201
|
Huehne K, Zweier C, Raab K, Odent S, Bonnaure-Mallet M, Sixou JL, Landrieu P, Goizet C, Sarlangue J, Baumann M, Eggermann T, Rauch A, Ruppert S, Stettner GM, Rautenstrauss B. Novel missense, insertion and deletion mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) associated with congenital insensitivity to pain with anhidrosis. Neuromuscul Disord 2008; 18:159-66. [PMID: 18077166 DOI: 10.1016/j.nmd.2007.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 09/04/2007] [Accepted: 10/30/2007] [Indexed: 11/15/2022]
Abstract
Hereditary sensory and autonomic neuropathy type IV (HSAN IV) or congenital insensitivity to pain with anhidrosis (CIPA) is an autosomal-recessive disorder affecting the neurotrophin signal transduction pathway. HSAN IV is characterized by absence of reaction to noxious stimuli, recurrent episodes of fever, anhidrosis, self mutilating behaviour and frequent mental retardation. Mutations in the neurotrophic tyrosine kinase receptor type 1 (NTRK1) are associated with this disorder. We investigated NTRK1 mutations in five HSAN IV patients and one less typical patient with hypohidrosis, insensitivity to pain as well as motor- and sensory deficits in the peripheral nervous system. For the HSAN IV patients we identified a homozygous missense mutation (p.I572S), a homozygous deletion of 1985bp (g.7335164-7336545del), a homozygous insertion c.722_723insC in exon 7 and two compound heterozygous mutations (p.Q558X+p.L717R). The less typical patient as well as one HSAN IV patient revealed no NTRK1 mutation.
Collapse
Affiliation(s)
- Kathrin Huehne
- University Hospital Erlangen, Institute of Human Genetics, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Troeger A, Gudowius S, Escherich G, den Boer ML, Glouchkova L, Ackermann B, Meisel R, Laws HJ, Groeger M, Wessalowski R, Willers R, Harbott J, Pieters R, Goebel U, Janka-Schaub GE, Hanenberg H, Dilloo D. High nerve growth factor receptor (p75NTR) expression is a favourable prognostic factor in paediatric B cell precursor-acute lymphoblastic leukaemia. Br J Haematol 2008; 139:450-7. [PMID: 17910636 DOI: 10.1111/j.1365-2141.2007.06818.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nerve growth factor (NGF) plays a pivotal role in cellular survival/death decisions with the low affinity receptor p75NTR predominately transmitting anti-proliferative signals. In spite of its established role in B-cell function and identification as a prognostically favourable marker in a number of malignancies, little is known about the expression pattern and prognostic significance of p75NTR in B cell precursor-acute lymphoblastic leukaemia (BCP-ALL). p75NTR expression was prospectively studied on primary ALL-blasts in a cohort of paediatric patients with common ALL (n = 86) and preB-ALL (n = 34) treated within the Co-operative study group for childhood acute lymphoblastic leukaemia (CoALL) protocol, CoALL06-97. Flow cytometric analysis showed that almost half of the patients expressed no or negligible amounts of p75NTR (<10%). The median expression in patients expressing p75NTR beyond that threshold was 49% (range 11-100%). In patients classified as low-risk at diagnosis, p75NTR expression was significantly higher than in high-risk patients (P = 0.001). Of note, p75NTR expression was lower in the 21 patients who subsequently developed relapse compared with those remaining in remission (P = 0.038). Accordingly, relapse-free survival was significantly better in patients expressing high surface p75NTR (P = 0.041). Thus, in this prospective analysis, high p75NTR expression was a strong prognostic marker that identified a group of paediatric ALL patients with favourable outcome.
Collapse
Affiliation(s)
- Anja Troeger
- Clinic for Paediatric Haematology, Oncology and Immunology, Heinrich Heine University, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Samah B, Porcheray F, Gras G. Neurotrophins modulate monocyte chemotaxis without affecting macrophage function. Clin Exp Immunol 2008; 151:476-86. [PMID: 18190610 DOI: 10.1111/j.1365-2249.2007.03578.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurotrophins nerve growth factor (NGF), brain-derived growth factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) and their high-affinity tyrosine protein kinase receptor (Trk) family, TrkA, TrkB, TrkC, and low-affinity p75(NTR) receptor, are key molecules implicated in the development of the central nervous system. Increasing evidence suggests that they also have physiological and pathological roles outside the nervous system. In this study we examined the expression of neurotrophins and their receptors in human activated macrophages and to what extent neurotrophins themselves modulate macrophage activation, in a model of primary adult monocyte-derived macrophage. Our data indicate that macrophages express neurotrophin and neurotrophin receptor genes differentially, and respond to cell stimulation by specific inductions. Neurotrophins did not modify the antigen-presenting capacities of macrophages or their production of proinflammatory cytokines, but somehow skewed their activation phenotype. In contrast, NGF clearly increased CXCR-4 expression in macrophage and their chemotactic response to low CXCL-12 concentration. The differential effect of specific macrophage stimuli on neurotrophin expression, in particular NGF and NT-3, and the specific enhancement of CXCR-4 expression suggest that neurotrophins might participate in tissue-healing mechanisms that should be investigated further in vivo.
Collapse
Affiliation(s)
- B Samah
- CEA, DSV, iMETI, SIV, UMR E-01 Université Paris Sud, IFR13 Institut Paris Sud Cytokines, Service d'Immuno-Virologie, Fontenay-aux Roses, France
| | | | | |
Collapse
|
204
|
Yokoyama T, Kumon H, Nagai A. Correlation of urinary nerve growth factor level with pathogenesis of overactive bladder. Neurourol Urodyn 2008; 27:417-20. [DOI: 10.1002/nau.20519] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
205
|
Mizuno S, Takebayashi T, Kirita T, Tanimoto K, Tohse N, Yamashita T. The effects of the sympathetic nerves on lumbar radicular pain. ACTA ACUST UNITED AC 2007; 89:1666-72. [DOI: 10.1302/0301-620x.89b12.19258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A rat model of lumbar root constriction with an additional sympathectomy in some animals was used to assess whether the sympathetic nerves influenced radicular pain. Behavioural tests were undertaken before and after the operation. On the 28th post-operative day, both dorsal root ganglia and the spinal roots of L4 and L5 were removed, frozen and sectioned on a cryostat (8 μm to 10 μm). Immunostaining was then performed with antibodies to tyrosine hydroxylase (TH) according to the Avidin Biotin Complex method. In order to quantify the presence of sympathetic nerve fibres, we counted TH-immunoreactive fibres in the dorsal root ganglia using a light microscope equipped with a micrometer graticule (10 x 10 squares, 500 mm x 500 mm). We counted the squares of the graticule which contained TH-immunoreactive fibres for each of five randomly-selected sections of the dorsal root ganglia. The root constriction group showed mechanical allodynia and thermal hyperalgesia. In this group, TH-immunoreactive fibres were abundant in the ipsilateral dorsal root ganglia at L5 and L4 compared with the opposite side. In the sympathectomy group, mechanical hypersensitivity was attenuated significantly. We consider that the sympathetic nervous system plays an important role in the generation of radicular pain.
Collapse
Affiliation(s)
| | | | | | | | - N. Tohse
- Department of Cellular Physiology and Signal Transduction School of Medicine Sapporo Medical University, South 1, West 16 & 17, Chuo-ku, Sapporo 060–8543, Japan
| | | |
Collapse
|
206
|
Fuenzalida K, Quintanilla R, Ramos P, Piderit D, Fuentealba RA, Martinez G, Inestrosa NC, Bronfman M. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 2007; 282:37006-15. [PMID: 17965419 DOI: 10.1074/jbc.m700447200] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPARgamma agonists preventbeta-amyloid (Abeta)-induced neurodegeneration in hippocampal neurons, and PPARgamma is activated by the nerve growth factor (NGF) survival pathway, suggesting a neuroprotective anti-inflammatory independent action. Here we show that the PPARgamma agonist rosiglitazone (RGZ) protects hippocampal and dorsal root ganglion neurons against Abeta-induced mitochondrial damage and NGF deprivation-induced apoptosis, respectively, and promotes PC12 cell survival. In neurons and in PC12 cells RGZ protective effects are associated with increased expression of the Bcl-2 anti-apoptotic protein. NGF-differentiated PC12 neuronal cells constitutively overexpressing PPARgamma are resistant to Abeta-induced apoptosis and morphological changes and show functionally intact mitochondria and no increase in reactive oxygen species when challenged with up to 50 microM H2O2. Conversely, cells expressing a dominant negative mutant of PPARgamma show increased Abeta-induced apoptosis and disruption of neuronal-like morphology and are highly sensitive to oxidative stress-induced impairment of mitochondrial function. Cells overexpressing PPARgamma present a 4- to 5-fold increase in Bcl-2 protein content, whereas in dominant negative PPARgamma-expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown by small interfering RNA in cells overexpressing PPARgamma results in increased sensitivity to Abeta and oxidative stress, further suggesting that Bcl-2 up-regulation mediates PPARgamma protective effects. PPARgamma prosurvival action is independent of the signal-regulated MAPK or the Akt prosurvival pathways. Altogether, these data suggest that PPARgamma supports survival in neurons in part through a mechanism involving increased expression of Bcl-2.
