mechanisms underlying FNDC5's role in this pathological process.
Collapse
Affiliation(s)
- Ming Zhou
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China.
| | - Kai Wang
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yesheng Jin
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Jinquan Liu
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yapeng Wang
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yuan Xue
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Hao Liu
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Qun Chen
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhihai Cao
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Emergency, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Xueyuan Jia
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yongjun Rui
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China.
| |
Collapse
|
219
|
Li S, Gao K, Yao D. Comprehensive analysis of autophagy associated genes and immune infiltrates in cervical cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:813-824. [PMID: 38800011 PMCID: PMC11127083 DOI: 10.22038/ijbms.2024.74431.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/26/2023] [Indexed: 05/29/2024]
Abstract
Objectives Cervical cancer (CC) is the most common gynecological malignant tumor and the fourth leading cause of cancer-related death in women. The progression of CC is significantly affected by autophagy. Our objective was to use bioinformatics analysis to explore the expression, prognostic significance, and immune infiltration of autophagy-related genes in CC. Materials and Methods We identified a set of autophagy-related differentially expressed genes (ARDEGs) from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. ARDEGs were further validated by The Human Protein Atlas (HPA), GSE52903, and GSE39001 dataset. Hub genes were found by the STRING network and Cytoscape. We performed Gene Set Enrichment Analysis (GSEA), Gene ontology analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and immune infiltration analysis to further understand the functions of the hub genes. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) were used to check the hub genes. Results A total of 10 up-regulated (CXCR4, BAX, SPHK1, EIF2AK2, TBK1, TNFSF10, ITGB4, CDKN2A, IL24, and BIRC5) and 19 down-regulated (PINK1, ATG16L2, ATG4D, IKBKE, MLST8, MAPK3, ERBB2, ULK3, TP53INP2, MTMR14, BNIP3, FOS, CCL2, FAS, CAPNS1, HSPB8, PTK6, FKBP1B , and DNAJB1) ARDEGs were identified. The ARDEGs were enriched in cell growth, apoptosis, human papillomavirus infection, and cytokine-mediated. Then, we found that low expression of MAPK3 was associated with poor prognosis in CC patients and was significantly enriched in immune pathways. In addition, the expression of MAPK3 was significantly positively correlated with the infiltration levels of macrophages, B cells, mast cell activation, and cancer-associated fibroblasts. Furthermore, MAPK3 was positively correlated with LGALS9, and negatively correlated with CTLA4 and CD40. Conclusion Our results show that MAPK3 can be used as a new prognostic biomarker to predict the prognosis of patients with CC.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Kun Gao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| |
Collapse
|
220
|
Li L, Chen S, Xue X, Chen J, Tian J, Huo L, Zhang T, Zeng X, Su S. Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes. ISME COMMUNICATIONS 2024; 4:ycae106. [PMID: 39229495 PMCID: PMC11370035 DOI: 10.1093/ismeco/ycae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher acr3 (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher aoxA (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Songcan Chen
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Ximei Xue
- Institute of Urban Environment, Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Jieyin Chen
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, P.R. China
| | - Tuo Zhang
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, P.R. China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| |
Collapse
|
221
|
Wu C, Ruan T, Yuan Y, Xu C, Du L, Wang F, Xu S. Alterations in Synaptic Connectivity and Synaptic Transmission in Alzheimer's Disease with High Physical Activity. J Alzheimers Dis 2024; 99:1005-1022. [PMID: 38759013 DOI: 10.3233/jad-240123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegeneration disease. Physical activity is one of the most promising modifiable lifestyles that can be effective in slowing down the progression of AD at an early stage. Objective Explore the molecular processes impaired in AD that were conversely preserved and enhanced by physical activity. Methods Integrated transcriptomic analyses were performed in datasets that contain AD patients and elders with different degrees of physical activity. The changes of the hub genes were validated through analyzing another two datasets. The expression of the hub genes was further detected in the hippocampus and cortexes of APP/PS1 transgenic mice with or without physical activity by Quantitative polymerase chain reaction (qPCR). Results Cross-comparison highlighted 195 DEGs displaying opposed regulation patterns between AD and high physical activity (HPA). The common DEGs were predominantly involved in synaptic vesicle recycling and synaptic transmission, largely downregulated in AD patients but upregulated in the elders with HPA. Two key modules and four hub genes that were related to synaptic vesicle turnover were obtained from the PPI network. The expression of these hub genes (SYT1, SYT4, SH3GL2, and AP2M1) was significantly decreased in AD transgenic mice and was reversed by HPA training. Conclusions HPA may reverse AD pathology by upregulating a range of synaptic vesicle transport related proteins which might improve the efficiency of synaptic vesicle turnover and facilitate inter-neuronal information transfer. The study provides novel insights into the mechanisms underlining the protective effects of HPA on AD.
Collapse
Affiliation(s)
- Can Wu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Tingting Ruan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yalan Yuan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chunshuang Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Lijuan Du
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, China
| | - Fang Wang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
222
|
Chen J, Zhang L, Lu CH, Xu CZ. Exploration of Key Genes Combining with Immune Infiltration Level andTumor Mutational Burden in Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2024; 27:2110-2124. [PMID: 38213141 DOI: 10.2174/0113862073239916231023053142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a lethal malignancy due to its heterogeneity and aggressive behavior. Recently, somatic mutations and tumor cell interactions with the surrounding tumor immune microenvironment (TIME) have been reported to participate in HCC carcinogenesis and predict HCC progression. In this study, we aimed to investigate the association between tumor mutational burden (TMB) and TIME in HCC. Additionally, we sought to identify differentially expressed genes (DEGs) associated with HCC prognosis and progression. METHODS The expression, clinical, and mutational data were downloaded from the cancer genome atlas (TCGA) database. The immune infiltration levels and TMB levels of the HCC samples were estimated and the samples were divided into immune cluster (ICR)-1 and 2 based on immune infiltration score and high and low TMB groups based on TMB score. Thereafter, differential gene expression analysis was conducted to identify the DEGs in the ICR1/2 and high/low TMB groups, and the intersecting DEGs were selected. Thereafter, Cox regression analysis was performed on 89 significant DEGs, among which 19 were associated with prognosis. These 19 DEGs were then used to construct a prognostic model based on their expression levels and regression coefficients. Thereafter, we analyzed the DEGs in mutant and wildtype TP53 HCC samples and identified high BCL10 and TRAF3 expression in the mutant TP53 samples. BCL10 and TRAF3 expression was detected by real-time quantitative reverse transcription PCR and immunohistochemistry, and their clinical correlation, biological function, and immune infiltration levels were analyzed by chi-square analyses, Gene Set Enrichment Analysis (GSEA), and "ssGSEA", respectively. RESULTS The results of our study revealed that immune infiltration level was correlated with TMB and that they synergistically predicted poor prognosis of HCC patients. DEGs enriched in immune-related pathways could serve as indicators of immunotherapy response in HCC. Among these DEGs, BCL10 and TRAF3 were highly expressed in HCC tissues, especially in the mutant TP53 group, and they co-operatively exhibited immunological function, thereby affecting HCC progression and prognosis. CONCLUSION In this study, we identified BCL10 and TRAF3 as potential prognostic indicators in HCC patients. Additionally, we found that BCL10 and TRAF3 influence TMB and TIME in HCC patients and can be used for the development of immune-based therapies for improving the long-term survival of HCC patients.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Lu Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen-Zhou Xu
- The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
223
|
Xie Y, Zhang Z, Lai D, Liang J, Zhao Z, Lu W, Ke J, Lin W, He H. Lymph node metastasis-related lncRNA GAS6-AS1 facilitates the progression of esophageal squamous cell carcinoma. J Gastrointest Oncol 2023; 14:2293-2308. [PMID: 38196547 PMCID: PMC10772685 DOI: 10.21037/jgo-23-798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024] Open
Abstract
Background Lymph node metastasis is the main type of metastasis in esophageal squamous cell carcinoma (ESCC), especially when the primary tumor invasion depth reaches above the adventitia layer (T3 stage), the incidence of lymph node metastasis increases sharply. Abnormal expression of long non-coding RNAs (lncRNAs) has been confirmed in ESCC, but there are still many unknown connections between lncRNAs and lymph node metastasis. Methods We used transcriptome sequencing (RNA-seq) to analyze 10 pairs of ESCC tissues with primary tumor stage T3 and their paired normal epithelium. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to further verify the sequencing results, and survival curve analysis, logistic regression analysis, and receiver operating characteristic (ROC) curve analysis were used to investigate its clinical application value. We investigated the growth and metastasis effects of lncRNA GAS6-AS1 on ESCC cell lines TE-1 and KYSE410 in vitro and in vivo. Other functional experiments included cell apoptosis and cell cycle experiments. Results Based on our RNA-seq data, lncRNA GAS6-AS1 is highly expressed in ESCC tissues, especially in cancer tissues with lymph node metastasis. The qRT-PCR experiment analysis showed that high expression of GAS6-AS1 was related to poor tumor differentiation and tumor stage. Logistic regression analysis showed that it was an independent risk factor for lymph node metastasis, and ROC analysis validated that it could predict lymph node metastasis. Further survival analysis suggested that high expression of GAS6-AS1 was associated with patients' poor prognosis. In vitro experiments, knocking down GAS6-AS1 inhibited the growth and metastasis of ESCC cells and inhibited tumor growth in vivo. In addition, knocking down GAS6-AS1 can inhibit cell cycle and promote cell apoptosis. Conclusions Our results revealed that lncRNA GAS6-AS1 obtained from RNA-seq can be used as an independent risk factor for ESCC lymph node metastasis and an effective biomarker to predict, and that it was related to the growth and metastasis of ESCC. It may represent a new biomarker to aid in the assessment of the lymph node metastasis of ESCC.
