201
|
Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, Kundu D, Kyritsi K, Zhou T, Gaudio E, Francis H, Alpini G, Kennedy L. Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. Compr Physiol 2023; 13:4909-4943. [PMID: 37358507 DOI: 10.1002/cphy.c220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
202
|
Wang XX, Jin R, Li XH, Yang Q, Teng X, Liu FF, Wu N, Rao HY, Liu F. Collagen co-localized with macrovesicular steatosis better differentiates fibrosis progression in non-alcoholic fatty liver disease mouse models. Front Med (Lausanne) 2023; 10:1172058. [PMID: 37332758 PMCID: PMC10272541 DOI: 10.3389/fmed.2023.1172058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a global commonly occurring liver disease. However, its exact pathogenesis is not fully understood. The purpose of this study was to quantitatively evaluate the progression of steatosis and fibrosis by examining their distribution, morphology, and co-localization in NAFLD animal models. Methods Six mouse NAFLD groups were established: (1) western diet (WD) group; (2) WD with fructose in drinking water (WDF) group; (3) WDF + carbon tetrachloride (CCl4) group, WDF plus intraperitoneal injection of CCl4; (4) high-fat diet (HFD) group, (5) HFD with fructose (HFDF) group; and (6) HFDF + CCl4 group, HFDF plus intraperitoneal injection of CCl4. Liver tissue specimens from NAFLD model mice were collected at different time points. All the tissues were serially sectioned for histological staining and second-harmonic generation (SHG)/two-photon excitation fluorescence imaging (TPEF) imaging. The progression of steatosis and fibrosis was analyzed using SHG/TPEF quantitative parameters with respect to the non-alcoholic steatohepatitis Clinical Research Network scoring system. Results qSteatosis showed a good correlation with steatosis grade (R: 0.823-0.953, p < 0.05) and demonstrated high performance (area under the curve [AUC]: 0.617-1) in six mouse models. Based on their high correlation with histological scoring, qFibrosis containing four shared parameters (#LongStrPS, #ThinStrPS, #ThinStrPSAgg, and #LongStrPSDis) were selected to create a linear model that could accurately identify differences among fibrosis stages (AUC: 0.725-1). qFibrosis co-localized with macrosteatosis generally correlated better with histological scoring and had a higher AUC in six animal models (AUC: 0.846-1). Conclusion Quantitative assessment using SHG/TPEF technology can be used to monitor different types of steatosis and fibrosis progression in NAFLD models. The collagen co-localized with macrosteatosis could better differentiate fibrosis progression and might aid in developing a more reliable and translatable fibrosis evaluation tool for animal models of NAFLD.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Rui Jin
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiao-He Li
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Qiang Yang
- Hangzhou Choutu Technology Co., Ltd., Hangzhou, China
| | - Xiao Teng
- HistoIndex Pte Ltd, Singapore, Singapore
| | - Fang-Fang Liu
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Nan Wu
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Hui-Ying Rao
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Feng Liu
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
203
|
Israelsen M, Madsen BS, Torp N, Johansen S, Hansen CD, Detlefsen S, Andersen P, Hansen JK, Lindvig KP, Rasmussen DN, Thorhauge KH, Kjærgaard M, Karsdal M, Hansen T, Arumugam M, Trebicka J, Thiele M, Krag A. Rifaximin-α for liver fibrosis in patients with alcohol-related liver disease (GALA-RIF): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol Hepatol 2023; 8:523-532. [PMID: 36893774 PMCID: PMC10172147 DOI: 10.1016/s2468-1253(23)00010-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Alcohol is the leading cause of liver-related mortality worldwide. The gut-liver axis is considered a key driver in alcohol-related liver disease. Rifaximin-α improves gut-barrier function and reduces systemic inflammation in patients with cirrhosis. We aimed to compare the efficacy and safety of rifaximin-α with placebo in patients with alcohol-related liver disease. METHODS GALA-RIF was an investigator-initiated, randomised, double-blind, placebo-controlled, single-centre, phase 2 trial done at Odense University Hospital in Denmark. Eligible participants were adults (aged 18-75 years) who had current or previous alcohol overuse (at least 1 year with ≥24 g of alcohol per day for women and ≥36 g of alcohol per day for men), biopsy-proven alcohol-related liver disease, and no previous hepatic decompensation. Patients were randomly allocated (1:1) through a web-based randomisation system to receive oral rifaximin-α (550 mg) twice daily or matched placebo for 18 months. Randomisation was done in blocks of four and stratified according to fibrosis stage and alcohol abstinence. Participants, sponsor, investigators, and nurses involved in the study were masked to the randomisation outcome. The primary endpoint was a histological decrease from baseline to 18-month treatment of at least one fibrosis stage, according to the Kleiner fibrosis score. We also assessed the number of patients with progression by at least one fibrosis stage from baseline to 18 months. Primary analyses were done in the per-protocol and modified intention-to-treat populations; safety was assessed in the full intention-to-treat population. The per-protocol population was defined as all randomly assigned patients who did not present serious protocol violations, who ingested at least 75% of the treatment, and who were not withdrawn from the study due to non-adherence (interruption of treatment for 4 weeks or more). Participants receiving at least one dose of the intervention were included in the modified intention-to-treat analyses. This completed trial is registered with EudraCT, number 2014-001856-51. FINDINGS Between March 23, 2015, and Nov 10, 2021, we screened 1886 consecutive patients with a history of excessive alcohol consumption and no previous hepatic decompensation, of whom 136 were randomly assigned to either rifaximin-α (n=68) or placebo (n=68). All patients were White (100%), 114 (84%) were men, and 22 (16%) were women. 133 (98%) patients received at least one dose of the intervention and were included in the modified intention-to-treat analysis; 108 (79%) completed the trial per protocol. In the per-protocol analysis, 14 (26%) of 54 patients in the rifaximin-α group and 15 (28%) of 54 patients in the placebo group had a decrease in fibrosis stage after 18 months (odds ratio 1·10 [95% CI 0·45-2·68]; p=0·83). In the modified intention-to-treat analysis, 15 (22%) of 67 patients in the rifaximin-α group and 15 (23%) of 66 patients in the placebo group had a decrease in fibrosis stage at 18 months (1·05 [0·45-2·44]; p=0·91). In the per-protocol analysis, increase in fibrosis stage occurred in 13 (24%) patients in the rifaximin-α group and 23 (43%) patients in the placebo group (0·42 [0·18-0·98]; p=0·044). In the modified intention-to-treat analysis, increase in fibrosis stage occurred in 13 (19%) patients in the rifaximin-α group and 23 (35%) patients in the placebo group (0·45 [0·20-1·02]; p=0·055). The number of patients with adverse events (48 [71%] of 68 patients in the rifaximin-α group; 53 [78%] of 68 in the placebo group) and serious adverse events (14 [21%] in the rifaximin-α group; 12 [18%] in the placebo group) was similar between the groups. No serious adverse events were deemed related to treatment. Three patients died during the trial, but none of the deaths were considered treatment related. INTERPRETATION In patients with alcohol-related liver disease, rifaximin-α might reduce progression of liver fibrosis. These findings warrant confirmation in a multicentre phase 3 trial. FUNDING The EU Horizon 2020 Research and Innovation Program and The Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Mads Israelsen
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark.
| | - Bjørn Stæhr Madsen
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Nikolaj Torp
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Stine Johansen
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Camilla Dalby Hansen
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Peter Andersen
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Johanne Kragh Hansen
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Katrine Prier Lindvig
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Ditlev Nytoft Rasmussen
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Katrine Holtz Thorhauge
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Maria Kjærgaard
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Morten Karsdal
- Department of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jonel Trebicka
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Internal Medicine B, Münster University Hospital, WWU, Münster, Germany; European Foundation for Study of Chronic Liver Failure, Barcelona, Spain
| | - Maja Thiele
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Aleksander Krag
- Odense Liver Research Center, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
204
|
Ogasawara Y, Kogiso T, Horiuchi K, Taniai M, Tokushige K. Outcomes of fatty liver disease with and without metabolic comorbidities and risk factors for mortality. JGH Open 2023; 7:410-418. [PMID: 37359113 PMCID: PMC10290268 DOI: 10.1002/jgh3.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Background and Aim As the clinical course of metabolic-associated fatty liver disease (MAFLD) is unclear, we compared the clinical courses of MAFLD and non-alcoholic FLD (NAFLD). Methods Asian FLD patients (n = 987) from 1991 to 2021 (biopsy-proven in 939) were enrolled. The patients were divided into NAFLD (N-alone, n = 92), both MAFLD and N (M&N, n = 785), and M-alone (n = 90) groups. Clinical features, complications, and survival rates were compared among the three groups. Risk factors of mortality were subjected to Cox regression analysis. Results The N-alone group patients were significantly younger (N alone, M&N, and M alone: 50, 53, and 57 years, respectively), more frequently male (54.3%, 52.6%, and 37.8%), and had a low body mass index (BMI, 23.1, 27.1, and 26.7 kg/m2) and FIB-4 index (1.20, 1.46, and 2.10). Hypopituitarism (5.4%) and hypothyroidism (7.6%) were significantly observed in the N-alone group. Hepatocellular carcinoma (HCC) developed in 0.0%, 4.2%, and 3.5% of the cases, and extrahepatic malignancies in 6.8%, 8.4%, and 4.7% of the cases, respectively, with no significant differences. The cardiovascular event rate was significantly higher in the M-alone group (1, 37, and 11 cases, P < 0.01). Survival rates were similar among the three groups. Risk factors for mortality were age and BMI in the N-alone group; age, HCC, alanine transaminase, and FIB-4 in the M&N group; and FIB-4 in the M-alone group. Conclusion Different risk factors for mortality may exist among the FLD groups.
Collapse
Affiliation(s)
- Yuri Ogasawara
- Institute of Gastroenterology, Department of Internal MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Tomomi Kogiso
- Institute of Gastroenterology, Department of Internal MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Kentaro Horiuchi
- Institute of Gastroenterology, Department of Internal MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Makiko Taniai
- Institute of Gastroenterology, Department of Internal MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Katsutoshi Tokushige
- Institute of Gastroenterology, Department of Internal MedicineTokyo Women's Medical UniversityTokyoJapan
| |
Collapse
|
205
|
Warren D, Benedito VA, Skinner RC, Alawadi A, Vendemiatti E, Laub DJ, Showman C, Matak K, Tou JC. Low-Protein Diets Composed of Protein Recovered from Food Processing Supported Growth, but Induced Mild Hepatic Steatosis Compared with a No-Protein Diet in Young Female Rats. J Nutr 2023; 153:1668-1679. [PMID: 36990182 PMCID: PMC10447611 DOI: 10.1016/j.tjnut.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Living in low-income countries often restricts the consumption of adequate protein and animal protein. OBJECTIVES This study aimed to investigate the effects of feeding low-protein diets on growth and liver health using proteins recovered from animal processing. METHODS Female Sprague-Dawley rats (aged 28 d) were randomly assigned (n = 8 rats/group) to be fed standard purified diets with 0% or 10% kcal protein that was comprised of either carp, whey, or casein. RESULTS Rats that were fed low-protein diets showed higher growth but developed mild hepatic steatosis compared to rats that were fed a no-protein diet, regardless of the protein source. Real-time quantitative polymerase chain reactions targeting the expression of genes involved in liver lipid homeostasis were not significantly different among groups. Global RNA-sequencing technology identified 9 differentially expressed genes linked to folate-mediated 1-carbon metabolism, endoplasmic reticulum (ER) stress, and metabolic diseases. Canonical pathway analysis revealed that mechanisms differed depending on the protein source. ER stress and dysregulated energy metabolism were implicated in hepatic steatosis in carp- and whey-fed rats. In contrast, impaired liver one-carbon methylations, lipoprotein assembly, and lipid export were implicated in casein-fed rats. CONCLUSIONS Carp sarcoplasmic protein showed comparable results to commercially available casein and whey protein. A better understanding of the molecular mechanisms in hepatic steatosis development can assist formulation of proteins recovered from food processing into a sustainable source of high-quality protein.
Collapse
Affiliation(s)
- Derek Warren
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States; Department of Biology, University of the Ozarks, Clarksville, AR, United States
| | - Vagner A Benedito
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - R Chris Skinner
- Food Systems Research Center, College of Agriculture and Life Sciences, University of Vermont Burlington, VT, United States
| | - Ayad Alawadi
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Eloisa Vendemiatti
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - David J Laub
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
206
|
Jang W, Song JS. Non-Invasive Imaging Methods to Evaluate Non-Alcoholic Fatty Liver Disease with Fat Quantification: A Review. Diagnostics (Basel) 2023; 13:diagnostics13111852. [PMID: 37296703 DOI: 10.3390/diagnostics13111852] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatic steatosis without specific causes (e.g., viral infection, alcohol abuse, etc.) is called non-alcoholic fatty liver disease (NAFLD), which ranges from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), fibrosis, and NASH-related cirrhosis. Despite the usefulness of the standard grading system, liver biopsy has several limitations. In addition, patient acceptability and intra- and inter-observer reproducibility are also concerns. Due to the prevalence of NAFLD and limitations of liver biopsies, non-invasive imaging methods such as ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) that can reliably diagnose hepatic steatosis have developed rapidly. US is widely available and radiation-free but cannot examine the entire liver. CT is readily available and helpful for detection and risk classification, significantly when analyzed using artificial intelligence; however, it exposes users to radiation. Although expensive and time-consuming, MRI can measure liver fat percentage with magnetic resonance imaging proton density fat fraction (MRI-PDFF). Specifically, chemical shift-encoded (CSE)-MRI is the best imaging indicator for early liver fat detection. The purpose of this review is to provide an overview of each imaging modality with an emphasis on the recent progress and current status of liver fat quantification.
