201
|
Hu Z, Ban Q, Hao J, Zhu X, Cheng Y, Mao J, Lin M, Xia E, Li Y. Genome-Wide Characterization of the C-repeat Binding Factor (CBF) Gene Family Involved in the Response to Abiotic Stresses in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2020; 11:921. [PMID: 32849669 PMCID: PMC7396485 DOI: 10.3389/fpls.2020.00921] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/05/2020] [Indexed: 05/18/2023]
Abstract
C-repeat (CRT)/dehydration responsive element (DRE)-binding factor CBFs, a small family of genes encoding transcriptional activators, play important roles in plant cold tolerance. In this study, a comprehensive genome-wide analysis was carried out to identify and characterize the functional dynamics of CsCBFs in tea plant (Camellia sinensis). A total of 6 CBF genes were obtained from the tea plant genome and named CBF1-6. All of the CsCBFs had an AP2/ERF DNA-binding domain and nuclear localization signal (NLS) sequence. CsCBF-eGFP fusion and DAPI staining analysis confirmed the nuclear localization of the CsCBFs. Transactivation assays showed that the CsCBFs, except CsCBF1, had transcriptional activity. CsCBF expression was differentially induced by cold, heat, PEG, salinity, ABA, GA, MeJA, and SA stresses. In particular, the CsCBF genes were significantly induced by cold treatments. To further characterize the functions of CsCBF genes, we overexpressed the CsCBF3 gene in Arabidopsis thaliana plants. The resulting transgenic plants showed increased cold tolerance compared with the wild-type Arabidopsis plant. The enhanced cold tolerance of the transgenic plants was potentially achieved through an ABA-independent pathway. This study will help to increase our understanding of CsCBF genes and their contributions to stress tolerance in tea plants.
Collapse
|
202
|
Khan M, Imran QM, Shahid M, Mun BG, Lee SU, Khan MA, Hussain A, Lee IJ, Yun BW. Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:602. [PMID: 31888479 PMCID: PMC6937950 DOI: 10.1186/s12870-019-2210-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/18/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Exposure of plants to different environmental insults instigates significant changes in the cellular redox tone driven in part by promoting the production of reactive nitrogen species. The key player, nitric oxide (NO) is a small gaseous diatomic molecule, well-known for its signaling role during stress. In this study, we focused on abscisic acid (ABA) metabolism-related genes that showed differential expression in response to the NO donor S-nitroso-L-cysteine (CySNO) by conducting RNA-seq-based transcriptomic analysis. RESULTS CySNO-induced ABA-related genes were identified and further characterized. Gene ontology terms for biological processes showed most of the genes were associated with protein phosphorylation. Promoter analysis suggested that several cis-regulatory elements were activated under biotic and/or abiotic stress conditions. The ABA biosynthetic gene AtAO3 was selected for validation using functional genomics. The loss of function mutant atao3 was found to differentially regulate oxidative and nitrosative stress. Further investigations for determining the role of AtAO3 in plant defense suggested a negative regulation of plant basal defense and R-gene-mediated resistance. The atao3 plants showed resistance to virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) with gradual increase in PR1 gene expression. Similarly, atao3 plants showed increased hypersensitive response (HR) when challenged with Pst DC3000 (avrB). The atgsnor1-3 and atsid2 mutants showed a susceptible phenotype with reduced PR1 transcript accumulation. Drought tolerance assay indicated that atao3 and atnced3 ABA-deficient mutants showed early wilting, followed by plant death. The study of stomatal structure showed that atao3 and atnced3 were unable to close stomata even at 7 days after drought stress. Further, they showed reduced ABA content and increased electrolyte leakage than the wild-type (WT) plants. The quantitative polymerase chain reaction analysis suggested that ABA biosynthesis genes were down-regulated, whereas expression of most of the drought-related genes were up-regulated in atao3 than in WT. CONCLUSIONS AtAO3 negatively regulates pathogen-induced salicylic acid pathway, although it is required for drought tolerance, despite the fact that ABA production is not totally dependent on AtAO3, and that drought-related genes like DREB2 and ABI2 show response to drought irrespective of ABA content.
Collapse
Affiliation(s)
| | | | | | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, KPK, Mardan, Pakistan
| | - In-Jung Lee
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
203
|
Zhang HF, Liu SY, Ma JH, Wang XK, Haq SU, Meng YC, Zhang YM, Chen RG. CaDHN4, a Salt and Cold Stress-Responsive Dehydrin Gene from Pepper Decreases Abscisic Acid Sensitivity in Arabidopsis. Int J Mol Sci 2019; 21:ijms21010026. [PMID: 31861623 PMCID: PMC6981442 DOI: 10.3390/ijms21010026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Dehydrins play an important role in improving plant resistance to abiotic stresses. In this study, we isolated a dehydrin gene from pepper (Capsicum annuum L.) leaves, designated as CaDHN4. Sub-cellular localization of CaDHN4 was to be found in the nucleus and membrane. To authenticate the function of CaDHN4 in cold- and salt-stress responses and abscisic acid (ABA) sensitivity, we reduced the CaDHN4 expression using virus-induced gene silencing (VIGS), and overexpressed the CaDHN4 in Arabidopsis. We found that silencing of CaDHN4 reduced the growth of pepper seedlings and CaDHN4-silenced plants exhibited more serious wilting, higher electrolyte leakage, and more accumulation of ROS in the leaves compared to pTRV2:00 plants after cold stress, and lower chlorophyll contents and higher electrolyte leakage compared to pTRV2:00 plants under salt stress. However, CaDHN4-overexpressing Arabidopsis plants had higher seed germination rates and post-germination primary root growth, compared to WT plants under salt stress. In response to cold and salt stresses, the CaDHN4-overexpressed Arabidopsis exhibited lower MDA content, and lower relative electrolyte leakage compared to the WT plants. Under ABA treatments, the fresh weight and germination rates of transgenic plants were higher than WT plants. The transgenic Arabidopsis expressing a CaDHN4 promoter displayed a more intense GUS staining than the normal growth conditions under treatment with hormones including ABA, methyl jasmonate (MeJA), and salicylic acid (SA). Our results suggest that CaDHN4 can protect against cold and salt stresses and decrease ABA sensitivity in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ru-gang Chen
- Correspondence: ; Tel.: +86-29-8708-2613; Fax: +86-29-8708-2613
| |
Collapse
|
204
|
Zhao P, Hou S, Guo X, Jia J, Yang W, Liu Z, Chen S, Li X, Qi D, Liu G, Cheng L. A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC PLANT BIOLOGY 2019; 19:564. [PMID: 31852429 PMCID: PMC6921572 DOI: 10.1186/s12870-019-2159-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. RESULTS In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. CONCLUSIONS Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.
Collapse
Affiliation(s)
- Pincang Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Management Science And Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Shenglin Hou
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences, Shijiazhuang, China
| | - Xiufang Guo
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Junting Jia
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhujiang Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
205
|
Docimo T, De Stefano R, De Palma M, Cappetta E, Villano C, Aversano R, Tucci M. Transcriptional, metabolic and DNA methylation changes underpinning the response of Arundo donax ecotypes to NaCl excess. PLANTA 2019; 251:34. [PMID: 31848729 DOI: 10.1007/s00425-019-03325-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Arundo donax ecotypes react differently to salinity, partly due to differences in constitutive defences and methylome plasticity. Arundo donax L. is a C3 fast-growing grass that yields high biomass under stress. To elucidate its ability to produce biomass under high salinity, we investigated short/long-term NaCl responses of three ecotypes through transcriptional, metabolic and DNA methylation profiling of leaves and roots. Prolonged salt treatment discriminated the sensitive ecotype 'Cercola' from the tolerant 'Domitiana' and 'Canneto' in terms of biomass. Transcriptional and metabolic responses to NaCl differed between the ecotypes. In roots, constitutive expression of ion transporter and stress-related transcription factors' genes was higher in 'Canneto' and 'Domitiana' than 'Cercola' and 21-day NaCl drove strong up-regulation in all ecotypes. In leaves, unstressed 'Domitiana' confirmed higher expression of the above genes, whose transcription was repressed in 'Domitiana' but induced in 'Cercola' following NaCl treatment. In all ecotypes, salinity increased proline, ABA and leaf antioxidants, paralleled by up-regulation of antioxidant genes in 'Canneto' and 'Cercola' but not in 'Domitiana', which tolerated a higher level of oxidative damage. Changes in DNA methylation patterns highlighted a marked capacity of the tolerant 'Domitiana' ecotype to adjust DNA methylation to salt stress. The reduced salt sensitivity of 'Domitiana' and, to a lesser extent, 'Canneto' appears to rely on a complex set of constitutively activated defences, possibly due to the environmental conditions of the site of origin, and on higher plasticity of the methylome. Our findings provide insights into the mechanisms of adaptability of A. donax ecotypes to salinity, offering new perspectives for the improvement of this species for cultivation in limiting environments.
Collapse
Affiliation(s)
- Teresa Docimo
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, via Università 133, 80055, Portici, Italy
| | - Rosalba De Stefano
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, via Università 133, 80055, Portici, Italy
| | - Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, via Università 133, 80055, Portici, Italy
| | - Elisa Cappetta
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, via Università 133, 80055, Portici, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, via Università 133, 80055, Portici, Italy.
| |
Collapse
|
206
|
Ahn H, Jung I, Chae H, Kang D, Jung W, Kim S. HTRgene: a computational method to perform the integrated analysis of multiple heterogeneous time-series data: case analysis of cold and heat stress response signaling genes in Arabidopsis. BMC Bioinformatics 2019; 20:588. [PMID: 31787073 PMCID: PMC6886170 DOI: 10.1186/s12859-019-3072-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Integrated analysis that uses multiple sample gene expression data measured under the same stress can detect stress response genes more accurately than analysis of individual sample data. However, the integrated analysis is challenging since experimental conditions (strength of stress and the number of time points) are heterogeneous across multiple samples. Results HTRgene is a computational method to perform the integrated analysis of multiple heterogeneous time-series data measured under the same stress condition. The goal of HTRgene is to identify “response order preserving DEGs” that are defined as genes not only which are differentially expressed but also whose response order is preserved across multiple samples. The utility of HTRgene was demonstrated using 28 and 24 time-series sample gene expression data measured under cold and heat stress in Arabidopsis. HTRgene analysis successfully reproduced known biological mechanisms of cold and heat stress in Arabidopsis. Also, HTRgene showed higher accuracy in detecting the documented stress response genes than existing tools. Conclusions HTRgene, a method to find the ordering of response time of genes that are commonly observed among multiple time-series samples, successfully integrated multiple heterogeneous time-series gene expression datasets. It can be applied to many research problems related to the integration of time series data analysis.
Collapse
Affiliation(s)
- Hongryul Ahn
- Department of Computer Science and Engineering, Seoul National University, Seoul, Korea
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu, Korea
| | - Heejoon Chae
- Division of Computer Science, Sookmyung Women's University, Seoul, Korea
| | - Dongwon Kang
- Department of Computer Science and Engineering, Seoul National University, Seoul, Korea
| | - Woosuk Jung
- Department of Crop Science, Konkuk University, Seoul, Korea.