Collapse
Affiliation(s)
- Yujie Xie
- Department of Thoracic Surgery, Gaozhou People’s Hospital, Maoming, China
| | - Zhanfei Zhang
- Department of Cardiothoracic Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Dongmei Lai
- Department of Oncology, Gaozhou People’s Hospital, Maoming, China
| | - Jin Liang
- Department of Cardiothoracic Surgery, Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Zhengang Zhao
- Department of Cardiothoracic Surgery, Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Weicheng Lu
- Department of Thoracic Surgery, Maoming People’s Hospital, Maoming, China
| | - Junli Ke
- Department of Cardiothoracic Surgery, Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wanli Lin
- Department of Thoracic Surgery, Gaozhou People’s Hospital, Maoming, China
| | - Haiquan He
- Department of Thoracic Surgery, Gaozhou People’s Hospital, Maoming, China
| |
Collapse
|
224
|
Liu X, Cui S, Li W, Xie H, Shi L. Elucidation of the anti-colon cancer mechanism of Phellinus baumii polyphenol by an integrative approach of network pharmacology and experimental verification. Int J Biol Macromol 2023; 253:127429. [PMID: 37838121 DOI: 10.1016/j.ijbiomac.2023.127429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Colon cancer, a prevalent malignant tumor affecting the digestive system, presents a substantial risk to human health due to its high occurrence and mortality rates. Phellinus baumii polyphenol (PBP), a natural product derived from traditional Chinese medicine, has gained widespread popularity due to its low toxicity and minimal side effects, compared to radiation and chemotherapy. This study used an integrated approach of network pharmacology and experimental verification to elucidate the anti-colon cancer effects of PBP and its potential mechanisms. In network pharmacology, the identification of relevant targets involved a comprehensive search across multiple databases using keywords such as "active components of PBP" and "colon cancer". Venn diagram analysis was subsequently performed to ascertain the shared targets. To identify the key active components and core targets, we constructed a network of "Disease-Drug-Pathways-Targets" and a protein-protein interaction (PPI) network among the targets using Cytoscape 3.9.1. Furthermore, molecular docking was carried out to predict the binding affinity and conformation between the main active compounds (davallialactone and citrinin) of PBP and the core targets (TP53, STAT3, CASP3, CTNNB1, PARP1, MYC). To validate our findings, in vitro experiments were conducted. We verified that PBP exerted an anti-colon cancer effect on human colon cancer HCT116 cells by significantly inhibiting cell proliferation, promoting apoptosis and arresting the cell cycle in S phase by using Cell Counting Kit-8 (CCK-8) and flow cytometry. Finally, we determined the key regulatory proteins related to apoptosis and the cell cycle by western blot analysis, and proposed the potential mechanism by which PBP exerts an anti-colon cancer effect by inducing the caspase-dependent mitochondrial-mediated intrinsic apoptotic pathway and arresting the cell cycle in S phase in HCT116 cells. These results suggest that PBP possesses substantial potential for the treatment of colon cancer and may serve as a viable alternative therapeutic strategy in colon cancer treatment.
Collapse
Affiliation(s)
- Xue Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyao Cui
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; College of Life Sciences, Westlake University, Hangzhou 310058, China
| | - Wenle Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
225
|
Luo H, Luo J, Ding N, Zhang T, He Y. BICDL1 Predicts Poor Prognosis and is Correlated with Methylation and Immune Infiltration in Colorectal Cancer. Pharmgenomics Pers Med 2023; 16:1109-1126. [PMID: 38149287 PMCID: PMC10750784 DOI: 10.2147/pgpm.s424209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
Background Bicaudal-D (BICD) Family Like Cargo Adaptor 1 (BICDL1) is an essential component of the molecular mechanism during neuronal development. However, BICDL1 has not been reported in cancer. Using bioinformatics analysis, we systematically evaluated the potential role of BICDL1 in CRC. Methods Colorectal cancer (CRC) and normal tissue samples were retrieved from the Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), and Cancer Genome Atlas (TCGA) databases. Kaplan-Meier (K-M) analysis, nomogram, COX analysis, and receiver operating characteristic (ROC) curves were used to evaluate the prognostic power. Correlation analysis was also conducted to explore the correlation between mRNA expression and the methylation level of BICDL1 using cBioPortal, and the correlation between immune infiltration and BICDL1. RT-qPCR and Western blot assays were performed to analyze BICDL1 expression level between human colorectal cancer cell lines and normal colonic epithelial cells. Results BICDL1 had a higher expression in CRC tissues than in normal tissues (p < 0.001) in TCGA and GES 74602 datasets. Kaplan-Meier survival analysis revealed that patients with high BICDL1 expression had lower overall survival (OS) (1.53, 95% confidence interval: 1.07-2.17, p=0.019). The ROC curves demonstrated that BICDL1 has high specificity and efficiency in diagnosis (AUC=0.919, CI: 0.895-0.943). The expression level of BICDL1 was significantly correlated with the infiltrating levels of Treg (R=0.146, p <0.001), TFH (R=0.080, p=0.043), NK CD56bright cells (R=0.149, p <0.001), aDC (R=0.095, p=0.016), and T helper cell infiltration (R=-0.084, p=0.034). The correlation between BICDL1 expression and methylation levels was negative (R2=0.134, p <0.001), and CRC patients had lower methylation levels than normal people (p=0.036). BICDL1 mRNA and its protein expression levels in CRC cell lines (SW620) was markedly increased compared with that of normal colonic epithelial cells (NCM460) (p < 0.001). Conclusion BICDL1 may be a potential biomarker for evaluating immune infiltration levels and prognosis of CRC.