Collapse
Affiliation(s)
- Weon Jang
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Ji Soo Song
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| |
Collapse
|
207
|
Sriphoosanaphan S, Rattanachaisit P, Somanawat K, Wanpiyarat N, Komolmit P, Werawatganon D. Calcitriol Protects against Acetaminophen-Induced Hepatotoxicity in Mice. Biomedicines 2023; 11:1534. [PMID: 37371630 DOI: 10.3390/biomedicines11061534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Acetaminophen (APAP) overdose is one of the major causes of acute liver failure. Severe liver inflammation and the production of oxidative stress occur due to toxic APAP metabolites and glutathione depletion. Growing evidence has proved that vitamin D (VD) exerts anti-inflammatory and antioxidative functions. Our objective was to explore the protective role of calcitriol (VD3) in acute APAP-induced liver injury. Methods: Adult male mice were randomized into three groups; control (n = 8), APAP (n = 8), and VD3 group (n = 8). All mice, except controls, received oral administration of APAP (400 mg/kg) and were sacrificed 24 h later. In the VD3 group, calcitriol (10 µg/kg) was injected intraperitoneally 24 h before and after exposure to APAP. Blood samples were collected to assess serum aminotransferase and inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)]. Liver tissues were analyzed for hepatic glutathione (GSH), malondialdehyde (MDA), and histopathology. Results: APAP administration significantly increased serum aminotransferase, inflammatory cytokines, and induced cellular inflammation and necrosis. APAP also depleted hepatic GSH and elevated oxidative stress, as indicated by high MDA levels. In the APAP group, 25% of the mice (two out of eight) died, while no deaths occurred in the VD3 group. Treatment with calcitriol significantly reduced serum aminotransferase, TNF-α, and IL-6 levels in the VD3 group compared to the APAP group. Additionally, VD3 effectively restored GSH reserves, reduced lipid peroxidation, and attenuated hepatotoxicity. Conclusions: These findings demonstrate that VD3 prevents APAP-induced acute liver injury and reduces mortality in mice through its anti-inflammatory and antioxidative activity. Thus, VD3 might be a novel treatment strategy for APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Supachaya Sriphoosanaphan
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Bangkok 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pakkapon Rattanachaisit
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanjana Somanawat
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natcha Wanpiyarat
- Department of Pathology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Piyawat Komolmit
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Bangkok 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
208
|
Yamamoto S, Honma K, Fujii M, Kakimoto M, Kirihara S, Nakayama H, Kitamori K, Sato I, Hirohata S, Watanabe S. SHRSP5/Dmcr rats fed a high-fat and high-cholesterol diet develop disease-induced sarcopenia as nonalcoholic steatohepatitis progresses. Ann Anat 2023; 249:152104. [PMID: 37209870 DOI: 10.1016/j.aanat.2023.152104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Secondary sarcopenia develops as a result of a bedridden state and illnesses, such as cachexia, liver disease, and diabetes. However, there is a lack of animal models to investigate the underlying mechanisms and potential treatments for secondary sarcopenia. Recently, secondary sarcopenia has been associated with the prognosis of nonalcoholic steatohepatitis. This study aimed to investigate whether stroke-prone spontaneously hypertensive rat 5 (SHRSP5/Dmcr) which developed severe nonalcoholic steatohepatitis by a high-fat and high-cholesterol (HFC; containing 2% cholic acid) diet is a useful model of secondary sarcopenia. METHODS SHRSP5/Dmcr rats were divided into 6 groups fed with a Stroke-Prone (SP: normal chow) or HFC diets for different periods (4, 12, and 20 weeks), and WKY/Izm rats were divided into 2 groups fed an SP or HFC diet. Body weight, food intake, and muscle force were measured weekly for all rats. After the end of the diet period, skeletal muscle strength evoked by electrical stimulation was recorded, blood was collected, and organ weight was measured. The sera were used for biochemical analysis and the organs were used for histopathological analysis. RESULTS SHRSP5/Dmcr rats fed an HFC diet developed nonalcoholic steatohepatitis, and their skeletal muscles, especially fast muscles, showed atrophy, indicating that muscle atrophy is aggravated by the progression of nonalcoholic steatohepatitis. In contrast, WKY/Izm rats fed an HFC diet did not exhibit sarcopenia. CONCLUSIONS This study suggests that SHRSP5/Dmcr rats could be a useful novel model for investigate the mechanism of secondary sarcopenia disorder associated with nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Shusei Yamamoto
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Koki Honma
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Moe Fujii
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, 543, Takoda, Tobe-cho, Iyo-gun, Ehime 791-2101, Japan.
| | - Mai Kakimoto
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Sora Kirihara
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Hinako Nakayama
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi 463-8521, Japan.
| | - Ikumi Sato
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Satoshi Hirohata
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Shogo Watanabe
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
209
|
Sharma R, Dowling MS, Futatsugi K, Kalgutkar AS. Mitigating a Bioactivation Liability with an Azetidine-Based Inhibitor of Diacylglycerol Acyltransferase 2 (DGAT2) En Route to the Discovery of the Clinical Candidate Ervogastat. Chem Res Toxicol 2023. [PMID: 37148271 DOI: 10.1021/acs.chemrestox.3c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We recently disclosed SAR studies on systemically acting, amide-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) that addressed metabolic liabilities with the liver-targeted DGAT2 inhibitor PF-06427878. Despite strategic placement of a nitrogen atom in the dialkoxyaromatic ring in PF-06427878 to evade oxidative O-dearylation, metabolic intrinsic clearance remained high due to extensive piperidine ring oxidation as exemplified with compound 1. Piperidine ring modifications through alternate N-linked heterocyclic ring/spacer combination led to azetidine 2 that demonstrated lower intrinsic clearance. However, 2 underwent a facile cytochrome P450 (CYP)-mediated α-carbon oxidation followed by azetidine ring scission, resulting in the formation of ketone (M2) and aldehyde (M6) as stable metabolites in NADPH-supplemented human liver microsomes. Inclusion of GSH or semicarbazide in microsomal incubations led to the formation of Cys-Gly-thiazolidine (M3), Cys-thiazolidine (M5), and semicarbazone (M7) conjugates, which were derived from reaction of the nucleophilic trapping agents with aldehyde M6. Metabolites M2 and M5 were biosynthesized from NADPH- and l-cysteine-fortified human liver microsomal incubations with 2, and proposed metabolite structures were verified using one- and two-dimensional NMR spectroscopy. Replacement of the azetidine substituent with a pyridine ring furnished 8, which mitigated the formation of the electrophilic aldehyde metabolite, and was a more potent DGAT2 inhibitor than 2. Further structural refinements in 8, specifically introducing amide bond substituents with greater metabolic stability, led to the discovery of PF-06865571 (ervogastat) that is currently in phase 2 clinical trials for the treatment of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Raman Sharma
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew S Dowling
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kentaro Futatsugi
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland St, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland St, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
210
|
Rocha C, Doyle EH, Bowman CA, Fiel M, Stueck AE, Goossens N, Bichoupan K, Patel N, Crismale JF, Makkar J, Lewis S, Perumalswami PV, Schiano TD, Hoshida Y, Schwartz M, Branch AD. Hepatocellular carcinoma in patients cured of chronic hepatitis C: Minimal steatosis. Cancer Med 2023; 12:10175-10186. [PMID: 37078924 PMCID: PMC10225173 DOI: 10.1002/cam4.5711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Successful treatment of hepatitis C reduces liver inflammation and fibrosis; however, patients remain at risk of developing hepatocellular carcinoma (HCC). AIMS To identify risk factors for new-onset HCC in patients cured of hepatitis C. METHODS Imaging, histological, and clinical data on patients whose first HCC was diagnosed >12 months of post-SVR were analyzed. Histology of 20 nontumor tissues was analyzed in a blinded manner using the Knodel/Ishak/HAI system for necroinflammation and fibrosis/cirrhosis stage and the Brunt system for steatosis/steatohepatitis. Factors associated with post-SVR HCC were identified by comparison with HALT-C participants who did not develop post-SVR HCC. RESULTS Hepatocellular carcinoma was diagnosed in 54 patients (45 M/9F), a median of 6 years of post-SVR [interquartile range (IQR) =1.4-10y] at a median age of 61 years (IQR, 59-67). Approximately one-third lacked cirrhosis, and only 11% had steatosis on imaging. The majority (60%) had no steatosis/steatohepatitis in histopathology. The median HAI score was 3 (1.25-4), indicating mild necroinflammation. In a multivariable logistic regression model, post-SVR HCC was positively associated with non-Caucasian race (p = 0.03), smoking (p = 0.03), age > 60 years at HCC diagnosis (p = 0.03), albumin<3.5 g/dL (p = 0.02), AST/ALT>1 (p = 0.05), and platelets <100 × 103 cells/μL (p < 0.001). Alpha fetoprotein ≥4.75 ng/mL had 90% specificity and 71% sensitivity for HCC occurrence. Noncirrhotic patients had larger tumors (p = 0.002) and a higher prevalence of vascular invasion (p = 0.016) than cirrhotic patients. CONCLUSIONS One-third of patients with post-SVR HCC did not have liver cirrhosis; most had no steatosis/steatohepatitis. Hepatocellular carcinomas were more advanced in noncirrhotic patients. Results support AFP as a promising marker of post-SVR HCC risk.
Collapse
Affiliation(s)
- Chiara Rocha
- Department of Surgery—Transplant DivisionIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Erin H. Doyle
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount Sinai SchoolNew YorkNew YorkUSA
| | - Chip A. Bowman
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - M‐Isabel Fiel
- Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashley E. Stueck
- Department of PathologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Nicolas Goossens
- Division of Liver Diseases, Department of MedicineTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kian Bichoupan
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Neal Patel
- Division of GastroenterologyDepartment of Medicine, Nuvance Health Danbury HospitalDanburyCTUSA
| | - James F. Crismale
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jasnit Makkar
- Department of RadiologyColumbia UniversityNew YorkNew YorkUSA
| | - Sara Lewis
- Department of RadiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Thomas D. Schiano
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yujin Hoshida
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Myron Schwartz
- Department of SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrea D. Branch
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
211
|
Engin AB, Engin A, Engin ED, Memis L. Does lithium attenuate the liver damage due to oxidative stress and liver glycogen depletion in experimental common bile duct obstruction? Toxicol Appl Pharmacol 2023; 466:116489. [PMID: 36963521 DOI: 10.1016/j.taap.2023.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
In extrahepatic cholestasis, the molecular mechanisms of liver damage due to bile acid accumulation remain elusive. In this study, the activation of glutamatergic receptors was hypothesized to be responsible for bile acid-induced oxidative stress and liver damage. Recent evidence showed that lithium, as an N-methyl-d-aspartate receptor (NMDAR) GluN2B subunit inhibitor, may act on the glutamate/NMDAR signaling axis. Guinea pigs were assigned to four groups, as sham laparotomy (SL), bile duct ligated (BDL), lithium-treated SL (SL + Li) and lithium-treated BDL (BDL + Li) groups. Cholestasis-induced liver injury was evaluated by aspartate aminotransferase (AST), alanine transaminase (ALT), interleukin-6 (IL-6), tissue malondialdehyde (MDA), copper‑zinc superoxide dismutase and reduced glutathione levels. The liability of glutamate/NMDAR signaling axis was clarified by glutamate levels in both plasma and liver samples, with the production of nitric oxide (NO), as well as with the serum calcium concentrations. Blood glucose, glucagon, insulin levels and glucose consumption rates, in addition to tissue glycogen were measured to evaluate the liver glucose-glycogen metabolism. A high liver damage index (AST/ALT) was calculated in BDL animals in comparison to SL group. In the BDL animals, lithium reduced plasma NO and glutamate in addition to tissue glutamate concentrations, while serum calcium increased. The antioxidant capacities and liver glycogen contents significantly increased, whereas blood glucose levels unchanged and tissue MDA levels decreased 3-fold in lithium-treated cholestatic animals. It was concluded that lithium largely protects the cholestatic hepatocyte from bile acid-mediated damage by blocking the NMDAR-GluN2B subunit.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Leyla Memis
- Gazi University, Faculty of Medicine, Department of Pathology, Ankara, Turkey
| |
Collapse
|
212
|
Wang J, Li X, Ma M, Wang C, Sirlin CB, Reeder SB, Hernando D. Monte Carlo modeling of hepatic steatosis based on stereology and spatial distribution of fat droplets. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107494. [PMID: 36965302 PMCID: PMC10085848 DOI: 10.1016/j.cmpb.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE To model hepatic steatosis in adult humans with non-alcoholic fatty liver disease based on stereology and spatial distribution of fat droplets from liver biopsy specimens. METHODS Histological analysis was performed on 30 adult human liver biopsy specimens with varying degrees of steatosis. Morphological features of fat droplets were characterized by gamma distribution function (GDF) in both two-dimensional (2D) and three-dimensional (3D) spaces from three aspects: 1) size distribution indicating non-uniformity of fat droplets in radius; 2) nearest neighbor distance distribution indicating heterogeneous accumulation (i.e., clustering) of fat droplets; 3) regional anisotropy indicating inter-regional variability in fat fraction (FF). To generalize the morphological description of hepatic steatosis to different FFs, correlation analysis was performed among the estimated GDF parameters and FFs for all specimens. Finally, Monte Carlo modeling of hepatic steatosis was developed to simulate fat droplet distribution in tissue. RESULTS Morphological features, including size and nearest neighbor distance in 2D and 3D spaces as well as regional anisotropy, statistically captured the distribution of fat droplets by the GDF fit (R2 > 0.54). The estimated GDF parameters (i.e., scale and shape parameters) and FFs were well correlated, with R2 > 0.55. In addition, simulated 3D liver morphological models demonstrated similar sections to real histological samples both visually and quantitatively. CONCLUSIONS The morphology of hepatic steatosis is well characterized by stereology and spatial distribution of fat droplets. Simulated models demonstrate similar appearances to real histological samples. Furthermore, the model may help understand MRI signal behavior in the presence of liver steatosis.
Collapse
Affiliation(s)
- Jinyang Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Xiaoben Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Mengyuan Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Changqing Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China.
| | - Claude B Sirlin
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, WI, USA; Department of Medical Physics, University of Wisconsin, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Department of Medicine, University of Wisconsin, Madison, WI, USA; Department of Emergency Medicine, University of Wisconsin, Madison, WI, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, WI, USA; Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
213
|
Dybbro E, Vos MB, Kohli R. Special Population: Pediatric Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:471-482. [PMID: 37024219 DOI: 10.1016/j.cld.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Pediatric nonalcoholic fatty liver disease represents the most common liver disease in children and has been shown to carry significant morbidity. Widespread heterogeneity of disease, as well as the limitation of indirect screening modalities, has made true prevalence of disease difficult to estimate as well as hindered ability to identify optimal prognostic factors in the pediatric population. Current therapeutic options are limited in pediatric patients with current mainstay of therapy, lifestyle modifications, has proven to have a limited efficacy in current clinical application. Current research remains needed in improved screening modalities, prognosticating techniques, and therapeutic options in the pediatric population.