Collapse
Affiliation(s)
- Karen Fuenzalida
- Centro de Regulación Celular y Patologia Joaquín V. Luco and Millennium Institute for Fundamental and Applied Biology, Department of Cellular and Molecular Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Chu GKT, Yu W, Fehlings MG. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Neuroscience 2007; 148:668-82. [PMID: 17706365 DOI: 10.1016/j.neuroscience.2007.05.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 05/03/2007] [Accepted: 05/17/2007] [Indexed: 01/08/2023]
Abstract
The mechanisms initiating post-spinal cord injury (SCI) apoptotic cell death remain incompletely understood. The p75 neurotrophin receptor (p75(NTR)) has been shown to exert both pro-survival and pro-apoptotic effects on neural cells in vitro. While a previous study had shown that there is decreased oligodendrocyte apoptosis distal to a clean partial transection injury of the cord in mice with nonfunctional p75(NTR), most human spinal cord injuries do not involve partial transections but are rather due to compression/contusion injuries with significant perilesional ischemia. Therefore, we sought to examine the role of the p75(NTR) in a clinically relevant clip compression model of SCI in p75 null mice with an exon III mutation. Mice with a functional p75(NTR) had increased caspase-9 activation at 3 days after SCI in comparison to the functionally deficient p75(NTR) mice. However, at 7 days following SCI there was no difference in the activation of the effector caspases (caspase-3 and caspase-6) at the spinal cord lesion. Moreover, at 7 days after injury, there was increased terminal deoxynucleotidyl transferase-mediated dUTP nick-end (TUNEL) positive cell death at the injury site in the functionally deficient p75(NTR) mice. Using double labeling with TUNEL and cell specific markers we showed that the absence of p75(NTR) function increased the extent of neuronal but not oligodendroglial cell death at the injury site. This selective loss of neuronal cells after SCI was confirmed with a decrease in levels of microtubule-associated protein 2 in the p75 null mice. Furthermore, the wild-type animals had dramatically improved survival and enhanced locomotor recovery at 8 weeks after SCI when compared with the p75(NTR) null mice. Also at 8 weeks, there were significantly more neurons present at the injury site of wild-type mice when compared with p75 null mice. We conclude that the p75(NTR) receptor is integral to neuronal cell survival and endogenous reparative mechanisms after compressive/contusive SCI.
Collapse
Affiliation(s)
- G K T Chu
- Division of Neurosurgery, Toronto Western Research Institute, The Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, University of Toronto, McLaughlin Pavilion, McL 12-407, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|
208
|
Tseng SCG, Espana EM, Kawakita T, Di Pascuale MA, Li W, He H, Liu TS, Cho TH, Gao YY, Yeh LK, Liu CY. How does amniotic membrane work? Ocul Surf 2007; 2:177-87. [PMID: 17216089 DOI: 10.1016/s1542-0124(12)70059-9] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transplantation of amniotic membrane as a temporary or permanent graft promotes epithelial wound healing and exerts potent anti-inflammatory and anti-scarring effects on the ocular surface. These actions depend on the killing of allogeneic amniotic cells and preservation of the cytokine-containing matrix during the preparation of the amniotic membrane. This review describes how these actions inherently operate in utero and how amniotic membrane transplantation aims to recreate such a fetal environment to exert these actions by insulating the surgical site from the host environment. These actions also render the amniotic membrane a unique niche capable of expanding both epithelial and mesenchymal progenitor cells ex vivo, while maintaining their normal cell phenotypes. As a result, the amniotic membrane becomes an ideal substrate for engineering different types of ocular surface tissues for transplantation. Further studies investigating the exact molecular mechanism by which the amniotic membrane works will undoubtedly unravel additional applications in reconstruction and engineering of both ocular and nonocular tissues in the burgeoning field of regenerative medicine.
Collapse
|
209
|
Hattori N, Nomoto H, Fukumitsu H, Mishima S, Furukawa S. Royal jelly-induced neurite outgrowth from rat pheochromocytoma PC12 cells requires integrin signal independent of activation of extracellular signal-regulated kinases. ACTA ACUST UNITED AC 2007; 28:139-46. [PMID: 17625346 DOI: 10.2220/biomedres.28.139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We showed earlier that neurite outgrowth of rat pheochromocytoma PC12 cells was stimulated by royal jelly extract (PERJ) or its unique component, AMP N(1)-oxide, via adenosine A2a receptors. In this study, we found that stimulated neurite outgrowth occurred in medium supplemented with serum, but not in serum-free medium. The pentapeptide GRGDS, which includes the RGD sequence commonly shared by extracellular matrix (ECM) components, could attenuate the effect of serum, suggesting that integrin receptor signaling was essential for the neurite outgrowth induced by PERJ or AMP N(1)-oxide. PERJ or AMP N(1)-oxide also activated extracellular signal-regulated kinases 1 or 2 (ERK1/2); however, this activation was not associated with the neurite outgrowth. As it is known that Mn(2+) induces neurite outgrowth from PC12 cells and activates ERK1/2 through integrin signals and that activation of ERK1/2 is essential for Mn2+-induced neurite outgrowth, a difference in the mechanism between Mn(2+)-induced and PERJ- or AMP N(1)-oxide-induced neurite outgrowth is suggested. Furthermore, we demonstrated that PERJ contained no ECM component-like substances. These results demonstrate that AMP N(1)-oxide and its analogues were the only entities in PERJ with neurite outgrowth-inducing activity and that they required integrin signaling in addition to activation of A2a receptors to induce neurite outgrowth.
Collapse
Affiliation(s)
- Noriko Hattori
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | |
Collapse
|
210
|
Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther 2007; 117:52-76. [PMID: 17915332 DOI: 10.1016/j.pharmthera.2007.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 11/16/2022]
Abstract
The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.
Collapse
Affiliation(s)
- V Freund-Michel
- EA 3771 Inflammation and Environment in Asthma, University Louis Pasteur-Strasbourg I, Faculty of Pharmacy, Illkirch, France.
| | | |
Collapse
|
211
|
Friedman WJ. Interactions of interleukin-1 with neurotrophic factors in the central nervous system: beneficial or detrimental? Mol Neurobiol 2007; 32:133-44. [PMID: 16215278 DOI: 10.1385/mn:32:2:133] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interleukin (IL)-1 is a multifunctional cytokine that plays a key role in mediating inflammation in the brain. Many different cell types in the brain express the IL-1 receptor and respond to this cytokine by activating cell-type-specific signaling pathways leading to distinct functional responses, which collectively comprise the inflammatory response in the brain. One key effect of IL-1 in the brain is the induction of trophic factor production by glial cells, which has traditionally been considered a neuroprotective response to injury or disease. However, recent studies have shown that nerve growth factor, which is regulated by IL-1, can induce neuronal survival or apoptosis via different receptors. This article examines the interaction of IL-1 with different trophic factors in the brain.
Collapse
Affiliation(s)
- Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
212
|
Abstract
The peripheral nervous system has the intrinsic capacity to regenerate but the reinnervation of muscles is often suboptimal and results in limited recovery of function. Injuries to nerves that innervate complex organs such as the larynx are particularly difficult to treat. The many functions of the larynx have evolved through the intricate neural regulation of highly specialized laryngeal muscles. In this review, we examine the responses of nerves and muscles to injury, focusing on changes in the expression of neurotrophic factors, and highlight differences between the skeletal limb and laryngeal muscle systems. We also describe how artificial nerve conduits have become a useful tool for delivery of neurotrophic factors as therapeutic agents to promote peripheral nerve repair and might eventually be useful in the treatment of laryngeal nerve injury.
Collapse
Affiliation(s)
- Paul J Kingham
- Blond McIndoe Research Laboratories, University of Manchester, Manchester, UK.
| | | |
Collapse
|
213
|
Gupta S, Indelicato SR, Jethwa V, Kawabata T, Kelley M, Mire-Sluis AR, Richards SM, Rup B, Shores E, Swanson SJ, Wakshull E. Recommendations for the design, optimization, and qualification of cell-based assays used for the detection of neutralizing antibody responses elicited to biological therapeutics. J Immunol Methods 2007; 321:1-18. [PMID: 17307199 DOI: 10.1016/j.jim.2006.12.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 11/29/2006] [Accepted: 12/06/2006] [Indexed: 11/25/2022]
Abstract
The administration of biological therapeutics can evoke some level of immune response to the drug product in the receiving subjects. An immune response comprised of neutralizing antibodies can lead to loss of efficacy or potentially more serious clinical sequelae. Therefore, it is important to monitor the immunogenicity of biological therapeutics throughout the drug product development cycle. Immunoassays are typically used to screen for the presence and development of anti-drug product antibodies. However, in-vitro cell-based assays prove extremely useful for the characterization of immunoassay-positive samples to determine if the detected antibodies have neutralizing properties. This document provides scientific recommendations based on the experience of the authors for the development of cell-based assays for the detection of neutralizing antibodies in non-clinical and clinical studies.