Collapse
Affiliation(s)
- Hongbiao Luo
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- Department of Anorectal Surgery, Chenzhou NO. 1 People’s Hospital, Chenzhou, Hunan, 423000, People’s Republic of China
| | - Ji Luo
- Hunan Key Laboratory of Chinese Medicine on Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, Hunan, 410006, People’s Republic of China
| | - Ning Ding
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Tao Zhang
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yongheng He
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
- Department of Anorectal Surgery, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, People’s Republic of China
| |
Collapse
|
226
|
Patrick MT, Sreeskandarajan S, Shefler A, Wasikowski R, Sarkar MK, Chen J, Qin T, Billi AC, Kahlenberg JM, Prens E, Hovnanian A, Weidinger S, Elder JT, Kuo CC, Gudjonsson JE, Tsoi LC. Large-scale functional inference for skin-expressing lncRNAs using expression and sequence information. JCI Insight 2023; 8:e172956. [PMID: 38131377 PMCID: PMC10807743 DOI: 10.1172/jci.insight.172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the expression of protein-coding genes and have been shown to play important roles in inflammatory skin diseases. However, we still have limited understanding of the functional impact of lncRNAs in skin, partly due to their tissue specificity and lower expression levels compared with protein-coding genes. We compiled a comprehensive list of 18,517 lncRNAs from different sources and studied their expression profiles in 834 RNA-Seq samples from multiple inflammatory skin conditions and cytokine-stimulated keratinocytes. Applying a balanced random forest to predict involvement in biological functions, we achieved a median AUROC of 0.79 in 10-fold cross-validation, identifying significant DNA binding domains (DBDs) for 39 lncRNAs. G18244, a skin-expressing lncRNA predicted for IL-4/IL-13 signaling in keratinocytes, was highly correlated in expression with F13A1, a protein-coding gene involved in macrophage regulation, and we further identified a significant DBD in F13A1 for G18244. Reflecting clinical implications, AC090198.1 (predicted for IL-17 pathway) and AC005332.6 (predicted for IFN-γ pathway) had significant negative correlation with the SCORAD metric for atopic dermatitis. We also utilized single-cell RNA and spatial sequencing data to validate cell type specificity. Our research demonstrates lncRNAs have important immunological roles and can help prioritize their impact on inflammatory skin diseases.
Collapse
Affiliation(s)
- Matthew T. Patrick
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sutharzan Sreeskandarajan
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alanna Shefler
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachael Wasikowski
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mrinal K. Sarkar
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahan Chen
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tingting Qin
- Department of Computational Medicine & Bioinformatics and
| | - Allison C. Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Errol Prens
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - James T. Elder
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
227
|
Huang S. Efficient analysis of toxicity and mechanisms of environmental pollutants with network toxicology and molecular docking strategy: Acetyl tributyl citrate as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167904. [PMID: 37858827 DOI: 10.1016/j.scitotenv.2023.167904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The study aims to promote network toxicology strategy to efficiently investigate the putative toxicity and underlying molecular mechanisms of environmental pollutants through an example of exploring brain injury induced by ATBC exposure. By utilizing ChEMBL, STITCH, GeneCards, and OMIM databases, we identified 213 potential targets associated with ATBC exposure and brain injury. Further refinements via STRING and Cytoscape software highlight 23 core targets, including AKT1, CASP3, and HSP90AA1. GO and KEGG pathway analysis conducted through DAVID and FUMA databases reveal that core targets of ATBC-induced brain toxicity are predominantly enriched in cancer signaling and neuroactive ligand receptor interaction pathways. Molecular docking was performed with Autodock, which confirmed robust binding between ATBC and core targets. Together, these findings suggest that ATBC may impact the occurrence and development of brain cancer and brain related inflammation, whereas pose risks for cognitive impairment and neurodegeneration, by modulating the apoptosis and proliferation of brain cancer cells, activating inflammatory signaling pathways, and regulating neuroplasticity. This research provides a theoretical basis for understanding the molecular mechanism of ATBC-induced brain toxicity, as well as establishing a foundation for the prevention and treatment of prostatic diseases associated with exposure to plastic products containing ATBC and certain ATBC-overwhelmed environments. Moreover, our network toxicology approach also expedites the elucidation of toxicity pathways for uncharacterized environmental chemicals.
Collapse
Affiliation(s)
- Shujun Huang
- West China School Of Public Health, West China Medical Center, Sichuan University, China.
| |
Collapse
|
228
|
Jia C, Chen J, Wang X, Yang X, Wu H, Chen A, Li J, Zhang K. Machine learning and experimental screening of chromatin regulator signatures and potential drugs in hepatitis B related hepatocellular carcinoma. J Biomol Struct Dyn 2023:1-15. [PMID: 38111163 DOI: 10.1080/07391102.2023.2295382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 12/20/2023]
Abstract
Many evidences have confirmed that chromatin regulator factors (CRs) are involved in the progression of cancer, but its potential mechanism of affecting hepatitis B related hepatocellular carcinoma still needs to be studied. Our study detected the CRs that affect hepatitis B related hepatocellular carcinoma (HBV-HCC) through machine learning analysis, conducted the analysis of immune cells, constructed the relevant risk model and immune function infiltration, and predicted the potential therapeutic drugs. We found that these CRs were significantly related to the immune cells of Macrophages, B cells, CD8+T cells, etc., and PBK, AURKA, TOP2A and AURKB were the potential risk CRs of HBV-HCC. The expression levels of these four CRs increased in HepG2.2.15 cells and the liver of HBV-HCC patients, consistent with the predicted risk model. Subsequently, ten potential drugs closely related to the risk CRs were finally obtained, experimental research on resveratrol has shown that it can inhibit the proliferation of HepG2.2.15 cells and potentially inhibit the occurrence and development of HBV-HCC. Our study provides novel insights into the function of CRs in HBV-HCC and certain ideas for more accurate targeted therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Caixia Jia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianxin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueting Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, P. R. China
| | - Xingliang Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongxing Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingzhong Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kunlin Zhang
- Center for Genetics and BioMedical Informatics Research, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
229
|
Nayan SI, Rahman MH, Hasan MM, Raj SMRH, Almoyad MAA, Liò P, Moni MA. Network based approach to identify interactions between Type 2 diabetes and cancer comorbidities. Life Sci 2023; 335:122244. [PMID: 37949208 DOI: 10.1016/j.lfs.2023.122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
High blood sugar and insulin insensitivity causes the lifelong chronic metabolic disease called Type 2 diabetes (T2D) which has a higher chance of developing different malignancies. T2D with comorbidities like Cancers can make normal medications for those disorders more difficult. There may be a significant correlation between comorbidities and have an impact on one another's health. These associations may be due to a number of direct and indirect mechanisms. Such molecular mechanisms that underpin T2D and cancer are yet unknown. However, the large volumes of data available on these diseases allowed us to use analytical tools for uncovering their interrelated pathways. Here, we tried to present a system for investigating potential comorbidity relationships between T2D and Cancer disease by looking at the molecular processes involved, analyzing a huge number of freely accessible transcriptomic datasets of various disorders using bioinformatics. Using semantic similarity and gene set enrichment analysis, we created an informatics pipeline that evaluates and integrates Gene Ontology (GO), expression of genes, and biological process data. We discovered genes that are common in T2D and Cancer along with molecular pathways and GOs. We compared the top 200 Differentially Expressed Genes (DEGs) from each selected T2D and cancer dataset and found the most significant common genes. Among all the common genes 13 genes were found most frequent. We also found 4 common GO terms: GO:0000003, GO:0000122, GO:0000165, and GO:0000278 among all the common GO terms between T2d and different cancers. Using these genes and GO term semantic similarity, we calculated the distance between these two diseases. The semantic similarity results of our study showed a higher association of Liver Cancer (LiC), Breast Cancer (BreC), Colorectal Cancer (CC), and Bladder Cancer (BlaC) with T2D. Furthermore we found KIF4A, NUSAP1, CENPF, CCNB1, TOP2A, CCNB2, RRM2, HMMR, NDC80, NCAPG, and IGFBP5 common hub proteins among different cancers correlated to T2D. AGE-RAGE signaling pathway in diabetic complications, Osteoclast differentiation, TNF signaling pathway, IL-17 signaling pathway, p53 signaling pathway, MAPK signaling pathway, Human T-cell leukemia virus 1 infection, and Non-alcoholic fatty liver disease are the 8 most significant pathways found among 18 common pathways between T2D and selected cancers. As a result of our technique, we now know more about disease pathways that are critical between T2D and cancer.