Collapse
Affiliation(s)
- Eric Dybbro
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Miriam B Vos
- Division of Gastroenterology, Hepatology, and Nutrition, Emory School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
214
|
Marañón P, Isaza SC, Fernández-García CE, Rey E, Gallego-Durán R, Montero-Vallejo R, de Cía JR, Ampuero J, Valverde ÁM, Romero-Gómez M, García-Monzón C, González-Rodríguez Á. Circulating bone morphogenetic protein 8A is a novel biomarker to predict advanced liver fibrosis. Biomark Res 2023; 11:46. [PMID: 37106416 PMCID: PMC10142503 DOI: 10.1186/s40364-023-00489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND & AIMS Advanced hepatic fibrosis is the main risk factor of liver-related morbidity and mortality in patients with chronic liver disease. In this study, we assessed the potential role of bone morphogenetic protein 8A (BMP8A) as a novel target involved in liver fibrosis progression. METHODS Histological assessment and BMP8A expression were determined in different murine models of hepatic fibrosis. Furthermore, serum BMP8A was measured in mice with bile duct ligation (BDL), in 36 subjects with histologically normal liver (NL) and in 85 patients with biopsy-proven non-alcoholic steatohepatitis (NASH): 52 with non- or mild fibrosis (F0-F2) and 33 with advanced fibrosis (F3-F4). BMP8A expression and secretion was also determined in cultured human hepatocyte-derived (Huh7) and human hepatic stellate (LX2) cells stimulated with transforming growth factor ꞵ (TGFꞵ). RESULTS Bmp8a mRNA levels were significantly upregulated in livers from fibrotic mice compared to control animals. Notably, serum BMP8A levels were also elevated in BDL mice. In addition, in vitro experiments showed increased expression and secretion to the culture supernatant of BMP8A in both Huh7 and LX2 cells treated with TGFꞵ. Noteworthy, we found that serum BMP8A levels were significantly higher in NASH patients with advanced fibrosis than in those with non- or mild fibrosis. In fact, the AUROC of circulating BMP8A concentrations to identify patients with advanced fibrosis (F3-F4) was 0.74 (p˂0.0001). Moreover, we developed an algorithm based on serum BMP8A levels that showed an AUROC of 0.818 (p˂0.0001) to predict advanced fibrosis in NASH patients. CONCLUSION This study provides experimental and clinical evidence indicating that BMP8A is a novel molecular target linked to liver fibrosis and introduces an efficient algorithm based on serum BMP8A levels to screen patients at risk for advanced hepatic fibrosis.
Collapse
Affiliation(s)
- Patricia Marañón
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Stephania C Isaza
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Carlos Ernesto Fernández-García
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Esther Rey
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier Rodríguez de Cía
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Carmelo García-Monzón
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.
| |
Collapse
|
215
|
Zhao Y, Qiu C, Dong Y, Wang X, Chen J, Yao J, Jiang Y, Zhang C, Weng H, Liu Y, Wong YN, Huang P. Technical Acoustic Measurements Combined with Clinical Parameters for the Differential Diagnosis of Nonalcoholic Steatohepatitis. Diagnostics (Basel) 2023; 13:diagnostics13091547. [PMID: 37174939 PMCID: PMC10177914 DOI: 10.3390/diagnostics13091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Background and aim: Diagnosing nonalcoholic steatohepatitis (NASH) is challenging. This study intended to explore the diagnostic value of multiple technical acoustic measurements in the diagnosis of NASH, and to establish a diagnostic model combining technical acoustic measurements with clinical parameters to improve the diagnostic efficacy of NASH. Methods: We consecutively enrolled 75 patients with clinically suspected nonalcoholic fatty liver disease (NAFLD) who underwent percutaneous liver biopsy in our hospital from June 2020 to December 2021. All cases underwent multiple advanced acoustic measurements for liver such as shear wave dispersion (SWD), shear wave speed (SWS), attenuation imaging (ATI), normalized local variance (NLV), and liver-kidney intensity ratio (Ratio) examination before liver biopsies. A nomogram prediction model combining the technical acoustic measurements and clinical parameters was established and the model is proposed to improve the diagnostic performance of NASH. Results: A total of 75 cases were included in this study. The classification of pathological grade for NASH was as follows: normal liver, (n = 15, 20%), nonalcoholic fatty liver (NAFL), (n = 44, 58.7%), and NASH, (n = 16, 21.3%). There were statistically significant differences in SWS (p = 0.002), acoustic coefficient (AC) (p = 0.018), NLV (p = 0.033), age (p = 0.013) and fasting blood glucose (Glu) (p = 0.049) between NASH and non-NASH. A nomogram model which includes SWS, AC, NLV, age and Glu was built to predict NASH, and the calibration curves showed good calibrations in both training and validation sets. The AUCs of the combined nomogram model for the training set and validation set were 0.8597 and 0.7794, respectively. Conclusion: There were statistically significant differences in SWS, AC, NLV, age and Glu between NASH and non-NASH. A nomogram model which includes SWS, AC, NLV, age and Glu was built to predict NASH. The predictive model has a higher diagnostic performance than a single factor model in the diagnosis of NASH and has good clinical application prospects.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chen Qiu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yiping Dong
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuchu Wang
- Department of Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jifan Chen
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianting Yao
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yifan Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chao Zhang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huifang Weng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yajing Liu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | | | - Pintong Huang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
216
|
Hoffman D, Shui A, Gill R, Syed S, Mehta N. Resected Tumor Outcome and Recurrence (RESTORE) Index for Hepatocellular Carcinoma Recurrence after Resection. Cancers (Basel) 2023; 15:2433. [PMID: 37173900 PMCID: PMC10177244 DOI: 10.3390/cancers15092433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the fourth most common cause of cancer-related death worldwide [...].
Collapse
Affiliation(s)
- Daniel Hoffman
- Department of Surgery, University of California, San Francisco, CA 90095, USA
| | - Amy Shui
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 90095, USA
| | - Ryan Gill
- Department of Pathology, University of California, San Francisco, CA 90095, USA
| | - Shareef Syed
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, CA 90095, USA
| | - Neil Mehta
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 90095, USA
| |
Collapse
|
217
|
Takahashi H, Kawanaka M, Fujii H, Iwaki M, Hayashi H, Toyoda H, Oeda S, Hyogo H, Morishita A, Munekage K, Kawata K, Tsutsumi T, Sawada K, Maeshiro T, Tobita H, Yoshida Y, Naito M, Araki A, Arakaki S, Kawaguchi T, Noritake H, Ono M, Masaki T, Yasuda S, Tomita E, Yoneda M, Tokushige A, Kamada Y, Ueda S, Aishima S, Sumida Y, Nakajima A, Okanoue T. Association of Serum Albumin Levels and Long-Term Prognosis in Patients with Biopsy-Confirmed Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:2014. [PMID: 37432160 PMCID: PMC10180563 DOI: 10.3390/nu15092014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
The relationship between baseline serum albumin level and long-term prognosis of patients with nonalcoholic fatty liver disease (NAFLD) remains unknown. This is a sub-analysis of the CLIONE (Clinical Outcome Nonalcoholic Fatty Liver Disease) study. The main outcomes were: death or orthotopic liver transplantation (OLT), liver-related death, and liver-related events (hepatocellular carcinoma [HCC], decompensated cirrhosis, and gastroesophageal varices/bleeding). 1383 Japanese patients with biopsy-confirmed NAFLD were analyzed. They were divided into 3 groups based on serum albumin: high (>4.0 g/dL), intermediate (3.5-4.0 g/dL), and low (<3.5 g/dL). Unadjusted hazard ratio [HR] of the intermediate albumin group, compared with the high albumin group, were 3.6 for death or OLT, 11.2 for liver-related death, 4.6 for HCC, 8.2 for decompensated cirrhosis, and 6.2 for gastroesophageal varices (all risks were statistically significant). After adjusting confounding factors, albumin remained significantly associated with death or OLT (intermediate vs. high albumin group: HR 3.06, 95% confidence interval [CI] 1.59-5.91, p < 0.001; low vs. high albumin group: HR 22.9, 95% CI 8.21-63.9, p < 0.001). Among biopsy-confirmed NAFLD patients, those with intermediate or low serum albumin had a significantly higher risk of death or OLT than those with high serum albumin.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Liver Center, Saga Medical School, Saga University, Saga 849-8501, Japan; (H.T.); (S.O.)
| | - Miwa Kawanaka
- Department of General Internal Medicine2, Kawasaki Medical Center, Okayama 700-8505, Japan;
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Michihiro Iwaki
- Division of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.I.)
| | - Hideki Hayashi
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu 500-8323, Japan; (H.H.); (E.T.)
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki 503-8502, Japan; (H.T.); (S.Y.)
| | - Satoshi Oeda
- Liver Center, Saga Medical School, Saga University, Saga 849-8501, Japan; (H.T.); (S.O.)
- Department of Laboratory Medicine, Saga University Hospital, Saga 849-8501, Japan
| | - Hideyuki Hyogo
- Hyogo Life Care Clinic Hiroshima, Hiroshima 732-0823, Japan;
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (A.M.); (T.M.)
| | - Kensuke Munekage
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi 783-8505, Japan;
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan; (K.K.); (H.N.)
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.T.); (T.K.)
| | - Koji Sawada
- Liver Disease Care Unit, Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8802, Japan;
| | - Tatsuji Maeshiro
- First Department of Internal Medicine, University of the Ryukyus Hospital, 207 Uehara, Nishihara, Nakagami, Okinawa 903-0215, Japan; (T.M.); (S.A.)
| | - Hiroshi Tobita
- Department of Hepatology, Shimane University Hospital, 89-1 Enya-cho, Izumo 693-8501, Japan; (H.T.); (A.A.)
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka 564-8567, Japan; (Y.Y.); (M.N.)
| | - Masafumi Naito
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka 564-8567, Japan; (Y.Y.); (M.N.)
| | - Asuka Araki
- Department of Hepatology, Shimane University Hospital, 89-1 Enya-cho, Izumo 693-8501, Japan; (H.T.); (A.A.)
| | - Shingo Arakaki
- First Department of Internal Medicine, University of the Ryukyus Hospital, 207 Uehara, Nishihara, Nakagami, Okinawa 903-0215, Japan; (T.M.); (S.A.)
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.T.); (T.K.)
| | - Hidenao Noritake
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan; (K.K.); (H.N.)
| | - Masafumi Ono
- Division of Innovative Medicine for Hepatobiliary & Pancreatology, Faculty of Medicine, Kagawa University, Kita 761-0793, Japan;
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan; (A.M.); (T.M.)
| | - Satoshi Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki 503-8502, Japan; (H.T.); (S.Y.)
| | - Eiichi Tomita
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu 500-8323, Japan; (H.H.); (E.T.)
| | - Masato Yoneda
- Division of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (M.I.)
| | - Akihiro Tokushige
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita 565-0871, Japan
| | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Atsushi Nakajima
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Takeshi Okanoue
- Hepatology Center, Saiseikai Suita Hospital, Suita 564-0013, Japan
| | | |
Collapse
|
218
|
Ciardullo S, Carbone M, Invernizzi P, Perseghin G. Noninvasive identification of probable fibrotic nonalcoholic steatohepatitis across the spectrum of glucose tolerance in the United States. Diabetes Res Clin Pract 2023; 199:110679. [PMID: 37094749 DOI: 10.1016/j.diabres.2023.110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
AIM Identifying patients with fibrotic nonalcoholic steatohepatitis (NASH) is crucial in order to refer them to specialist care as fibrotic NASH represents one of the major inclusion criteria for clinical trials. The aim of this study is to report the prevalence of fibrotic NASH in the general US population across the spectrum of glucose tolerance and evaluate the performance of the recently proposed Fibrotic NASH Index (FNI). METHODS This is a cross-sectional study of US adults participating in the 2017-2020 cycles of the National Health and Nutrition Examination Survey. Participants with available data to calculate FNI (which is based on AST, HbA1c and HDL-cholesterol) and with a reliable vibration controlled transient elastography examination were included. We excluded participants with chronic viral hepatitis, significant alcohol consumption or other forms of liver disease. Probable fibrotic NASH was defined as a Fibroscan-AST (FAST) score ≥ 0.35. RESULTS We included a total of 6268 participants. The overall prevalence of probable fibrotic NASH was 5.9% (95% CI 5.2-6.7) and it increased progressively from participants with normal glucose tolerance (3.7%, 95% CI 2-9-4.7) to those with diabetes (14.7%, 95% CI 12.1-17.8). The performance of FNI for probable fibrotic NASH was satisfactory in the overall population (area under the receiver operating characteristic curve (AUROC): 0.93, 95% CI 0.92-0.94) and it maintained a good accuracy also in participants with diabetes (n=1113, AUROC 0.89, 95% CI 0.86-0.92). In all groups it outperformed Fibrosis-4. CONCLUSIONS FNI is an easy and reliable test to screen for NASH and its performance is maintained in patients with diabetes, a condition that was shown to negatively influence the performance of several non-invasive scores.
Collapse
Affiliation(s)
- Stefano Ciardullo
- Department of Medicine and Rehabilitation, Policlinico di Monza; Department of Medicine and Surgery, Università degli Studi di Milano Bicocca.
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Gianluca Perseghin
- Department of Medicine and Rehabilitation, Policlinico di Monza; Department of Medicine and Surgery, Università degli Studi di Milano Bicocca
| |
Collapse
|
219
|
Ren Q, Chen Y, Zhou Z, Cai Z, Jiao S, Huang W, Wang B, Chen S, Wang W, Cao Z, Yang Z, Deng L, Hu L, Zhang L, Li Z. Discovery of the First-in-Class Intestinal Restricted FXR and FABP1 Dual Modulator ZLY28 for the Treatment of Nonalcoholic Fatty Liver Disease. J Med Chem 2023; 66:6082-6104. [PMID: 37079895 DOI: 10.1021/acs.jmedchem.2c01918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) is increasing rapidly worldwide, and NASH has become a serious problem for human health. Recently, the selective activation of the intestinal farnesoid X receptor (FXR) was considered as a more promising strategy for the treatment of NASH with lesser side effects due to reduced systemic exposure. Moreover, the inhibition of intestinal fatty acid binding protein 1 (FABP1) alleviated obesity and NASH by reducing dietary fatty acid uptake. In this study, the first-in-class intestinal restricted FXR and FABP1 dual-target modulator ZLY28 was discovered by comprehensive multiparameter optimization studies. The reduced systemic exposure of ZLY28 might provide better safety by decreasing the on- and off-target side effects in vivo. In NASH mice, ZLY28 exerted robust anti-NASH effects by inhibiting FABP1 and activating the FXR-FGF15 signaling pathway in the ileum. With the above attractive efficacy and preliminary safety profiles, ZLY28 is worthy of further evaluation as a novel anti-NASH agent.