Collapse
Affiliation(s)
- Shalini Gupta
- Clinical Immunology, Amgen Inc., Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Hereditäre sensorische und autonome Neuropathie Typ IV. Monatsschr Kinderheilkd 2007. [DOI: 10.1007/s00112-005-1106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
215
|
Wehrman T, He X, Raab B, Dukipatti A, Blau H, Garcia KC. Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 2007; 53:25-38. [PMID: 17196528 DOI: 10.1016/j.neuron.2006.09.034] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 08/15/2006] [Accepted: 09/22/2006] [Indexed: 12/23/2022]
Abstract
Nerve growth factor engages two structurally distinct transmembrane receptors, TrkA and p75, which have been proposed to create a "high-affinity" NGF binding site through formation of a ternary TrkA/NGF/p75 complex. To define a structural basis for the high-affinity site, we have determined the three-dimensional structure of a complete extracellular domain of TrkA complexed with NGF. The complex reveals a crab-shaped homodimeric TrkA structure, but a mechanism for p75 coordination is not obvious. We investigated the heterodimerization of membrane-bound TrkA and p75, on intact mammalian cells, using a beta-gal protein-protein interaction system. We find that NGF dimerizes TrkA and that p75 exists on the cell surface as a preformed oligomer that is not dissociated by NGF. We find no evidence for a direct TrkA/p75 interaction. We propose that TrkA and p75 likely communicate through convergence of downstream signaling pathways and/or shared adaptor molecules, rather than through direct extracellular interactions.
Collapse
Affiliation(s)
- Tom Wehrman
- Baxter Laboratory for Genetic Pharmacology, Department of Microbiology and Immunology, The Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
216
|
|
217
|
Ugolini G, Marinelli S, Covaceuszach S, Cattaneo A, Pavone F. The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain. Proc Natl Acad Sci U S A 2007; 104:2985-90. [PMID: 17301229 PMCID: PMC1815293 DOI: 10.1073/pnas.0611253104] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nerve growth factor (NGF) is involved in pain transduction mechanisms and plays a key role in many persistent pain states, notably those associated with inflammation. On this basis, both the NGF ligand and its receptor TrkA (tyrosine kinase A) represent an eligible target for pain therapy. Although the direct involvement of NGF in pain modulation is well established, the effect of a direct functional block of the TrkA receptor is still unknown. In this study, we have demonstrated that MNAC13, the only anti-TrkA monoclonal antibody for which function neutralizing properties have been clearly shown both in vitro and in vivo, induces analgesia in both inflammatory and neuropathic pain models, with a surprisingly long-lasting effect in the latter. The formalin-evoked pain licking responses are significantly reduced by the MNAC13 antibody in CD1 mice. Remarkably, treatment with the anti-TrkA antibody also produces a significant antiallodynic effect on neuropathic pain: repeated i.p. injections of MNAC13 induce significant functional recovery in mice subjected to sciatic nerve ligation, with effects persisting after administration. Furthermore, a clear synergistic effect is observed when MNAC13 is administered in combination with opioids, at doses that are not efficacious per se. This study represents a direct demonstration that neutralizing antibodies directed against the TrkA receptor may display potent analgesic effects in inflammatory and chronic pain.
Collapse
Affiliation(s)
| | - Sara Marinelli
- *Lay Line Genomics, Via di Castel Romano 100, 00128 Rome, Italy
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Psychobiology, and Psychopharmacology, Via del Fosso di Fiorano 64, 00143 Rome, Italy; and
| | | | - Antonino Cattaneo
- *Lay Line Genomics, Via di Castel Romano 100, 00128 Rome, Italy
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Flaminia Pavone
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Psychobiology, and Psychopharmacology, Via del Fosso di Fiorano 64, 00143 Rome, Italy; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
218
|
Lanave C, Colangelo AM, Saccone C, Alberghina L. Molecular evolution of the neurotrophin family members and their Trk receptors. Gene 2007; 394:1-12. [PMID: 17379456 DOI: 10.1016/j.gene.2007.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/11/2006] [Accepted: 01/18/2007] [Indexed: 12/23/2022]
Abstract
Neurotrophins are structurally related proteins regulating brain development and function. Molecular evolution studies of neurotrophins and their receptors are essential for understanding the mechanisms underlying the coevolution processes of these gene families and how they correlate with the increased complexity of the vertebrate nervous system. In order to improve our current knowledge of the molecular evolution of neurotrophins and receptors, we have collected all information available in the literature and analyzed the genome database for each of them. Statistical analysis of aminoacid and nucleotide sequences of the neurotrophin and Trk family genes was applied to both complete genes and mature sequences, and different phylogenetic methods were used to compare aminoacid and nucleotide sequences variability among the different species. All collected data favor a model in which several rounds of genome duplications might have facilitated the generation of the many different neurotrophins and the acquisition of specific different functions correlated with the increased complexity of the vertebrate nervous system during evolution. We report findings that refine the structure of the evolutionary trees for neurotrophins and Trk receptors families, indicate different rates of evolution for each member of the two families, and newly demonstrate that the NGF-like genes found in Fowlpox and Canarypox viruses are closely related to reptile NGF.
Collapse
Affiliation(s)
- Cecilia Lanave
- Institute for Biomedical Technologies, ITB-CNR, Bari, Italy
| | | | | | | |
Collapse
|
219
|
Takano N, Sakurai T, Ohashi Y, Kurachi M. Effects of high-affinity nerve growth factor receptor inhibitors on symptoms in the NC/Nga mouse atopic dermatitis model. Br J Dermatol 2007; 156:241-6. [PMID: 17223862 DOI: 10.1111/j.1365-2133.2006.07636.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nerve growth factor (NGF) is an important substance in the skin, where it modulates nerve maintenance and repair. However, the direct link between NGF and pruritic diseases such as atopic dermatitis is not yet fully understood. Our previous study showed that NGF plays an important role in the pathogenesis of atopic dermatitis-like skin lesions in NC/Nga mice. NGF mediates its effects by binding to two classes of transmembrane receptors, a high-affinity receptor (tropomyosin-related kinase A, TrkA) and a low-affinity receptor (p75). OBJECTIVES To determine the significance of NGF receptors in the pathogenesis of atopic dermatitis, the effects of TrkA inhibitors AG879 and K252a on the symptoms of NC/Nga mice were evaluated. METHODS Male NC/Nga mice with severe skin lesions were used. AG879 or K252a was applied to the rostral part of the back of mice five times a week. The dermatitis score for the rostral back was assessed once a week. The scratching behaviour was measured using an apparatus, MicroAct (Neuroscience, Tokyo, Japan). Immunofluorescence examinations were made in the rostral back skin for nerve fibres, NGF and TrkA receptor. RESULTS Repeated applications of AG879 or K252a significantly improved the established dermatitis and scratching behaviour, and decreased nerve fibres in the epidermis. NGF was observed more weakly in keratinocytes, and a lower expression of TrkA was observed in stratum germinativum of the epidermis of mice treated with AG879 or K252a compared with those treated with vehicle. CONCLUSIONS We suggest that NGF plays an important role in the pathogenesis of atopic dermatitis-like skin lesions via the high-affinity NGF receptor. These findings provide a new potential therapeutic approach for the amelioration of symptoms of atopic dermatitis.
Collapse
Affiliation(s)
- N Takano
- Pharmacological Evaluation Laboratory, Self Medication Laboratories, Medicinal Development Research Laboratories, Taisho Pharmaceutical Co Ltd, Saitama City, Saitama, Japan.
| | | | | | | |
Collapse
|
220
|
Jung KH, Kim DH, Paik JY, Ko BH, Bae JS, Choe YS, Lee KH, Kim BT. Pharmacokinetics and biodistribution of a small radioiodine labeled nerve growth factor fragment. Ann Nucl Med 2007; 20:535-40. [PMID: 17134020 DOI: 10.1007/bf03026817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nerve growth factor (NGF) exerts various actions on neuronal and non-neuronal tissues and has potential therapeutic utility, but difficulties in using the whole protein have stimulated interest in small NGF fragments. We radioiodinated a small cyclic peptide derived from NGF using the Bolton-Hunter method [125I-C(92-96)], and confirmed binding to high affinity NGF receptors by cross-linkage analysis. Pharmacokinetic characteristics in intravenously injected mice were T 1/2 alpha 5.2 min, T 1/2beta 121.3 min, clearance 11.8+/-0.5 ml/min, and volume of distribution 69.7+/-4.6 ml. Dose-proportionate increases in areas-under-curve and peak-concentrations indicated linear pharmacokinetics. Biodistribution data revealed that clinically relevant doses allowed C(92-96) accumulation sufficient to elicit biological responses in receptor expressing organs including the lungs, liver, spleen, and pancreas.
Collapse
Affiliation(s)
- Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
Neurotrophins provide trophic and tropic support for different neuronal subpopulations in the developing and adult nervous systems. Expression of the neurotrophins and their receptors can be altered in several different disease or injury states that impact upon the functions in the central and peripheral nervous systems. The intracellular signals used by the neurotrophins are triggered by ligand binding to the cell surface Trk and p75NTR receptors. In general, signals emanating from Trk receptors support survival, growth and synaptic strengthening, while those emanating from p75NTR induce apoptosis, attenuate growth and weaken synaptic signaling. Mature neurotrophins are the preferred ligand for Trk proteins while p75NTR binds preferentially to the proneurotrophins and serves as a signaling component of the receptor complex for growth inhibitory molecules of central nervous system myelin [ie, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgP) and Nogo]. The functional antagonism between Trk and p75NTR signaling may significantly impact the pathogenesis of human neurodevelopmental and neurodegenerative diseases and further complicate therapeutic uses of exogenous neurotrophins. The potential for each is discussed in this review.