Collapse
Affiliation(s)
- Saidul Islam Nayan
- Dept. of Computer Science & Engineering, University of Global Village, Barisal 8200, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh; Center for Advanced Bioinformatics and Artificial Intelligence Research, Islamic University, Kushtia 7003, Bangladesh
| | - Md Mehedi Hasan
- Dept. of Computer Science & Engineering, University of Global Village, Barisal 8200, Bangladesh
| | | | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, 47 Abha, Mushait, PO Box. 4536, 61412, Saudi Arabia
| | - Pietro Liò
- Computer Laboratory, The University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Stuart University, Bathurst, NSW, 2795, Australia.
| |
Collapse
|
230
|
Liu D, He C, Liu Z, Xu L, Li J, Zhao Z, Hu X, Chen H, Sun B, Wang Y. The Prognostic and Immune Significance of CILP2 in Pan-Cancer and Its Relationship with the Progression of Pancreatic Cancer. Cancers (Basel) 2023; 15:5842. [PMID: 38136386 PMCID: PMC10741840 DOI: 10.3390/cancers15245842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cartilage intermediate layer protein 2 (CILP2) facilitates interactions between matrix components in cartilage and has emerged as a potential prognostic biomarker for cancer. This study aimed to investigate the function and mechanisms of CILP2 in pan-cancer. We evaluated the pan-cancer expression, methylation, and mutation data of CILP2 for its clinical prognostic value. Additionally, we explored the immunological characteristics of CILP2 in pan-cancer and then focused specifically on pancreatic ductal adenocarcinoma (PAAD). The subtype analysis of PAAD identified subtype-specific expression and immunological characteristics. Finally, in vitro and in vivo experiments assessed the impact of CILP2 on pancreatic cancer progression. CILP2 exhibited high expression in most malignancies, with significant heterogeneity in epigenetic modifications across multiple cancer types. The abnormal methylation and copy number variations in CILP2 were correlated with poor prognoses. Upregulated CILP2 was associated with TGFB/TGFBR1 and more malignant subtypes. CILP2 exhibited a negative correlation with immune checkpoints in PAAD, suggesting potential for immunotherapy. CILP2 activated the AKT pathway, and it increased proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) in pancreatic cancer. We demonstrated that CILP2 significantly contributes to pancreatic cancer progression. It serves as a prognostic biomarker and a potential target for immunotherapy.
Collapse
Affiliation(s)
- Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Cong He
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zonglin Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Licheng Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiacheng Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuewei Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (D.L.); (Z.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
231
|
Delgado M, Garcia-Sanz JA. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells 2023; 12:2837. [PMID: 38132155 PMCID: PMC10741644 DOI: 10.3390/cells12242837] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
A series of monoclonal antibodies with therapeutic potential against cancer have been generated and developed. Ninety-one are currently used in the clinics, either alone or in combination with chemotherapeutic agents or other antibodies, including immune checkpoint antibodies. These advances helped to coin the term personalized medicine or precision medicine. However, it seems evident that in addition to the current work on the analysis of mechanisms to overcome drug resistance, the use of different classes of antibodies (IgA, IgE, or IgM) instead of IgG, the engineering of the Ig molecules to increase their half-life, the acquisition of additional effector functions, or the advantages associated with the use of agonistic antibodies, to allow a broad prospective usage of precision medicine successfully, a strategy change is required. Here, we discuss our view on how these strategic changes should be implemented and consider their pros and cons using therapeutic antibodies against cancer as a model. The same strategy can be applied to therapeutic antibodies against other diseases, such as infectious or autoimmune diseases.
Collapse
Affiliation(s)
| | - Jose A. Garcia-Sanz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
232
|
Zhang C, Lin Q, Li C, Qiu Y, Chen J, Zhu X. Comprehensive analysis of the prognostic implication and immune infiltration of CISD2 in diffuse large B-cell lymphoma. Front Immunol 2023; 14:1277695. [PMID: 38155967 PMCID: PMC10754510 DOI: 10.3389/fimmu.2023.1277695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma in adults. CDGSH iron sulfur domain 2 (CISD2) is an iron-sulfur protein and plays a critical role of cell proliferation. The aberrant expression of CISD2 is associated with the progression of multiple cancers. However, its role in DLBCL remains unclear. Methods The differential expression of CISD2 was identified via public databases, and quantitative real-time PCR (qRT-PCR) and western blot were used to identifed the expression of CISD2. We estimated the impact of CISD2 on clinical prognosis using the Kaplan-Meier plotter. Meanwhile, the drug sensitivity of CISD2 was assessed using CellMiner database. The 100 CISD2-related genes from STRING obtained and analyzed using the LASSO Cox regression. A CISD2 related signature for risk model (CISD2Risk) was established. The PPI network of CISD2Risk was performed, and functional enrichment was conducted through the DAVID database. The impacts of CISD2Risk on clinical features were analyzed. ESTIMATE, CIBERSORT, and MCP-counter algorithm were used to identify CISD2Risk associated with immune infiltration. Subsequently, Univariate and multivariate Cox regression analysis were applied, and a prognostic nomogram, accompanied by a calibration curve, was constructed to predict 1-, 3-, and 5-years survival probabilities. Results CISD2 was upregulated in DLBCL patients comparing with normal controls via public datasets, similarly, CISD2 was highly expressed in DLBCL cell lines. Overexpression of CISD2 was associated with poor prognosis in DLBCL patients based on the GSE31312, the GSE32918, and GSE93984 datasets (P<0.05). Nine drugs was considered as a potential therapeutic agents for CISD2. By using the LASSO cox regression, twenty seven genes were identified to construct CISD2Risk, and biological functions of these genes might be involved in apoptosis and P53 signaling pathway. The high CISD2Risk value had a worse prognosis and therapeutic effect (P<0.05). The higher stromal score, immune score, and ESTIMATE score were associated with lowe CISD2Risk value, CISD2Risk was negatively correlated with several immune infiltrating cells (macrophages M0 and M1, CD8 T cells, CD4 naïve T cells, NK cell, etc) that might be correlated with better prognosis. Additionally, The high CISD2Risk was identified as an independent prognostic factor for DLBCL patients using both univariate and multivariate Cox regression. The nomogram produced accurate predictions and the calibration curves were in good agreement. Conclusion Our study demonstrates that high expression of CISD2 in DLBCL patients is associated with poor prognosis. We have successfully constructed and validated a good prognostic prediction and efficacy monitoring for CISD2Risk that included 27 genes. Meanwhile, CISD2Risk may be a promising evaluator for immune infiltration and serve as a reference for clinical decision-making in DLBCL patients.
Collapse
Affiliation(s)
- ChaoFeng Zhang
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, China
- The School of Basic Medicine, Putian University, Putian, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, China
| | - ChunTuan Li
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yang Qiu
- The School of Basic Medicine, Putian University, Putian, China
| | - JingYu Chen
- The School of Basic Medicine, Putian University, Putian, China
| | - XiongPeng Zhu
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
233
|
Chen YJ, Ferdousi F, Bejaoui M, Sasaki K, Isoda H. Microarray meta-analysis reveals comprehensive effects of 3,4,5-tricaffeolyquinic acid in cell differentiation and signaling. Eur J Pharmacol 2023; 960:176143. [PMID: 37866748 DOI: 10.1016/j.ejphar.2023.176143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Caffeoylquinic acids (CQA) are polyphenolic compounds found in fruits, vegetables, coffee, and spices that have exhibited several beneficial activities, including antioxidant, antibacterial, neuroprotective, anti-inflammatory, anticancer, antiviral, antidiabetic, and cardiovascular effects. A derivative, TCQA (3,4,5-Tri-O-caffeoylquinic acid), has also shown both neurogenic and pigment differentiation potential. A transcriptomic-based meta-analysis was conducted to explore potential biochemical processes and molecular targets of TCQA. This approach involved integrating data from various cell and tissue types, including human amniotic stem cells, human neural stem cells, human dermal papilla cells, and the brain cortex of aging model mice. It offered a comprehensive perspective on the significant gene regulations in response to TCQA treatment. The objective was to uncover the mechanism and novel targets of TCQA, facilitating a further understanding of its functions. New areas of interest found were TCQA's effect on adipogenesis, heart, and muscle tissue development. In addition, significantly enhanced biological activities found through meta-analysis included cell cycle, VEGFA-VEGFR2 pathway, and BMP signaling. Overall, a comprehensive functional and visual analysis using available biological databases uncovered the multi-target potential of this natural compound.