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea. .,Bioinformatics Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
207
|
Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2341-2355. [PMID: 31077628 PMCID: PMC6835124 DOI: 10.1111/pbi.13151] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 05/02/2023]
Abstract
To expand the cultivation area of apple (Malus×domestica Borkh.) and select resistant varieties by genetic engineering, it is necessary to clarify the mechanism of salt and osmotic stress tolerance in apple. The MdMYB46 transcription factor was identified, and the stress treatment test of MdMYB46-overexpressing and MdMYB46-RNAi apple lines indicated that MdMYB46 could enhance the salt and osmotic stress tolerance in apple. In transgenic Arabidopsis and apple, MdMYB46 promoted the biosynthesis of secondary cell wall and deposition of lignin by directly binding to the promoter of lignin biosynthesis-related genes. To explore whether MdMYB46 could coordinate stress signal transduction pathways to cooperate with the formation of secondary walls to enhance the stress tolerance of plants, MdABRE1A, MdDREB2A and dehydration-responsive genes MdRD22 and MdRD29A were screened out for their positive correlation with osmotic stress, salt stress and the transcriptional level of MdMYB46. The further verification test demonstrated that MdMYB46 could activate their transcription by directly binding to the promoters of these genes. The above results indicate that MdMYB46 could enhance the salt and osmotic stress tolerance in apple not only by activating secondary cell wall biosynthesis pathways, but also by directly activating stress-responsive signals.
Collapse
Affiliation(s)
- Keqin Chen
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Mengru Song
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Yunna Guo
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Lifu Liu
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Hao Xue
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Hongyan Dai
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Zhihong Zhang
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| |
Collapse
|
208
|
Jiang H, Tang B, Xie Z, Nolan T, Ye H, Song GY, Walley J, Yin Y. GSK3-like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:923-937. [PMID: 31357236 DOI: 10.1111/tpj.14484] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 05/28/2023]
Abstract
Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many different levels. Recent research has revealed that stress-responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factor RD26 is regulated by BR signaling and antagonizes BES1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activate RD26 during drought are still unknown. Here, we demonstrate that the function of RD26 is modulated by GSK3-like kinase BIN2 and protein phosphatase 2C ABI1. We show that ABI1, a negative regulator in abscisic acid (ABA) signaling, dephosphorylates and destabilizes BIN2 to inhibit BIN2 kinase activity. RD26 protein is stabilized by ABA and dehydration in a BIN2-dependent manner. BIN2 directly interacts and phosphorylates RD26 in vitro and in vivo. BIN2 phosphorylation of RD26 is required for RD26 transcriptional activation on drought-responsive genes. RD26 overexpression suppressed the brassinazole (BRZ) insensitivity of BIN2 triple mutant bin2 bil1 bil2, and BIN2 function is required for the drought tolerance of RD26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relieves ABI1 inhibition of BIN2, allowing BIN2 activation. Sequentially, BIN2 phosphorylates and stabilizes RD26 to promote drought stress response.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Gao-Yuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Justin Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
209
|
Gu W, Zhang A, Sun H, Gu Y, Chao J, Tian R, Duan JA. Identifying resurrection genes through the differentially expressed genes between Selaginella tamariscina (Beauv.) spring and Selaginella moellendorffii Hieron under drought stress. PLoS One 2019; 14:e0224765. [PMID: 31721818 PMCID: PMC6853609 DOI: 10.1371/journal.pone.0224765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Selaginella tamariscina (Beauv.) spring, a primitive vascular resurrection plant, can survive extreme drought and recover when water becomes available. To identify drought-inducible genes and to clarify the molecular mechanism of drought tolerance, a comparative transcriptional pattern analysis was conducted between S. tamariscina and Selaginella moellendorffii Hieron (drought sensitive). 133 drought related genes were identified, including 72 functional genes and 61 regulatory genes. And several drought responsive reactions, such as antioxidant activity, osmotic balance, cuticle defense and signal transduction were highlighted in S. tamariscina under drought. Notably, besides peroxidase, catalase and L-ascorbate oxidase genes, DEGs associated with phenylalanine metabolism and polyamine catabolism could be alternative ways to enhance antioxidant ability in S. tamariscina. DEGs related to soluble carbohydrate metabolism, late embryogenesis abundant protein (LEA) and aquaporin protein (AQP) confirmed that osmotic adjustment could resist drought during desiccation. DEGs involved in xyloglucan metabolic process, pectin metabolic process and cutin biosynthesis may also contribute to drought tolerance of S. tamariscina by cuticle defense. Drought-responsive genes encoding protein kinases, calcium sensors, transcription factors (TFs) and plant hormones also help to drought resistance of S. tamariscina. The preliminary validation experiments were performed and the results were consistent with our hypothetical integrated regulatory network. The results of this study provide candidate resurrection genes and an integrated regulatory network for further studies on the molecular mechanisms of stress tolerance in S. tamariscina.
Collapse
Affiliation(s)
- Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aqin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongmei Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuchen Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianguo Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail:
| |
Collapse
|
210
|
Ghorbani R, Alemzadeh A, Razi H. Microarray analysis of transcriptional responses to salt and drought stress in Arabidopsis thaliana. Heliyon 2019; 5:e02614. [PMID: 31844689 PMCID: PMC6895597 DOI: 10.1016/j.heliyon.2019.e02614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/24/2019] [Accepted: 10/04/2019] [Indexed: 12/02/2022] Open
Abstract
Microarray expression profile analysis is a useful approach to increase our knowledge about genes involved in regulatory networks and signal transduction pathways related to abiotic stress tolerance. Salt and drought, as two important abiotic stresses, adversely affect plant productivity in the world every year. To understand stress response mechanisms and identify genes and proteins which play critical roles in these mechanisms, the study of individual genes and proteins cannot be considered as an effective approach. On the other hand, the availability of new global data provides us an effective way to shed some light on the central role of molecules involved in stress response mechanisms in the plant. A meta-analysis of salt and drought stress responses was carried out using 38 samples of different experiments from leaves and roots of Arabidopsis plants exposed to drought and salt stresses. We figured out the number of differentially expressed genes (DEGs) was higher in roots under both stresses. Also, we found that the number of common DEGs under both stresses was more in roots and also the number of common DEGs in both tissues under salt stress was more than drought stress. The highest percent of DEGs was related to cell and cell part (about 87%). Around 9% and 7% of DEGs in roots and leaves encoded transcription factors, respectively. Network analysis revealed that three transcription factor families HSF, AP2/ERF and C2H2, may have critical roles in salt and drought stress response mechanisms in Arabidopsis and some proteins like STZ may be introduced as a new candidate gene for enhancing salt and drought tolerance in crop plants.
Collapse
Affiliation(s)
| | - Abbas Alemzadeh
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
211
|
Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2123-2142. [PMID: 30972883 PMCID: PMC6790364 DOI: 10.1111/pbi.13127] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 05/10/2023]
Abstract
Drought is an abiotic stress that affects plant growth, and lipids are the main economic factor in the agricultural production of oil crops. However, the molecular mechanisms of drought response function in lipid metabolism remain little known. In this study, overexpression (OE) of different copies of the drought response genes LEA3 and VOC enhanced both drought tolerance and oil content in Brassica napus and Arabidopsis. Meanwhile, seed size, membrane stability and seed weight were also improved in OE lines. In contrast, oil content and drought tolerance were decreased in the AtLEA3 mutant (atlea3) and AtVOC-RNAi of Arabidopsis and in both BnLEA-RNAi and BnVOC-RNAi B. napus RNAi lines. Hybrids between two lines with increased or reduced expression (LEA3-OE with VOC-OE, atlea3 with AtVOC-RNAi) showed corresponding stronger trends in drought tolerance and lipid metabolism. Comparative transcriptomic analysis revealed the mechanisms of drought response gene function in lipid accumulation and drought tolerance. Gene networks involved in fatty acid (FA) synthesis and FA degradation were up- and down-regulated in OE lines, respectively. Key genes in the photosynthetic system and reactive oxygen species (ROS) metabolism were up-regulated in OE lines and down-regulated in atlea3 and AtVOC-RNAi lines, including LACS9, LIPASE1, PSAN, LOX2 and SOD1. Further analysis of photosynthetic and ROS enzymatic activities confirmed that the drought response genes LEA3 and VOC altered lipid accumulation mainly via enhancing photosynthetic efficiency and reducing ROS. The present study provides a novel way to improve lipid accumulation in plants, especially in oil production crops.
Collapse
Affiliation(s)
- Yu Liang
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Kai Kang
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lu Gan
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska LincolnLincolnNEUSA
| | - Shaobo Ning
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jinye Xiong
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Shuyao Song
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lingzhi Xi
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Senying Lai
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yongtai Yin
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jianwei Gu
- Hubei Research Institute of New Socialist Countryside DevelopmentHubei Engineering UniversityXiaoganChina
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Shisheng Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Baoshan Wang
- College of Life ScienceShandong Normal UniversityJinanChina
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive UtilizationHubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| |
Collapse
|
212
|
Srivastava R, Kumar R. The expanding roles of APETALA2/Ethylene Responsive Factors and their potential applications in crop improvement. Brief Funct Genomics 2019; 18:240-254. [PMID: 30783669 DOI: 10.1093/bfgp/elz001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/29/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023] Open
Abstract
Understanding the molecular basis of the gene-regulatory networks underlying agronomic traits or plant responses to abiotic/biotic stresses is very important for crop improvement. In this context, transcription factors, which either singularly or in conjugation directly control the expression of many target genes, are suitable candidates for improving agronomic traits via genetic engineering. In this regard, members of one of the largest class of plant-specific APETALA2/Ethylene Response Factor (AP2/ERF) superfamily, which is implicated in various aspects of development and plant stress adaptation responses, are considered high-value targets for crop improvement. Besides their long-known regulatory roles in mediating plant responses to abiotic stresses such as drought and submergence, the novel roles of AP2/ERFs during fruit ripening or secondary metabolites production have also recently emerged. The astounding functional plasticity of AP2/ERF members is considered to be achieved by their interplay with other regulatory networks and signalling pathways. In this review, we have integrated the recently accumulated evidence from functional genomics studies and described their newly emerged functions in plants. The key structural features of AP2/ERF proteins and the modes of their action are briefly summarized. The importance of AP2/ERFs in plant development and stress responses and a summary of the event of their successful applications in crop improvement programs are also provided. Altogether, we envisage that the synthesized information presented in this review will be useful to design effective strategies for improving agronomic traits in crop plants.
Collapse
Affiliation(s)
- Rajat Srivastava
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
213
|
Ziyuan L, Chunfei W, Jianjun Y, Xian L, Liangjun L, Libao C, Shuyan L. Molecular cloning and functional analysis of lotus salt-induced NnDREB2C, NnPIP1-2 and NnPIP2-1 in Arabidopsis thaliana. Mol Biol Rep 2019; 47:497-506. [PMID: 31654214 DOI: 10.1007/s11033-019-05156-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
Dehydration-responsive element bindings transcription factor (DREBs) and plasma membrane intrinsic proteins (PIPs) have been characterized multi-functions in plant growth and metabolism, as well as in the adaptation to various stresses. In this study, we cloned the full-length cDNA of NnDREB2C from a salt-tolerated lotus species with RT-PCR methods. Analysis of qRT-PCR demonstrated that NnDREB2C mRNA in the leaf dramatically increased after the treatments of NaCl, abscisic acid, low temperature and mannitol. Next, NnDREB2C was cloned into constitutive expression vector pSN1301, which in turn transformed into Arabidopsis thaliana to investigate its function in plants. NnDREB2C overexpression significantly elevated Arabidopsis tolerance against salt and drought stresses, showing higher survival rates, lower conductivity and more chlorophyll content than those of wild-type plants. Moreover, higher germination rates were observed in the NnDREB2C overproducing plants when subjected into the stresses of NaCl and mannitol. Furthermore, we investigate the potential down-stream genes regulated by NnDREB2C and observed a significant increase in expressions of several genes belonging to PIPs family, including PIP1-1, PIP1-2, PIP1-3, PIP1-4 and PIP1-5. Consistently, overexpressed NnPIP1-2 and NnPIP2-1 conferred Arabidopsis the tolerance to stresses. Taken together, we concluded that overexpression of NnDREB2C enhanced the tolerance of salt and drought stresses in plants, which might probably be derived from the increased expression of the genes belonging to PIPs family.