Collapse
Affiliation(s)
- Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
220
|
Liu J, Gong X, Lv H, Liu S, Jiang Y, Zhu G, Ma X, Wang J, Ye X, Gao Y, Li J, Chen G, Shi J. Is fatigue related to the severity of liver inflammation in patients with chronic liver disease? A cross-sectional study. BMJ Open 2023; 13:e069028. [PMID: 37080620 PMCID: PMC10124276 DOI: 10.1136/bmjopen-2022-069028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVES Fatigue is common in patients with chronic liver disease; however, its pathogenesis is unclear. This study aimed to provide insights into the pathogenesis of chronic liver disease-related fatigue by assessing the relationship between fatigue and the degree of inflammation in chronic liver disease. DESIGN We performed a cross-sectional study of 1374 patients with pathologically proven chronic liver disease diagnosed at the Affiliated Hospital of Hangzhou Normal University in Hangzhou, China. SETTING Primary single-centre study. PARTICIPANTS One thousand three hundred and seventy-four patients with liver biopsy-proven chronic liver disease. INTERVENTIONS The patients were divided into fatigue and non-fatigue groups according to the Chronic Liver Disease Questionnaire. Propensity score matching was used to match the baseline features of the patients in the two groups. PRIMARY AND SECONDARY OUTCOME MEASURES Liver steatosis, ballooning, inflammation and fibrosis were measured according to the pathological results of liver biopsy. Fatigue was measured using the Chronic Liver Disease Questionnaire. RESULTS Of the 1374 patients, 262 (19.67%) experienced fatigue. There were 242 and 484 patients with and without fatigue, respectively, who were successfully matched for sex, age and classification of chronic liver disease by propensity score matching. After matching, the fatigue group showed higher liver enzyme levels, inflammation grades and fibrosis stages than the non-fatigue group (p<0.05). Multivariate analysis showed that age (OR: 2.026; p=0.003), autoimmune liver disease (OR: 2.749; p=0.002) and active inflammation (OR: 1.587; p=0.003) were independent risk factors for fatigue after adjusting for confounders. The OR of the risk for fatigue increased in a stepwise manner with increasing inflammation grade in young-aged and middle-aged patients (p<0.05). This tendency was not observed in elderly patients (p>0.05). CONCLUSION Patients with chronic liver disease were burdened by fatigue, which increased progressively with rising liver inflammation severity in young-aged and middle-aged rather than elderly patients.
Collapse
Affiliation(s)
- Jing Liu
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiying Gong
- Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Haifeng Lv
- Department of Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shiyi Liu
- Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yanming Jiang
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Geli Zhu
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaojie Ma
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Wang
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoping Ye
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yidan Gao
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gongying Chen
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Translational Medicine Platform, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
221
|
Bedair AF, Wahid A, El-Mezayen NS, Afify EA. Nicorandil reduces morphine withdrawal symptoms, potentiates morphine antinociception, and ameliorates liver fibrosis in rats. Life Sci 2023; 319:121522. [PMID: 36822314 DOI: 10.1016/j.lfs.2023.121522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
AIMS Chronic liver disease (CLD) is a serious medical condition affecting patients globally and pain management poses a unique challenge. ATP-sensitive potassium channels (KATP) are expressed in nociceptive neurons and hepatic cells. We tested the hypothesis whether morphine and nicorandil, KATP channel opener, alone and in combination possess hepatoprotective, antinociceptive effect and alter morphine physical dependence. MAIN METHODS Intraperitoneal injection (i.p.) of carbon tetrachloride (CCl4) induced liver fibrosis in male Wistar rats. Nicorandil (15 mg/kg/day) was administered per os for two weeks. Morphine (3.8, 5, 10 mg/kg, i.p.) was administered prior to antinociception testing in tail flick and formalin tests. Morphine physical dependence following naloxone injection, fibrotic, oxidative stress markers, and liver histopathology were assessed. KEY FINDINGS Morphine alone, produced insignificant changes of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), hepatic hydroxyproline (Hyp), malondialdehyde (MDA), and superoxide dismutase (SOD) levels and exerted significant antinociception in the pain models. Nicorandil alone protected against liver damage (decreased serum ALT, AST, HA, hepatic Hyp, MDA, increased SOD levels, improved fibrosis scores). Nicorandil/morphine combination produced remarkable hepatoprotection and persistent analgesia compared to morphine alone as evidenced by reduced (EC50) of morphine. Nicorandil augmented morphine analgesia and markedly decreased withdrawal signs in morphine-dependent rats. SIGNIFICANCE The data showed for the first time, the hepatoprotection and augmented antinociception mediated by nicorandil/morphine combination in liver fibrosis via antioxidant and antifibrotic mechanisms. Nicorandil ameliorated withdrawal signs in morphine dependence in CLD. Thus, combining nicorandil/morphine provides a novel treatment strategy to ameliorate hepatic injury, potentiate antinociception and overcome morphine-induced physical dependence in liver fibrosis.
Collapse
Affiliation(s)
- Asser F Bedair
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| | - Nesrine S El-Mezayen
- Department of Pharmacology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
222
|
Kurbatova IV, Topchieva LV, Dudanova OP, Shipovskaya AA. The Role of the Soluble Interleukin-6 Receptor in the Progression of Nonalcoholic Fatty Liver Disease. Bull Exp Biol Med 2023; 174:628-633. [PMID: 37052855 DOI: 10.1007/s10517-023-05759-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 04/14/2023]
Abstract
The blood level of soluble IL-6 receptor was measured in patients with different clinical and morphological forms of nonalcoholic fatty liver disease and healthy donors. The relationship of the soluble IL-6 receptor with the content of IL-6, the level of the IL6 gene mRNA, and a number of markers of hepatocyte and peripheral blood leukocyte apoptosis was assessed. It has been established for the first time that progression of nonalcoholic fatty liver disease is associated with changes in the level of soluble IL-6 receptor in the blood. In patients with high activity of nonalcoholic steatohepatitis and liver cirrhosis, the blood concentration of soluble IL-6 receptor sharply decreased in comparison with the earlier stages of progression of nonalcoholic fatty liver disease (liver steatosis, nonalcoholic steatohepatitis of weak and moderate activity). This allows considering the decrease in this indicator as a new diagnostic marker for distinguishing nonalcoholic steatohepatitis of high activity from weak and moderate activity. A close correlation between changes in the level of soluble IL-6 receptor and apoptosis of peripheral blood leukocytes and hepatocytes was revealed.
Collapse
Affiliation(s)
- I V Kurbatova
- Institute of Biology, a Separate Subdivision of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia, Russia.
| | - L V Topchieva
- Institute of Biology, a Separate Subdivision of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia, Russia
| | - O P Dudanova
- Petrozavodsk State University, Petrozavodsk, Russia
| | | |
Collapse
|
223
|
Rushing KA, Bolyard ML, Kelty T, Wieschhaus N, Pavela G, Rector RS, Plaisance EP. Dietary ketone ester attenuates the accretion of adiposity and liver steatosis in mice fed a high-fat, high-sugar diet. Front Physiol 2023; 14:1165224. [PMID: 37113697 PMCID: PMC10128912 DOI: 10.3389/fphys.2023.1165224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Objective: The ketone diester, R,S-1,3-butanediol diacetoacetate (BD-AcAc2), attenuates the accretion of adiposity and reduces hepatic steatosis in high-fat diet-induced obese mice when carbohydrate energy is removed from the diet to accommodate energy from the ester. Reducing carbohydrate energy is a potential confounder due to the well-known effects of carbohydrate restriction on components of energy balance and metabolism. Therefore, the current investigation was designed to determine whether the addition of BD-AcAc2 to a high-fat, high-sugar diet (with no reduction in carbohydrate energy) would attenuate the accretion of adiposity and markers of hepatic steatosis and inflammation. Methods: Sixteen 11-week-old male C57BL/6J mice were randomized to one of two groups for 9 weeks (n = 8 per group): 1) Control (CON, HFHS diet) or 2) Ketone ester (KE, HFHS diet + BD-AcAc2, 25% by kcals). Results: Body weight increased by 56% in CON (27.8 ± 2.5 to 43.4 ± 3.7 g, p < 0.001) and by 13% in KE (28.0 ± 0.8 to 31.7 ± 3.1 g, p = 0.001). Non-alcoholic fatty liver disease activity scores (NAS) for hepatic steatosis, inflammation, and ballooning were lower in the KE group compared to CON (p < 0.001 for all). Markers of hepatic inflammation [Tnfα (p = 0.036); Mcp1 (p < 0.001)], macrophage content [(Cd68 (p = 0.012)], and collagen deposition and hepatic stellate cell activation [(αSma (p = 0.004); Col1A1 (p < 0.001)] were significantly lower in the KE group compared to CON. Conclusion: These findings extend those of our previous work and show that BD-AcAc2 attenuates the accretion of adiposity and reduces markers of liver steatosis, inflammation, ballooning, and fibrosis in lean mice placed on a HFHS diet where carbohydrate energy was not removed to accommodate energy from addition of the diester.
Collapse
Affiliation(s)
- Kelsey A. Rushing
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mickey L. Bolyard
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Taylor Kelty
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Nicole Wieschhaus
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Gregory Pavela
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Department of Nutrition and Exercise Physiology, Medicine—Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
224
|
Rajak S, Tewari A, Raza S, Gupta P, Chakravarti B, Anjum B, Tripathi M, Singh BK, Yen PM, Goel A, Ghosh S, Sinha RA. Pharmacological inhibition of CFTR attenuates nonalcoholic steatohepatitis (NASH) progression in mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166662. [PMID: 36754244 DOI: 10.1016/j.bbadis.2023.166662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is considered a pivotal stage in nonalcoholic fatty liver disease (NAFLD) progression and increases the risk of end-stage liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The etiology of NASH is multifactorial and identifying reliable molecular players has proven difficult. Presently, there are no approved drugs for NASH treatment, which has become a leading cause of liver transplants worldwide. Here, using public human transcriptomic NAFLD dataset, we uncover Cystic fibrosis transmembrane conductance receptor (CFTR) as a differentially expressed gene in the livers of human NASH patients. Similarly, murine Cftr expression was also found to be upregulated in two mouse models of diet-induced NASH. Furthermore, the pharmacological inhibition of CFTR significantly reduced NASH progression in mice and its overexpression aggravated lipotoxicity in human hepatic cells. These results, thus, underscore the involvement of murine Cftr in the pathogenesis of NASH and raise the intriguing possibility of its pharmacological inhibition in human NASH.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Baby Anjum
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore; Duke Molecular Physiology Institute and Dept of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
225
|
Wang J, Huang R, Liu J, Lai R, Liu Y, Zhu C, Qiu Y, He Z, Yin S, Chen Y, Yan X, Ding W, Zheng Q, Li J, Wu C. A novel non-invasive model for the prediction of advanced liver fibrosis in chronic hepatitis B patients with NAFLD. J Viral Hepat 2023; 30:287-296. [PMID: 36696366 DOI: 10.1111/jvh.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
There are still lack of non-invasive models to evaluate liver fibrosis in chronic hepatitis B (CHB) patients with nonalcoholic fatty liver disease (NAFLD). We aimed to establish a predictive model for advanced fibrosis in these patients. A total of 504 treatment-naive CHB patients with NAFLD who underwent liver biopsy were enrolled and randomly divided into a training set (n = 336) and a validation set (n = 168). Receiver operating characteristic (ROC) curve was used to compare predicting accuracy for the different models. One hundred fifty-six patients (31.0%) had advanced fibrosis. In the training set, platelet, prothrombin time, type 2 diabetes, HBeAg positivity and globulin were significantly associated with advanced fibrosis by multivariable analysis. A predictive model namely PPDHG for advanced fibrosis was developed based on these parameters. The areas under the ROC curve (AUROC) of PPDHG with an optimal cut-off value of -0.980 in predicting advanced fibrosis was 0.817 (95% confidence interval 0.772 to 0.862), with a sensitivity of 81.82% and a specificity of 66.81%. The predicting accuracy of PPDHG for advanced fibrosis was significantly superior to AST to platelet ratio index (APRI), fibrosis-4 score (FIB-4) and NAFLD fibrosis score (NFS). Further analysis revealed that the AUROC of PPDHG remained significantly higher than FIB-4 and NFS indexes, while it was comparable with APRI for predicting advanced fibrosis in the validation set. PPDHG had a better predicting performance than established models for advanced fibrosis in CHB patients with NAFLD. The application of PPDHG can reduce the necessary for liver biopsy in these patients.
Collapse
Affiliation(s)
- Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
| | - Jiacheng Liu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimin Lai
- Department of Hepatology, Hepatology Research institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yilin Liu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuanwu Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Yuanwang Qiu
- Department of Infectious Diseases, The Fifth People's Hospital of Wuxi, Wuxi, China
| | - Zebao He
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
| | - Yuxin Chen
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China.,Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaomin Yan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Weimao Ding
- Department of Hepatology, Huai'an No. 4 People's Hospital, Huai'an, China
| | - Qi Zheng
- Department of Hepatology, Hepatology Research institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
| |
Collapse
|
226
|
Camacho RC, Polidori D, Chen T, Chen B, Hsu HH, Gao B, Marella M, Lubomirski M, Beavers T, Cabrera J, Wong P, Nawrocki AR. Validation of a diet-induced Macaca fascicularis model of non-alcoholic steatohepatitis with dietary and pioglitazone interventions. Diabetes Obes Metab 2023; 25:1068-1079. [PMID: 36546607 DOI: 10.1111/dom.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
AIM To develop an obese, insulin-resistant cynomolgus monkey model of non-alcoholic steatohepatitis (NASH) with fibrosis with a high fat/high cholesterol (HFHC) diet (with or without high fructose) and test its responsiveness to caloric restriction or pioglitazone. METHODS First, two groups of monkeys (n = 24/group) with histologically proven NASH and fibrosis were fed the HFHC diet for 17 weeks. The treatment group was subjected to a 40% caloric restriction (CR) and had their diet switched from the HFHC diet to a chow diet (DSCR). Paired liver biopsies were taken before and 17 weeks after DSCR. Subsets of monkeys (nine/group) had whole liver fat content assessed by MRI. Next, two groups of monkeys with histologically proven NASH and fibrosis were treated with vehicle (n = 9) or pioglitazone (n = 20) over 24 weeks. RESULTS The HFHC and DSCR groups lost 0.9% and 11.4% of body weight, respectively. After 17 weeks, non-alcoholic fatty liver disease activity score (NAS) improvement was observed in 66.7% of the DSCR group versus 12.5% of the HFHC group (P < .001). Hepatic fat was reduced to 5.2% in the DSCR group versus 23.0% in the HFHC group (P = .0001). After 24 weeks, NAS improvement was seen in 30% of the pioglitazone group versus 0% of the vehicle group (P = .08). CONCLUSIONS Both weight loss induced by DSCR and treatment with pioglitazone improve the histological features of NASH in a diet-induced cynomolgus monkey model. This model provides a translational preclinical model for testing novel NASH therapies.
