201
|
Nakamura TY, Iwata Y, Sampaolesi M, Hanada H, Saito N, Artman M, Coetzee WA, Shigekawa M. Stretch-activated cation channels in skeletal muscle myotubes from sarcoglycan-deficient hamsters. Am J Physiol Cell Physiol 2001; 281:C690-9. [PMID: 11443068 DOI: 10.1152/ajpcell.2001.281.2.c690] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deficiency of delta-sarcoglycan (delta-SG), a component of the dystrophin-glycoprotein complex, causes cardiomyopathy and skeletal muscle dystrophy in Bio14.6 hamsters. Using cultured myotubes prepared from skeletal muscle of normal and Bio14.6 hamsters (J2N-k strain), we investigated the possibility that the delta-SG deficiency may lead to alterations in ionic conductances, which may ultimately lead to myocyte damage. In cell-attached patches (with Ba(2+) as the charge carrier), an approximately 20-pS channel was observed in both control and Bio14.6 myotubes. This channel is also permeable to K(+) and Na(+) but not to Cl(-). Channel activity was increased by pressure-induced stretch and was reduced by GdCl(3) (>5 microM). The basal open probability of this channel was fourfold higher in Bio14.6 myotubes, with longer open and shorter closed times. This was mimicked by depolymerization of the actin cytoskeleton. In intact Bio14.6 myotubes, the unidirectional basal Ca(2+) influx was enhanced compared with control. This Ca(2+) influx was sensitive to GdCl(3), signifying that stretch-activated cation channels may have been responsible for Ca(2+) influx in Bio14.6 hamster myotubes. These results suggest a possible mechanism by which cell damage might occur in this animal model of muscular dystrophy.
Collapse
Affiliation(s)
- T Y Nakamura
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL. The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol 2001; 533:697-710. [PMID: 11410627 PMCID: PMC2278659 DOI: 10.1111/j.1469-7793.2001.t01-1-00697.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
1. Ventricular myocytes demonstrate a steeply inwardly rectifying K(+) current termed I(K1). We investigated the molecular basis for murine I(K1) by removing the genes encoding Kir2.1 and Kir2.2. The physiological consequences of the loss of these genes were studied in newborn animals because mice lacking Kir2.1 have a cleft palate and die shortly after birth. 2. Kir2.1 (-/-) ventricular myocytes lack detectable I(K1) in whole-cell recordings in 4 mM external K(+). In 60 mM external K(+) a small, slower, residual current is observed. Thus Kir2.1 is the major determinant of I(K1). Sustained outward K(+) currents and Ba(2+) currents through L- and T-type channels were not significantly altered by the mutation. A 50 % reduction in I(K1) was observed in Kir2.2 (-/-) mice, raising the possibility that Kir2.2 can also contribute to the native I(K1). 3. Kir2.1 (-/-) myocytes showed significantly broader action potentials and more frequent spontaneous action potentials than wild-type myocytes. 4. In electrocardiograms of Kir2.1 (-/-) neonates, neither ectopic beats nor re-entry arrhythmias were observed. Thus the increased automaticity and prolonged action potential of the mutant ventricular myocytes were not sufficiently severe to disrupt the sinus pacing of the heart. The Kir2.1 (-/-) mice, however, had consistently slower heart rates and this phenotype is likely to arise indirectly from the influence of Kir2.1 outside the heart. 5. Thus Kir2.1 is the major component of murine I(K1) and the Kir2.1 (-/-) mouse provides a model in which the functional consequences of removing I(K1) can be studied at both cellular and organismal levels.
Collapse
Affiliation(s)
- J J Zaritsky
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
203
|
Coghlan MJ, Carroll WA, Gopalakrishnan M. Recent developments in the biology and medicinal chemistry of potassium channel modulators: update from a decade of progress. J Med Chem 2001; 44:1627-53. [PMID: 11356099 DOI: 10.1021/jm000484+] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M J Coghlan
- Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064, USA.