Collapse
Affiliation(s)
- Liu Ziyuan
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, People's Republic of China
| | - Wang Chunfei
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Yang Jianjun
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, People's Republic of China
| | - Liu Xian
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, People's Republic of China
| | - Li Liangjun
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, People's Republic of China
| | - Cheng Libao
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, People's Republic of China.
| | - Li Shuyan
- College of Guangling, Yangzhou University, Jiangsu, People's Republic of China.
| |
Collapse
|
214
|
Elucidating Drought Stress Tolerance in European Oaks Through Cross-Species Transcriptomics. G3-GENES GENOMES GENETICS 2019; 9:3181-3199. [PMID: 31395652 PMCID: PMC6778798 DOI: 10.1534/g3.119.400456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impact of climate change that comes with a dramatic increase of long periods of extreme summer drought associated with heat is a fundamental challenge for European forests. As a result, forests are expected to shift their distribution patterns toward north-east, which may lead to a dramatic loss in value of European forest land. Consequently, unraveling key processes that underlie drought stress tolerance is not only of great scientific but also of utmost economic importance for forests to withstand future heat and drought wave scenarios. To reveal drought stress-related molecular patterns we applied cross-species comparative transcriptomics of three major European oak species: the less tolerant deciduous pedunculate oak (Quercus robur), the deciduous but quite tolerant pubescent oak (Q. pubescens), and the very tolerant evergreen holm oak (Q. ilex). We found 415, 79, and 222 differentially expressed genes during drought stress in Q. robur, Q. pubescens, and Q. ilex, respectively, indicating species-specific response mechanisms. Further, by comparative orthologous gene family analysis, 517 orthologous genes could be characterized that may play an important role in drought stress adaptation on the genus level. New regulatory candidate pathways and genes in the context of drought stress response were identified, highlighting the importance of the antioxidant capacity, the mitochondrial respiration machinery, the lignification of the water transport system, and the suppression of drought-induced senescence - providing a valuable knowledge base that could be integrated in breeding programs in the face of climate change.
Collapse
|
215
|
Dong W, Liu X, Lv J, Gao T, Song Y. The expression of alfalfa MsPP2CA1 gene confers ABA sensitivity and abiotic stress tolerance on Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:176-182. [PMID: 31513951 DOI: 10.1016/j.plaphy.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Although clade A phosphatase 2Cs (PP2CAs) are well known to regulate abscisic acid (ABA) signaling, few members of this family have been identified in alfalfa so far. Here, the isolation and characterization of the gene MsPP2CA1 from alfalfa is described. Its transcription was found to be highly inducible by treatment with abscisic acid, salt, hydrogen peroxide and polyethylene glycol. The constitutive expression of MsPP2CA1 in Arabidopsis thaliana seedlings mitigates root growth imposed by either salinity or oxidative stress, while also raising the level of sensitivity to ABA during germination and early seedling development, and promoting stomatal closure. In transgenic plants, many ABA-dependent stress-responsive genes were activated, and the expressions of catalase and peroxidase which involved in reactive oxygen scavenging were promoted. MsPP2CA1 is suggested as a candidate for the genetic manipulation of salinity tolerance in legume species.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Xijiang Liu
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Jiao Lv
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Tianxue Gao
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| |
Collapse
|
216
|
Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments. PLANT, CELL & ENVIRONMENT 2019; 42:2931-2944. [PMID: 31364170 DOI: 10.1111/pce.13633] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 05/12/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.
Collapse
Affiliation(s)
- Fa-Qing Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
217
|
Kulkarni SR, Jones DM, Vandepoele K. Enhanced Maps of Transcription Factor Binding Sites Improve Regulatory Networks Learned from Accessible Chromatin Data. PLANT PHYSIOLOGY 2019; 181:412-425. [PMID: 31345953 PMCID: PMC6776849 DOI: 10.1104/pp.19.00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/12/2019] [Indexed: 05/05/2023]
Abstract
Determining where transcription factors (TFs) bind in genomes provides insight into which transcriptional programs are active across organs, tissue types, and environmental conditions. Recent advances in high-throughput profiling of regulatory DNA have yielded large amounts of information about chromatin accessibility. Interpreting the functional significance of these data sets requires knowledge of which regulators are likely to bind these regions. This can be achieved by using information about TF-binding preferences, or motifs, to identify TF-binding events that are likely to be functional. Although different approaches exist to map motifs to DNA sequences, a systematic evaluation of these tools in plants is missing. Here, we compare four motif-mapping tools widely used in the Arabidopsis (Arabidopsis thaliana) research community and evaluate their performance using chromatin immunoprecipitation data sets for 40 TFs. Downstream gene regulatory network (GRN) reconstruction was found to be sensitive to the motif mapper used. We further show that the low recall of Find Individual Motif Occurrences, one of the most frequently used motif-mapping tools, can be overcome by using an Ensemble approach, which combines results from different mapping tools. Several examples are provided demonstrating how the Ensemble approach extends our view on transcriptional control for TFs active in different biological processes. Finally, a protocol is presented to effectively derive more complete cell type-specific GRNs through the integrative analysis of open chromatin regions, known binding site information, and expression data sets. This approach will pave the way to increase our understanding of GRNs in different cellular conditions.
Collapse
Affiliation(s)
- Shubhada R Kulkarni
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - D Marc Jones
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
218
|
Banerjee A, Roychoudhury A. Differential regulation of defence pathways in aromatic and non-aromatic indica rice cultivars towards fluoride toxicity. PLANT CELL REPORTS 2019; 38:1217-1233. [PMID: 31175394 DOI: 10.1007/s00299-019-02438-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/30/2019] [Indexed: 05/18/2023]
Abstract
Excessive bioaccumulation of fluoride in IR-64 caused low abscisic acid level, inhibition of polyamine biosynthesis and ascorbate-glutathione cycle but not in Gobindobhog which had higher antioxidant activity. The current study presents regulation of diverse metabolic and molecular defence pathways during fluoride stress in non-aromatic rice variety, IR-64 and aromatic rice variety, Gobindobhog (GB). Increasing concentration of fluoride affected fresh weight, dry weight, vigour index and relative water content to a lesser extent in GB compared to IR-64. GB exhibited lower methylglyoxal accumulation and lipoxygenase activity compared to IR-64 during stress. The level of osmolytes (proline, amino acids and glycine-betaine) increased in both the stressed varieties. The biosynthesis of higher polyamines was stimulated in stressed GB. IR-64 accumulated higher amount of putrescine due to degradation of higher polyamines as supported by gene expression analysis. Unlike IR-64, GB efficiently maintained the ascorbate-glutathione cycle due to much lower fluoride bioaccumulation, compared to IR-64. GB adapted to fluoride stress by strongly inducing guaiacol peroxidase, phenylalanine ammonia lyase and a novel isozyme of superoxide dismutase. While GB accumulated higher abscisic acid (ABA) level during stress, IR-64 exhibited slow ABA degradation which enabled induction of associated osmotic stress-responsive genes. Unlike GB, ABA-independent DREB2A was downregulated in stressed IR-64. The research illustrates varietal differences in the defence machinery of the susceptible variety, IR-64, and the well adapted cultivar, GB, on prolonged exposure to increasing concentrations of fluoride.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India.
| |
Collapse
|
219
|
Liu LYD, Hsiao YC, Chen HC, Yang YW, Chang MC. Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence. BOTANICAL STUDIES 2019; 60:22. [PMID: 31512008 PMCID: PMC6738364 DOI: 10.1186/s40529-019-0268-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In the past two decades, biologists have been able to identify the gene signatures associated with various phenotypes through the monitoring of gene expressions with high-throughput biotechnologies. These gene signatures have in turn been successfully applied to drug development, disease prevention, crop improvement, etc. However, ignoring the interactions among genes has weakened the predictive power of gene signatures in practical applications. Gene regulatory networks, in which genes are represented by nodes and the associations between genes are represented by edges, are typically constructed to analyze and visualize such gene interactions. More specifically, the present study sought to measure gene-gene associations by using the coefficient of intrinsic dependence (CID) to capture more nonlinear as well as cause-effect gene relationships. RESULTS A stepwise procedure using the CID along with the partial coefficient of intrinsic dependence (pCID) was demonstrated for the rebuilding of simulated networks and the well-known CBF-COR pathway under cold stress using Arabidopsis microarray data. The procedure was also applied to the construction of bHLH gene regulatory pathways under abiotic stresses using rice microarray data, in which OsbHLH104, a putative phytochrome-interacting factor (OsPIF14), and OsbHLH060, a positive regulator of iron homeostasis (OsPRI1) were inferred as the most affiliated genes. The inferred regulatory pathways were verified through literature reviews. CONCLUSIONS The proposed method can efficiently decipher gene regulatory pathways and may assist in achieving higher predictive power in practical applications. The lack of any mention in the literature of some of the regulatory event may have been due to the high complexity of the regulatory systems in the plant transcription, a possibility which could potentially be confirmed in the near future given ongoing rapid developments in bio-technology.
Collapse
Affiliation(s)
- Li-yu Daisy Liu
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Ya-Chun Hsiao
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Hung-Chi Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106 Taiwan
| | - Yun-Wei Yang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| |
Collapse
|
220
|
Shen L, Zhong T, Wang L, Zhang Q, Jin H, Xu M, Ye J. Characterization the role of a UFC homolog, AtAuxRP3, in the regulation of Arabidopsis seedling growth and stress response. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152990. [PMID: 31207460 DOI: 10.1016/j.jplph.2019.152990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Auxin is a well-known, crucial regulator of the entire plant lifecycle, not only orchestrating many aspects of plant growth and development, but also playing various roles in biotic and abiotic stress. This study reports the isolation and functional characterization of a DUF-966 domain-containing gene, At3g46110, re-named AtAuxRP3. AtAuxRP3 overexpression in Arabidopsis increased the levels of endogenous indole-3-acetic acid, enhanced expression of the auxin-responsive reporter DR5:GUS near the vegetative shoot apex, and led to ectopic activation of auxin signaling, including dysmorphic (narrow, asymmetric) rosette leaves, abnormal emergence of inflorescence, inhibition of primary root elongation and arrest of dark-grown hypocotyls. AtAuxRP3-OX lines also showed decreased tolerance to NaCl and osmotic stress during Arabidopsis seeds germination and young seedling growth. Genome-wide transcriptomic analysis showed AtAuxRP3-OX seedlings displayed increases in the expression of genes that group in a variety of developmental categories, while other downregulated genes were associated with stress responses. Our results provide evidence for a regulatory role of AtAuxRP3 in endogenous auxin levels, leaf development, and initiation of inflorescence stems early in reproductive development during Arabidopsis seedling growth.