Collapse
Affiliation(s)
- Yu Jia Chen
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Meriem Bejaoui
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazunori Sasaki
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan; Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
234
|
Li JP, Liu YJ, Yin Y, Li RN, Huang W, Zou X. Stroma-associated FSTL3 is a factor of calcium channel-derived tumor fibrosis. Sci Rep 2023; 13:21317. [PMID: 38044354 PMCID: PMC10694158 DOI: 10.1038/s41598-023-48574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most widespread histological form of primary liver cancer, and it faces great diagnostic and therapeutic difficulties owing to its tumor diversity. Herein, we aim to establish a unique prognostic molecular subtype (MST) and based on this to find potential therapeutic targets to develop new immunotherapeutic strategies. Using calcium channel molecules expression-based consensus clustering, we screened 371 HCC patients from The Cancer Genome Atlas to screen for possible MSTs. We distinguished core differential gene modules between varying MSTs, and Tumor Immune Dysfunction and Exclusion scores were employed for the reliable assessment of HCC patient immunotherapeutic response rate. Immunohistochemistry and Immunofluorescence staining were used for validation of predicted immunotherapy outcomes and underlying biological mechanisms, respectively. We identified two MSTs with different clinical characteristics and prognoses. Based on the significant differences between the two MSTs, we further identified Follistatin-like 3 (FSTL3) as a potential indicator of immunotherapy resistance and validated this result in our own cohort. Finally, we found that FSTL3 is predominantly expressed in HCC stromal components and that it is a factor in enhancing fibroblast-M2 macrophage signaling crosstalk, the function of which is relevant to the pathogenesis of HCC. The presence of two MSTs associated with the calcium channel phenotype in HCC patients may provide promising directions for overcoming immunotherapy resistance in HCC, and the promotion of FSTL3 expressed in stromal components for HCC hyperfibrosis may be responsible for the poor response rate to immunotherapy in Cluster 2 (C2) patients.
Collapse
Affiliation(s)
- Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yi Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ruo-Nan Li
- Shihezi Labor Personnel Dispute Arbitration Committee, Shihezi, 832000, China
| | - Wei Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China.
| |
Collapse
|
235
|
Comertpay B, Gov E. Immune cell-specific and common molecular signatures in rheumatoid arthritis through molecular network approaches. Biosystems 2023; 234:105063. [PMID: 37852410 DOI: 10.1016/j.biosystems.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder and common symptom of RA is chronic synovial inflammation. The pathogenesis of RA is not fully understood. Therefore, we aimed to identify underlying common and distinct molecular signatures and pathways among ten types of tissue and cells obtained from patients with RA. In this study, transcriptomic data including synovial tissues, macrophages, blood, T cells, CD4+T cells, CD8+T cells, natural killer T (NKT), cells natural killer (NK) cells, neutrophils, and monocyte cells were analyzed with an integrative and comparative network biology perspective. Each dataset yielded a list of differentially expressed genes as well as a reconstruction of the tissue-specific protein-protein interaction (PPI) network. Molecular signatures were identified by a statistical test using the hypergeometric probability density function by employing the interactions of transcriptional regulators and PPI. Reporter metabolites of each dataset were determined by using genome-scale metabolic networks. It was defined as the common hub proteins, novel molecular signatures, and metabolites in two or more tissue types while immune cell-specific molecular signatures were identified, too. Importantly, miR-155-5p is found as a common miRNA in all tissues. Moreover, NCOA3, PRKDC and miR-3160 might be novel molecular signatures for RA. Our results establish a novel approach for identifying immune cell-specific molecular signatures of RA and provide insights into the role of common tissue-specific genes, miRNAs, TFs, receptors, and reporter metabolites. Experimental research should be used to validate the corresponding genes, miRNAs, and metabolites.
Collapse
Affiliation(s)
- Betul Comertpay
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| |
Collapse
|
236
|
Liu X, Lin L, Cai Q, Sheng H, Zeng R, Zhao Y, Qiu X, Liu H, Huang L, Liang W, He J. Construction and Validation of a Prognostic Model Based on Novel Senescence-Related Genes in Non-Small Cell Lung Cancer Patients with Drug Sensitivity and Tumor Microenvironment. Adv Biol (Weinh) 2023; 7:e2300190. [PMID: 37518773 DOI: 10.1002/adbi.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Cellular senescence contributes to cancer pathogenesis and immune regulation. Using the LASSO Cox regression, we developed a 12-gene prognostic signature for lung adenocarcinoma (LUAD) from The Cancer Genome Atlas (TCGA) and a Gene Expression Omnibus (GEO) dataset. We assessed gene expression, drug sensitivity, immune infiltration, and conducted cell line experiments. High-risk LUAD patients showed increased mortality risk and shorter survival (P < 0.001). Senescence-related gene analysis indicated differences in protein phosphorylation and DNA methylation between normal individuals and LUAD patients. The high-risk group showed a positive association with PD-L1 expression (P = 0.003). Single-cell sequencing data suggested PEBP1 might significantly impact T cell infiltration. We predicted potential sensitive compounds for 12 senescence genes and found GAPDH promoted cell line proliferation. We established a novel prognostic system based on a newly identified senescence gene. High-risk patients had elevated immunosuppressive markers, and PEBP1 might influence T cell infiltration significantly. GAPDH, expressed at higher levels in tumors, could affect cancer progression. Our drug prediction model may guide treatment selection.
Collapse
Affiliation(s)
- Xiwen Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- School of Clinical Medicine, Henan University, Kaifeng, 475000, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Hongxu Sheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Ruiqi Zeng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Xinyi Qiu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- First Clinical School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Huiting Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Linchong Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- The First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Southern Medical University, Guangzhou, 510120, China
| |
Collapse
|
237
|
Liu W, You J, Ge Y, Wu B, Zhang Y, Chen S, Zhang Y, Huang S, Ma L, Feng J, Cheng W, Yu J. Association of biological age with health outcomes and its modifiable factors. Aging Cell 2023; 22:e13995. [PMID: 37723992 PMCID: PMC10726867 DOI: 10.1111/acel.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
Collapse
Affiliation(s)
- Wei‐Shi Liu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jia You
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Yi‐Jun Ge
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shu‐Yi Huang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ling‐Zhi Ma
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer CenterShanghaiChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
238
|
Tian X, Zhu S, Liu W, Wu X, Wei G, Zhang J, Anwaier A, Chen C, Ye S, Che X, Xu W, Qu Y, Zhang H, Ye D. Construction of cuproptosis signature based on bioinformatics and experimental validation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:17451-17466. [PMID: 37889309 DOI: 10.1007/s00432-023-05259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Cuproptosis was defined as a novel nonapoptotic cell death pathway and its potential function in clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS We obtained gene expression profiles, somatic mutation and corresponding clinical information of 881 ccRCC samples from 3 cohorts including the cancer genome atlas cohort, GSE29609 cohort and CheckMate 025 cohort. As described in the latest published article, we enrolled 16 genes as cuproptosis-related genes (CRGs). We explored the expression level, variants and copy number variation of the CRGs. Univariate and multi-variate regression were utilized to assess the prognostic significance of the CRGs. Non-negative matrix factorization was used to identify potential subgroup and gene set variation analysis was used to explore the potential biological functions. CIBERSORT, ESTIMATE algorithm and single sample gene set enrichment analysis were used to evaluate the tumor microenvironment. In vitro experiments including CCK-8, transwell and wound healing assays were utilized to explore the potential biological function of DLAT in ccRCC. RESULTS We found that except for CDKN2A, the CRGs were positively associated with patients' OS. Cuproptosis cluster, cuproptosis gene cluster and cuproptosis score were established, respectively, and higher cuproptosis score was significantly associated with a worse OS in ccRCC (p < 0.001). The area under the receiver operating characteristic curve of the cuproptosis-related nomogram at 1 year, 3 years, 5 years was 0.858, 0.821 and 0.78, respectively. In addition, we found that the cuproptosis score was positively associated with PDCD1, CTLA4 expression level, thus the cuproptosis score may also reflect the dysfunction of tumor infiltrating immune cells. In vitro experiments indicated that overexpression of DLAT could inhibited the migration and proliferation ability of ccRCC cells. CONCLUSION Our findings identify a novel cuproptosis-related signature and the cuproptosis characteristics may influence the anti-tumor immunity though complex regulating networks, and thus cuproptosis may play a role in developing novel therapeutic target of ccRCC.