| | | | | |
Collapse
|
204
|
Guo D, Lu Z. Kinetics of inward-rectifier K+ channel block by quaternary alkylammonium ions. dimension and properties of the inner pore. J Gen Physiol 2001; 117:395-406. [PMID: 11331349 PMCID: PMC2233664 DOI: 10.1085/jgp.117.5.395] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined block of two inward-rectifier K+ channels, IRK1 and ROMK1, by a series of intracellular symmetric quaternary alkylammonium ions (QAs) whose side chains contain one to five methylene groups. As shown previously, the ROMK1 channels bind larger QAs with higher affinity. In contrast, the IRK1 channels strongly select TEA over smaller or larger QAs. This remarkable difference in QA selectivity between the two channels results primarily from differing QA unbinding kinetics. The apparent rate constant for binding (kon) of all examined QAs is significantly smaller than expected for a diffusion-limited process. Furthermore, a large ( approximately 30-fold) drop in kon occurs when the number of methylene groups in QAs increases from three to four. These observations argue that between the intracellular solution and the QA-binding locus, there exists a constricted pathway, whose dimension ( approximately 9 A) is comparable to that of a K+ ion with a single H2O shell.
Collapse
Affiliation(s)
- Donglin Guo
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhe Lu
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
205
|
Liu Y, Liu D, Heath L, Meyers DM, Krafte DS, Wagoner PK, Silvia CP, Yu W, Curran ME. Direct activation of an inwardly rectifying potassium channel by arachidonic acid. Mol Pharmacol 2001; 59:1061-8. [PMID: 11306688 DOI: 10.1124/mol.59.5.1061] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arachidonic acid (AA) is an important constituent of membrane phospholipids and can be liberated by activation of cellular phospholipases. AA modulates a variety of ion channels via diverse mechanisms, including both direct effects by AA itself and indirect actions through AA metabolites. Here, we report excitatory effects of AA on a cloned human inwardly rectifying K(+) channel, Kir2.3, which is highly expressed in the brain and heart and is critical in regulating cell excitability. AA potently and reversibly increased Kir2.3 current amplitudes in whole-cell and excised macro-patch recordings (maximal whole-cell response to AA was 258 +/- 21% of control, with an EC(50) value of 447 nM at -97 mV). This effect was apparently caused by an action of AA at an extracellular site and was not prevented by inhibitors of protein kinase C, free oxygen radicals, or AA metabolic pathways. Fatty acids that are not substrates for metabolism also potentiated Kir2.3 current. AA had no effect on the currents flowing through Kir2.1, Kir2.2, or Kir2.4 channels. Experiments with Kir2.1/2.3 chimeras suggested that, although AA may bind to both Kir2.1 and Kir2.3, the transmembrane and/or intracellular domains of Kir2.3 were essential for channel potentiation. These results argue for a direct mechanism of AA modulation of Kir2.3.
Collapse
Affiliation(s)
- Y Liu
- ICAgen, Inc., Durham, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Liu GX, Derst C, Schlichthörl G, Heinen S, Seebohm G, Brüggemann A, Kummer W, Veh RW, Daut J, Preisig-Müller R. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J Physiol 2001; 532:115-26. [PMID: 11283229 PMCID: PMC2278533 DOI: 10.1111/j.1469-7793.2001.0115g.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to compare the properties of cloned Kir2 channels with the properties of native rectifier channels in guinea-pig (gp) cardiac muscle. The cDNAs of gpKir2.1, gpKir2.2, gpKir2.3 and gpKir2.4 were obtained by screening a cDNA library from guinea-pig cardiac ventricle. A partial genomic structure of all gpKir2 genes was deduced by comparison of the cDNAs with the nucleotide sequences derived from a guinea-pig genomic library. The cell-specific expression of Kir2 channel subunits was studied in isolated cardiomyocytes using a multi-cell RT-PCR approach. It was found that gpKir2.1, gpKir2.2 and gpKir2.3, but not gpKir2.4, are expressed in cardiomyocytes. Immunocytochemical analysis with polyclonal antibodies showed that expression of Kir2.4 is restricted to neuronal cells in the heart. After transfection in human embryonic kidney cells (HEK293) the mean single-channel conductance with symmetrical K+ was found to be 30.6 pS for gpKir2.1, 40.0 pS for gpKir2.2 and 14.2 pS for Kir2.3. Cell-attached measurements in isolated guinea-pig cardiomyocytes (n = 351) revealed three populations of inwardly rectifying K+ channels with mean conductances of 34.0, 23.8 and 10.7 pS. Expression of the gpKir2 subunits in Xenopus oocytes showed inwardly rectifying currents. The Ba2+ concentrations required for half-maximum block at -100 mV were 3.24 M for gpKir2.1, 0.51 M for gpKir2.2, 10.26 M for gpKir2.3 and 235 M for gpKir2.4. Ba2+ block of inward rectifier channels of cardiomyocytes was studied in cell-attached recordings. The concentration and voltage dependence of Ba2+ block of the large-conductance inward rectifier channels was virtually identical to that of gpKir2.2 expressed in Xenopus oocytes. Our results suggest that the large-conductance inward rectifier channels found in guinea-pig cardiomyocytes (34.0 pS) correspond to gpKir2.2. The intermediate-conductance (23.8 pS) and low-conductance (10.7 pS) channels described here may correspond to gpKir2.1 and gpKir2.3, respectively.