Collapse
Affiliation(s)
- Jeffery L Twiss
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | |
Collapse
|
222
|
Abstract
Neurotrophins are a small family of dimeric secretory proteins in vertebrate neurons with a broad spectrum of functions. They are generated as pro-proteins with a functionality that is distinct from the proteolytically processed form. The cellular responses of neurotrophins are mediated by three different types of receptor proteins, the receptor tyrosine kinases of the Trk family, the neurotrophin receptor p75(NTR), which is a member of the tumor necrosis factor receptor (TNFR) superfamily, and sortilin, previously characterized as neurotensin receptor. Recent studies have revealed an intriguing pattern: neurotrophins can elicit opposing signals utilising their variable configuration and different receptor types.
Collapse
Affiliation(s)
- Rüdiger Schweigreiter
- Biocenter Innsbruck, Division of Neurobiochemistry, Medical University Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck Innsbruck, Austria.
| |
Collapse
|
223
|
Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A. Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 2006; 143:175-87. [PMID: 16949762 DOI: 10.1016/j.neuroscience.2006.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 07/04/2006] [Accepted: 07/18/2006] [Indexed: 12/22/2022]
Abstract
Several studies have suggested that acid-sensing ion channel 2 (ASIC2) plays a role in mechanoperception and acid sensing in the peripheral nervous system. We examined the expression and distribution of ASIC2 in the rat dorsal root ganglion, the co-localization of ASIC2 with tropomyosin-related kinase (trk) receptors, and the effects of axotomy on ASIC2 expression. ASIC2 immunoreactivity was observed in both neurons and satellite cells. ASIC2-positive neurons accounted for 16.5 +/- 2.4% of the total neurons in normal dorsal root ganglion. Most ASIC2-positive neurons were medium-to-large neurons and were labeled with neurofilament 200 kD (NF200). Within these neurons, ASIC2 was not evenly distributed throughout the cytoplasm, but rather was accumulated prominently in the cytoplasm adjacent to the axon hillock and axonal process. We next examined the co-localization of ASIC2 with trk receptors. trkA was expressed in few ASIC2-positive neurons, and trkB and trkC were observed in 85.2% and 53.4% of ASIC2-positive neurons, respectively, while only 6.9% of ASIC2-positive neurons were co-localized with trkC alone. Peripheral axotomy markedly reduced ASIC2 expression in the axotomized dorsal root ganglion neurons. On the other hand, intense ASIC2 staining was observed in satellite cells. These results show that ASIC2 is expressed in the distinct neurochemical population of sensory neurons as well as satellite cells, and that peripheral axotomy induced marked reductions in ASIC2 in neurons.
Collapse
Affiliation(s)
- T Kawamata
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
224
|
Sossin WS. Tracing the evolution and function of the Trk superfamily of receptor tyrosine kinases. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:145-56. [PMID: 16912468 DOI: 10.1159/000094084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most growth factors and their receptors have been strongly conserved during evolution. In contrast, Trks (Tropomyosin-related kinases) and related receptors in the Trk superfamily, Rors (receptor tyrosine kinase-like orphan receptors), Musks (muscle specific kinases) and Ddrs (discoidin domain receptor family), appear to be ancient, but their function has been lost in multiple lineages and the roles for the receptors have been modified over time. We will trace the evolution of the Trk superfamily and discuss possible conserved functional roles, including a unifying theme of target recognition by growing axons. We present an analogy between the evolution of G-protein-coupled receptors and receptor tyrosine kinases (RTKs), proposing that an important driving force for the divergence of receptors is the ease of divergence of their ligands.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.
| |
Collapse
|
225
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
226
|
Chen MH, Chen PR, Chen MH, Hsieh ST, Lin FH. Gelatin-tricalcium phosphate membranes immobilized with NGF, BDNF, or IGF-1 for peripheral nerve repair: An in vitro and in vivo study. J Biomed Mater Res A 2006; 79:846-57. [PMID: 16886221 DOI: 10.1002/jbm.a.30813] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, NGF, BNDF from the neurotrophin family and IGF-1 were covalently immobilized on gelatin-tricalcium phosphate (GTG) membrane using carbodiimide. We investigated the effects of these growth factors released from the GTG composites on cultured PC12 cells and sciatic nerve regeneration across a 10-mm-long gap in rats. In PC12 cell culture, the total protein content and MTT assay indicated more cell attachment on the composites modified with growth factors. The IGF-1 group showed a higher survival promotion effect on PC12 cells than did BDNF and NGF groups. On the other hand, NGF released from the composite showed the highest level of neuritogenesis for PC12 cells in neurite outgrowth assay. In the animal study, the GTG conduits modified with various growth factors were well tolerated by the host tissue. In the regenerated nerves, the number of the axons per unit area of the BDNF group was significantly higher than that of NGF and GTG groups but similar to that of IGF-1 group. However, the average axon size was the largest in NGF group. This result was in concordance with the neurite outgrowth assay in which NGF showed the highest neuritogenic potential. In the assessment of motor and sensory recovery after nerve repair, conduits modified with various neurotrophic factors showed a more favorable outcome in compound muscle action potential. The BDNF group had a better gastrocnemic muscle weight ratio than blank GTG repair. Nevertheless, the different effects of GTG conduits modified with various neurotrophic factors on functional recovery cannot be simply illustrated in the sciatic function index.
Collapse
Affiliation(s)
- Ming-Hong Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
227
|
Dallos A, Kiss M, Polyánka H, Dobozy A, Kemény L, Husz S. Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides 2006; 40:251-63. [PMID: 16904178 DOI: 10.1016/j.npep.2006.06.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/23/2006] [Accepted: 06/13/2006] [Indexed: 11/26/2022]
Abstract
Neuropeptides released from the cutaneous sensory nerve endings have neurotransmitter and immunoregulatory roles; they exert mitogenic actions and can influence the functions of different cell types in the skin. The aims of this study were a systematic investigation of the effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and galanin (GAL) on the inflammatory cytokine production (IL-1alpha, IL-8 and TNF-alpha) of the keratinocytes, and a study of their role in the production and secretion of nerve growth factor (NGF) and its precursor molecule (proNGF). Cultures of normal human keratinocytes were treated with 10(-8)M SP, CGRP, VIP or GAL for 30 min. After different time intervals, cells were harvested for total RNA isolation; in addition, cell lysates and supernatants were collected. The effects of the neuropeptides on the mRNA expressions of the different cytokines and NGF were investigated by Q-RT-PCR and the protein levels were studied by means of ELISA assays and Western blotting. Each of the four neuropeptides induced increases in the expressions of IL-1alpha, IL-8 and TNF-alpha mRNA. Increases appeared in the amount of the IL-1alpha protein in the supernatants of neuropeptide-treated cells, and the IL-8 secretion was mildly elevated, while secretion of TNF-alpha remained undetectable. The four neuropeptides increased the NGF mRNA expression to different extents. In the cell lysates of the keratinocytes, only proNGF could be detected, its concentration in the neuropeptide-treated cells being approximately twice that in the time-matched controls. Both control cultures and neuropeptide-treated cultures were found to secrete proNGF and mature NGF, but neuropeptide-treated cell cultures produced markedly higher (3-7-fold) amounts of NGF-like immunoreactive materials. The results demonstrated that neuropeptides released from cutaneous nerves after an injurious stimulus are able to induce an upregulation of IL-1alpha and IL-8 production; they are additionally able to influence the expressions of proNGF/NGF and their secretion from the keratinocytes. These findings may contribute toward an understanding of the neural influence on skin health and disease.
Collapse
Affiliation(s)
- Attila Dallos
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
228
|
Hattori N, Nomoto H, Mishima S, Inagaki S, Goto M, Sako M, Furukawa S. Identification of AMP N1-oxide in royal jelly as a component neurotrophic toward cultured rat pheochromocytoma PC12 cells. Biosci Biotechnol Biochem 2006; 70:897-906. [PMID: 16636457 DOI: 10.1271/bbb.70.897] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An extract of royal jelly (RJ) induced processes from cultured rat pheochromocytoma PC12 cells. Active components were isolated, and identified as adenosine monophosphate (AMP) and AMP N1-oxide. AMP N1-oxide was more than 20 times as active as AMP, judging from the minimal concentration to elicit activity. AMP N1-oxide was thought to be responsible for about half of the process-forming activity of whole RJ. Chemically-synthesized AMP N1-oxide was active similarly to the molecule purified from RJ, confirming AMP N1-oxide as the active entity. AMP N1-oxide also suppressed proliferation of PC12 cells and stimulated expression of neurofilament M, a specific protein of mature neurons, demonstrating the stimulatory activity of AMP N1-oxide to induce neuronal differentiation of PC12 cells. Pharmacological experiments suggested that AMP N1-oxide actions are mediated by adenyl cyclase-coupled adenosine receptors, including A2A. Thus AMP N1-oxide is a key molecule that characterizes RJ, and is not found in natural products other than RJ.
Collapse
Affiliation(s)
- Noriko Hattori
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
229
|
Berrera M, Cattaneo A, Carloni P. Molecular simulation of the binding of nerve growth factor peptide mimics to the receptor tyrosine kinase A. Biophys J 2006; 91:2063-71. [PMID: 16798810 PMCID: PMC1557562 DOI: 10.1529/biophysj.106.083519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nerve growth factor (NGF) mimics play an important role for therapies that target the receptor tyrosine kinase A (trkA). The N-terminal fragment of the NGF (N-term@NGF) was previously demonstrated to be an important determinant for affinity and specificity in the binding to trkA. Here we use a variety of computational tools (contact surface analysis and free energy predictions) to identify residues playing a key role for the binding to the receptor. Molecular dynamics simulations are then used to investigate the stability of complexes between trkA and peptides mimicking N-term@NGF. Steered molecular dynamics calculations are finally performed to investigate the process of detaching the peptide from the receptor. Three disruptive events are observed, the first involving the breaking of all intermolecular interactions except two salt bridges, which break subsequently.