Collapse
Affiliation(s)
- Liping Shen
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Tao Zhong
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Lina Wang
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Qianqian Zhang
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Hongyu Jin
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Mingling Xu
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Jianrong Ye
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China.
| |
Collapse
|
221
|
He L, Bian J, Xu J, Yang K. Novel Maize NAC Transcriptional Repressor ZmNAC071 Confers Enhanced Sensitivity to ABA and Osmotic Stress by Downregulating Stress-Responsive Genes in Transgenic Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8905-8918. [PMID: 31380641 DOI: 10.1021/acs.jafc.9b02331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
NAC TFs play crucial roles in response to abiotic stresses in plants. Here, ZmNAC071 was identified as a nuclear located transcriptional repressor. Overexpression of ZmNAC071 in Arabidopsis enhanced sensitivity of transgenic plants to ABA and osmotic stress. The expression levels of SODs, PODs, P5CSs, and AtMYB61 were inhibited by ZmNAC071, which results in reduced ROS scavenging and proline content, increased ROS level, and water loss. Besides, the expression levels of some ABA or abiotic stress-related genes, like ABIs, RD29A, DREBs, and LEAs were also significantly inhibited by ZmNAC071. Yeast one-hybrid assay demonstrated that ZmNAC071 specifically bound to the cis-acting elements containing CGT[G/A] core sequences in the promoter of stress-related genes, suggesting that ZmNAC071 may participate in the regulation of transcription of these genes through recognizing the core sequences CGT[G/A]. These results will facilitate further studies concerning the cis-elements and downstream genes targeted by ZmNAC071 in maize.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province , Heilongjiang Bayi Agricultural University , 5 Xinfeng Road , 163319 Daqing , China
| | - Jing Bian
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province , Heilongjiang Bayi Agricultural University , 5 Xinfeng Road , 163319 Daqing , China
| | - Jingyu Xu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province , Heilongjiang Bayi Agricultural University , 5 Xinfeng Road , 163319 Daqing , China
| | - Kejun Yang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province , Heilongjiang Bayi Agricultural University , 5 Xinfeng Road , 163319 Daqing , China
| |
Collapse
|
222
|
Bouzid M, He F, Schmitz G, Häusler RE, Weber APM, Mettler-Altmann T, De Meaux J. Arabidopsis species deploy distinct strategies to cope with drought stress. ANNALS OF BOTANY 2019; 124:27-40. [PMID: 30668651 PMCID: PMC6676377 DOI: 10.1093/aob/mcy237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/17/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Water limitation is an important determinant of the distribution, abundance and diversity of plant species. Yet, little is known about how the response to limiting water supply changes among closely related plant species with distinct ecological preferences. Comparison of the model annual species Arabidopsis thaliana with its close perennial relatives A. lyrata and A. halleri, can help disentangle the molecular and physiological changes contributing to tolerance and avoidance mechanisms, because these species must maintain tolerance and avoidance mechanisms to increase long-term survival, but they are exposed to different levels of water stress and competition in their natural habitat. METHODS A dry-down experiment was conducted to mimic a period of missing precipitation. The covariation of a progressive decrease in soil water content (SWC) with various physiological and morphological plant traits across a set of representative genotypes in A. thaliana, A. lyrata and A. halleri was quantified. Transcriptome changes to soil dry-down were further monitored. KEY RESULTS The analysis of trait covariation demonstrates that the three species differ in the strategies they deploy to respond to drought stress. Arabidopsis thaliana showed a drought avoidance reaction but failed to survive wilting. Arabidopsis lyrata efficiently combined avoidance and tolerance mechanisms. In contrast, A. halleri showed some degree of tolerance to wilting but it did not seem to protect itself from the stress imposed by drought. Transcriptome data collected just before plant wilting and after recovery corroborated the phenotypic analysis, with A. lyrata and A. halleri showing a stronger activation of recovery- and stress-related genes, respectively. CONCLUSIONS The response of the three Arabidopsis species to soil dry-down reveals that they have evolved distinct strategies to face drought stress. These strategic differences are in agreement with the distinct ecological priorities of the stress-tolerant A. lyrata, the competitive A. halleri and the ruderal A. thaliana.
Collapse
Affiliation(s)
- M Bouzid
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - F He
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - G Schmitz
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - R E Häusler
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - A P M Weber
- Institut of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - T Mettler-Altmann
- Institut of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - J De Meaux
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| |
Collapse
|
223
|
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y. The AP2/ERF Transcription Factor TINY Modulates Brassinosteroid-Regulated Plant Growth and Drought Responses in Arabidopsis. THE PLANT CELL 2019; 31:1788-1806. [PMID: 31126980 PMCID: PMC6713308 DOI: 10.1105/tpc.18.00918] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 05/04/2023]
Abstract
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors have well-documented functions in stress responses, but their roles in brassinosteroid (BR)-regulated growth and stress responses have not been established. Here, we show that the Arabidopsis (Arabidopsis thaliana) stress-inducible AP2/ERF transcription factor TINY inhibits BR-regulated growth while promoting drought responses. TINY-overexpressing plants have stunted growth, increased sensitivity to BR biosynthesis inhibitors, and compromised BR-responsive gene expression. By contrast, tiny tiny2 tiny3 triple mutants have increased BR-regulated growth and BR-responsive gene expression. TINY positively regulates drought responses by activating drought-responsive genes and promoting abscisic acid-mediated stomatal closure. Global gene expression studies revealed that TINY and BRs have opposite effects on plant growth and stress response genes. TINY interacts with and antagonizes BRASSINOSTERIOID INSENSITIVE1-ETHYL METHANESULFONATE SUPRESSOR1 (BES1) in the regulation of these genes. Glycogen synthase kinase 3-like protein kinase BR-INSENSITIVE2 (BIN2), a negative regulator in the BR pathway, phosphorylates and stabilizes TINY, providing a mechanism for BR-mediated downregulation of TINY to prevent activation of stress responses under optimal growth conditions. Taken together, our results demonstrate that BR signaling negatively regulates TINY through BIN2 phosphorylation and TINY positively regulates drought responses, as well as inhibiting BR-mediated growth through TINY-BES1 antagonistic interactions. Our results thus provide insight into the coordination of BR-regulated growth and drought responses.
Collapse
Affiliation(s)
- Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
224
|
Marinho JP, Coutinho ID, da Fonseca Lameiro R, Marin SRR, Colnago LA, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL, Mertz-Henning LM. Metabolic alterations in conventional and genetically modified soybean plants with GmDREB2A;2 FL and GmDREB2A;2 CA transcription factors during water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:122-135. [PMID: 31100705 DOI: 10.1016/j.plaphy.2019.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Water deficit is one of the main abiotic stress that affects plant growth and productivity. The GmDREB2A;2 (Glyma14g06080) gene is an important transcription factor involved in regulating the plants' responses under water deficit. In previous studies, soybean plants overexpressing full-length (GmDREB2A;2 FL) and constitutively active (GmDREB2A;2 CA) forms of the GmDREB2A;2 gene, presented higher tolerance to water deficit when compared with the conventional cultivar BRS 283. Therefore, identifying the changes in metabolite profile in these tolerant genotypes can contribute to the understanding of the metabolic pathways involved in the tolerance mechanism. In this work, the metabolic changes in roots and leaves of genetically modified (GM) soybean plants subjected to water deficit were elucidated by 1H-NMR spectroscopy. Three events were analyzed, one containing the gene in FL form (GmDREB2A;2 FL) and two presenting its CA form (GmDREB2A;2 CA-1 and GmDREB2A;2 CA-2) and compared with the conventional cultivar BRS 283. The results indicated different responses between leaves and roots for all genotypes. Most of these metabolic variations were related to carbohydrate and amino acid pathways. BRS 283 stood out with higher accumulation of amino acids in leaves under water deficit. The results also showed that the events GmDREB2A;2 FL and GmDREB2A;2 CA-1 presented higher concentrations of β-glucose and fructose in leaves, whereas BRS 283 accumulated more sucrose and pinitol. In roots, the GM events accumulated higher β-glucose, fructose, asparagine and phenylalanine, when compared with the conventional cultivar. These insights can add information on how the transcription factor (TF) DREB2A acts in soybean plants triggering and controlling a network of complex responses to drought.
Collapse
Affiliation(s)
- Juliane Prela Marinho
- Department of General Biology, Londrina State University, Londrina, PR, Brazil; Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, Warta, PO. Box 231, 86001-970, Londrina, PR, Brazil
| | - Isabel Duarte Coutinho
- Embrapa Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, São Paulo, Brazil
| | - Rafael da Fonseca Lameiro
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13566-590, São Carlos, Brazil
| | - Silvana Regina Rockenbach Marin
- Department of General Biology, Londrina State University, Londrina, PR, Brazil; Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, Warta, PO. Box 231, 86001-970, Londrina, PR, Brazil
| | - Luiz Alberto Colnago
- Embrapa Instrumentação, Rua XV de Novembro, 1452, 13560-970, São Carlos, São Paulo, Brazil
| | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Alexandre Lima Nepomuceno
- Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, Warta, PO. Box 231, 86001-970, Londrina, PR, Brazil
| | - Liliane Marcia Mertz-Henning
- Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, Warta, PO. Box 231, 86001-970, Londrina, PR, Brazil.
| |
Collapse
|
225
|
Sato H, Suzuki T, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. NF-YB2 and NF-YB3 Have Functionally Diverged and Differentially Induce Drought and Heat Stress-Specific Genes. PLANT PHYSIOLOGY 2019; 180:1677-1690. [PMID: 31123093 PMCID: PMC6752928 DOI: 10.1104/pp.19.00391] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 05/03/2023]
Abstract
Functional diversification of transcription factors allows the precise regulation of transcriptomic changes under different environmental conditions. The NUCLEAR FACTOR Y (NF-Y) transcription factor comprises three subunits, NF-YA, NF-YB, and NF-YC, and is broadly diversified in plant species, whereas Humans (Homo sapiens) have one protein for each subunit. However, there remains much to be learned about the diversified functions of each subunit in plants. Here, we found that NF-YB2 and NF-YB3, which have the greatest sequence similarity to each other among NF-YB family proteins in Arabidopsis (Arabidopsis thaliana), are functionally diversified and specifically activate dehydration-inducible and heat-inducible genes, according to environmental conditions. Overexpression of NF-YB2 and NF-YB3 specifically enhanced drought and heat stress tolerance, respectively, and each single knockout mutant showed adverse stress-sensitive phenotypes. Transcriptomic analyses confirmed that overexpression of NF-YB2 and NF-YB3 largely affected the transcriptomic changes under dehydration and heat stress conditions, respectively. The DNA-binding profiles of each protein in planta also suggested that dehydration and heat stress increased the DNA-binding activity of NF-YB2 and NF-YB3 to dehydration-inducible and heat stress-inducible target genes, respectively. Moreover, phylogenetic analysis suggested that the NF-YB proteins of angiosperm plants belong to divergent NF-YB2 and NF-YB3 subgroups. These results demonstrate the functional diversification of NF-Y through evolutionary processes and how plants adapt to various abiotic stresses under fluctuating environments.
Collapse
Affiliation(s)
- Hikaru Sato
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Tsukuba, Ibaraki 305-0074, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
226
|
Alshareef NO, Wang JY, Ali S, Al-Babili S, Tester M, Schmöckel SM. Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:113-121. [PMID: 31100704 DOI: 10.1016/j.plaphy.2019.04.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 05/10/2023]
Abstract
Soil salinity is a major abiotic stress affecting plant growth and yield, due to both osmotic and ionic stresses. JUBGBRUNNEN1 (JUB1) is a NAC family transcription factor that has been shown to be involved in responses to abiotic stresses, such as water deficit, osmotic, salinity, heat and oxidative stress. In Arabidopsis thaliana (Arabidopsis), JUB1 has been shown to improve plant stress tolerance by regulating H2O2 levels. In the horticultural crop, Solanum lycopersicum cv. Moneymaker (tomato), overexpression of AtJUB1 has been shown to partially alleviate water deficit stress at the vegetative stage. In this study, we investigated the effect of Arabidopsis JUB1 overexpression in salinity tolerance in tomato. In hydroponically grown tomato seedlings, AtJUB1 overexpression results in higher prolines levels and improves the maintenance of water content in the plant under salinity stress. The transgenic tomato plants are more tolerant to salinity stress compared to control lines based on plant biomass. However, at the reproductive stage, we found that overexpression of AtJUB1 only provided marginal improvements in yield-related parameters, in the conditions used for the current work. The combination of improved water deficit and salinity stress tolerance conferred by AtJUB1 overexpression may be beneficial when tomato plants are grown in the field under marginal environments.