Collapse
Affiliation(s)
- G X Liu
- Institut für Normale und Pathologische Physiologie, Marburg University Deutschhausstrasse 2, D-35037 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Abstract
The cardiac inward rectifier potassium current (I(K1)), present in all ventricular and atrial myocytes, has been suggested to play a major role in repolarization of the action potential and stabilization of the resting potential. The molecular basis is now ascribed to members of the Kir2 sub-family of inward rectifier K channel genes, and the availability of recombinant expression systems has led to elucidation of the mechanism of inward rectification, as well as additional regulatory mechanisms involving intracellular pH and phosphorylation. In vivo manipulation of the genes encoding I(K1)and regulatory proteins now promise to provide new insights to the role of this conductance in the heart. This review details recent advances and considers the prospects for further elucidation of the role of this conductance in cardiac electrical activity.
Collapse
Affiliation(s)
- A N Lopatin
- Department of Physiology, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI 48109-0622, USA
| | | |
Collapse
|
208
|
Solessio E, Rapp K, Perlman I, Lasater EM. Spermine mediates inward rectification in potassium channels of turtle retinal Müller cells. J Neurophysiol 2001; 85:1357-67. [PMID: 11287460 DOI: 10.1152/jn.2001.85.4.1357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinal Müller cells are highly permeable to potassium as a consequence of their intrinsic membrane properties. Therefore these cells are able to play an important role in maintaining potassium homeostasis in the vertebrate retina during light-induced neuronal activity. Polyamines and other factors present in Müller cells have the potential to modulate the rectifying properties of potassium channels and alter the Müller cells capacity to siphon potassium from the extracellular space. In this study, the properties of potassium currents in turtle Müller cells were investigated using whole cell voltage-clamp recordings from isolated cells. Overall, the currents were inwardly rectifying. Depolarization elicited an outward current characterized by a fast transient that slowly recovered to a steady level along a double exponential time course. On hyperpolarization the evoked inward current was characterized by an instantaneous onset (or step) followed by a slowly developing sustained inward current. The kinetics of the time-dependent components (block of the transient outward current and slowly developing inward current) were dependent on holding potential and changes in the intracellular levels of magnesium ions and polyamines. In contrast, the instantaneous inward and the sustained outward currents were ohmic in character and remained relatively unaltered with changes in holding potential and concentration of applied spermine (0.5--2 mM). Our data suggest that cellular regulation in vivo of polyamine levels can differentially alter specific aspects of potassium siphoning by Müller cells in the turtle retina by modulating potassium channel function.
Collapse
Affiliation(s)
- E Solessio
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
209
|
Kubo Y, Murata Y. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. J Physiol 2001; 531:645-60. [PMID: 11251047 PMCID: PMC2278501 DOI: 10.1111/j.1469-7793.2001.0645h.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The rectification property of the inward rectifier K+ channel is chiefly due to the block of outward current by cytoplasmic Mg2+ and polyamines. In the cloned inward rectifier K+ channel Kir2.1 (IRK1), Asp172 in the second transmembrane region (M2) and Glu224 in the putative cytoplasmic region after M2 are reported to be critical for the sensitivity to these blockers. However, the difference in the inward rectification properties between Kir2.1 and a very weak inward rectifier sWIRK could not be explained by differences at these two sites. 2. Following sequence comparison of Kir2.1 and sWIRK, we focused this study on Glu299 located in the centre of the putative cytoplasmic region after M2. Single-point mutants of Kir2.1 (Glu224Gly and Glu299Ser) and a double-point mutant (Glu224Gly-Glu299Ser) were made and expressed in Xenopus oocytes or in HEK293T cells. 3. Their electrophysiological properties were compared with those of wild-type (WT) Kir2.1 and the following observations were made. (a) Glu299Ser showed a weaker inward rectification, a slower activation upon hyperpolarization, a slower decay of the outward current upon depolarization, a lower sensitivity to block by cytoplasmic spermine and a smaller single-channel conductance than WT. (b) The features of Glu224Gly were similar to those of Glu299Ser. (c) In the double mutant (Glu224Gly-Glu299Ser), the differences from WT described above were more prominent. 4. These results demonstrate that Glu299 as well as Glu224 control rectification and permeation, and suggest the possibility that the two sites contribute to the inner vestibule of the channel pore. The slowing down of the on- and off-blocking processes by mutation of these sites implies that Glu224 and Glu299 function to facilitate the entry (and exit) of spermine to (and from) the blocking site.