Collapse
Affiliation(s)
- Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuxuan Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Gaomeng Wei
- Department of Urology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Ji Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cong Chen
- Department of Nursing, Fudan University Shanghai Cancer Cente, Shanghai, China
| | - Shiqi Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiangxian Che
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
239
|
Tan J, Yang J, Aobulikasimu N, Zhang C, Cao B, Lv H, Jiang M, Han L, Huang X. Senkyunolide B exhibits broad-spectrum antifungal activity against plant and human pathogenic fungi via inhibiting spore germination and destroying the mature biofilm. PEST MANAGEMENT SCIENCE 2023; 79:4952-4963. [PMID: 37531560 DOI: 10.1002/ps.7696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Aspergillus infection seriously jeopardizes the health and safety of life of immunocompromised patients. The emergences of antifungal resistance highlight a demand to find new effective antifungal drugs. Angelica sinensis is a medicine-food herb and phthalides are its characteristic components. A few of the phthalides have been reported to display satisfactory antifungal activities against plant pathogenic fungi. However, the structure-activity relationships and antifungal action mechanism of phthalides remain to be further explored and elucidated. RESULTS The antifungal activities of five natural phthalides and four artificial analogs were investigated, and their structure-activity relationships were preliminarily elucidated in the current study. The benzene ring moiety played an essential role in their antifungal activities; the oxygen-containing substituents on the benzene ring obviously impacted their activities, the free hydroxyl was favorable to the activity. Typical phthalide senkyunolide B (SENB) exhibited broad antifungal activities against human and plant pathogenic fungi, especially, Aspergillus fumigatus. SENB affected the spore germination and hyphae growth of Aspergillus fumigatus via down-regulating phosphatidylinositol-PKC-calcineurin axis and the expression of ENG genes. Moreover, SENB disturbed the oxidation-reduction process in Aspergillus fumigatus to destroy the mature biofilms. In vivo experiments indicated SENB significantly prolonged survival and decreased fungal burden in mouse model of invasive pulmonary aspergillosis. CONCLUSIONS Phthalides could be considered as the valuable leads for the development of antifungal drug to cure plant and human disease. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junfeng Tan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Junwei Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Nuerbiye Aobulikasimu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Chen Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Bixuan Cao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Hang Lv
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, P. R. China
| | - Li Han
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Xueshi Huang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
240
|
Ding R, Zheng Y, Bu J. Exploration of the biomarkers of comorbidity of psoriasis with inflammatory bowel disease and their association with immune infiltration. Skin Res Technol 2023; 29:e13536. [PMID: 38115636 PMCID: PMC10730979 DOI: 10.1111/srt.13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND There was evidence that significant bidirectional associations between psoriasis and inflammatory bowel diseases (IBDs), which influences management strategy of the patients, so the investigation on the mechanisms by which these two diseases co-occur is important. METHODS The Gene Expression Omnibus (GEO) database was used to download gene expression profiles of psoriasis and IBD. The differentially expressed genes (DEGs) between disease and health control groups for each data set were calculated, and Venn diagram was used to obtain for intersection. We performed Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the intersection, followed by developing a protein-protein interaction network and module construction, and identified hub genes by cytoHubba. Thereafter, least absolute shrinkage and selection operator algorithms was used to identify the co-biomarkers of psoriasis and IBD from the top 50 hub genes. The biomarkers were used to construct a screening model, the discriminatory capacity of which was verified by receiver operating characteristic (ROC) curves. CIBERSORT algorithm was utilized to estimate the compositional patterns of immune cell infiltration in biomarkers of psoriasis and IBD. Spearman rank correlation analysis was used to further evaluate the correlation between the identified biomarkers and immune cells. RESULTS A total of 271 shared DEGs were screened. The GO and KEGG enrichment analysis indicated that the shared DEGs were mainly enriched in response to lipopolysaccharide, secretory granule lumen, cytokine activity, and interleukin (IL)-17 signaling pathway. Fifty genes such as IL1B, IL6, were identified as hub genes, based on which, FOS, IFI44, MMP9, MNDA, PTGS2, S100A9, and STAT1 were identified as biomarkers of psoriasis. CCL20, CD274, CTGF, CXCL1, CXCL10, CXCL2, CXCL9, FCGR3B, FOS, GBP1, GZMB, IFI27, IFI6, IL1RN, ISG15, ISG20, LCN2, LILRB2, MMP12, MMP7, S100A8, TLR8, and TNFSF13B were identified as biomarkers of IBD. FOS was the common biomarker of psoriasis and IBD. Screening models were validated in the validation data set (Psoriasis: area under the curve (AUC) = 1.000, IBD: AUC = 0.870). Immunocyte infiltration analysis showed the macrophages cells, mast cells resting, and T cells CD4 memory activated have the common characteristics in psoriasis and IBD. CONCLUSIONS FOS may play a key role in the occurrence and development of psoriasis complicated with IBD and macrophages cells may be an entrance for treating this comorbidity.
Collapse
Affiliation(s)
- Rui‐Lian Ding
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences & Peking Union Medical CollegeNanjingJiangsuChina
| | - Yu Zheng
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences & Peking Union Medical CollegeNanjingJiangsuChina
| | - Jin Bu
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences & Peking Union Medical CollegeNanjingJiangsuChina
| |
Collapse
|
241
|
Wang X, Chen L, Huang K, Lin Y, Hong Y, Lin Z. CPVL suppresses metastasis of nasopharyngeal carcinoma through inhibiting epithelial-mesenchymal transition. J Cancer Res Clin Oncol 2023; 149:16473-16488. [PMID: 37712963 DOI: 10.1007/s00432-023-05340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Distant metastasis is the main obstacle to treating nasopharyngeal carcinoma (NPC). Tumor distance metastasis is a complex process involving the jointly participation of multiple oncogenes, tumor suppressor genes, and metastasis-associated genes. Enough accurate prognostic genes for evaluating metastasis risk are lacking. We aimed to identify more precise biomarkers for NPC metastasis. METHODS We performed weighted gene co-expression network analysis, differentially expressed gene analysis, univariate and multivariate stepwise Cox regression, and Kaplan-Meier (K-M) survival analyses, on data obtained from RNA sequencing of 10 NPC samples and the public database, to identify key genes correlated with NPC metastasis. Wound healing assays, transwell assays, and immunohistochemistry were conducted to validate our bioinformatic conclusions. Western blotting was performed to evaluate and quantify the effect of identified EMT genes on epithelial-mesenchymal transition (EMT) of NPC. RESULTS Combined our own RNA sequencing data and public data, we determined carboxypeptidase vitellogenic-like protein (CPVL) as a tumor suppressor for NPC. Pathway enrichment analyses indicated that genes associated with CPVL are involved in EMT. NPC with low CPVL expression had high tumor purity and low levels of immune cells. Experimental results showed that CPVL protein predominantly expressed in cytoplasmic and membranous and it exhibited higher expression levels in NPC tissues without distant metastasis than those with distant metastasis. CPVL inhibits the migration and invasive capability of NPC cells. Overexpression of CPVL upregulates E-cadherin and ZO-1, whereas it downregulates vimentin, suggesting that CPVL suppresses tumor metastasis by inhibiting EMT. CONCLUSION CPVL inhibits migration and invasion of NPC cells and is associated with tumor metastasis suppression through upregulating epithelial marker and inhibiting mesenchymal marker expression and could be a prognostic biomarker for metastasis risk evaluation in NPC.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Shantou University Medical College, 22 Xinling Road, Shantou, 515000, Guangdong, China
| | - Linxin Chen
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, 325027, Zhejiang, China
| | - Kaichun Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
| | - Yinbing Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China
- Shantou University Medical College, 22 Xinling Road, Shantou, 515000, Guangdong, China
| | - Yingji Hong
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China.