Collapse
Affiliation(s)
- Nouf Owdah Alshareef
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Jian You Wang
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Shawkat Ali
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia; Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Sandra M Schmöckel
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia; Department of Crop Science, Faculty of Agriculture, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
227
|
Enomoto T, Tokizawa M, Ito H, Iuchi S, Kobayashi M, Yamamoto YY, Kobayashi Y, Koyama H. STOP1 regulates the expression of HsfA2 and GDHs that are critical for low-oxygen tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3297-3311. [PMID: 30882866 DOI: 10.1093/jxb/erz124] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/07/2019] [Indexed: 05/03/2023]
Abstract
The SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) transcription factor regulates gene expression associated with multiple stress tolerances in plant roots. In this study, we investigated the mechanism responsible for the sensitivity of the stop1 mutant to low-oxygen stress in Arabidopsis. Transcriptomic analyses revealed that two genes involved in low-oxygen tolerance, namely GLUTAMATE DEHYDROGENASE 1 (GDH1) and GDH2, showed lower expression levels in the stop1 mutant than in the wild-type. Sensitivity of the gdh1gdh2 double-mutant to low-oxygen conditions was partly attributable to the low-oxygen sensitivity of the stop1 mutant. Two transcription factors, STOP2 and HEAT SHOCK FACTOR A2 (HsfA2), were expressed at lower levels in the stop1 mutant. An in planta complementation assay indicated that CaMV35S::STOP2 or CaMV35S::HsfA2 partially rescued the low-oxygen tolerance of the stop1 mutant, which was concomitant with recovered expression of genes regulating low-pH tolerance and genes encoding molecular chaperones. Prediction of cis-elements and in planta promoter assays revealed that STOP1 directly activated the expression of HsfA2. Similar STOP1-dependent low-oxygen sensitivity was detected in tobacco. Suppression of NtSTOP1 induced low-oxygen sensitivity, which was associated with lower expression levels of NtHsfA2 and NtGDHs compared with the wild-type. Our results indicated that STOP1 pleiotropically regulates low-oxygen tolerance by transcriptional regulation.
Collapse
Affiliation(s)
- Takuo Enomoto
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Hiroki Ito
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | | | - Yoshiharu Y Yamamoto
- Applied Biological Sciences, Gifu University, Gifu, Japan
- RIKEN CSRS, Kanagawa, Japan
| | | | | |
Collapse
|
228
|
Conserved miR396b-GRF Regulation Is Involved in Abiotic Stress Responses in Pitaya ( Hylocereus polyrhizus). Int J Mol Sci 2019; 20:ijms20102501. [PMID: 31117184 PMCID: PMC6566180 DOI: 10.3390/ijms20102501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/05/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNA396 (miR396) is a conserved microRNA family that targets growth-regulating factors (GRFs), which play significant roles in plant growth and stress responses. Available evidence justifies the idea that miR396-targeted GRFs have important functions in many plant species; however, no genome-wide analysis of the pitaya (Hylocereus polyrhizus) miR396 gene has yet been reported. Further, its biological functions remain elusive. To uncover the regulatory roles of miR396 and its targets, the hairpin sequence of pitaya miR396b and the open reading frame (ORF) of its target, HpGRF6, were isolated from pitaya. Phylogenetic analysis showed that the precursor miR396b (MIR396b) gene of plants might be clustered into three major groups, and, generally, a more recent evolutionary relationship in the intra-family has been demonstrated. The sequence analysis indicated that the binding site of hpo-miR396b in HpGRF6 is located at the conserved motif which codes the conserved "RSRKPVE" amino acid in the Trp-Arg-Cys (WRC) region. In addition, degradome sequencing analysis confirmed that four GRFs (GRF1, c56908.graph_c0; GRF4, c52862.graph_c0; GRF6, c39378.graph_c0 and GRF9, c54658.graph_c0) are hpo-miR396b targets that are regulated by specific cleavage at the binding site between the 10th and 11th nucleotides from the 5' terminus of hpo-miR396b. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that hpo-miR396b is down-regulated when confronted with drought stress (15% polyethylene glycol, PEG), and its expression fluctuates under other abiotic stresses, i.e., low temperature (4 ± 1 °C), high temperature (42 ± 1 °C), NaCl (100 mM), and abscisic acid (ABA; 0.38 mM). Conversely, the expression of HpGRF6 showed the opposite trend to exposure to these abiotic stresses. Taken together, hpo-miR396b plays a regulatory role in the control of HpGRF6, which might influence the abiotic stress response of pitaya. This is the first documentation of this role in pitaya and improves the understanding of the molecular mechanisms underlying the tolerance to drought stress in this fruit.
Collapse
|
229
|
Li Y, Zhang S, Zhang N, Zhang W, Li M, Liu B, Shi Z. MYB-CC transcription factor, TaMYBsm3, cloned from wheat is involved in drought tolerance. BMC PLANT BIOLOGY 2019; 19:143. [PMID: 30987595 PMCID: PMC6466810 DOI: 10.1186/s12870-019-1751-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/31/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND MYB-CC transcription factors (TFs) genes have been demonstrated to be involved in the response to inorganic phosphate (Pi) starvation and regulate some Pi-starvation-inducible genes. However, their role in drought stress has not been investigated in bread wheat. In this study, the TaMYBsm3 genes, including TaMYBsm3-A, TaMYBsm3-B, and TaMYBsm3-D, encoding MYB-CC TF proteins in bread wheat, were isolated to investigate the possible molecular mechanisms related to drought-tolerance in plants. RESULTS TaMYBsm3-A, TaMYBsm3-B, and TaMYBsm3-D were mapped on chromosomes 6A, 6B, and 6D in wheat, respectively. TaMYBsm3 genes belonged to MYB-CC TFs, containing a conserved MYB DNA-binding domain and a conserved coiled-coil domain. TaMYBsm3-D was localized in the nucleus, and the N-terminal region was a transcriptional activation domain. TaMYBsm3 genes were ubiquitously expressed in different tissues of wheat, and especially highly expressed in the stamen and pistil. Under drought stress, transgenic plants exhibited milder wilting symptoms, higher germination rates, higher proline content, and lower MDA content comparing with the wild type plants. P5CS1, DREB2A, and RD29A had significantly higher expression in transgenic plants than in wild type plants. CONCLUSION TaMYBsm3-A, TaMYBsm3-B, and TaMYBsm3-D were associated with enhanced drought tolerance in bread wheat. Overexpression of TaMYBsm3-D increases the drought tolerance of transgenic Arabidopsis through up-regulating P5CS1, DREB2A, and RD29A.
Collapse
Affiliation(s)
- Yaqing Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| | - Shichang Zhang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| | - Nan Zhang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| | - Wenying Zhang
- Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000 China
| | - Mengjun Li
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| | - Binhui Liu
- Dryland Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000 China
| | - Zhanliang Shi
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No.479 Shengli North Street, Chang’an district, Shijiazhuang, 050041 Hebei Province China
| |
Collapse
|
230
|
Awasthi JP, Chandra T, Mishra S, Parmar S, Shaw BP, Nilawe PD, Chauhan NK, Sahoo S, Panda SK. Identification and characterization of drought responsive miRNAs in a drought tolerant upland rice cultivar KMJ 1-12-3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:62-74. [PMID: 30738218 DOI: 10.1016/j.plaphy.2019.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Shortfall of rain that creates drought like situation in non-irrigated agriculture system often limits rice production, necessitating introduction of drought tolerance trait into the cultivar of interest. The mechanism governing drought tolerance is, however, largely unknown, particularly the involvement of miRNAs, the master regulators of biochemical events. In this regard, response study on a drought tolerant rice variety KMJ 1-12-3 to 20% PEG (osmolality- 315 mOsm/kg) as drought stress revealed significant changes in abundance of several conserved miRNAs targeting transcription factors like homeodomain-leucine zipper, MADS box family protein, C2H2 zinc finger protein and Myb, well known for their importance in drought tolerance in plants. The response study also revealed significant PEG-induced decrease in abundance of the miRNAs targeting cyclin A, cyclin-dependent kinase, guanine nucleotide exchange factor, GTPase-activating protein, 1-aminocyclopropane-1-carboxylic acid oxidase and indole-3-acetic beta-glucosyl transferase indicating miRNA-regulated role of the cell cycle regulators, G-protein signalling and the plant hormones ethylene and IAA in drought tolerance in plants. The study confirmed the existence of four novel miRNAs, including osa-miR12470, osa-miR12471, osa-miR12472 and osa-miR12473, and the targets of three of them could be successfully validated. The PEG-induced decrease in abundance of the novel miRNAs osa-miR12470 and osa-miR12473 targeting RNA dependent RNA polymerase and equilibrative nucleoside transporter, respectively suggested an overall increase in both degradation and synthesis of nucleic acids in plants challenged with drought stress. The drought-responsive miRNAs identified in the study may be proved useful in introducing the trait in the rice cultivars of choice by manipulation of their cellular abundance.
Collapse
Affiliation(s)
- Jay Prakash Awasthi
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| | - Tilak Chandra
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Sagarika Mishra
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Shaifaly Parmar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
| | - Pravin Daulat Nilawe
- Thermo Fisher Scientific India Pvt. Ltd, 403/404 B-Wing, Delphi, Hiranandani Business Park, Powai, Mumbai, 400076, India.
| | - Neeraj Kumar Chauhan
- Thermo Fisher Scientific India Pvt. Ltd, 403/404 B-Wing, Delphi, Hiranandani Business Park, Powai, Mumbai, 400076, India.
| | - Smita Sahoo
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| | - Sanjib Kumar Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
231
|
Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M. Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech 2019; 9:143. [PMID: 30944790 DOI: 10.1007/s13205-019-1665-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/01/2019] [Indexed: 11/25/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops; its production, productivity and quality are adversely affected by abiotic stresses. Abiotic stresses such as drought, extreme temperature and high salinity affect almost every stage of tomato life cycle. Depending upon the plant stage and duration of the stress, abiotic stress causes about 70% yield loss. Several wild tomato species have the stress tolerance genes; however, it is very difficult to transfer them into cultivars due to high genetic distance and crossing barriers. Transgenic technology is an alternative potential tool for the improvement of tomato crop to cope with abiotic stress, as it allows gene transfer across species. In recent decades, many transgenic tomatoes have been developed, and many more are under progress against abiotic stress using transgenes such as DREBs, Osmotin, ZAT12 and BADH2. The altered expression of these transgenes under abiotic stresses are involved in every step of stress responses, such as signaling, control of transcription, proteins and membrane protection, compatible solute (betaines, sugars, polyols, and amino acids) synthesis, and free-radical and toxic-compound scavenging. The stress-tolerant transgenic tomato development is based on introgression of a gene with known function in stress response and putative tolerance. Transgenic tomato plants have been developed against drought, heat and salt stress with the help of various transgenes, expression of which manages the stress at the cellular level by modulating the expression of downstream genes to ultimately improve growth and yield of tomato plants and help in sustainable agricultural production. The transgenic technology could be a faster way towards tomato improvement against abiotic stress. This review provides comprehensive information about transgenic tomato development against abiotic stress such as drought, heat and salinity for researcher attention and a better understanding of transgenic technology used in tomato improvement and sustainable agricultural production.