Collapse
Affiliation(s)
- Marco Berrera
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | | | | |
Collapse
|
230
|
Shi Z, Arai KY, Jin W, Weng Q, Watanabe G, Suzuki AK, Taya K. Expression of Nerve Growth Factor and Its Receptors NTRK1 and TNFRSF1B Is Regulated by Estrogen and Progesterone in the Uteri of Golden Hamsters1. Biol Reprod 2006; 74:850-6. [PMID: 16436532 DOI: 10.1095/biolreprod.105.044917] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Experiments were conducted using female golden hamsters to identify the presence of nerve growth factor (NGF) and its receptors NTRK1 and TNFRSF1B in the uteri of female animals and regulation on their expression by estrogen and progesterone. NGF and its receptor NTRK1 were immunolocalized to luminal epithelial cells, glandular cells, and stromal cells. TNFRSF1B was immunolocalized in luminal epithelial and glandular cells, with no staining found in stromal cells of the uterine horns of normal cyclic golden hamsters. Strong immunostaining of NGF and its receptors NTRK1 and TNFRSF1B was observed in uteri on the day of proestrus as compared to the other stages of the estrous cycle. Results of immunoblot analysis of NGF revealed that there was a positive correlation between uterine NGF expression and plasma concentrations of estradiol-17beta. To clarify the effects of estrogen and progesterone on NGF, NTRK1, and TNFRSF1B expression, adult female golden hamsters were ovariectomized and treated with estradiol-17beta and/or progesterone. Immunoblot analysis and immunohistochemistry indicated that estradiol-17beta stimulated expression of NGF and its two receptors in the uterus. Treatment with progesterone also increased NGF and NTRK1 expression in the uterus. However, no additive effect of these steroids on expression of NGF and its receptors was observed. Changes in uterine weights induced by estradiol-17beta and/or progesterone showed the same profile with that of NGF, suggesting that a proliferative act of NGF may be involved in uterine growth. These results suggest that NGF may play important roles in action of steroids on uterine function.
Collapse
Affiliation(s)
- Zhanquan Shi
- Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
231
|
Dou YC, Hagströmer L, Emtestam L, Johansson O. Increased nerve growth factor and its receptors in atopic dermatitis: an immunohistochemical study. Arch Dermatol Res 2006; 298:31-7. [PMID: 16586073 DOI: 10.1007/s00403-006-0657-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 01/12/2006] [Accepted: 03/02/2006] [Indexed: 12/23/2022]
Abstract
Evidence suggests that neurotrophins may regulate certain immune functions and inflammation. In the present study, the localization and distribution of nerve growth factor (NGF) and its receptors were explored using immunohistochemical methods, with the aim of detecting the cause of the neurohyperplasia in early lesions of atopic dermatitis (AD). In AD involved skin, strong NGF-immunoreactive (IR) cells were observed in the epidermis. In some cases, a huge number of infiltrating cells with stronger NGF immunoreactivity was seen mainly in the dermal papillae. Some trkA immunoreactivity was observed in the outer membrane of cells in the basal and spinal layers of the epidermis. In the papillary dermis, a larger number of cells demonstrated strong trkA immunoreactivity. The p75 NGFr-IR nerve fibre profiles were increased (900 per mm(2); p<0.001) compared to normal [the involved skin also differed from the uninvolved skin (p<0.05)] in the dermal papillae. These nerve fibres were larger, coarser and branched, some of them terminated at p75 NGFr-IR basal cells, and also revealed a stronger fluorescence staining than the controls or the uninvolved skin. In normal healthy volunteers and AD uninvolved skin, the NGF immunoreactivity was weak in the basal layer of epidermis. Only a few trkA positive cells were seen in the basal layer of the epidermis and upper dermis. The IR epidermal basal cells revealed a striking patchy arrangement with strong p75 NGFr immunostaining in the peripheral part of the cells, and short and thick NGFr-IR nerve fibre profiles appeared as smooth endings scattered in the dermis including the cutaneous accessory organs. Using NGF and p75 NGFr double staining, both immunoreactivities showed a weak staining in the epidermis and dermis in normal and uninvolved skin. In the involved dermis of AD, the intensity of p75 NGFr-IR nerves was stronger in areas where there were also increased numbers of NGF-IR cells. These findings indicate that NGF and its receptors may contribute to the neurohyperplasia of AD.
Collapse
Affiliation(s)
- Ying-Chun Dou
- Experimental Dermatology Unit, Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
232
|
Dhanoa NK, Krol KM, Jahed A, Crutcher KA, Kawaja MD. Null mutations for exon III and exon IV of the p75 neurotrophin receptor gene enhance sympathetic sprouting in response to elevated levels of nerve growth factor in transgenic mice. Exp Neurol 2006; 198:416-26. [PMID: 16488412 DOI: 10.1016/j.expneurol.2005.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 11/01/2005] [Accepted: 12/10/2005] [Indexed: 11/21/2022]
Abstract
Under normal conditions, expression of the p75 neurotrophin receptor (p75NTR) by sympathetic neurons can increase the affinity of the signaling receptor, trkA, to target-derived nerve growth factor (NGF) at distal axons. We have previously reported that sprouting of sympathetic axons into NGF-rich target tissues is enhanced when p75NTR expression is perturbed, leading to the postulate that p75NTR may restrain sympathetic sprouting in response to elevated NGF levels. These observations were made using mice having a null mutation of the third p75NTR exon, a line that may express a hypomorphic form of this receptor. Since mice carrying a null mutation of the fourth p75NTR exon may not express a similar splice variant, we sought to determine whether these animals possess the same phenotype of enhanced sympathetic sprouting in response to elevated levels of NGF. Both lines of transgenic mice lacking p75NTR displayed similar degrees of sympathetic axonal sprouting into the cerebellum and trigeminal ganglia, two target tissues having elevated levels of NGF protein. Furthermore, the densities of sympathetic axons in both targets were significantly greater than those observed in age-matched NGF transgenic siblings expressing full-length p75NTR. Our new findings provide a comparative analysis of the phenotype in two independent mutations of the same neurotrophin receptor, revealing that p75NTR plays an important role in restricting sympathetic sprouting in response to higher NGF levels.
Collapse
Affiliation(s)
- Navnish K Dhanoa
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
233
|
Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 2006; 33:155-79. [PMID: 16603794 DOI: 10.1385/mn:33:2:155] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/30/1999] [Accepted: 08/15/2005] [Indexed: 02/05/2023]
Abstract
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intracellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes overlapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.
Collapse
Affiliation(s)
- Qi Cui
- Laboratory for Neural Repair, Shantou University Medical College, China.
| |
Collapse
|
234
|
Tani T, Miyamoto Y, Fujimori KE, Taguchi T, Yanagida T, Sako Y, Harada Y. Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis. J Neurosci 2006; 25:2181-91. [PMID: 15745944 PMCID: PMC6726083 DOI: 10.1523/jneurosci.4570-04.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The behavior of single molecules of neurotrophins on growth cones was observed by the use of the fluorescent conjugate of nerve growth factor (NGF), Cy3-NGF. After the application of 0.4 nm Cy3-NGF, chick dorsal root ganglion growth cones responded within 1 min of adding the stimulus by expanding their lamellipodia. Only 40 molecules of Cy3-NGF, which occupied <5% of the estimated total binding sites on a single growth cone, were required to initiate the motile responses. After binding to the high-affinity receptor, Cy3-NGF displayed lateral diffusion on the membrane of the growth cones with a diffusion constant of 0.3 microm2 s(-1). The behavior of Cy3-NGF was shifted to a one-directional rearward movement toward the central region of the growth cone. The one-directional movement of Cy3-NGF displayed the same rate as the rearward flow of actin, approximately 4 microm/min. This movement could be stopped by the application of the potent inhibitor of actin polymerization, latrunculin B. Molecules of Cy3-NGF were suggested to be internalized in the vicinity of the central region of the growth cone during this rearward trafficking, because Cy3-NGF remained in the growth cone after the growth cones had been exposed to an acidic surrounding medium: acidic medium causes the complete dissociation of Cy3-NGF from the receptors on the surface of growth cones. These results suggested that actin-driven trafficking of the NGF receptor complex is an essential step for the accumulation and endocytosis of NGF at the growth cone and for the retrograde transport of NGF toward the cell body.