Collapse
Affiliation(s)
- Raul C Camacho
- Cardiovascular Metabolism, Spring House, Pennsylvania, USA
| | - David Polidori
- Cardiovascular Metabolism, Spring House, Pennsylvania, USA
| | - Tao Chen
- Preclincial Sciences and Translational Safety, Shanghai, China
| | - Bin Chen
- Preclincial Sciences and Translational Safety, Shanghai, China
| | - Helen Han Hsu
- Preclincial Sciences and Translational Safety, Shanghai, China
| | - Bin Gao
- Translational Medicine and Early Development Statistics, Spring House, Pennsylvania, USA
| | | | - Mariusz Lubomirski
- Translational Medicine and Early Development Statistics, Spring House, Pennsylvania, USA
| | - Traymon Beavers
- Translational Medicine and Early Development Statistics, Spring House, Pennsylvania, USA
| | - Javier Cabrera
- Translational Medicine and Early Development Statistics, Spring House, Pennsylvania, USA
| | - Peggy Wong
- Quantitative Sciences, Janssen R&D, Raritan, New Jersey, USA
| | | |
Collapse
|
227
|
Yan R, He Q, Liu Y, Ye P, Zhu L, Shi S, Gou J, He Y, Guan T, Zhou G. Unpaired virtual histological staining using prior-guided generative adversarial networks. Comput Med Imaging Graph 2023; 105:102185. [PMID: 36764189 DOI: 10.1016/j.compmedimag.2023.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
Fibrosis is an inevitable stage in the development of chronic liver disease and has an irreplaceable role in characterizing the degree of progression of chronic liver disease. Histopathological diagnosis is the gold standard for the interpretation of fibrosis parameters. Conventional hematoxylin-eosin (H&E) staining can only reflect the gross structure of the tissue and the distribution of hepatocytes, while Masson trichrome can highlight specific types of collagen fiber structure, thus providing the necessary structural information for fibrosis scoring. However, the expensive costs of time, economy, and patient specimens as well as the non-uniform preparation and staining process make the conversion of existing H&E staining into virtual Masson trichrome staining a solution for fibrosis evaluation. Existing translation approaches fail to extract fiber features accurately enough, and the decoder of staining is unable to converge due to the inconsistent color of physical staining. In this work, we propose a prior-guided generative adversarial network, based on unpaired data for effective Masson trichrome stained image generation from the corresponding H&E stained image. Conducted on a small training set, our method takes full advantage of prior knowledge to set up better constraints on both the encoder and the decoder. Experiments indicate the superior performance of our method that surpasses the previous approaches. For various liver diseases, our results demonstrate a high correlation between the staging of real and virtual stains (ρ=0.82; 95% CI: 0.73-0.89). In addition, our finetuning strategy is able to standardize the staining color and release the memory and computational burden, which can be employed in clinical assessment.
Collapse
Affiliation(s)
- Renao Yan
- Shenzhen International Graduate School, Tsinghua University, Xili University City, Shenzhen, 518055, Guangdong, China
| | - Qiming He
- Shenzhen International Graduate School, Tsinghua University, Xili University City, Shenzhen, 518055, Guangdong, China
| | - Yiqing Liu
- Shenzhen International Graduate School, Tsinghua University, Xili University City, Shenzhen, 518055, Guangdong, China
| | - Peng Ye
- Shenzhen International Graduate School, Tsinghua University, Xili University City, Shenzhen, 518055, Guangdong, China
| | - Lianghui Zhu
- Shenzhen International Graduate School, Tsinghua University, Xili University City, Shenzhen, 518055, Guangdong, China
| | - Shanshan Shi
- Shenzhen International Graduate School, Tsinghua University, Xili University City, Shenzhen, 518055, Guangdong, China
| | - Jizhou Gou
- The Third People's Hospital of Shenzhen, Buji Buran Road 29, Shenzhen, 518112, Guangdong, China
| | - Yonghong He
- Shenzhen International Graduate School, Tsinghua University, Xili University City, Shenzhen, 518055, Guangdong, China
| | - Tian Guan
- Shenzhen International Graduate School, Tsinghua University, Xili University City, Shenzhen, 518055, Guangdong, China.
| | - Guangde Zhou
- The Third People's Hospital of Shenzhen, Buji Buran Road 29, Shenzhen, 518112, Guangdong, China.
| |
Collapse
|
228
|
Liu AN, Xu CF, Liu YR, Sun DQ, Jiang L, Tang LJ, Zhu PW, Chen SD, Liu WY, Wang XD, Targher G, Byrne CD, Wong VWS, Fu J, Su MM, Loomba R, Zheng MH, Ni Y. Secondary bile acids improve risk prediction for non-invasive identification of mild liver fibrosis in nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2023; 57:872-885. [PMID: 36670060 PMCID: PMC10792530 DOI: 10.1111/apt.17362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dysregulated bile acid (BA) metabolism has been linked to steatosis, inflammation, and fibrosis in nonalcoholic fatty liver disease (NAFLD). AIM To determine whether circulating BA levels accurately stage liver fibrosis in NAFLD. METHODS We recruited 550 Chinese adults with biopsy-proven NAFLD and varying levels of fibrosis. Ultra-performance liquid chromatography coupled with tandem mass spectrometry was performed to quantify 38 serum BAs. RESULTS Compared to those without fibrosis, patients with mild fibrosis (stage F1) had significantly higher levels of secondary BAs, and increased diastolic blood pressure (DBP), alanine aminotransferase (ALT), body mass index, and waist circumstance (WC). The combination of serum BAs with WC, DBP, ALT, or Homeostatic Model Assessment for Insulin Resistance performed well in identifying mild fibrosis, in men and women, and in those with/without obesity, with AUROCs 0.80, 0.88, 0.75 and 0.78 in the training set (n = 385), and 0.69, 0.80, 0.61 and 0.69 in the testing set (n = 165), respectively. In comparison, the combination of BAs and clinical/biochemical biomarkers performed less well in identifying significant fibrosis (F2-4). In women and in non-obese subjects, AUROCs were 0.75 and 0.71 in the training set, 0.65 and 0.66 in the validation set, respectively. However, these AUROCs were higher than those observed for the fibrosis-4 index, NAFLD fibrosis score, and Hepamet fibrosis score. CONCLUSIONS Secondary BA levels were significantly increased in NAFLD, especially in those with mild fibrosis. The combination of serum BAs and clinical/biochemical biomarkers for identifying mild fibrosis merits further assessment.
Collapse
Affiliation(s)
- A-Na Liu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cui-Fang Xu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya-Ru Liu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan-Qin Sun
- Department of Nephrology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Ling Jiang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Dong Wang
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton & University of Southampton, Southampton General Hospital, Southampton, UK
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Junfen Fu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Ming Su
- Clinical Mass Spectrometry Innovation Center, Shanghai Keyi Biotechnology Co., Ltd., Shanghai, China
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Ni
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
229
|
Koponen M, Rysä J, Ruotsalainen AK, Kärkkäinen O, Juvonen RO. Western Diet Decreases Hepatic Drug Metabolism in Male LDLr−/−ApoB100/100 Mice. J Nutr Metab 2023; 2023:5599789. [PMID: 37034183 PMCID: PMC10081903 DOI: 10.1155/2023/5599789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 04/03/2023] Open
Abstract
Consumption of a Western diet is an important risk factor for several chronic diseases including nonalcoholic fatty liver disease (NAFLD), but its effect on the xenobiotic metabolizing enzyme activities in the liver has been studied incompletely. In this study, male LDLr−/−ApoB100/100 mice were fed with Western diet (WD) or a standard diet for five months to reveal the effects on drug metabolism such as cytochrome P450 (CYP) oxidation and conjugation activities in the liver. Hepatic steatosis, lobular inflammation, and early fibrosis were observed in WD fed mice, but not in chow diet control mice. When compared to the controls, the WD-fed mice had significantly decreased protein-normalized CYP probe activities of 7-ethoxyresorufinO-deethylation (52%), coumarin 7-hydroxylation (26%), 7-hydroxylation of 3-(3-fluoro-4-hydroxyphenyl)-6-methoxycoumarin (70%), 7-hydroxylation of 3-(4-trifluoromethoxyphenyl)-6-methoxycoumarin (78%), 7-hydroxylation of 3-(3-methoxyphenyl)coumarin (81%), and pentoxyresorufin O-depentylation (66%). Increased activity was seen significantly in sulfonation of 3-(4-methylphenyl)-7-hydroxycoumarin (289%) and cytosol catechol O-methyltranferase (COMT, 148%) in the WD group when compared to the controls. In conclusion, the WD-induced steatosis in male LDLr−/−ApoB100/100 mice was associated with decreased CYP oxidation reactions but had no clear effects on conjugation reactions of glucuronidation, sulfonation, and cytosolic catechol O-methylation. Consequently, the WD may decrease the metabolic elimination of drugs compared to healthier low-fat diets.
Collapse
|
230
|
Bertran L, Adalid L, Vilaró-Blay M, Barrientos-Riosalido A, Aguilar C, Martínez S, Sabench F, del Castillo D, Porras JA, Alibalic A, Richart C, Auguet T. Expression of STING in Women with Morbid Obesity and Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:metabo13040496. [PMID: 37110154 PMCID: PMC10146769 DOI: 10.3390/metabo13040496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disease. Although mostly benign, this disease can evolve into nonalcoholic steatohepatitis (NASH). The stimulator of interferon genes (STING) plays an important role in the immune response against stressed cells, but this protein may also be involved in liver lipogenesis and microbiota composition. In this study, the role of STING in NAFLD was evaluated by RT–qPCR to analyze STING mRNA abundance and by immunohistochemical analysis to evaluate protein expression in liver biopsies from a cohort composed of 69 women with morbid obesity classified according to their liver involvement (normal liver, n = 27; simple steatosis (SS), n = 26; NASH, n = 16). The results showed that STING mRNA expression in the liver increases with the occurrence of NAFLD, specifically in the SS stage in which the degree of steatosis is mild or moderate. Protein analysis corroborated these results. Positive correlations were observed among hepatic STING mRNA abundance and gamma-glutamyl transferase and alkaline phosphatase levels, hepatic Toll-like receptor 9 expression and some circulating microbiota-derived bile acids. In conclusion, STING may be involved in the outcome and progression of NAFLD and may be related to hepatic lipid metabolism. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Laia Adalid
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Mercè Vilaró-Blay
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Fàtima Sabench
- Servei de Cirurgia i Anestèsia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Daniel del Castillo
- Servei de Cirurgia i Anestèsia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - José Antonio Porras
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
| | - Ajla Alibalic
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| |
Collapse
|
231
|
Aguilar EC, Fernandes-Braga W, Leocádio PCL, Campos GP, Lemos VS, de Oliveira RP, Caetano de Faria AM, Dos Santos Aggum Capettini L, Alvarez-Leite JI. Dietary gluten worsens hepatic steatosis by increasing inflammation and oxidative stress in ApoE-/- mice fed a high-fat diet. Food Funct 2023; 14:3332-3347. [PMID: 36940107 DOI: 10.1039/d3fo00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder in the world. We have seen that gluten intake exacerbated obesity and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. In this study, we investigated the effect of gluten consumption on inflammation and oxidative stress in the liver of mice with NAFLD. Male ApoE-/- mice were fed a gluten-free (GF-HFD) or gluten-containing (G-HFD) high-fat diet for 10 weeks. Blood, liver, and spleen were collected to perform the analyses. The animals of the gluten group had increased hepatic steatosis, followed by increased serum AST and ALT. Gluten intake increased hepatic infiltration of neutrophils, macrophages, and eosinophils, as well as the levels of chemotaxis-related factors CCL2, Cxcl2, and Cxcr3. The production of the TNF, IL-1β, IFNγ, and IL-4 cytokines in the liver was also increased by gluten intake. Furthermore, gluten exacerbated the hepatic lipid peroxidation and nitrotyrosine deposition, which were associated with increased production of ROS and nitric oxide. These effects were related to increased expression of NADPH oxidase and iNOS, as well as decreased activity of superoxide dismutase and catalase enzymes. There was an increased hepatic expression of the NF-κB and AP1 transcription factors, corroborating the worsening effect of gluten on inflammation and oxidative stress. Finally, we found an increased frequency of CD4+FOXP3+ lymphocytes in the spleen and increased gene expression of Foxp3 in the livers of the G-HFD group. In conclusion, dietary gluten aggravates NAFLD, exacerbating hepatic inflammation and oxidative stress in obese ApoE-deficient mice.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil. .,Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, USA
| | - Paola Caroline Lacerda Leocádio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | - Ana Maria Caetano de Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| | | | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais/UFMG, Caixa Postal 486, 30161-970 Belo Horizonte, Brazil.
| |
Collapse
|
232
|
Barnhart BK, Kan T, Srivastava A, Wessner CE, Waters J, Ambelil M, Eisenbrey JR, Hoek JB, Vadigepalli R. Longitudinal ultrasound imaging and network modeling in rats reveal sex-dependent suppression of liver regeneration after resection in alcoholic liver disease. Front Physiol 2023; 14:1102393. [PMID: 36969577 PMCID: PMC10033530 DOI: 10.3389/fphys.2023.1102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Liver resection is an important surgical technique in the treatment of cancers and transplantation. We used ultrasound imaging to study the dynamics of liver regeneration following two-thirds partial hepatectomy (PHx) in male and female rats fed via Lieber-deCarli liquid diet protocol of ethanol or isocaloric control or chow for 5–7 weeks. Ethanol-fed male rats did not recover liver volume to the pre-surgery levels over the course of 2 weeks after surgery. By contrast, ethanol-fed female rats as well as controls of both sexes showed normal volume recovery. Contrary to expectations, transient increases in both portal and hepatic artery blood flow rates were seen in most animals, with ethanol-fed males showing higher peak portal flow than any other experimental group. A computational model of liver regeneration was used to evaluate the contribution of physiological stimuli and estimate the animal-specific parameter intervals. The results implicate lower metabolic load, over a wide range of cell death sensitivity, in matching the model simulations to experimental data of ethanol-fed male rats. However, in the ethanol-fed female rats and controls of both sexes, metabolic load was higher and in combination with cell death sensitivity matched the observed volume recovery dynamics. We conclude that adaptation to chronic ethanol intake has a sex-dependent impact on liver volume recovery following liver resection, likely mediated by differences in the physiological stimuli or cell death responses that govern the regeneration process. Immunohistochemical analysis of pre- and post-resection liver tissue validated the results of computational modeling by associating lack of sensitivity to cell death with lower rates of cell death in ethanol-fed male rats. Our results illustrate the potential for non-invasive ultrasound imaging to assess liver volume recovery towards supporting development of clinically relevant computational models of liver regeneration.