Collapse
Affiliation(s)
- Ram Krishna
- 1Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
- 2Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Suhas G Karkute
- 2Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Waquar A Ansari
- 2Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Durgesh Kumar Jaiswal
- 1Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
| | - Jay Prakash Verma
- 1Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
- 3Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, Sydney, NSW 2750 Australia
| | - Major Singh
- 4ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505 India
| |
Collapse
|
232
|
Li C, Zhang W, Yuan M, Jiang L, Sun B, Zhang D, Shao Y, Liu A, Liu X, Ma J. Transcriptome analysis of osmotic-responsive genes in ABA-dependent and -independent pathways in wheat ( Triticum aestivum L.) roots. PeerJ 2019; 7:e6519. [PMID: 30863676 PMCID: PMC6407504 DOI: 10.7717/peerj.6519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
Bread wheat is one of the most important crops in the world. However, osmotic stress significantly inhibits wheat growth and development, and reduces crop yield and quality. Plants respond to osmotic stress mainly through abscisic acid (ABA)-dependent and -independent pathways. In this study, root transcriptome profiles of wheat seedlings exposed to osmotic stress and exogenous ABA were analysed to identify osmotic-responsive genes belonging to the ABA-dependent or -independent pathways. We found that osmotic stress promoted proline biosynthesis in the ABA-dependent pathway, and trehalose biosynthesis is likely promoted among soluble sugars to maintain protein bioactivity under osmotic stress. In wheat roots subjected to osmotic stress, calcium ions, and glutathione exert their functions mainly through calcium-binding protein (CaM/CML) and glutathione-S-transferase, respectively, depending on both pathways. In addition, a complex relationship among phytohormones signal transduction was observed in response to osmotic stress. The findings of this study deepen our understanding of the molecular mechanisms of osmotic-stress resistance, and provide several candidate osmotic-responsive genes for further study.
Collapse
Affiliation(s)
- Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Wenli Zhang
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Bo Sun
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Yun Shao
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Anqi Liu
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Xueqing Liu
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| | - Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, The People's Republic of China
| |
Collapse
|
233
|
Feng C, Song X, Tang H. Molecular cloning and expression analysis of GT-2-like genes in strawberry. 3 Biotech 2019; 9:105. [PMID: 30800616 PMCID: PMC6387661 DOI: 10.1007/s13205-019-1603-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022] Open
Abstract
GT-2 factors are the members of trihelix transcription factors (TFs) which can function in regulating plant development and responding to different abiotic stress. These proteins contain two structural domains composed by three tandem repeats helix-loop-helix-loop-helix. The strawberry (Fragaria × ananassa Duch.) is one of the most prevalent fruit crops due to its high economic and nutritional value. Nevertheless, strawberry production is limited by a range of biotic and abiotic stresses (such as drought, extreme temperature) that cause significant losses every year. Despite the potential roles of GT-2 transcription factor in plants, the functional and systematic analysis of the strawberry GT-2 subfamily has not been reported yet. In this research, we identified six GT-2 factors in 'Benihoppe' strawberry (Fragaria × ananassa) and all the FaGT-2-like proteins contain two trihelix domains. In addition, bioinformatics analysis showed that FaGT-2-like proteins might participate in transcription or transcription regulation. Compared with other reported GT-2 proteins, the similarity between FaGT-2-like and FvGT-2-like amino acid sequences was the highest, which can reach to 100%. Expression of these TFs indicated all of the FaGT-2-like genes could express in different tissues: root, stem, and leaf within distinct expression patterns. Furthermore, quantitative real-time PCR (qRT-PCR) analysis provided us with cues that all the FaGT-2-like genes were downregulated in response to various abiotic stress and hormone treatment. All the gene expressions can be inhibited by salt, drought, cold and ABA treatments, indicating that all the FaGT-2-like genes in 'Benihoppe' strawberry might act as the negative regulatory factors to respond to the abiotic stress. In summary, these results would lay a useful foundation for FaGT-2-like genes on functional study.
Collapse
Affiliation(s)
- Chen Feng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Xia Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| |
Collapse
|
234
|
Li X, Liang Y, Gao B, Mijiti M, Bozorov TA, Yang H, Zhang D, Wood AJ. ScDREB10, an A-5c type of DREB Gene of the Desert Moss Syntrichia caninervis, Confers Osmotic and Salt Tolerances to Arabidopsis. Genes (Basel) 2019; 10:E146. [PMID: 30769913 PMCID: PMC6409532 DOI: 10.3390/genes10020146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Drought and salinity are major factors limiting crop productivity worldwide. DREB (dehydration-responsive element-binding) transcription factors play important roles in plant stress response and have been identified in a wide variety of plants. Studies on DREB are focused on the A-1 (DREB1) and A-2 (DREB2) groups. Studies on A-5 group DREBs, which represent a large proportion of the DREB subfamily, is limited. In this study, we characterized and analyzed the stress tolerance function of ScDREB10, an A-5c type DREB gene from the desert moss Syntrichia caninervis. Transactivation assay in yeast showed that ScDREB10 had transactivation activity. Transient expression assay revealed that ScDREB10 was distributed both in the nucleus and cytosol of tobacco leaf epidermal cells. Overexpression of ScDREB10 significantly increased the germination percentage of Arabidopsis seeds under osmotic and salt stresses, and improved the osmotic and salt stress tolerances of Arabidopsis at the seedling stage and is associated with the expression of downstream stress-related genes and improved reactive oxygen species (ROS) scavenging ability. Our study provides insight into the molecular mechanism of stress tolerance of A-5 type DREB proteins, as well as providing a promising candidate gene for crop salt and drought stress breeding.
Collapse
Affiliation(s)
- Xiaoshuang Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China.
| | - Yuqing Liang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bei Gao
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong.
| | - Meiheriguli Mijiti
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China.
| | - Tohir A Bozorov
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China.
- Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz 111226, Kibray, Tashkent Region, Uzbekistan.
| | - Honglan Yang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China.
| | - Daoyuan Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang Urumqi 830011, China.
| | - Andrew J Wood
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901-6899, USA.
| |
Collapse
|
235
|
Jangale BL, Chaudhari RS, Azeez A, Sane PV, Sane AP, Krishna B. Independent and combined abiotic stresses affect the physiology and expression patterns of DREB genes differently in stress-susceptible and resistant genotypes of banana. PHYSIOLOGIA PLANTARUM 2019; 165:303-318. [PMID: 30216466 DOI: 10.1111/ppl.12837] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 05/22/2023]
Abstract
In tropics, combined stresses of drought and heat often reduce crop productivity in plants like Musa acuminata L. We compared responses of two contrasting banana genotypes, namely the drought-sensitive Grand Nain (GN; AAA genome) and drought tolerant Hill banana (HB; AAB genome) to individual drought, heat and their combination under controlled and field conditions. Drought and combined drought and heat treatments caused greater reduction in leaf relative water content and greater increase in ion leakage and H2 O2 content in GN plants, especially in early stages, while the responses were more pronounced in HB at later stages. A combination of drought and heat increased the severity of responses. Real-time expression patterns of the A-1 and A-2 group DEHYDRATION-RESPONSIVE ELEMENT BINDING (DREB) genes revealed greater changes in expression in leaves of HB plants for both the individual stresses under controlled conditions compared to GN plants. A combination of heat and drought, however, activated most DREB genes in GN but surprisingly suppressed their expression in HB in controlled and field conditions. Its response seems correlated to a better stomatal control over transpiration in HB and a DREB-independent pathway for the more severe combined stresses unlike in GN. Most of the DREB genes had abscisic acid (ABA)-responsive elements in their promoters and were also activated by ABA suggesting at least partial dependence on ABA. This study provides valuable information on physiological and molecular responses of the two genotypes to individual and combined drought and heat stresses.
Collapse
Affiliation(s)
- Bhavesh L Jangale
- Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Jain Irrigation Systems Ltd., Jalgaon, 425001, India
| | - Rakesh S Chaudhari
- Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Jain Irrigation Systems Ltd., Jalgaon, 425001, India
| | - Abdul Azeez
- Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Jain Irrigation Systems Ltd., Jalgaon, 425001, India
| | - Prafullachandra V Sane
- Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Jain Irrigation Systems Ltd., Jalgaon, 425001, India
| | - Aniruddha P Sane
- Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Jain Irrigation Systems Ltd., Jalgaon, 425001, India
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Jain Irrigation Systems Ltd., Jalgaon, 425001, India
| |
Collapse
|
236
|
Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:228. [PMID: 30873200 PMCID: PMC6403161 DOI: 10.3389/fpls.2019.00228] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Dynamic environmental changes such as extreme temperature, water scarcity and high salinity affect plant growth, survival, and reproduction. Plants have evolved sophisticated regulatory mechanisms to adapt to these unfavorable conditions, many of which interface with plant hormone signaling pathways. Abiotic stresses alter the production and distribution of phytohormones that in turn mediate stress responses at least in part through hormone- and stress-responsive transcription factors. Among these, the APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors (AP2/ERFs) have emerged as key regulators of various stress responses, in which they also respond to hormones with improved plant survival during stress conditions. Apart from participation in specific stresses, AP2/ERFs are involved in a wide range of stress tolerance, enabling them to form an interconnected stress regulatory network. Additionally, many AP2/ERFs respond to the plant hormones abscisic acid (ABA) and ethylene (ET) to help activate ABA and ET dependent and independent stress-responsive genes. While some AP2/ERFs are implicated in growth and developmental processes mediated by gibberellins (GAs), cytokinins (CTK), and brassinosteroids (BRs). The involvement of AP2/ERFs in hormone signaling adds the complexity of stress regulatory network. In this review, we summarize recent studies on AP2/ERF transcription factors in hormonal and abiotic stress responses with an emphasis on selected family members in Arabidopsis. In addition, we leverage publically available Arabidopsis gene networks and transcriptome data to investigate AP2/ERF regulatory networks, providing context and important clues about the roles of diverse AP2/ERFs in controlling hormone and stress responses.
Collapse
|
237
|
Li B, Liu Y, Cui XY, Fu JD, Zhou YB, Zheng WJ, Lan JH, Jin LG, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Characterization and Expression Analysis of Soybean TGA Transcription Factors Identified a Novel TGA Gene Involved in Drought and Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:549. [PMID: 31156656 PMCID: PMC6531876 DOI: 10.3389/fpls.2019.00549] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 05/19/2023]
Abstract
The TGA transcription factors, a subfamily of bZIP group D, play crucial roles in various biological processes, including the regulation of growth and development as well as responses to pathogens and abiotic stress. In this study, 27 TGA genes were identified in the soybean genome. The expression patterns of GmTGA genes showed that several GmTGA genes are differentially expressed under drought and salt stress conditions. Among them, GmTGA17 was strongly induced by both stress, which were verificated by the promoter-GUS fusion assay. GmTGA17 encodes a nuclear-localized protein with transcriptional activation activity. Heterologous and homologous overexpression of GmTGA17 enhanced tolerance to drought and salt stress in both transgeinc Arabidopsis plants and soybean hairy roots. However, RNAi hairy roots silenced for GmTGA17 exhibited an increased sensitivity to drought and salt stress. In response to drought or salt stress, transgenic Arabidopsis plants had an increased chlorophyll and proline contents, a higher ABA content, a decreased MDA content, a reduced water loss rate, and an altered expression of ABA- responsive marker genes compared with WT plants. In addition, transgenic Arabidopsis plants were more sensitive to ABA in stomatal closure. Similarly, measurement of physiological parameters showed an increase in chlorophyll and proline contents, with a decrease in MDA content in soybean seedlings with overexpression hairy roots after drought and salt stress treatments. The opposite results for each measurement were observed in RNAi lines. This study provides new insights for functional analysis of soybean TGA transcription factors in abiotic stress.