Collapse
Affiliation(s)
- Tomomi Tani
- Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan.
| | | | | | | | | | | | | |
Collapse
|
235
|
Easton JB, Royer AR, Middlemas DS. The protein tyrosine phosphatase, Shp2, is required for the complete activation of the RAS/MAPK pathway by brain-derived neurotrophic factor. J Neurochem 2006; 97:834-45. [PMID: 16573649 DOI: 10.1111/j.1471-4159.2006.03789.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and other neurotrophins induce a unique prolonged activation of mitogen-activated protein kinase (MAPK) compared with growth factors. Characterization and kinetic and spatial modeling of the signaling pathways underlying this prolonged MAPK activation by BDNF will be important in understanding the physiological role of BDNF in many complex systems in the nervous system. In addition to Shc, fibroblast growth factor receptor substrate 2 (FRS2) is required for the BDNF-induced activation of MAPK. BDNF induces phosphorylation of FRS2. However, BDNF does not induce phosphorylation of FRS2 in cells expressing a deletion mutant of TrkB (TrkBDeltaPTB) missing the juxtamembrane NPXY motif. This motif is the binding site for SHC. NPXY is the consensus sequence for phosphotyrosine binding (PTB) domains, and notably, FRS2 and SHC contain PTB domains. This NPXY motif, which contains tyrosine 484 of TrkB, is therefore the binding site for both FRS2 and SHC. Moreover, the proline containing region (VIENP) of the NPXY motif is also required for FRS2 and SHC phosphorylation, which indicates this region is an important component of FRS2 and SHC recognition by TrkB. Previously, we had found that the phosphorylation of FRS2 induces association of FRS2 and growth factor receptor binding protein 2 (Grb2). Now, we have intriguing data that indicates BDNF induces association of the SH2 domain containing protein tyrosine phosphatase, Shp2, with FRS2. Moreover, the PTB association motif of TrkB containing tyrosine 484 is required for the BDNF-induced association of Shp2 with FRS2 and the phosphorylation of Shp2. These results imply that FRS2 and Shp2 are in a BDNF signaling pathway. Shp2 is required for complete MAPK activation by BDNF, as expression of a dominant negative Shp2 in cells attenuates BDNF-induced activation of MAPK. Moreover, expression of a dominant negative Shp2 attenuates Ras activation showing that the protein tyrosine phosphatase is required for complete activation of MAPKs by BDNF. In conclusion, Shp2 regulates BDNF signaling through the MAPK pathway by regulating either Ras directly or alternatively, by signaling components upstream of Ras. Characterization of MAPK signaling controlled by BDNF is likely to be required to understand the complex physiological role of BDNF in neuronal systems ranging from the regulation of neuronal growth and survival to the regulation of synapses.
Collapse
Affiliation(s)
- John B Easton
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, North Lauderdale, Memphis, Tennessee, USA
| | | | | |
Collapse
|
236
|
You HJ, Cao DY, Yuan B, Arendt-Nielsen L. Sex differences in the responses of spinal wide-dynamic range neurons to subcutaneous formalin and in the effects of different frequencies of conditioning electrical stimulation. Neuroscience 2006; 138:1299-307. [PMID: 16426769 DOI: 10.1016/j.neuroscience.2005.11.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 11/14/2005] [Accepted: 11/20/2005] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to investigate sex-related differences in nociception elicited by s.c. injection of different concentrations (1-5%) of formalin. S.c. formalin-induced biphasic (early and late phases) persistent nociception was assessed by extracellularly recording the spontaneous activities of single spinal dorsal horn wide-dynamic range neurons in anesthetized male and female rats. The nociceptive responses of the dorsal horn wide-dynamic range neurons following s.c. injection of 5%, but not 1% and 2.5%, formalin in female rats were significantly stronger than the responses obtained in male rats. However, these concentration-dependent differences with respect to different sexes existed only in the late, but not the early, phase of formalin-induced nociception in intact, not spinal rats. The 5% formalin-induced late phase nociception in male rats was significantly depressed by 15 min of repeated conditioning electrical stimulation at a frequency of 5 Hz as well as 50 Hz during and after the period of conditioning electrical stimulation (intensity: 1 mA; pulse duration: 1 ms). In contrast, the inhibitory effect of 50 Hz conditioning electrical stimulation on the 5% formalin-elicited late phase response in female rats was markedly greater in magnitude and longer in duration than that of 5 Hz conditioning electrical stimulation. No significant depressive effects of 5 Hz conditioning electrical stimulation on formalin-induced nociception were found in female rats, indicating that the distinct effects of conditioning electrical stimulation at different frequencies are different in animals of opposite sexes. In conclusion, s.c. administration of different concentrations of formalin shows a distinct sex-related difference in its late tonic nociception of spinal nociceptive sensory neurons. Sex differences in formalin-induced tonic nociception are stimulus intensity dependent and related to the modulation from the supraspinal regions. S.c. formalin-induced late phase nociception in female rats is only sensitive to depression at a frequency of 50 Hz, but not 5 Hz, of conditioning electrical stimulation. This suggests that the involvement of the central mechanisms in the antinociceptive effects of conditioning electrical stimulation may be different at various frequencies of stimulation.
Collapse
Affiliation(s)
- H-J You
- Center for Sensory-Motor Interaction, Laboratory for Experimental Pain Research, Aalborg University, Fredrik Bajers Vej 7 D-3, DK-9220 Aalborg, Denmark.
| | | | | | | |
Collapse
|
237
|
Verpoorten N, Claeys KG, Deprez L, Jacobs A, Van Gerwen V, Lagae L, Arts WF, De Meirleir L, Keymolen K, Ceuterick-de Groote C, De Jonghe P, Timmerman V, Nelis E. Novel frameshift and splice site mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) associated with hereditary sensory neuropathy type IV. Neuromuscul Disord 2005; 16:19-25. [PMID: 16373086 DOI: 10.1016/j.nmd.2005.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 11/20/2022]
Abstract
Congenital insensitivity to pain with anhidrosis or hereditary sensory and autonomic neuropathy type IV (HSAN IV) is the first human genetic disorder implicated in the neurotrophin signal transduction pathway. HSAN IV is characterized by absence of reaction to noxious stimuli, recurrent episodes of fever, anhidrosis, self-mutilating behavior and often mental retardation. Mutations in the neurotrophic tyrosine kinase, receptor, type 1 (NTRK1) are associated with this disorder. Here we report four homozygous mutations, two frameshift (p.Gln626fsX6 and p.Gly181fsX58), one missense (p.Arg761Trp) and one splice site (c.359+5G>T) mutation in four HSAN IV patients. The splice site mutation caused skipping of exons 2 and 3 in patient's mRNA resulting in an in-frame deletion of the second leucine-rich motif. NTRK1 mutations are only rarely reported in the European population. This report extends the spectrum of NTRK1 mutations observed in patients diagnosed with HSAN IV.
Collapse
Affiliation(s)
- Nathalie Verpoorten
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Saxena S, Bucci C, Weis J, Kruttgen A. The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J Neurosci 2005; 25:10930-40. [PMID: 16306406 PMCID: PMC6725884 DOI: 10.1523/jneurosci.2029-05.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 10/10/2005] [Accepted: 10/15/2005] [Indexed: 02/04/2023] Open
Abstract
Nerve growth factor (NGF) and its TrkA receptor exert important bioactivities on neuronal cells such as promoting survival and neurite outgrowth. Activated TrkA receptors are not only localized on the cell surface but also in signaling endosomes, and internalized TrkA receptors are important for the mediation of neurite outgrowth. The regulation of the endosomal trafficking of TrkA is so far unknown. Because the endosome-associated GTPase Rab7 coimmunoprecipitated with TrkA, we examined whether the endosomal trafficking of TrkA might be under the control of Rab7. Inhibiting Rab7 by expression of a green fluorescent protein-tagged, dominant-negative Rab7 variant resulted in endosomal accumulation of TrkA and pronounced enhancement of TrkA signaling in response to limited stimulations with NGF, such as increased activation of Erk1/2 (extracellular signal-regulated kinase 1/2), neurite outgrowth, and expression of GAP-43 (growth-associated protein 43). Our studies show that the endosomal GTPase Rab7 controls the endosomal trafficking and neurite outgrowth signaling of TrkA. Because mutations of Rab7 are found in patients suffering from hereditary polyneuropathies, dysfunction of Rab7 might contribute to neurodegenerative conditions by affecting the trafficking of neurotrophins. Moreover, strategies aimed at controlling Rab7 activity might be useful for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Smita Saxena
- Abteilung Neuropathologie, Institut für Pathologie, Universität Bern, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
239
|
Schramm A, Schulte JH, Astrahantseff K, Apostolov O, Limpt VV, Sieverts H, Kuhfittig-Kulle S, Pfeiffer P, Versteeg R, Eggert A. Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett 2005; 228:143-53. [PMID: 15921851 DOI: 10.1016/j.canlet.2005.02.051] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 02/05/2005] [Indexed: 01/14/2023]
Abstract
The Trk family consists of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-NGF, BDNF, NT3 and NT4. Neurotrophins mediate their multiple effects through a number of distinct intracellular signaling cascades regulating such diverse biological responses as cell survival, proliferation and differentiation in normal and neoplastic neuronal cells. Expression of Trk receptors also plays an important role in the biology and clinical behavior of neuroblastomas. High expression of TrkA is present in neuroblastomas with favorable biological features and highly correlated with patient survival, whereas TrkB is mainly expressed on unfavorable, aggressive neuroblastomas. This short review discusses recent data on the biological roles of TrkA and TrkB signaling in neuroblastoma.