Collapse
Affiliation(s)
- Benjamin K. Barnhart
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Toshiki Kan
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Corinne E. Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John Waters
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Manju Ambelil
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jan B. Hoek
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- *Correspondence: Rajanikanth Vadigepalli,
| |
Collapse
|
233
|
Shi B, Wang W, Ye M, Liang M, Yu Z, Zhang Y, Liu Z, Liang X, Ao J, Xu F, Xu G, Jiang X, Zhou X, Liu L. Spermidine suppresses the activation of hepatic stellate cells to cure liver fibrosis through autophagy activator MAP1S. Liver Int 2023; 43:1307-1319. [PMID: 36892418 DOI: 10.1111/liv.15558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND AND AIMS Liver diseases present a wide range of fibrosis, from fatty liver with no inflammation to steatohepatitis with varying degrees of fibrosis, to established cirrhosis leading to HCC. In a multivariate analysis, serum levels of spermidine were chosen as the top metabolite from 237 metabolites and its levels were drastically reduced along with progression to advanced steatohepatitis. Our previous studies that showed spermidine supplementation helps mice prevent liver fibrosis through MAP1S have prompted us to explore the possibility that spermidine can alleviate or cure already developed liver fibrosis. METHODS We collected tissue samples from patients with liver fibrosis to measure the levels of MAP1S. We treated wild-type and MAP1S knockout mice with CCl4 -induced liver fibrosis with spermidine and isolated HSCs in culture to test the effects of spermidine on HSC activation and liver fibrosis. RESULTS Patients with increasing degrees of liver fibrosis had reduced levels of MAP1S. Supplementing spermidine in mice that had already developed liver fibrosis after 1 month of CCl4 induction for an additional 3 months resulted in significant reductions in levels of ECM proteins and a remarkable improvement in liver fibrosis through MAP1S. Spermidine also suppressed HSC activation by reducing ECM proteins at both the mRNA and protein levels, and increasing the number of lipid droplets in stellate cells. CONCLUSIONS Spermidine supplementation is a potentially clinically meaningful approach to treating and curing liver fibrosis, preventing cirrhosis and HCC in patients.
Collapse
Affiliation(s)
- Boyun Shi
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Pediatric Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mengting Ye
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Liang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziyu Yu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingying Zhang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaoyu Liu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xue Liang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Ao
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fengfeng Xu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guibin Xu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xianhan Jiang
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinke Zhou
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Leyuan Liu
- The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
234
|
Barrientos-Riosalido A, Bertran L, Vilaró-Blay M, Aguilar C, Martínez S, Paris M, Sabench F, Riesco D, Binetti J, Castillo DD, Richart C, Auguet T. The Role of Olfactomedin 2 in the Adipose Tissue–Liver Axis and Its Implication in Obesity-Associated Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24065221. [PMID: 36982296 PMCID: PMC10049551 DOI: 10.3390/ijms24065221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
This study’s objective was to assess the involvement of olfactomedin 2 (OLFM2), a secreted glycoprotein related to lipid metabolism regulation, in nonalcoholic fatty liver disease (NAFLD) mediated by the adipose-tissue–liver axis. OLFM2 mRNA expression was analyzed in subcutaneous (SAT) and visceral (VAT) adipose tissue by RT–qPCR. The cohort included women with normal weight (n = 16) or morbid obesity (MO, n = 60) who were subclassified into normal liver (n = 20), simple steatosis (n = 21), and nonalcoholic steatohepatitis (NASH, n = 19) groups. The results showed that OLFM2 expression in SAT was enhanced in MO individuals and in the presence of NAFLD. Specifically, OLFM2 expression in SAT was increased in mild and moderate degrees of steatosis in comparison to the absence of it. Moreover, OLFM2 expression in SAT was negatively correlated with interleukin-6 levels. On the other hand, OLFM2 expression in VAT decreased in the presence of NASH and exhibited a positive correlation with adiponectin levels. In conclusion, OLFM2 in SAT seems to be implicated in hepatic lipid accumulation. Additionally, since we previously suggested the possible implication of hepatic OLFM2 in NAFLD progression, now we propose a possible interaction between the liver and SAT, reinforcing the potential implication of this tissue in NAFLD development.
Collapse
Affiliation(s)
- Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Mercè Vilaró-Blay
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Marta Paris
- Servei de Cirurgia, Hospital Sant Joan de Reus. Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Fàtima Sabench
- Servei de Cirurgia, Hospital Sant Joan de Reus. Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - David Riesco
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Jessica Binetti
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus. Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Mallafré Guasch, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| |
Collapse
|
235
|
Grzych G, Bernard L, Lestrelin R, Tailleux A, Staels B. [State of the art on the pathophysiology, diagnosis and treatment of non-alcoholic steatohepatitis (NASH)]. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:183-201. [PMID: 36126753 DOI: 10.1016/j.pharma.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
NAFLD or non-alcoholic fatty liver disease is one of the complications of obesity and diabetes, the prevalence of which is increasing. The causes of the pathology and its development towards its severe form, NASH or non-alcoholic steatohepatitis, are multiple and still poorly understood. Many different pharmacological classes are being tested in clinical trials to treat NASH, but no pharmaceutical treatment is currently on the market. Moreover, the diagnosis of certainty is only possible by liver biopsy and histological analysis, an invasive procedure with high risk for the patient. It is therefore necessary to better understand the natural history of the disease in order to identify therapeutic targets, but also to identify markers for the diagnosis and monitoring of the disease using a blood sample, which will allow an improvement in patient management.
Collapse
Affiliation(s)
- G Grzych
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - L Bernard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - R Lestrelin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - A Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - B Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
236
|
Takahashi Y, Dungubat E, Kusano H, Fukusato T. Artificial intelligence and deep learning: new tools for histopathological diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Comput Struct Biotechnol J 2023; 21:2495-2501. [PMID: 37090431 PMCID: PMC10113753 DOI: 10.1016/j.csbj.2023.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) is associated with metabolic syndrome and is rapidly increasing globally with the increased prevalence of obesity. Although noninvasive diagnosis of NAFLD/NASH has progressed, pathological evaluation of liver biopsy specimens remains the gold standard for diagnosing NAFLD/NASH. However, the pathological diagnosis of NAFLD/NASH relies on the subjective judgment of the pathologist, resulting in non-negligible interobserver variations. Artificial intelligence (AI) is an emerging tool in pathology to assist diagnoses with high objectivity and accuracy. An increasing number of studies have reported the usefulness of AI in the pathological diagnosis of NAFLD/NASH, and our group has already used it in animal experiments. In this minireview, we first outline the histopathological characteristics of NAFLD/NASH and the basics of AI. Subsequently, we introduce previous research on AI-based pathological diagnosis of NAFLD/NASH.
Collapse
Affiliation(s)
- Yoshihisa Takahashi
- Department of Pathology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
- Corresponding author.
| | - Erdenetsogt Dungubat
- Department of Pathology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
- Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar 14210, Mongolia
| | - Hiroyuki Kusano
- Department of Pathology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan
| | - Toshio Fukusato
- General Medical Education and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
237
|
Lin KW, Kumar R, Shen F, Chan HLY, Wong GLH, Kumar R, Chow WC, Lin S, Wong VWS, Fan JG, Goh GBB. The utility of non-invasive tests to assess advanced fibrosis in Asian subjects with chronic hepatitis B and concomitant hepatic steatosis. Liver Int 2023; 43:1008-1014. [PMID: 36855842 DOI: 10.1111/liv.15541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Chronic hepatitis B (CHB) is endemic to Asia and is a leading cause of liver-related morbidity. The prevalence of concomitant CHB and hepatic steatosis (HS) is increasing in Asia. Non-invasive tests (NITs) including FIB-4, NFS and APRI assess fibrosis in populations with a single aetiology, but not in subjects with concomitant CHB and HS. AIM To explore the accuracy of NITs in predicting advanced fibrosis in patients with concomitant CHB and HS. METHODOLOGY This multicentre study of CHB patients who underwent liver biopsy explored clinical characteristics of these subjects, stratified by presence of HS. Fibrosis scores from NITs were compared against histological fibrosis stage in CHB subjects with and without HS. RESULTS 2262 subjects were enrolled, 74.5% were males, and the mean age was 39.5 years ±11.8 SD. 984 (44.4%) had HS, 824 (36.4%) had advanced fibrosis. In the CHB group, the AUROC for advanced fibrosis were 0.65 (95% CI 0.62-0.69) for FIB-4 and 0.63 (95% CI 0.60-0.66) for APRI. The specificities were 0.94 for FIB-4 greater than 3.25 and 0.81 for APRI greater than 1.5. In the CHBHS group, the AUROC for advanced fibrosis were 0.67 (95% CI 0.63-0.71) for FIB-4, 0.60 (95% CI 0.56-0.64) for APRI and 0.65 (95% CI 0.61-0.69) for NFS. The specificities were 0.95 for FIB-4 greater than 3.25, 0.88 for APRI greater than 1.5 and 0.99 for NFS greater than 0.675. CONCLUSION The performance of NITs to exclude advanced fibrosis did not differ greatly regardless of HS. FIB-4 and NFS have the best negative predictive values of 0.80 and 0.78, respectively, to exclude advanced fibrosis in CHBHS subjects.
Collapse
Affiliation(s)
- Kenneth W Lin
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore
| | - Rajneesh Kumar
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Henry L-Y Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Internal Medicine, Union Hospital, Hong Kong, Hong Kong
| | - Grace L-H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Rahul Kumar
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore.,Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Wan Cheng Chow
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Su Lin
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, China
| | - Vincent W-S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - George B-B Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
238
|
Rugivarodom M, Pongpaibul A, Chainuvati S, Nimanong S, Chotiyaputta W, Tanwandee T, Charatcharoenwitthaya P. Prognostic Relevance of Metabolic Dysfunction-associated Steatohepatitis for Patients with Chronic Hepatitis B. J Clin Transl Hepatol 2023; 11:76-87. [PMID: 36406326 PMCID: PMC9647119 DOI: 10.14218/jcth.2022.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated fatty liver disease (MAFLD) is prevalent in patients with chronic hepatitis B (CHB). The effect of the histologic MAFLD phenotype on long-term CHB outcomes is unknown. We performed a longitudinal study to determine the prognostic relevance of biopsy-proven hepatic steatosis and steatohepatitis for CHB patients. METHODS Clinical and laboratory data were obtained from CHB patients who underwent liver biopsy during 2002-2008 and were treated with antiviral drugs. A hepatopathologist reviewed the biopsy specimens. Cox proportional hazards regression was used to estimate the adjusted hazard ratio (aHR) of outcomes, including all-cause mortality, liver transplantation, and liver-related events. RESULTS In accordance with Brunt's classification, 408 patients had steatohepatitis (n=34), "steatosis but not steatohepatitis" (n=118), or "non-steatosis" (n=256). All steatohepatitis patients had features of metabolic dysfunction. Over a mean follow-up of 13.8±3.1 years, 18 patients died or underwent liver transplantation. In multivariate-adjusted analysis, steatohepatitis (aHR, 6.37; 95% confidence interval [CI]: 1.59-25.5) compared with non-steatosis and advanced fibrosis (aHR, 11.3; 95% CI: 1.32-96.3) compared with no fibrosis were associated with overall mortality/liver transplantation. Thirty-five patients developed 43 liver-related events, among which 32 were hepatocellular carcinoma. These events were associated with steatohepatitis (aHR, 5.55; 95% CI: 2.01-15.3) compared with non-steatosis and advanced fibrosis (aHR, 6.23; 95% CI: 1.75-22.2) compared with no fibrosis. The steatosis but not steatohepatitis group had a non-significantly higher risk of overall mortality and liver-related events. CONCLUSIONS Metabolic dysfunction-associated steatohepatitis increased the risk of long-term mortality/transplantation and liver-related events in CHB patients.
Collapse
Affiliation(s)
- Manus Rugivarodom
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwaporn Chainuvati
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supot Nimanong
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watcharasak Chotiyaputta
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phunchai Charatcharoenwitthaya
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Correspondence to: Phunchai Charatcharoenwitthaya, Division of Gastroenterology, Medicine Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Wang-Lang Road, Bangkok10700, Thailand. ORCID: https://orcid.org/0000-0002-8334-0267. Tel: +662-4197282, Fax: +662-4198435, E-mail:
| |
Collapse
|
239
|
Liu J, Yu X, Ting HJ, Wang X, Xu S, Wang Y, Zhang S, Wang JW, Liu B. Myeloperoxidase-Sensitive T1 and T2 Switchable MR Imaging for Diagnosis of Nonalcoholic Steatohepatitis. ACS NANO 2023; 17:3324-3333. [PMID: 36773320 DOI: 10.1021/acsnano.2c06233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is the critical stage in the development of nonalcoholic fatty liver disease (NAFLD) from simple and reversible steatosis to irreversible cirrhosis and even hepatocellular carcinoma (HCC). Thus, the diagnosis of NASH is important for preventing the progress of NAFLD into a fatal condition. The oxidative enzyme myeloperoxidase (MPO), which is mostly produced by polymorphonuclear neutrophil granulocytes (NEU), has been identified as a key player in lipid peroxidation in inflamed tissues. Considering that the expression of MPO was much higher in NASH than in the nonalcoholic fatty liver (NAFL) with steatosis, we designed a nanoparticle platform based on ultrasmall iron oxide (USIO) nanoparticles to realize MPO-sensitive NASH diagnosis. After modification of USIO nanoparticles with amphiphilic poly(ethylene glycol) (PEG) and conjugation with 5-hydroxytryptamine (5HT), a physiological substrate for MPO, the final nanocomposite (USIO-DA-PEG-5HT) revealed MPO-mediated aggregation at the inflammatory site of NASH. Meanwhile, the intrinsic T1-weighted magnetic resonance (MR) signal of dispersed USIO-DA-PEG-5HT nanoparticles diminishes, while the T2-weighted MR signal is amplified owing to the aggregation effect. These USIO-DA-PEG-5HT nanoprobes offer great potential for improving NASH MR imaging diagnostic accuracy and sensitivity compared to existing molecular MR contrast agents with a single imaging modality.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Xiaodong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yuanbo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
240
|
Helal KM, Cahyadi H, Taylor JN, Okajima A, Tabata K, Kumamoto Y, Mochizuki K, Itoh Y, Takamatsu T, Tanaka H, Fujita K, Komatsuzaki T, Harada Y. Raman imaging of rat nonalcoholic fatty liver tissues reveals distinct biomolecular states. FEBS Lett 2023. [PMID: 36807196 DOI: 10.1002/1873-3468.14600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/20/2023]
Abstract
An essential challenge in diagnosing states of nonalcoholic fatty liver disease (NAFLD) is the early prediction of progression from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) before the disease progresses. Histological diagnoses of NAFLD rely on the appearance of anomalous tissue morphologies, and it is difficult to segment the biomolecular environment of the tissue through a conventional histopathological approach. Here, we show that hyperspectral Raman imaging provides diagnostic information on NAFLD in rats, as spectral changes among disease states can be detected before histological characteristics emerge. Our results demonstrate that Raman imaging of NAFLD can be a useful tool for histopathologists, offering biomolecular distinctions among tissue states that cannot be observed through standard histopathological means.