Collapse
Affiliation(s)
- Bo Li
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ying Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu, Dong-Hong Min,
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Zhao-Shi Xu, Dong-Hong Min,
| |
Collapse
|
238
|
Sukiran NL, Ma JC, Ma H, Su Z. ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 99:161-174. [PMID: 30604322 DOI: 10.1007/s11103-018-0810-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Morphological and transcriptomic evidences provide us strong support for the function of ANAC019 in reproductive development under drought stress. Plants are sensitive to drought conditions, particularly at the reproductive stage. Several studies have reported drought effects on crop reproductive development, but the molecular mechanism underlying drought response during reproduction is still unclear. A recent study showed that drought induces in Arabidopsis inflorescence increased expression of many genes, including ANAC019. However, the function of ANAC019 in drought response during reproductive development has not been characterized. Here, we report an investigation of the ANAC019 function in the response to drought during reproduction. ANAC019 is preferentially expressed in the inflorescence compared with the leaf, suggesting possible roles in regulating both stress response and flower development. The anac019 mutant was more sensitive to drought than WT plant, and exhibited a delay in recovery of floral organ development under prolonged drought stress. Moreover, many fewer genes were differentially expressed in the anac019 inflorescence under drought than that of WT, suggesting that the mutant was impaired in drought-induced gene expression. The genes affected by ANAC019 were associated with stress and hormone responses as well as floral development. In particular, the expression levels of several key drought-induced genes, DREB2A, DREB2B, ARF2, MYB21 and MYB24, were dramatically reduced in the absence of ANAC019, suggesting that ANAC019 is an upstream regulator these genes for drought response and flower development. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
Collapse
Affiliation(s)
- Noor Liyana Sukiran
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Center of Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Julia C Ma
- State College Area High School, State College, PA, 16801, USA
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Zhao Su
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
239
|
Yang X, He K, Chi X, Chai G, Wang Y, Jia C, Zhang H, Zhou G, Hu R. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:229-241. [PMID: 30466589 DOI: 10.1016/j.plantsci.2018.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 05/07/2023]
Abstract
NAC (NAM, ATAF1/2 and CUC2) transcription factors play critical roles in plant abiotic stress responses. However, knowledge regarding the functional roles of NACs in abiotic stress tolerance and its underlying mechanisms is relatively limited in Miscanthus. In this study, we functionally characterized a novel Miscanthus NAC gene MlNAC12 by ectopic expression in Arabidopsis. MlNAC12 was localized in the nucleus. It could specifically binds to the NAC recognition sequence (NACRS) and has a transactivation activity in the C-terminus. Overexpression of MlNAC12 in Arabidopsis conferred hypersensitivity to exogenous Abscisic acid (ABA) at seed germination and root elongation stages. In addition, MlNAC12 overexpression enhanced germination and root growth under salt (NaCl) stress. Furthermore, MlNAC12 overexpression lines exhibited significantly enhanced drought stress tolerance, which was evidenced by a higher survival rate and a lower water loss rate compared to the wild type (WT). Accordingly, the stomata aperture was remarkably reduced in MlNAC12 overexpression lines in comparison to the WT under drought stress. Furthermore, the accumulation of the reactive oxygen species (ROS) and malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities of several antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the transgenic plants. Correspondingly, the expression of six stress-responsive genes was significantly up-regulated in MlNAC12 overexpression lines. Together, our results indicate that MlNAC12 is a positive regulator of drought and salt stress tolerance through activating ROS scavenging enzymes.
Collapse
Affiliation(s)
- Xuanwen Yang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Kang He
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yiping Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunlin Jia
- Shandong Institute of Agricultural Sustainable Development, Jinan, 250100, China
| | - Hongpeng Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
240
|
Mizoi J, Kanazawa N, Kidokoro S, Takahashi F, Qin F, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K. Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. J Biol Chem 2018; 294:902-917. [PMID: 30487287 DOI: 10.1074/jbc.ra118.002662] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/13/2018] [Indexed: 12/19/2022] Open
Abstract
Plants have evolved complex systems to rapidly respond to severe stress conditions, such as heat, cold, and dehydration. Dehydration-responsive element-binding protein 2A (DREB2A) is a key transcriptional activator that induces many heat- and drought-responsive genes, increases tolerance to both heat and drought stress, and suppresses plant growth in Arabidopsis thaliana. DREB2A expression is induced by stress, but stabilization of the DREB2A protein in response to stress is essential for activating the expression of downstream stress-inducible genes. Under nonstress growth conditions, an integral negative regulatory domain (NRD) destabilizes DREB2A, but the mechanism by which DREB2A is stabilized in response to stress remains unclear. Here, based on bioinformatics, mutational, MS, and biochemical analyses, we report that Ser/Thr residues in the NRD are phosphorylated under nonstress growth conditions and that their phosphorylation decreases in response to heat. Furthermore, we found that this phosphorylation is likely mediated by casein kinase 1 and is essential for the NRD-dependent, proteasomal degradation of DREB2A under nonstress conditions. These observations suggest that inhibition of NRD phosphorylation stabilizes and activates DREB2A in response to heat stress to enhance plant thermotolerance. Our study reveals the molecular basis for the coordination of stress tolerance and plant growth through stress-dependent transcriptional regulation, which may allow the plants to rapidly respond to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Junya Mizoi
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Natsumi Kanazawa
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kidokoro
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan, and
| | - Feng Qin
- the Biological Resources and Postharvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Kyoko Morimoto
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan, and
| | - Kazuko Yamaguchi-Shinozaki
- From the Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
241
|
Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc Natl Acad Sci U S A 2018; 115:E11178-E11187. [PMID: 30397148 DOI: 10.1073/pnas.1811491115] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant hormone abscisic acid (ABA) is accumulated after drought stress and plays critical roles in the responses to drought stress in plants, such as gene regulation, stomatal closure, seed maturation, and dormancy. Although previous reports revealed detailed molecular roles of ABA in stress responses, the factors that contribute to the drought-stress responses-in particular, regulation of ABA accumulation-remain unclear. The enzyme NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) is essential for ABA biosynthesis during drought stress, and the NCED3 gene is highly induced by drought stress. In the present study, we isolated NGATHAs (NGAs) as candidate transcriptional regulators of NCED3 through a screen of a plant library harboring the transcription factors fused to a chimeric repressor domain, SRDX. The NGA proteins were directly bound to a cis-element NGA-binding element (NBE) in the 5' untranslated region (5' UTR) of the NCED3 promoter and were suggested to be transcriptional activators of NCED3 Among the single-knockout mutants of four NGA family genes, we found that the NGATHA1 (NGA1) knockout mutant was drought-stress-sensitive with a decreased expression level of NCED3 during dehydration stress. These results suggested that NGA1 essentially functions as a transcriptional activator of NCED3 among the NGA family proteins. Moreover, the NGA1 protein was degraded under nonstressed conditions, and dehydration stress enhanced the accumulation of NGA1 proteins, even in ABA-deficient mutant plants, indicating that there should be ABA-independent posttranslational regulations. These findings emphasize the regulatory mechanisms of ABA biosynthesis during early drought stress.
Collapse
|
242
|
Fan L, Wang G, Hu W, Pantha P, Tran KN, Zhang H, An L, Dassanayake M, Qiu QS. Transcriptomic view of survival during early seedling growth of the extremophyte Haloxylon ammodendron. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:475-489. [PMID: 30292980 DOI: 10.1016/j.plaphy.2018.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/18/2018] [Indexed: 05/27/2023]
Abstract
Seedling establishment in an extreme environment requires an integrated genomic and physiological response to survive multiple abiotic stresses. The extremophyte, Haloxylon ammodendron is a pioneer species capable of colonizing temperate desert sand dunes. We investigated the induced and basal transcriptomes in H. ammodendron under water-deficit stress during early seedling establishment. We find that not only drought-responsive genes, but multiple genes in pathways associated with salt, osmotic, cold, UV, and high-light stresses were induced, suggesting an altered regulatory stress response system. Additionally, H. ammodendron exhibited enhanced biotic stress tolerance by down-regulation of genes that were generally up-regulated during pathogen entry in susceptible plants. By comparing the H. ammodendron basal transcriptome to six closely related transcriptomes in Amaranthaceae, we detected enriched basal level transcripts in H. ammodendron that shows preadaptation to abiotic stress and pathogens. We found transcripts that were generally maintained at low levels and some induced only under abiotic stress in the stress-sensitive model, Arabidopsis thaliana to be highly expressed under basal conditions in the Amaranthaceae transcriptomes including H. ammodendron. H. ammodendron shows coordinated expression of genes that regulate stress tolerance and seedling development resource allocation to support survival against multiple stresses in a sand dune dominated temperate desert environment.
Collapse
Affiliation(s)
- Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Wei Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Kieu-Nga Tran
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
243
|
Fritz MA, Rosa S, Sicard A. Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology. Front Genet 2018; 9:478. [PMID: 30405690 PMCID: PMC6207588 DOI: 10.3389/fgene.2018.00478] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023] Open
Abstract
The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation.
Collapse
Affiliation(s)
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Adrien Sicard
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
244
|
Ji Y, Chen P, Chen J, Pennerman KK, Liang X, Yan H, Zhou S, Feng G, Wang C, Yin G, Zhang X, Hu Y, Huang L. Combinations of Small RNA, RNA, and Degradome Sequencing Uncovers the Expression Pattern of microRNA⁻mRNA Pairs Adapting to Drought Stress in Leaf and Root of Dactylis glomerata L. Int J Mol Sci 2018; 19:E3114. [PMID: 30314311 PMCID: PMC6213654 DOI: 10.3390/ijms19103114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
Drought stress is a global problem, and the lack of water is a key factor that leads to agricultural shortages. MicroRNAs play a crucial role in the plant drought stress response; however, the microRNAs and their targets involved in drought response have not been well elucidated. In the present study, we used Illumina platform (https://www.illumina.com/) and combined data from miRNA, RNA, and degradome sequencing to explore the drought- and organ-specific miRNAs in orchardgrass (Dactylis glomerata L.) leaf and root. We aimed to find potential miRNA⁻mRNA regulation patterns responding to drought conditions. In total, 519 (486 conserved and 33 novel) miRNAs were identified, of which, 41 miRNAs had significant differential expression among the comparisons (p < 0.05). We also identified 55,366 unigenes by RNA-Seq, where 12,535 unigenes were differently expressed. Finally, our degradome analysis revealed that 5950 transcripts were targeted by 487 miRNAs. A correlation analysis identified that miRNA ata-miR164c-3p and its target heat shock protein family A (HSP70) member 5 gene comp59407_c0 (BIPE3) may be essential in organ-specific plant drought stress response and/or adaptation in orchardgrass. Additionally, Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses found that "antigen processing and presentation" was the most enriched downregulated pathway in adaptation to drought conditions. Taken together, we explored the genes and miRNAs that may be involved in drought adaptation of orchardgrass and identified how they may be regulated. These results serve as a valuable genetic resource for future studies focusing on how plants adapted to drought conditions.