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China.
| | - Zhixiong Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515000, Guangdong, China.
- Nasopharyngeal Carcinoma Research Center, Shantou University Medical College, Shantou University, 7 Raoping Road, Shantou, 515000, Guangdong, China.
| |
Collapse
|
242
|
Liang C, Bai Y, Miao R, Yang X, Gao L, Liu Y, Zhou J, Guo J, Hu D, Wu J. Celastrol as a candidate drug for silicosis: From bioinformatics and network pharmacology to experimental validation. Int Immunopharmacol 2023; 125:111068. [PMID: 37948856 DOI: 10.1016/j.intimp.2023.111068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Silicosis, a highly lethal occupational respiratory disease characterized by irreversible pulmonary fibrosis, remains challenging to treat due to its unclear pathogenesis. In this study, bioinformatics, network pharmacology, and experimental validation were combined to explore potential mechanisms and therapeutic drugs for silicosis. First, the differentially expressed genes(DEGs)and pathway enrichment in pulmonary fibrosis were identified by GO and KEGG analysis. Next, the differential genes were submitted to cMap database for drug prediction and celastrol stood out as the most promising candidate drug. Then, network pharmacology analysis identified pharmacological targets of celastrol and demonstrated that celastrol could regulate JAK-STAT, MAPK, and Toll-like receptor signaling pathways. Finally, we verified the therapeutic role and mechanism of celastrol on silicosis. In vivo, celastrol significantly ameliorated CS-induced inflammation and fibrosis in silicosis mice, including inflammatory cell infiltration, collagen fiber and extracellular matrix deposition, fibroblast activation and related factor expression. Moreover, it dramatically improved lung respiratory function of silicosis mice. In vitro, celastrol suppressed CS-induced cytokine expression, apoptosis of macrophages and activation of Stat3 and Erk1/2 signals. Overall, our research identified and verified celastrol as a novel and promising candidate drug for silicosis.
Collapse
Affiliation(s)
- Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Xuelian Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
243
|
Su F, Liu Y, Zong Y, Gao Z, Zhou G, Deng C, Liu Y, Zeng Y, Ma X, Wang Y, Wu Y, Xu F, Guan L, Liu B. Identification of circulating miRNA as early diagnostic molecular markers in malignant glioblastoma base on decision tree joint scoring algorithm. J Cancer Res Clin Oncol 2023; 149:17823-17836. [PMID: 37943358 DOI: 10.1007/s00432-023-05448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE The lack of clinical markers prevents early diagnosis of glioblastoma (GBM). Many studies have found that circulating microRNAs (miRNAs) can be used as early diagnostic markers of malignant tumours. Therefore, the identification of novel circulating miRNA biomolecular markers could be beneficial to clinicians in the early diagnosis of GBM. METHODS We developed a decision tree joint scoring algorithm (DTSA), systematically integrating significance analysis of microarray (SAM), Pearson hierarchical clustering, T test, Decision tree and Entropy weight score algorithm, to screen out circulating miRNA molecular markers with high sensitivity and accuracy for early diagnosis of GBM. RESULTS DTSA was developed and applied for GBM datasets and three circulating miRNA molecular markers were identified, namely, hsa-miR-2278, hsa-miR-555 and hsa-miR-892b. We have found that hsa-miR-2278 and hsa-miR-892b regulate the GBM pathway through target genes, promoting the development of GBM and affecting the survival of patients. DTSA has better classification effect in all data sets than other classification algorithms, and identified miRNAs are better than existing markers of GBM. CONCLUSION These results suggest that DTSA can effectively identify circulating miRNA, thus contributing to the early diagnosis and personalised treatment of GBM.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yueyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yonghua Zong
- Department of Modern Medicine, University of Tibetan Medicine, Lhasa, 850000, China
| | - Ziyu Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Guiqin Zhou
- Department of Immunology, Harbin Medical University, Harbin, 150081, China
| | - Chao Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yuyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yue Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Ma
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yongxia Wang
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yinwei Wu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Fusheng Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Lili Guan
- Department of Information Management, Shanghai Lixin University of Accounting and Finance, Shanghai, 200438, China.
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China.
- Department of Modern Medicine and Pharmacy, University of Tibetan Medicine, Lhasa, 850000, China.
| |
Collapse
|
244
|
Wang H, Dang T, Feng J, Wu W, He L, Yang J. Identification of differentially methylated genes for severe acne by genome-wide DNA methylation and gene expression analysis. Epigenetics 2023; 18:2199373. [PMID: 37018476 PMCID: PMC10078136 DOI: 10.1080/15592294.2023.2199373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Severe acne is a chronic inflammatory skin condition that is affected by both genetic and environmental factors. DNA methylation is associated with a variety of inflammatory skin diseases, but its role in severe acne is unclear. In this study, we conducted a two-stage epigenome correlation study using 88 blood samples to identify disease-related differential methylation sites. We found close associations between the DNA methylation at 23 differentially methylated sites (DMSs) and severe acne, including PDGFD, ARHGEF10, etc. Further analysis revealed that differentially methylated genes (PARP8 and MAPKAPK2) were also expressed differently between severe acne and health control groups. These findings lead us to speculation that epigenetic mechanisms may play an important role in the pathogenesis of severe acne.