Collapse
Affiliation(s)
- Alexander Schramm
- Division of Hematology/Oncology and Endocrinology, University Children's Hospital of Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Hingtgen CM, Roy SL, Clapp DW. Stimulus-evoked release of neuropeptides is enhanced in sensory neurons from mice with a heterozygous mutation of the Nf1 gene. Neuroscience 2005; 137:637-45. [PMID: 16298082 DOI: 10.1016/j.neuroscience.2005.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 08/21/2005] [Accepted: 09/24/2005] [Indexed: 11/20/2022]
Abstract
Neurofibromatosis type I is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibrinomin, the protein product of the NF1 gene (neurofibromin gene (human)), is a guanosine triphosphate activating protein for p21(ras). Loss of NF1 results in an increase in activity of the p21(ras) transduction cascade. Because of the growing evidence suggesting involvement of downstream components of the p21(ras) transduction cascade in the sensitization of nociceptive sensory neurons, we examined the stimulus-evoked release of the neuropeptides, substance P and calcitonin gene-related peptide, from primary sensory neurons of mice with a mutation of the Nf1 gene (neurofibromin gene (mouse)) (Nf1+/-). Measuring immunoreactive substance P and immunoreactive calcitonin gene-related peptide by radioimmunoassay, we demonstrated that capsaicin-stimulated release of neuropeptides is three to five-fold higher in spinal cord slices from Nf1+/- mice than from wildtype mouse tissue. In addition, the potassium and capsaicin-stimulated release of immunoreactive calcitonin gene-related peptide from cultures of sensory neurons isolated from Nf1+/- mice was more than double that from cultures of wildtype neurons. Treatment of wildtype sensory neurons with nerve growth factor for 5-7 days mimicked the enhanced stimulus-evoked release observed from the Nf1+/- neurons. When nerve growth factor was removed 48 h before conducting release experiments, nerve growth factor-induced augmentation of immunoreactive calcitonin gene-related peptide release from Nf1+/- neurons was more pronounced than in Nf1+/- sensory neurons that were treated with nerve growth factor continuously for 5-7 days. Thus, sensory neurons from mice with a heterozygous mutation of the Nf1 gene that is analogous to the human disease neurofibromatosis type I, exhibit increased sensitivity to chemical stimulation. This augmented responsiveness may explain the abnormal pain sensations experienced by people with neurofibromatosis type I and suggests an important role for guanosine triphosphate activating proteins, in the regulation of nociceptive sensory neuron sensitization.
Collapse
Affiliation(s)
- C M Hingtgen
- Department of Neurology, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 West Walnut Street, R2-466, Indianapolis, 46202, USA.
| | | | | |
Collapse
|
241
|
Takano N, Sakurai T, Kurachi M. Effects of anti-nerve growth factor antibody on symptoms in the NC/Nga mouse, an atopic dermatitis model. J Pharmacol Sci 2005; 99:277-86. [PMID: 16276037 DOI: 10.1254/jphs.fp0050564] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Nerve growth factor (NGF) is an important substance in the skin, where it can modulate nerve maintenance and repair. However, the direct link between NGF and pruritic disease such as atopic dermatitis is not yet fully understood. To determine whether NGF plays a major role in atopic dermatitis and in the development or maintenance of skin lesions, we performed a study using NC/Nga mice and compared mice with and without skin lesions. Our examinations of the NC/Nga mice sought to detect nerve fibers in the epidermis, measured serum and skin NGF content, and observed skin NGF by immunohistochemistry staining. We also examined the effects of anti-NGF antibody on dermatitis symptoms in NC/Nga mice. In these mice, nerve fibers were significantly increased in the epidermis of lesioned skin, and the NGF content of the serum and skin was significantly elevated. Anti-NGF antibodies significantly inhibited the development and proliferation of skin lesions and epidermal innervation and significantly inhibited any growth in scratching but did not ameliorate scratching already developed. Our findings suggest that NGF plays important roles in the pathogenesis of atopic dermatitis-like skin lesions and that inhibiting the physiological effects of NGF or suppressing increased NGF production may prevent or even moderate the symptoms of atopic dermatitis.
Collapse
Affiliation(s)
- Norikazu Takano
- Department of Pharmacological Evaluation Laboratory, Self Medication Laboratory, Taisho Pharmaceutical Co., Ltd., Saitama, Japan.
| | | | | |
Collapse
|
242
|
Gibbons AS, Bailey KA. BDNF and NT-3 regulation of trkB and trkC mRNA levels in the developing chick spinal cord. Neurosci Lett 2005; 385:41-5. [PMID: 15927371 DOI: 10.1016/j.neulet.2005.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/03/2005] [Accepted: 05/06/2005] [Indexed: 12/17/2022]
Abstract
In this study we investigated the effects of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 on mRNA levels of TrkB and TrkC receptors. We used an expression system to supply developing chicks with the neurotrophic factor and then analysed the receptor mRNA levels at embryonic day 8 (E8), E10 and E15 using semi-quantitative RT-PCR. In control chicks, maximal expression levels of both receptors were observed at E10. Treatment with BDNF resulted in significant down-regulation of TrkB mRNA levels (P<0.05) at E10 but not E8 or E15. Treatment with NT-3 showed down-regulation of trkB levels at all developmental stages. TrkC mRNA levels were down-regulated at all developmental stages with NT-3 treatment and at E10 and E15 with BDNF treatment. For both receptors the down-regulation was greater in NT-3-treated chicks than those treated with BDNF. Thus, our data indicate that neurotrophin receptor mRNA levels in the spinal cord are regulated by neurotrophic factors during embryonic development.
Collapse
Affiliation(s)
- Andrew S Gibbons
- School of Biological Sciences, Monash University, P.O. Box 18, Vic. 3800, Australia
| | | |
Collapse
|
243
|
Tyurina YY, Nylander KD, Mirnics ZK, Portugal C, Yan C, Zaccaro C, Saragovi HU, Kagan VE, Schor NF. The intracellular domain of p75NTR as a determinant of cellular reducing potential and response to oxidant stress. Aging Cell 2005; 4:187-96. [PMID: 16026333 DOI: 10.1111/j.1474-9726.2005.00160.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The low-affinity neurotrophin receptor, p75NTR, has been found to be pro- or anti-apoptotic depending upon the cell in which it is expressed. Reactive oxygen species play a major role in apoptosis induction and enactment. Using two polyclonal PC12 populations that, respectively, do or do not express p75NTR, this paper demonstrates that p75NTR expression confers resistance to oxidant stress upon PC12 cells maintained in serum-containing medium. The effect of p75NTR on cell survival is mimicked in p75-negative cells by expression of constructs that produce the p75NTR intracellular domain (ICD) or p75NTR with the extracellular domain deleted (DeltaECD), suggesting that binding of an extracellular ligand to p75NTR is not required. Our studies further document that the differential sensitivity to oxidant stress is serum-dependent and associated with differential oxidation of glutathione between p75-positive and p75-negative cells. These results suggest that the role of p75NTR in determining the consequences and treatment of age-related disorders and conditions in which reactive oxygen species are involved may require neither the extracellular receptor domain nor, by inference, the cognate extracellular ligands of this neurotrophin receptor.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Pediatric Center for Neuroscience, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Aurikko JP, Ruotolo BT, Grossmann JG, Moncrieffe MC, Stephens E, Leppänen VM, Robinson CV, Saarma M, Bradshaw RA, Blundell TL. Characterization of symmetric complexes of nerve growth factor and the ectodomain of the pan-neurotrophin receptor, p75NTR. J Biol Chem 2005; 280:33453-60. [PMID: 16009712 PMCID: PMC1352310 DOI: 10.1074/jbc.m503189200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nerve growth factor (NGF) is the ligand for two unrelated cellular receptors, TrkA and p75(NTR), and acts as a mediator in the development and maintenance of the mammalian nervous system. Signaling through TrkA kinase domains promotes neuronal survival, whereas activation of the p75(NTR) "death domains" induces apoptosis under correct physiological conditions. However, co-expression of these receptors leads to enhanced neuronal survival upon NGF stimulation, possibly through a ternary p75(NTR) x NGF x TrkA complex. We have expressed human p75(NTR) ligand binding domain as a secreted glycosylated protein in Trichoplusia ni cells. Following assembly and purification of soluble p75(NTR) x NGF complexes, mass spectrometry, analytical ultracentrifugation, and solution x-ray scattering measurements are indicative of 2:2 stoichiometry, which implies a symmetric complex. Molecular models of the 2:2 p75(NTR) x NGF complex based on these data are not consistent with the further assembly of either symmetric (2:2:2) or asymmetric (2:2:1) ternary p75(NTR) x NGF x TrkA complexes.
Collapse
MESH Headings
- Chromatography, Gel
- Computer Simulation
- Cysteine/chemistry
- Humans
- Light
- Mass Spectrometry
- Models, Molecular
- Molecular Weight
- Nerve Growth Factor/chemistry
- Nerve Growth Factor/metabolism
- Protein Structure, Tertiary
- Receptor, Nerve Growth Factor/chemistry
- Receptor, Nerve Growth Factor/genetics
- Receptor, Nerve Growth Factor/isolation & purification
- Receptor, Nerve Growth Factor/metabolism
- Receptor, trkA/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Scattering, Radiation
- Solubility
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Ultracentrifugation
Collapse
Affiliation(s)
- Jukka P Aurikko
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Jiang X, Tian F, Mearow K, Okagaki P, Lipsky RH, Marini AM. The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. J Neurochem 2005; 94:713-22. [PMID: 16000165 DOI: 10.1111/j.1471-4159.2005.03200.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuroprotective effect and molecular mechanisms underlying preconditioning with N-methyl-D-aspartate (NMDA) in cultured hippocampal neurons have not been described. Pre-incubation with subtoxic concentrations of the endogenous neurotransmitter glutamate protects vulnerable neurons against NMDA receptor-mediated excitotoxicity. As a result of physiological preconditioning, NMDA significantly antagonizes the neurotoxicity resulting from subsequent exposure to an excitotoxic concentration of glutamate. The protective effect of glutamate or NMDA is time- and concentration-dependent, suggesting that sufficient agonist and time are required to establish an intracellular neuroprotective state. In these cells, the TrkB ligand, brain-derived neurotrophic factor (BDNF) attenuates glutamate toxicity. Therefore, we tested the hypothesis that NMDA protects neurons via a BDNF-dependent mechanism. Exposure of hippocampal cultures to a neuroprotective concentration of NMDA (50 microM) evoked the release of BDNF within 2 min without attendant changes in BDNF protein or gene expression. The accumulated increase of BDNF in the medium is followed by an increase in the phosphorylation (activation) of TrkB receptors and a later increase in exon 4-specific BDNF mRNA. The neuroprotective effect of NMDA was attenuated by pre-incubation with a BDNF-blocking antibody and TrkB-IgG, a fusion protein known to inhibit the activity of extracellular BDNF, suggesting that BDNF plays a major role in NMDA-mediated survival. These results demonstrate that low level stimulation of NMDA receptors protect neurons against glutamate excitotoxicity via a BDNF autocrine loop in hippocampal neurons and suggest that activation of neurotrophin signaling pathways plays a key role in the neuroprotection of NMDA.