Collapse
Affiliation(s)
- Khalifa Mohammad Helal
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Japan.,Department of Mathematics, Comilla University, Cumilla, Bangladesh
| | - Harsono Cahyadi
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - J Nicholas Taylor
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Akira Okajima
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Japan
| | - Koji Tabata
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kumamoto
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Japan
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Japan.,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan.,Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Japan
| | - Tamiki Komatsuzaki
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.,Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, Dijon Cedex, France
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
241
|
Ishiba H, Sumida Y, Kamada Y, Fujii H, Iwaki M, Hayashi H, Toyoda H, Oeda S, Hyogo H, Kawanaka M, Morishita A, Munekage K, Kawata K, Tsutsumi T, Sawada K, Maeshiro T, Tobita H, Yoshida Y, Naito M, Araki A, Arakaki S, Kawaguchi T, Noritake H, Ono M, Masaki T, Yasuda S, Tomita E, Yoneda M, Tokushige A, Takahashi H, Ueda S, Aishima S, Nakajima A, Okanoue T. Noninvasive tests predict liver-related events and mortality in patients with nonalcoholic fatty liver disease: sub-analysis of the CLIONE-Asia study. J Gastroenterol Hepatol 2023. [PMID: 36797989 DOI: 10.1111/jgh.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND AND AIMS Noninvasive tests (NITs) have prognostic potential, but whether NITs are comparable with liver biopsy is unclear. This study aimed to examine the prognostic accuracy of NITs for liver-related mortality (LRM) and events (LREs) in patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD). METHODS We investigated 1313 patients with NAFLD. Patients were assigned to low-risk, indeterminate-risk, and high-risk groups using conventional cutoff values of each FIB-4 and NAFLD fibrosis score (NFS) and to stage 0-2 and stage 3-4 groups using the fibrosis stage. Survival and Cox regression analyses of the prognostic potential of NITs for LRM/LREs were conducted. RESULTS During a median follow-up of 4.5 years, regarding to FIB-4, the incidence rate (/1000 person-years) in the low risk was zero for LRM and 0.5 for LREs. In contrast, the rate in stage 0-2 was 1.3 for LRM and 2.8 for LRE. The adjusted hazard ratios (aHRs) for LREs in the high risk compared with the low risk were 32.85 (P < 0.01). The aHRs in stage 3-4 compared with stage 0-2 were 2.68 (P = 0.02) for LREs and 2.26 (P = 0.582) for LRM. In the same fibrosis stage, the incidence of LRM/LREs was more frequent with a higher risk stratification. The same trend was observed for NFS. CONCLUSIONS NITs accurately predict LRM and LREs as well as a liver biopsy in Japanese patients with NAFLD. Patients in the low risk may not require close follow-up for at least 5 years. The simple NITs could be an acceptable alternative method to performing a liver biopsy for the prognosis of NAFLD.
Collapse
Affiliation(s)
- Hiroshi Ishiba
- Department of Gastroenterology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Hideki Hayashi
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Gifu, Japan
| | - Satoshi Oeda
- Department of Laboratory Medicine, Saga University Hospital, Saga, Japan.,Liver Center, Saga University Hospital, Saga University Hospital, Saga, Japan
| | | | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical Center, Kawasaki Medical School, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kensuke Munekage
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Koji Sawada
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido, Japan
| | - Tatsuji Maeshiro
- First Department of Internal Medicine, University of the Ryukyu Hospital, Nishihara, Okinawa, Japan
| | - Hiroshi Tobita
- Department of Hepatology, Shimane University Hospital, Izumo, Shimane, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka, Japan
| | - Masafumi Naito
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka, Japan
| | - Asuka Araki
- Department of Hepatology, Shimane University Hospital, Izumo, Shimane, Japan
| | - Shingo Arakaki
- First Department of Internal Medicine, University of the Ryukyu Hospital, Nishihara, Okinawa, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Hidenao Noritake
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masafumi Ono
- Division of Innovative Medicine for Hepatobiliary and Pancreatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Division of Innovative Medicine for Hepatobiliary and Pancreatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Gifu, Japan
| | - Eiichi Tomita
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Akihiro Tokushige
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirokazu Takahashi
- Liver Center, Saga University Hospital, Saga University Hospital, Saga, Japan
| | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, University of the Ryukyu, Okinawa, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Takeshi Okanoue
- Hepatology Center, Saiseikai Suita Hospital, Suita, Osaka, Japan
| | | |
Collapse
|
242
|
Hiruma S, Shigiyama F, Kumashiro N. Empagliflozin versus sitagliptin for ameliorating intrahepatic lipid content and tissue-specific insulin sensitivity in patients with early-stage type 2 diabetes with non-alcoholic fatty liver disease: A prospective randomized study. Diabetes Obes Metab 2023; 25:1576-1588. [PMID: 36749298 DOI: 10.1111/dom.15006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
AIM To compare the effects of sodium-glucose co-transporter-2 (SGLT2) inhibitors and dipeptidyl peptidase-4 inhibitors on ectopic fat accumulation and tissue-specific insulin sensitivity. MATERIALS AND METHODS This randomized controlled trial enrolled 44 patients with type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). They were randomly assigned to receive either empagliflozin 10 mg/day or sitagliptin 100 mg/day for 12 weeks. The primary endpoint was the change in intrahepatic lipid content (IHL) measured using proton magnetic resonance spectroscopy (1 H-MRS). The secondary endpoints included intramuscular and extramuscular lipid content seen in 1 H-MRS, body composition seen through dual-energy X-ray absorptiometry and tissue-specific insulin sensitivity shown through hyperinsulinaemic-euglycaemic clamp using stable isotopic glucose. Liver biopsy samples were pathologically evaluated at baseline. RESULTS At baseline, the mean duration of diabetes, HbA1c level and IHL were 3.7 years, 7.2% and 20.9%, respectively. The median NAFLD activity score was 3.0. IHL was significantly more decreased in the empagliflozin group than that in the sitagliptin group (between-group difference was -5.2% ± 1.1% and -1.9% ± 1.2%, respectively, (95% confidence interval); -3.3 (-6.5, -0.1), P = .044). However, there were no significant between-group differences in the change of insulin sensitivity in the liver, muscle or adipose tissues. Interestingly, hepatic insulin sensitivity was significantly increased only in the empagliflozin group and was significantly negatively associated with the change in IHL. CONCLUSIONS Empagliflozin significantly improves hepatic steatosis compared with sitagliptin, and this may protect against subsequent hepatic insulin resistance. Early administration of SGLT2 inhibitors is preferable for T2D patients with NAFLD.
Collapse
Affiliation(s)
- Shigenori Hiruma
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Fumika Shigiyama
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Naoki Kumashiro
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
243
|
Zhang H, Rios RS, Boursier J, Anty R, Chan WK, George J, Yilmaz Y, Wong VWS, Fan J, Dufour JF, Papatheodoridis G, Chen L, Schattenberg JM, Shi J, Xu L, Wong GLH, Lange NF, Papatheodoridi M, Mi Y, Zhou Y, Byrne CD, Targher G, Feng G, Zheng M. Hepatocyte apoptosis fragment product cytokeratin-18 M30 level and non-alcoholic steatohepatitis risk diagnosis: an international registry study. Chin Med J (Engl) 2023; 136:341-350. [PMID: 36848175 PMCID: PMC10106257 DOI: 10.1097/cm9.0000000000002603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Liver biopsy for the diagnosis of non-alcoholic steatohepatitis (NASH) is limited by its inherent invasiveness and possible sampling errors. Some studies have shown that cytokeratin-18 (CK-18) concentrations may be useful in diagnosing NASH, but results across studies have been inconsistent. We aimed to identify the utility of CK-18 M30 concentrations as an alternative to liver biopsy for non-invasive identification of NASH. METHODS Individual data were collected from 14 registry centers on patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD), and in all patients, circulating CK-18 M30 levels were measured. Individuals with a NAFLD activity score (NAS) ≥5 with a score of ≥1 for each of steatosis, ballooning, and lobular inflammation were diagnosed as having definite NASH; individuals with a NAS ≤2 and no fibrosis were diagnosed as having non-alcoholic fatty liver (NAFL). RESULTS A total of 2571 participants were screened, and 1008 (153 with NAFL and 855 with NASH) were finally enrolled. Median CK-18 M30 levels were higher in patients with NASH than in those with NAFL (mean difference 177 U/L; standardized mean difference [SMD]: 0.87 [0.69-1.04]). There was an interaction between CK-18 M30 levels and serum alanine aminotransferase, body mass index (BMI), and hypertension ( P < 0.001, P = 0.026 and P = 0.049, respectively). CK-18 M30 levels were positively associated with histological NAS in most centers. The area under the receiver operating characteristics (AUROC) for NASH was 0.750 (95% confidence intervals: 0.714-0.787), and CK-18 M30 at Youden's index maximum was 275.7 U/L. Both sensitivity (55% [52%-59%]) and positive predictive value (59%) were not ideal. CONCLUSION This large multicenter registry study shows that CK-18 M30 measurement in isolation is of limited value for non-invasively diagnosing NASH.
Collapse
Affiliation(s)
- Huai Zhang
- Department of Biostatistics and Medical Record, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rafael S. Rios
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jerome Boursier
- Service d’Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d’Angers, Angers, France
- Laboratoire HIFIH, UPRES EA3859, SFR ICAT 4208, Université d’Angers, Angers, France
| | - Rodolphe Anty
- Université Côte d’Azur, CHU, INSERM, U1065, C3M, 06204 Nice, France
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Jean-François Dufour
- University Clinic for Visceral Surgery and Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - George Papatheodoridis
- Academic Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital, of Athens “Laiko”, Athens, Greece
| | - Li Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai 200000, China
| | - Jörn M. Schattenberg
- Metabolic Liver Research Program I, Department of Medicine, University Medical Center Mainz, Mainz, Germany
| | - Junping Shi
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310000, China
| | - Liang Xu
- Tianjin Second People's Hospital, Tianjin 300000, China
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Naomi F. Lange
- University Clinic for Visceral Surgery and Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Margarita Papatheodoridi
- Academic Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital, of Athens “Laiko”, Athens, Greece
| | - Yuqiang Mi
- Tianjin Second People's Hospital, Tianjin 300000, China
| | - Yujie Zhou
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200000, China
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Gong Feng
- Xi’an Medical University, Xi’an, Shaanxi 710000, China
| | - Minghua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
244
|
Loureiro LM, Cordeiro A, Barboza L, Mendes R, Pereira S, Saboya CJ, Ramalho A. Evaluation of Liver Metabolism Biomarkers in Metabolic Associated Fatty Liver Disease According to Obesity Phenotype. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:140-147. [PMID: 35512760 DOI: 10.1080/07315724.2021.2007427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To analyze the relationship between the biochemical markers of liver metabolism in different stages of Metabolic Associated Fatty Liver Disease (MAFLD) according to the obesity phenotype. METHODOLOGY This is a cross-sectional study with individuals with class III obesity classified according to the obesity phenotypes proposed by the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criteria. Biochemical and anthropometric variables were analyzed according to the staging of MAFLD and obesity phenotype. RESULTS A total of 50 subjects with MAFLD, 62% (n = 31) with steatosis and 38% (n = 19) with steatohepatitis without fibrosis; 36% were classified as metabolically healthy obesity (MHO) and 64% as metabolically unhealthy obesity (MUHO), respectively. Mean values of alkaline phosphatase were 85.44 ± 27.27 vs. 61.92 ± 17.57 (p = 0.006); gamma-glutamyl transpeptidase, 25.77 ± 15.36 vs. 30.63 ± 19.49 (p = 0.025); and albumin, 3.99 ± 0.34 vs. 4.24 ± 0.23 (p = 0.037), were lower and statistically significant in the MHO group with steatosis. The results show when considering individuals with IR, only AP is a predictor of unhealthy phenotype (B-0.934, 0.848- 1.029, p = 0.031). CONCLUSION MHO individuals with steatosis present lower severe changes related to markers of liver damage and function and AP is considered the predictor of MUHO phenotype.
Collapse
Affiliation(s)
- Ligiane M Loureiro
- Postgraduate Program, Doctorate in Nutritional Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Health Sciences Institute, Faculty of Nutrition, Federal University of Pará (UFPA), Belém, Brazil.,Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro of UFRJ, Rio de Janeiro, Brazil
| | - Adryana Cordeiro
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro of UFRJ, Rio de Janeiro, Brazil.,Biomedicine Department, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Letícia Barboza
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro of UFRJ, Rio de Janeiro, Brazil
| | - Rodrigo Mendes
- Postgraduate Program, Master in Applied Mathematics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sílvia Pereira
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro of UFRJ, Rio de Janeiro, Brazil.,Multidisciplinary Center for Bariatric and Metabolic Surgery, Rio de Janeiro, Brazil
| | - Carlos J Saboya
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro of UFRJ, Rio de Janeiro, Brazil.,Multidisciplinary Center for Bariatric and Metabolic Surgery, Rio de Janeiro, Brazil
| | - Andrea Ramalho
- Department of Social and Applied Nutrition of the Institute of Nutrition, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
245
|
Chang D, Truong E, Mena EA, Pacheco F, Wong M, Guindi M, Todo TT, Noureddin N, Ayoub W, Yang JD, Kim IK, Kohli A, Alkhouri N, Harrison S, Noureddin M. Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and NAFLD-related cirrhosis. Hepatology 2023; 77:546-557. [PMID: 35809234 DOI: 10.1002/hep.32655] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS We assessed the performance of machine learning (ML) models in identifying clinically significant NAFLD-associated liver fibrosis and cirrhosis. APPROACH AND RESULTS We implemented ML models including logistic regression (LR), random forest (RF), and artificial neural network to predict histological stages of fibrosis using 17 demographic/clinical features in 1370 patients with NAFLD who underwent liver biopsy, FibroScan, and labs within a 6-month period at multiple U.S. centers. Histological stages of fibrosis (≥F2, ≥F3, and F4) were predicted using ML, FibroScan liver stiffness measurements, and Fibrosis-4 index (FIB-4). NASH with significant fibrosis (NAS ≥ 4 + ≥F2) was assessed using ML, FibroScan-AST (FAST) score, FIB-4, and NAFLD fibrosis score (NFS). We used 80% of the cohort to train and 20% to test the ML models. For ≥F2, ≥F3, F4, and NASH + NAS ≥ 4 + ≥F2, all ML models, especially RF, had primarily higher accuracy and AUC compared with FibroScan, FIB-4, FAST, and NFS. AUC for RF versus FibroScan and FIB-4 for ≥F2, ≥F3, and F4 were (0.86 vs. 0.81, 0.78), (0.89 vs. 0.83, 0.82), and (0.89 vs. 0.86, 0.85), respectively. AUC for RF versus FAST, FIB-4, and NFS for NASH + NAS ≥ 4 + ≥F2 were (0.80 vs. 0.77, 0.66, 0.63). For NASH + NAS ≥ 4 + ≥F2, all ML models had lower/similar percentages within the indeterminate zone compared with FIB-4 and NFS. Overall, ML models performed better in sensitivity, specificity, positive predictive value, and negative predictive value compared with traditional noninvasive tests. CONCLUSIONS ML models performed better overall than FibroScan, FIB-4, FAST, and NFS. ML could be an effective tool for identifying clinically significant liver fibrosis and cirrhosis in patients with NAFLD.