Collapse
Affiliation(s)
- Y Kubo
- Department of Neurophysiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan.
| | | |
Collapse
|
210
|
Owens DF, Kriegstein AR. Maturation of channels and receptors: consequences for excitability. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:43-87. [PMID: 11130909 DOI: 10.1016/s0074-7742(01)45006-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- D F Owens
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | | |
Collapse
|
211
|
Huang CJ, Moczydlowski E. Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophys J 2001; 80:1262-79. [PMID: 11222290 PMCID: PMC1301321 DOI: 10.1016/s0006-3495(01)76102-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We report that voltage-gated Na+ channels (Na(V)) from rat muscle (mu1) expressed in HEK293 cells exhibit anomalous rectification of whole-cell outward current under conditions of symmetrical Na+. This behavior gradually fades with time after membrane break-in, as if a diffusible blocking substance in the cytoplasm is slowly diluted by the pipette solution. The degree of such block and rectification is markedly altered by various mutations of the conserved Lys(III) residue in Domain III of the Na(V) channel selectivity filter (DEKA locus), a principal determinant of inorganic ion selectivity and organic cation permeation. Using whole-cell and macropatch recording techniques, we show that two ubiquitous polyamines, spermine and spermidine, are potent voltage-dependent cytoplasmic blockers of mu1 Na(V) current that exhibit relief of block at high positive voltage, a phenomenon that is also enhanced by certain mutations of the Lys(III) residue. In addition, we find that polyamines alter the apparent rate of macroscopic inactivation and exhibit a use-dependent blocking phenomenon reminiscent of the action of local anesthetics. In the presence of a physiological Na+/K+ gradient, spermine also inhibits inward Na(V) current and shifts the voltage dependence of activation and inactivation. Similarities between the endogenous blocking phenomenon observed in whole cells and polyamine block characterized in excised patches suggest that polyamines or related metabolites may function as endogenous modulators of Na(V) channel activity.
Collapse
Affiliation(s)
- C J Huang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | |
Collapse
|
212
|
Gritli-Linde A, Nilsson J, Bohlooly-Y M, Heby O, Linde A. Nuclear translocation of antizyme and expression of ornithine decarboxylase and antizyme are developmentally regulated. Dev Dyn 2001; 220:259-75. [PMID: 11241834 DOI: 10.1002/1097-0177(20010301)220:3<259::aid-dvdy1100>3.0.co;2-#] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The polyamines are important regulators of cell growth and differentiation. Cells acquire polyamines by energy-dependent transport and by synthesis where the highly regulated ornithine decarboxylase (ODC) catalyzes the first and rate-controlling step. Inactivation of ODC is mainly exerted by antizyme (AZ), a 20--25 kDa polyamine-induced protein that binds to ODC, inactivates it, and targets it for degradation by the 26S proteasome without ubiquitination. In the present study, we have performed a systematic analysis of the expression of ODC and AZ, at the mRNA and protein levels, during mouse development. The expression patterns for ODC and AZ were found to be developmentally regulated, suggesting important functions for the polyamines in early embryogenesis, axonogenesis, epithelial-mesenchymal interaction, and in apoptosis. In addition, AZ protein was found to translocate to the nucleus in a developmentally regulated manner. The nuclear localization is consistent with the fact that the amino acid sequence of AZ exhibits features that characterize nuclear proteins. Interestingly, we found that cultivation of mandibular components of the first branchial arch in the presence of a selective proteasome inhibitor caused ODC accumulation in the nucleus of a subset of cells, suggesting that the observed nuclear translocation of AZ is linked to proteasome-mediated ODC degradation in the nucleus. The presence of AZ in the nucleus may suggest that nuclear ODC activity is under tight control, and that polyamine production can be rapidly interrupted when those developmental events, which depend on access to nuclear polyamines, have been completed.