Collapse
Affiliation(s)
- Xueying Jiang
- Department of Neurology and Division of Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|
246
|
Gingrich DE, Yang SX, Gessner GW, Angeles TS, Hudkins RL. Synthesis, Modeling, and In Vitro Activity of (3‘S)-epi-K-252a Analogues. Elucidating the Stereochemical Requirements of the 3‘-Sugar Alcohol on trkA Tyrosine Kinase Activity. J Med Chem 2005; 48:3776-83. [PMID: 15916429 DOI: 10.1021/jm040178m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Utilizing our recently published semisynthetic approach to the (3'S)-K-252a diastereomer, we report the first synthesis of the (3'R)-10 diastereomer and a set of related epimers, with the goal of defining the stereochemical role of the 3'-sugar hydroxyl group on trkA tyrosine kinase activity and selectivity. (3'R)-10 displayed potent trkA inhibitory activity with an IC50 value of 4 nM. The corresponding deshydroxy epimer (3'S)-14 was 7-fold more potent than its 3'R counterpart (natural stereochemistry) with a trkA IC50 value of 3 nM and demonstrated >280-fold selectivity over PKC (IC50 = 850 nM). In cells, (3'S)-14 displayed potent inhibition of trkA autophosphorylation with an IC50 < 10 nM. Molecular modeling studies revealed that the 3'-OH, due to the inverted geometry, forms significant H-bonding interactions with Glu27 and Arg195, an interaction that is not attainable with the natural isomers.
Collapse
Affiliation(s)
- Diane E Gingrich
- Department of Medicinal Chemistry, Cephalon, Inc., 145 Brandywine Parkway, West Chester, Pennsylvania 19380, USA
| | | | | | | | | |
Collapse
|
247
|
Chen JR, Wang YJ, Tseng GF. The effects of decompression and exogenous NGF on compressed cerebral cortex. J Neurotrauma 2005; 21:1640-51. [PMID: 15684655 DOI: 10.1089/neu.2004.21.1640] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using a rat epidural bead implantation model, we found that compression alone could reduce the overall and individual layer thicknesses of cerebral cortex with no apparent cell death. The dendritic lengths and spine densities of layer II/III and V pyramidal neurons started to decrease within 3 days of compression. Decompression for 14 days resulted in near complete to partial recovery of the cortical thickness and of the dendritic lengths of layer II/III and V pyramidal neurons, depending on the duration of the preceding compression. The recoverability was better following short (3-day) than long (1- or 3-month) periods of compression. The loss of dendritic spines nevertheless persisted. An intraventricular infusion of NGF was performed after decompressing the lesions following 3 days of cortical compression, and this increased the recovery of the spines but not the dendritic length of the cortical pyramidal neurons, nor did it alter the recovery of the cortical thickness. NGF also promoted the increase of the dendritic spines, but not the dendritic length of the cortical pyramidal neurons of normal animals. In short, the data show that a few days of compression alone can cause permanent cortical damage. Exogenous NGF, if applied topically, may restore the dendritic spine density of cortical neurons subjected to compression.
Collapse
Affiliation(s)
- Jeng-Rung Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
248
|
Parran DK, Barker A, Ehrich M. Effects of Thimerosal on NGF Signal Transduction and Cell Death in Neuroblastoma Cells. Toxicol Sci 2005; 86:132-40. [PMID: 15843506 DOI: 10.1093/toxsci/kfi175] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Signaling through neurotrophic receptors is necessary for differentiation and survival of the developing nervous system. The present study examined the effects of the organic mercury compound thimerosal on nerve growth factor signal transduction and cell death in a human neuroblastoma cell line (SH-SY5Y cells). Following exposure to 100 ng/ml NGF and increasing concentrations of thimerosal (1 nM-10 microM), we measured the activation of TrkA, MAPK, and PKC-delta. In controls, the activation of TrkA MAPK and PKC-delta peaked after 5 min of exposure to NGF and then decreased but was still detectable at 60 min. Concurrent exposure to increasing concentrations of thimerosal and NGF for 5 min resulted in a concentration-dependent decrease in TrkA and MAPK phosphorylation, which was evident at 50 nM for TrkA and 100 nM for MAPK. Cell viability was assessed by the LDH assay. Following 24-h exposure to increasing concentrations of thimerosal, the EC50 for cell death in the presence or absence of NGF was 596 nM and 38.7 nM, respectively. Following 48-h exposure to increasing concentrations of thimerosal, the EC50 for cell death in the presence and absence of NGF was 105 nM and 4.35 nM, respectively. This suggests that NGF provides protection against thimerosal cytotoxicity. To determine if apoptotic versus necrotic cell death was occurring, oligonucleosomal fragmented DNA was quantified by ELISA. Control levels of fragmented DNA were similar in both the presence and absence of NGF. With and without NGF, thimerosal caused elevated levels of fragmented DNA appearing at 0.01 microM (apoptosis) to decrease at concentrations >1 microM (necrosis). These data demonstrate that thimerosal could alter NGF-induced signaling in neurotrophin-treated cells at concentrations lower than those responsible for cell death.
Collapse
Affiliation(s)
- Damani K Parran
- Virginia-Maryland Regional College of Veterinary Medicine, Laboratory for Neurotoxicity Studies, Virginia Tech, 1 Duckpond Drive, Blacksburg, Virginia 24061-0442, USA
| | | | | |
Collapse
|
249
|
Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J. Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 2005; 8:606-15. [PMID: 15834419 DOI: 10.1038/nn1442] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 03/29/2005] [Indexed: 12/12/2022]
Abstract
Axon specification triggers the polarization of neurons and requires the localized destabilization of filamentous actin. Here we show that plasma membrane ganglioside sialidase (PMGS) asymmetrically accumulates at the tip of one neurite of the unpolarized rat neuron, inducing actin instability. Suppressing PMGS activity blocks axonal generation, whereas stimulating it accelerates the formation of a single (not several) axon. PMGS induces axon specification by enhancing TrkA activity locally, which triggers phosphatidylinositol-3-kinase (PI3K)- and Rac1-dependent inhibition of RhoA signaling and the consequent actin depolymerization in one neurite only. Thus, spatial restriction of an actin-regulating molecular machinery, in this case a membrane enzymatic activity, before polarization is enough to determine axonal fate.
Collapse
Affiliation(s)
- Jorge Santos Da Silva
- Cavalieri Ottolenghi Scientific Institute, University of Turin, 10043 Orbassano, Turin, Italy
| | | | | | | | | |
Collapse
|
250
|
Gan L, Zheng W, Chabot JG, Unterman TG, Quirion R. Nuclear/cytoplasmic shuttling of the transcription factor FoxO1 is regulated by neurotrophic factors. J Neurochem 2005; 93:1209-19. [PMID: 15934941 DOI: 10.1111/j.1471-4159.2005.03108.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
FoxO1, a member of the FoxO subfamily of forkhead transcription factors, is an important target for insulin and growth factor signaling in the regulation of metabolism, cell cycle and proliferation, and survival in peripheral tissues. However, its role in the central nervous system is mostly unknown. In this study, we examined the effect of neurotrophic factors on nuclear/cytoplasmic shuttling of FoxO1. We showed that insulin-like growth factor-1 (IGF-1) and nerve growth factor (NGF) potently induced the nuclear exclusion of FoxO1-green fluorescent protein (GFP) while neurotrophin (NT)-3 and NT-4 were much weaker and brain-derived neurotrophic factor (BDNF) failed to induce FoxO1 translocation in PC12 cells. FoxO1 translocation was inhibited by LY294002, a well-established PI3K/Akt kinase inhibitor. Moreover, FoxO1 was phosphorylated at Thr24 and Ser256 residues by the above neurotrophic factors, with the exception of BDNF. Triple mutant FoxO1, in which three Akt/PKB phosphorylation sites (Thr24, Ser256 and Ser319) were mutated to alanine, resulted in the complete nuclear targeting of the expressed FoxO1-GFP fusion protein in the presence of the above neurotrophic factors in both PC12 cells and cultured hippocampal and cortical neurons. Taken together, these findings demonstrate that neurotrophic factors are able to regulate nuclear/cytoplasmic shuttling of FoxO1 via the PI3K/Akt pathway in neuronal cells.
Collapse
Affiliation(s)
- Lixia Gan
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | | | | | | | | |
Collapse
|