Collapse
Affiliation(s)
- Huai Wang
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Tianyuan Dang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaqi Feng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
245
|
Chen W, Xu Z, Jiang J, Chen L, Chen Y, Yu T, Chen H, Shi R. CXCL8 as a Potential Biomarker for Crohn's Disease is Associated with Immune Infiltration and RNA Methylation. Biochem Genet 2023; 61:2599-2617. [PMID: 37202601 DOI: 10.1007/s10528-023-10397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
TRP channels have an important role in regulating the function of gastrointestinal epithelial cells. The aim of this study was to investigate the molecular mechanisms of genes associated with TRP channels in Crohn's disease (CD) by bioinformatics approach and to identify potential key biomarkers. In our study, we identified TRP channel-related differentially expressed genes (DEGs) based on the GSE95095 dataset and the TRP channel-related gene set from the GeneCards database. Hub genes (CXCL8, HIF1A, NGF, JUN, IL1A) were identified by the PPI network and validated by the external GSE52746 dataset. Immune infiltration analysis revealed that CXCL8 was significantly correlated with B cells memory, NK cells activated, Mast cells resting, Mast cells activated, and Neutrophils. GSEA of CXCL8 results showed inositol phosphate metabolism, RNA polymerase, propanoate metabolism, MAPK signaling pathway, base excision repair, and Calcium signaling pathway. In addition, we constructed a lncRNA-miRNA-mRNA ceRNA network and a drug-gene interaction network. Finally, we performed in vitro experiments to verify that LPS induced CXCL8 expression in HT-29 cells and that knockdown of CXCL8 inhibited the inflammatory stimulatory effects of LPS. This study reveals that CXCL8 plays an important role in the pathogenesis of Crohn's disease and is expected to be a novel biomarker.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Zeyan Xu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jingjing Jiang
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Lu Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yanfang Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ting Yu
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Hong Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
246
|
Li S, Gao Z, Zhong M, Bi H, Li J. Identification of the mechanisms underlying per- and polyfluoroalkyl substance-induced hippocampal neurotoxicity as determined by network pharmacology and molecular docking analyses. Toxicol Res (Camb) 2023; 12:1126-1134. [PMID: 38145100 PMCID: PMC10734622 DOI: 10.1093/toxres/tfad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 12/26/2023] Open
Abstract
Background Per- and polyfluoroalkyl substances (PFASs) are a class of environmental contaminants that pose significant health risks to both animals and humans. Although the hippocampal neurotoxic effects of numerous PFASs have been reported, the underlying mechanisms of combined exposure to PFASs-induced hippocampal neurotoxicity remain unclear. Methods In this study, network pharmacology analysis was performed to identify the intersectional targets of PFASs for possible associations with hippocampal neurotoxicity. The evaluation of the influence of PFASs on intersectional targets was assessed using a weighted method. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the screened targets were performed, the intersected hub targets calculated by various algorithms were screened in the network and molecular docking was also used to analyze binding activities. Results Our results indicated that eight PFASs, which acted on key targets (MYC, ESR1, STAT3, RELA, MAPK3) impacted the NF-κB signaling pathway, STAT3 signaling pathway, and MAPK signaling pathways to exert neurotoxicity in the hippocampus. The molecular docking results revealed that PFASs have strong binding potential to the hub targets. Conclusions Our findings provided a basis for future studies to investigate the detailed mechanisms of PFASs-induced hippocampal neurotoxicity and to develop preventative and control strategies.
Collapse
Affiliation(s)
- Shirui Li
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| | - Zhihui Gao
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| | - Meihan Zhong
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| | - Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China
| |
Collapse
|
247
|
Liu X, Lin L, Cai Q, Li C, Xu H, Zeng R, Zhang M, Qiu X, Chen S, Zhang X, Huang L, Liang W, He J. Do testosterone and sex hormone-binding globulin affect cancer risk? A Mendelian randomization and bioinformatics study. Aging Male 2023; 26:2261524. [PMID: 37936343 DOI: 10.1080/13685538.2023.2261524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023] Open
Abstract
Using Mendelian Randomization (MR) and large-scale Genome-Wide Association Study (GWAS) data, this study aimed to investigate the potential causative relationship between testosterone and sex hormone-binding globulin (SHBG) levels and the onset of several cancers, including pathway enrichment analyses of single nucleotide polymorphisms (SNPs) associated with cancer allowed for a comprehensive bioinformatics approach, which offered a deeper biological understanding of these relationships. The results indicated that increased testosterone levels in women were associated with a higher risk of breast and cervical cancers but a lower risk of ovarian cancer. Conversely, increased testosterone was linked to lower stomach cancer risk for men, whereas high SHBG levels were related to decreased risks of breast and prostate cancers. The corresponding genes of the identified SNPs, as revealed by pathway enrichment analysis, were involved in significant metabolic and proliferative pathways. These findings emphasize the need for further research into the biological mechanisms behind these associations, paving the way for potential targeted interventions in preventing and treating these cancers.
Collapse
Affiliation(s)
- Xiwen Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Haoxiang Xu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Zeng
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Mingtong Zhang
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Xinyi Qiu
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Shiqi Chen
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Xizhe Zhang
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Linchong Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
- The First People's Hospital of Zhaoqing, Zhaoqing, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Southern Medical University, Guangzhou, China
| |
Collapse
|
248
|
Yang B, Xie P, Huai H, Li J. Comprehensive analysis of necroptotic patterns and associated immune landscapes in individualized treatment of skin cutaneous melanoma. Sci Rep 2023; 13:21094. [PMID: 38036577 PMCID: PMC10689831 DOI: 10.1038/s41598-023-48374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) constitutes a malignant cutaneous neoplasm characterized by an exceedingly unfavorable prognosis. Over the past years, necroptosis, a manifestation of inflammatory programmed cell demise, has gained substantial traction in its application. However, a conclusive correlation between the expression of necroptosis-related genes (NRGs) and SKCM patient's prognosis remains elusive. In this endeavor, we have undertaken an integrative analysis of genomic data, aiming to provide an exhaustive evaluation of the intricate interplay between melanoma necroptosis and immune-infiltration nuances within the tumor microenvironment. Through meticulous scrutiny, we have endeavored to discern the prognostic potency harbored by individual necroptosis-associated genes. Our efforts culminated in the establishment of a risk stratification framework, allowing for the appraisal of necroptosis irregularities within each afflicted cutaneous melanoma patient. Notably, those SKCM patients classified within the low-risk cohort exhibited a markedly elevated survival quotient, in stark contrast to their high-risk counterparts (p < 0.001). Remarkably, the low-risk cohort not only displayed a more favorable survival rate but also exhibited an enhanced responsiveness to immunotherapeutic interventions, relative to their high-risk counterparts. The outcomes of this investigation proffer insights into a conceivable mechanistic underpinning linking necroptosis-related attributes to the intricacies of the tumor microenvironment. This prompts a conjecture regarding the plausible association between necroptosis characteristics and the broader tumor microenvironmental milieu. However, it is imperative to emphasize that the pursuit of discerning whether the expression profiles of NRG genes can indeed be regarded as viable therapeutic targets necessitates further comprehensive exploration and scrutiny. In conclusion, our study sheds light on the intricate interrelationship between necroptosis-related factors and the tumor microenvironment, potentially opening avenues for therapeutic interventions. However, the prospect of translating these findings into clinical applications mandates rigorous investigation.
Collapse
Affiliation(s)
- Bo Yang
- Department of Ophthalmology, Chengdu Aier Eye Hospital, Chengdu, Sichuan, China
| | - Pan Xie
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongyu Huai
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Junpeng Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
249
|
Andrade-Brito DE, Núñez-Ríos DL, Martínez-Magaña JJ, Nagamatsu ST, Rompala G, Zillich L, Witt SH, Clark SL, Latig MC, Montalvo-Ortiz JL. Neuronal-specific methylome and hydroxymethylome analysis reveal replicated and novel loci associated with alcohol use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23299094. [PMID: 38105948 PMCID: PMC10725575 DOI: 10.1101/2023.11.28.23299094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5mC and 5hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5mC and 5hmC at the genome-wide level. Differential 5mC and 5hmC were evaluated using the methylKit R package and significance was set at false discovery rate <0.05 and differential methylation >2. Functional enrichment analyses were performed and replication was evaluated replication in an independent dataset that assessed 5mC and 5hmC of AUD in bulk cortical tissue. We identified 417 5mC and 363 5hmC genome-wide significant differential CpG sites associated with AUD, with 59% in gene promoters. We also identified genes previously implicated in alcohol consumption, such as SYK, CHRM2, DNMT3A, and GATA4, for 5mC and GATA4, and GAD1, GATA4, DLX1 for 5hmC. Replication was observed for 28 CpG sites from a previous AUD 5mC and 5hmC study, including FOXP1. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5mC genes. This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD. We replicated previous findings and identified novel associations with AUD for both 5mC and 5hmC marks within the OFC. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.
Collapse
Affiliation(s)
- Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas, USA
| | - Maria C. Latig
- Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | | | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare, West Haven, CT, USA
| |
Collapse
|
250
|
Carter EW, Peraza OG, Wang N. The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus. Nat Commun 2023; 14:7838. [PMID: 38030598 PMCID: PMC10687234 DOI: 10.1038/s41467-023-43648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.
Collapse
Affiliation(s)
- Erica W Carter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Orlene Guerra Peraza
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, US.
| |
Collapse
|