Collapse
Affiliation(s)
- Devon Chang
- Arnold O. Beckman High School , Irvine , California , USA
| | - Emily Truong
- Department of Medicine , Cedars Sinai Medical Center , Los Angeles , California , USA
| | - Edward A Mena
- California Liver Institute , Pasadena , California , USA
| | | | - Micaela Wong
- California Liver Institute , Pasadena , California , USA
| | - Maha Guindi
- Department of Pathology , Cedars-Sinai Medical Center , Los Angeles , California , USA
| | - Tsuyoshi T Todo
- Comprehensive Transplant Center , Cedars-Sinai Medical Center , Los Angeles , California , USA
| | - Nabil Noureddin
- Division of Gastroenterology , University of California at San Diego , La Jolla , California , USA
| | - Walid Ayoub
- Department of Medicine , Cedars Sinai Medical Center , Los Angeles , California , USA.,Comprehensive Transplant Center , Cedars-Sinai Medical Center , Los Angeles , California , USA.,Karsh Division of Gastroenterology and Hepatology , Cedars-Sinai Medical Center , Los Angeles , California , USA
| | - Ju Dong Yang
- Department of Medicine , Cedars Sinai Medical Center , Los Angeles , California , USA.,Comprehensive Transplant Center , Cedars-Sinai Medical Center , Los Angeles , California , USA.,Karsh Division of Gastroenterology and Hepatology , Cedars-Sinai Medical Center , Los Angeles , California , USA
| | - Irene K Kim
- Comprehensive Transplant Center , Cedars-Sinai Medical Center , Los Angeles , California , USA
| | - Anita Kohli
- Arizona Liver Health , Phoenix , Arizona , USA
| | | | - Stephen Harrison
- Oxford University, Pinnacle Research Center , Live Oak , Texas , USA
| | - Mazen Noureddin
- Department of Medicine , Cedars Sinai Medical Center , Los Angeles , California , USA.,Comprehensive Transplant Center , Cedars-Sinai Medical Center , Los Angeles , California , USA.,Karsh Division of Gastroenterology and Hepatology , Cedars-Sinai Medical Center , Los Angeles , California , USA
| |
Collapse
|
246
|
Noureddin M, Goodman Z, Tai D, Chng ELK, Ren Y, Boudes P, Shlevin H, Garcia-Tsao G, Harrison SA, Chalasani NP. Machine learning liver histology scores correlate with portal hypertension assessments in nonalcoholic steatohepatitis cirrhosis. Aliment Pharmacol Ther 2023; 57:409-417. [PMID: 36647687 PMCID: PMC10107331 DOI: 10.1111/apt.17363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/07/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS In cirrhotic nonalcoholic steatohepatitis (NASH) clinical trials, primary efficacy endpoints have been hepatic venous pressure gradient (HVPG), liver histology and clinical liver outcomes. Important histologic features, such as septa thickness, nodules features and fibrosis area have not been included in the histologic assessment and may have important clinical relevance. We assessed these features with a machine learning (ML) model. METHODS NASH patients with compensated cirrhosis and HVPG ≥6 mm Hg (n = 143) from the Belapectin phase 2b trial were studied. Liver biopsies, HVPG measurements and upper endoscopies were performed at baseline and at end of treatment (EOT). A second harmonic generation/two-photon excitation fluorescence provided an automated quantitative assessment of septa, nodules and fibrosis (SNOF). We created ML scores and tested their association with HVPG, clinically significant HVPG (≥10 mm Hg) and the presence of varices (SNOF-V). RESULTS We derived 448 histologic variables (243 related to septa, 21 related to nodules and 184 related to fibrosis). The SNOF score (≥11.78) reliably distinguished CSPH at baseline and in the validation cohort (baseline + EOT) [AUC = 0.85 and 0.74, respectively]. The SNOF-V score (≥0.57) distinguished the presence of varices at baseline and in the same validation cohort [AUC = 0.86 and 0.73, respectively]. Finally, the SNOF-C score differentiated those who had >20% change in HVPG against those who did not, with an AUROC of 0.89. CONCLUSION The ML algorithm accurately predicted HVPG, CSPH, the development of varices and HVPG changes in patients with NASH cirrhosis. The use of ML histology model in NASH cirrhosis trials may improve the assessment of key outcome changes.
Collapse
Affiliation(s)
- Mazen Noureddin
- Houston Methodist Hospital and Houston Research Institute, Houston, Texas, USA
| | | | - Dean Tai
- HistoIndex Pte. Ltd., Singapore, Singapore
| | | | - Yayun Ren
- HistoIndex Pte. Ltd., Singapore, Singapore
| | - Pol Boudes
- Galectin Therapeutics Inc., Norcross, USA
| | | | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University and CT-VA Healthcare System, New Haven, Connecticut, USA
| | | | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
247
|
Sabzikarian M, Mahmoudi T, Tabaeian SP, Rezamand G, Asadi A, Farahani H, Nobakht H, Dabiri R, Mansour-Ghanaei F, Derakhshan F, Zali MR. The common variant of rs6214 in insulin like growth factor 1 ( IGF1) gene: a potential protective factor for non-alcoholic fatty liver disease. Arch Physiol Biochem 2023; 129:10-15. [PMID: 32654522 DOI: 10.1080/13813455.2020.1791187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Regarding the central role of insulin resistance in NAFLD, we explored whether insulin-like growth factor 1 (IGF1) and insulin-like growth factor-binding protein 3 (IGFBP3) gene variants were associated with NAFLD susceptibility. METHODS IGF1 (rs6214) and IGFBP3 (rs3110697) gene variants were genotyped in 154 cases with biopsy-proven NAFLD and 156 controls using PCR-RFLP method. RESULTS The IGF1 rs6214 "AA + AG" genotype compared with the "GG" genotype appeared to be a marker of decreased NAFLD susceptibility (p = .006; OR = 0.47, 95%CI = 0.28-0.80). Furthermore, the IGF1 rs6214 "A" allele was underrepresented in the cases than controls (p = .024; OR = 0.61, 95%CI = 0.40-0.94). However, we observed no significant difference in genotype or allele frequencies between the cases and controls for IGFBP3 gene. CONCLUSIONS To our knowledge, these findings suggest, for the first time, that the IGF1 rs6214 "A" allele and "AA + AG" genotype have protective effects for NAFLD susceptibility. Nonetheless, further studies are needed to validate our findings.
Collapse
Affiliation(s)
| | - Touraj Mahmoudi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gholamreza Rezamand
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamid Farahani
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hossein Nobakht
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Reza Dabiri
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Fariborz Mansour-Ghanaei
- Division of Gastroenterology and Hepatology, Gastrointestinal and Liver Diseases Research Center (GLDRC), Guilan University of Medical Sciences, Rasht, Iran
| | - Faramarz Derakhshan
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
248
|
Fujii H, Iwaki M, Hayashi H, Toyoda H, Oeda S, Hyogo H, Kawanaka M, Morishita A, Munekage K, Kawata K, Yamamura S, Sawada K, Maeshiro T, Tobita H, Yoshida Y, Naito M, Araki A, Arakaki S, Kawaguchi T, Noritake H, Ono M, Masaki T, Yasuda S, Tomita E, Yoneda M, Kawada N, Tokushige A, Kamada Y, Takahashi H, Ueda S, Aishima S, Sumida Y, Nakajima A, Okanoue T. Clinical Outcomes in Biopsy-Proven Nonalcoholic Fatty Liver Disease Patients: A Multicenter Registry-based Cohort Study. Clin Gastroenterol Hepatol 2023; 21:370-379. [PMID: 35051649 DOI: 10.1016/j.cgh.2022.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS There are no detailed reports of clinical outcomes in Asian patients with nonalcoholic fatty liver disease (NAFLD) who undergo liver biopsy. We aimed to investigate the clinical outcomes of a large cohort of Asian patients with biopsy-proven NAFLD and evaluate the specific effects of nonalcoholic steatohepatitis and fibrosis stage. METHODS This multicenter registry-based retrospective cohort study, called the CLIONE (Clinical Outcome Nonalcoholic Fatty Liver Disease) in Asia, included 1398 patients. RESULTS The median follow-up period was 4.6 years (range, 0.3-21.6 years), representing a total of 8874 person-years of follow-up. During that time, 47 patients died, and 1 patient underwent orthotopic liver transplantation. The leading cause of death was nonhepatic cancer (n = 10). The leading causes of liver-related death were liver failure (n = 9), hepatocellular carcinoma (HCC) (n = 8), and cholangiocellular carcinoma (n = 4). During follow-up, 37 patients developed HCC, 31 developed cardiovascular disease, and 68 developed nonhepatic cancer (mainly breast, stomach, and colon/rectum). Among our cohort of patients with NAFLD, liver-specific mortality was 2.34/1000 person-years (95% confidence interval [CI], 1.52-3.58), overall mortality was 5.34/1000 person-years (95% CI, 4.02-7.08), and HCC incidence was 4.17/1000 person-years (95% CI, 3.02-5.75). Liver fibrosis was independently associated with liver-related events but not overall mortality. CONCLUSIONS Liver-related mortality was the leading cause of mortality in Asian patients with biopsy-confirmed NAFLD. Although fibrosis stage was independently associated with liver-related events, it was not associated with overall mortality after adjusting for confounders, such as histologic features of steatohepatitis.
Collapse
Affiliation(s)
- Hideki Fujii
- Departments of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan; Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Michihiro Iwaki
- Division of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideki Hayashi
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoshi Oeda
- Liver Center, Saga University Hospital, Saga, Japan; Department of Laboratory Medicine, Saga University Hospital, Saga, Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology, JA Hiroshima Kouseiren General Hospital, Hatsukaichi, Hiroshima, Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical Center, Kawasaki Medical School, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kensuke Munekage
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Sakura Yamamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Koji Sawada
- Liver Disease Care Unit, Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Japan; Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuji Maeshiro
- First Department of Internal Medicine, University of the Ryukyus Hospital, Okinawa, Japan
| | - Hiroshi Tobita
- Division of Hepatology, Shimane University Hospital, Shimane, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka, Japan
| | - Masafumi Naito
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka, Japan
| | - Asuka Araki
- Division of Hepatology, Shimane University Hospital, Shimane, Japan
| | - Shingo Arakaki
- First Department of Internal Medicine, University of the Ryukyus Hospital, Okinawa, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hidenao Noritake
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masafumi Ono
- Division of Innovative Medicine for Hepatobiliary & Pancreatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Eiichi Tomita
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
| | - Masato Yoneda
- Division of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Akihiro Tokushige
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | | | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Aichi, Karimata, Japan.
| | - Atsushi Nakajima
- Division of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Okanoue
- Hepatology Center, Saiseikai Suita Hospital, Suita, Osaka, Japan
| |
Collapse
|
249
|
Leow WQ, Chan AWH, Mendoza PGL, Lo R, Yap K, Kim H. Non-alcoholic fatty liver disease: the pathologist's perspective. Clin Mol Hepatol 2023; 29:S302-S318. [PMID: 36384146 PMCID: PMC10029955 DOI: 10.3350/cmh.2022.0329] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of diseases characterized by fatty accumulation in hepatocytes, ranging from steatosis, non-alcoholic steatohepatitis, to cirrhosis. While histopathological evaluation of liver biopsies plays a central role in the diagnosis of NAFLD, limitations such as the problem of interobserver variability still exist and active research is underway to improve the diagnostic utility of liver biopsies. In this article, we provide a comprehensive overview of the histopathological features of NAFLD, the current grading and staging systems, and discuss the present and future roles of liver biopsies in the diagnosis and prognostication of NAFLD.
Collapse
Affiliation(s)
- Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | - Regina Lo
- Department of Pathology and State Key Laboratory of Liver Research (HKU), The University of Hong Kong, Hong Kong, China
| | - Kihan Yap
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
250
|
Lin D, Sun Q, Liu Z, Pan J, Zhu J, Wang S, Jia S, Zheng M, Li X, Gong F. Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice. Free Radic Biol Med 2023; 195:199-218. [PMID: 36586452 DOI: 10.1016/j.freeradbiomed.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, inflammation, and fibrosis, as well as gut dysbiosis. Fibroblast growth factor 21 (FGF21), which regulates glucose and lipid metabolism, has been proven to have a good effect on NAFLD. However, the modulating process between FGF21 and gut microbiota remains unclear in treating NAFLD. Here, the fecal microbiota composition of 30 patients with NAFLD who had undergone liver biopsy and 29 matched healthy participants were studied, together with the fecal bile acid (BA) profile. Treatment with FGF21 was given in methionine-choline-deficient (MCD) diet-induced NAFLD model C57BL/6 mice. An antibiotic cocktail and fecal microbiota transplantation were used to further confirm the benefits of FGF21 that were partially attributable to the change in gut microbiota. Patients with NAFLD had higher serum FGF21 levels and dysregulated fecal microbiota compositions and fecal BA profiles. In NAFLD mice, FGF21 significantly reduced steatohepatitis and collagen deposition in vivo and restored intestinal structure. FGF21 treatment also changed gut microbiota composition and regulated dysbiosis in BA metabolism. After treatment with an antibiotic cocktail, FGF21 partially alleviated hepatic and intestinal damage in NAFLD mice. Furthermore, fecal microbiota transplantation from FGF21-treated mice showed benefits similar to FGF21 therapy. The improvement using FGF21 in MCD diet-induced NAFLD mice is partially mediated via gut microbiota and BA. Gut microbiota-regulated BA metabolism may be a potential target of FGF21 in improving NAFLD.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiyan Sun
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhaoyang Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiaxuan Pan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shangwen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sining Jia
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Minghua Zheng
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|