Collapse
Affiliation(s)
- Yang Ji
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Peilin Chen
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Chen
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kayla K Pennerman
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xiaoyu Liang
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Haidong Yan
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Sifan Zhou
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guangyan Feng
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chengran Wang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guohua Yin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Xinquan Zhang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yuanbin Hu
- Sichuan Animal Science Academy, Chengdu 610066, China.
| | - Linkai Huang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
245
|
Liu Y, Li L, Zhang L, Lv Q, Zhao Y, Li X. Isolation and identification of wheat gene TaDIS1 encoding a RING finger domain protein, which negatively regulates drought stress tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:49-59. [PMID: 30107881 DOI: 10.1016/j.plantsci.2018.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 05/16/2023]
Abstract
Drought stress is a major factor that limits the yield and quality in wheat. In this study, we identified an orthologue of the rice gene OsDIS1 (Oryza sativa drought-induced SINA protein 1) in wheat (Triticum aestivum L.) called TaDIS1. TaDIS1 encodes a putative 301 amino acid protein with a C3HC4 RING finger conserved domain at the N-terminal and a SINA domain at the C-terminal. TaDIS1 contains three exons and two introns. qRT-PCR analysis showed that TaDIS1 expression was induced by PEG6000, NaCl, and abscisic acid (ABA) treatment. We generated TaDIS1-overexpressing transgenic Arabidopsis lines. Under drought stress conditions, the transgenic Arabidopsis plants had a lower germination rate, relative water content, and proline contents, with higher water loss, chlorophyll loss, relative electrical conductivity, and malondialdehyde contents compared with the wild type. The antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activity levels were lower in the transgenic plants. The TaDIS1-overexpressing plants had shorter roots with greater growth inhibition in response to mannitol treatment than the wild type, with increased hypersensitivity to ABA during seed germination and early seedling growth. The expression of stress-related genes in transgenic plants under drought stress suggests that TaDIS1 may function negatively in drought stress by regulating the stress response-related genes.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
246
|
Lau KH, del Rosario Herrera M, Crisovan E, Wu S, Fei Z, Khan MA, Buell CR, Gemenet DC. Transcriptomic analysis of sweet potato under dehydration stress identifies candidate genes for drought tolerance. PLANT DIRECT 2018; 2:e00092. [PMID: 31245692 PMCID: PMC6508841 DOI: 10.1002/pld3.92] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 05/25/2023]
Abstract
Sweet potato (Ipomoea batatas [L.] Lam.) is an important subsistence crop in Sub-Saharan Africa, yet as for many crops, yield can be severely impacted by drought stress. Understanding the genetic mechanisms that control drought tolerance can facilitate the development of drought-tolerant sweet potato cultivars. Here, we report an expression profiling study using the US-bred cultivar, Beauregard, and a Ugandan landrace, Tanzania, treated with polyethylene glycol (PEG) to simulate drought and sampled at 24 and 48 hr after stress. At each time-point, between 4,000 to 6,000 genes in leaf tissue were differentially expressed in each cultivar. Approximately half of these differentially expressed genes were common between the two cultivars and were enriched for Gene Ontology terms associated with drought response. Three hundred orthologs of drought tolerance genes reported in model species were identified in the Ipomoea trifida reference genome, of which 122 were differentially expressed under at least one experimental condition, constituting a list of drought tolerance candidate genes. A subset of genes was differentially regulated between Beauregard and Tanzania, representing genotype-specific responses to drought stress. The data analyzed and reported here provide a resource for geneticists and breeders toward identifying and utilizing drought tolerance genes in sweet potato.
Collapse
Affiliation(s)
- Kin H. Lau
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | | | - Emily Crisovan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
| | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNew York
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNew York
| | - Muhammad Awais Khan
- International Potato CenterLimaPeru
- Present address:
Plant Pathology and Plant‐Microbe Biology SectionCornell UniversityGenevaNew York
| | - Carol Robin Buell
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
- Plant Resilience InstituteMichigan State UniversityEast LansingMichigan
| | | |
Collapse
|
247
|
Akbudak MA, Filiz E, Kontbay K. DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum ( Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech 2018; 8:426. [PMID: 30305995 DOI: 10.1007/s13205-018-1454-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Biotic and abiotic stresses negatively affect fitness, biomass production, and crop yield in plants. The dehydration-responsive element-binding proteins (DREB) are important transcription factors (TFs), and are induced by abiotic and biotic stresses. In this study, genome-wide identification, in silico sequence, and phylogenetic analyses and expression analyses of DREB2 genes under cadmium (Cd) and salt (NaCl) stresses in sorghum (Sorghum bicolor, Sb) were performed. Six putative SbDREB2 genes were identified in sorghum genome and all contained AP2 domain (PF00847). Nucleotide diversities in SbDREB2 genes were calculated as π: 0.53 and θ: 0.39, respectively. While exon numbers of them were either one or two, length of SbDREB2 proteins ranged from 238 to 388 amino acid residues. Fifty-six cis-acting regulatory elements, which are tissue specific, light, hormone, and stress responsive, were identified in the promotor regions of SbDREB2 genes. Analyses on digital expression data indicated that SbDREB2A and SbDREB2B are more expressed genes than other SbDREB genes in sorghum. Under Cd and NaCl stresses, expressions of SbDREB2 genes were induced at different levels. All SbDREB2 genes in root were up-regulated under salt stress. In case of Cd stress, SbDREB2D gene was particularly up-regulated in leaves and roots. Co-expression analyses revealed four of TFs in co-expression network, indicating that they have roles in transcriptional cascade. Furthermore, five miRNA target regions were identified for four SbDREB2 genes, indicating their roles in post-transcriptional regulation. The predicted 3D structure of SbDREB2 proteins showed some structural divergences and structure overlap between rice and sorghum varied at between 26.58 and 50%. Finally, obtained data could be used in breeding of stress-tolerant plants, particularly genetically engineered DREB2 expressing plants. Findings in this study would also contribute to the understanding of DREB2 genes in plants, especially in sorghum.
Collapse
|
248
|
Yin Y, Jiang X, Ren M, Xue M, Nan D, Wang Z, Xing Y, Wang M. AmDREB2C, from Ammopiptanthus mongolicus, enhances abiotic stress tolerance and regulates fatty acid composition in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:517-528. [PMID: 30096686 DOI: 10.1016/j.plaphy.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/08/2018] [Accepted: 08/02/2018] [Indexed: 05/24/2023]
Abstract
Dehydration-responsive element-binding (DREB) transcription factors (TFs) play a vital role in plant response to abiotic stresses. However, little is known about DREB TFs in plants adapted to harsh environments and in the formation of polyunsaturated fatty acids (PUFAs), a major membrane component closely associated with plant stress tolerance. Here, we characterized AmDREB2C in Ammopiptanthus mongolicus (Maxim. ex kom.) Cheng F., a desert evergreen broadleaf shrub with a high tolerance to harsh environments. AmDREB2C encodes a canonical DREB2-type TF, and the protein was localized in the nucleus. AmDREB2C had the highest expression levels in leaves of naturally growing shrubs in the wild during the winter season of a year of sampling. The expression was also induced by cold, heat and drought stresses in laboratory-cultured seedlings. Moreover, AmDREB2C was most abundantly expressed in young leaves and immature seeds rather than other tissues of the shrubs. Constitutive expression of AmDREB2C in Arabidopsis enhanced freezing, heat and drought tolerances of the transgenic plants, likely through inducing the expression of important stress-responsive genes. The transgene also increased the level of linolenic acid (C18:3), a major PUFA in most plant species, in leaves and seeds of the transgenic plants. Correspondingly, the transcription of FAD3, FAD7 and FAD8, three genes encoding fatty acid desaturases (FADs) responsible for the production of C18:3, showed a differential up-regulation in these two organs. This study provides new insight into the underlying molecular mechanisms of A. mongolicus' ability to endure harsh environments and DREB TF regulation of fatty acid desaturation.
Collapse
Affiliation(s)
- Yumei Yin
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Xiaoxu Jiang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Meiyan Ren
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Min Xue
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Dina Nan
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Zhilin Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Yanping Xing
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China
| | - Maoyan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Street, Hohhot, 010018, China.
| |
Collapse
|
249
|
Yu TF, Zhao WY, Fu JD, Liu YW, Chen M, Zhou YB, Ma YZ, Xu ZS, Xi YJ. Genome-Wide Analysis of CDPK Family in Foxtail Millet and Determination of SiCDPK24 Functions in Drought Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:651. [PMID: 30093908 PMCID: PMC6071576 DOI: 10.3389/fpls.2018.00651] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
Plant calcium-dependent protein kinases (CDPKs) were reported to play important roles in plant resistance to abiotic stress. Foxtail millet cultivation "H138" was used for RNA-seq analysis. The data from drought-induced de novo transcriptomic sequences of foxtail millet showed that CDPKs were up- or down-regulated by drought to different degrees. In this study, 29 foxtail millet CDPKs were classified into four subgroups. These genes were unevenly distributed on nine foxtail millet chromosomes, and chromosomes 2, 3, and 9 contained the most SiCDPK members. Analysis of putative cis-acting elements showed that most foxtail millet CDPK genes contained the ABRE, LTR, HSE, MYB, MYC, DRE, CGTCA-motif, and TGACG-motif cis-acting elements, which could be activated by abiotic stresses. Real-time PCR analysis indicated that 29 SiCDPK genes experienced different degrees of induction under drought and ABA stresses. SiCDPK24 had the highest expression levels at 6 and 12 h of drought treatment and was chosen for further analysis. SiCDPK24 localized to the cell membrane and the nucleus of Arabidopsis mesophyll protoplasts. Western blot analysis showed that SiCDPK24 protein had autophosphorylation activity. Overexpression of SiCDPK24 in Arabidopsis enhanced drought resistance and improved the survival rate under drought stress. It also activated the expressions of nine stress-related genes, namely RD29A, RD29B, RD22, KIN1, COR15, COR47, LEA14, CBF3/DREB1A, and DREB2A. These genes are involved in resistance to abiotic stresses in Arabidopsis. These results indicate that foxtail millet CDPK genes play important roles in resisting drought stress.
Collapse
Affiliation(s)
- Tai-Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wan-Ying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ya-Jun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
| |
Collapse
|
250
|
Liu S, Lv Z, Liu Y, Li L, Zhang L. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol 2018. [PMID: 30044467 DOI: 10.1590/1678-4685-gmb-2017-2229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Drought is one of the most severe abiotic factors restricting plant growth and yield. Numerous genes functioning in drought response are regulated by abscisic acid (ABA) dependent and independent pathways, but knowledge of interplay between the two pathways is still limited. Here, we integrated transcriptome sequencing and network analyses to explore interplays between ABA-dependent and ABA-independent pathways responding to drought stress in Arabidopsis thaliana. We identified 211 ABA-dependent differentially expressed genes (DEGs) and 1,118 ABA-independent DEGs under drought stress. Functional analysis showed that ABA-dependent DEGs were significantly enriched in expected biological processes in response to water deprivation and ABA stimulus, while ABA-independent DEGs were preferentially enriched in response to jasmonic acid (JA), salicylic acid (SA) and gibberellin (GA) stimuli. We found significantly enriched interactions between ABA-dependent and ABA-independent pathways with 94 genes acting as core interacting components by combining network analyses. A link between ABA and JA signaling mediated through a direct interaction of the ABA responsive elements-binding factor ABF3 with the basic helix-loop-helix transcription factor MYC2 was validated by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Our study provides a systematic view of the interplay between ABA-dependent and ABA-independent pathways in response to drought stress.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zongyou Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yihui Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|