Collapse
Affiliation(s)
- A Gritli-Linde
- Department of Oral Biochemistry, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
213
|
Lu T, Ting AY, Mainland J, Jan LY, Schultz PG, Yang J. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat Neurosci 2001; 4:239-46. [PMID: 11224539 DOI: 10.1038/85080] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Potassium channels selectively conduct K+ ions across cell membranes, and use diverse mechanisms to control their gating. We studied ion permeation and gating of an inwardly rectifying K+ channel by individually changing the amide carbonyls of two conserved glycines lining the selectivity filter to ester carbonyls using nonsense suppression. Surprisingly, these backbone mutations do not significantly alter ion selectivity. However, they dramatically change the kinetics of single-channel gating and produce distinct subconductance levels. The mutation at the glycine closer to the inner mouth of the pore also abolishes high-affinity binding of Ba2+ to the channel, indicating the importance of this position in ion stabilization in the selectivity filter. Our results demonstrate that K+ ion selectivity can be retained even with significant reduction of electronegativity in the selectivity filter, and that conformational changes of the filter arising from interactions between permeant ions and the backbone carbonyls contribute directly to channel gating.
Collapse
Affiliation(s)
- T Lu
- Department of Biological Sciences, 915 Fairchild Center, MC2462, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | |
Collapse
|
214
|
Bölter B, Soll J. Ion channels in the outer membranes of chloroplasts and mitochondria: open doors or regulated gates? EMBO J 2001; 20:935-40. [PMID: 11230117 PMCID: PMC145478 DOI: 10.1093/emboj/20.5.935] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Accepted: 01/09/2001] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Jürgen Soll
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
Corresponding author e-mail:
| |
Collapse
|
215
|
Raman IM, Bean BP. Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys J 2001; 80:729-37. [PMID: 11159440 PMCID: PMC1301271 DOI: 10.1016/s0006-3495(01)76052-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the kinetics of voltage-dependent sodium currents in cerebellar Purkinje neurons using whole-cell recording from dissociated neurons. Unlike sodium currents in other cells, recovery from inactivation in Purkinje neurons is accompanied by a sizeable ionic current. Additionally, the extent and speed of recovery depend markedly on the voltage and duration of the prepulse that produces inactivation. Recovery is faster after brief, large depolarizations (e.g., 5 ms at +30 mV) than after long, smaller depolarizations (e.g., 100 ms at -30 mV). On repolarization to -40 mV following brief, large depolarizations, a resurgent sodium current rises and decays in parallel with partial, nonmonotonic recovery from inactivation. These phenomena can be explained by a model that incorporates two mechanisms of inactivation: a conventional mechanism, from which channels recover without conducting current, and a second mechanism, favored by brief, large depolarizations, from which channels recover by passing transiently through the open state. The second mechanism is consistent with voltage-dependent block of channels by a particle that can enter and exit only when channels are open. The sodium current flowing during recovery from this blocked state may depolarize cells immediately after an action potential, promoting the high-frequency firing typical of Purkinje neurons.
Collapse
Affiliation(s)
- I M Raman
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
216
|
Abstract
The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.
Collapse
Affiliation(s)
- S Muto
- Department of Nephrology, Jichi Medical School, Minamikawachi, Tochigi, Japan.
| |
Collapse
|
217
|
Bakowski D, Parekh AB. Voltage-dependent conductance changes in the store-operated Ca2+ current ICRAC in rat basophilic leukaemia cells. J Physiol 2000; 529 Pt 2:295-306. [PMID: 11101641 PMCID: PMC2270208 DOI: 10.1111/j.1469-7793.2000.00295.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2000] [Accepted: 08/22/2000] [Indexed: 11/30/2022] Open
Abstract
Tight-seal whole-cell patch-clamp experiments were carried out in order to investigate the effects of different holding potentials on the rate of development and amplitude of the Ca2+ release-activated Ca2+ current ICRAC in rat basophilic leukaemia (RBL-1) cells. ICRAC was monitored at -80 mV from fast voltage ramps, spanning 200 mV in 50 ms. At hyperpolarised potentials, the macroscopic CRAC conductance was lower than that seen at depolarised potentials. The conductance increased almost 5-fold over the voltage range -60 to +40 mV and was seen when the stores were depleted either by the combination of IP3 and thapsigargin in high Ca2+ buffer, or passively with 10 mM EGTA or BAPTA. The voltage-dependent conductance of the CRAC channels could not be fully accounted for by Ca2+-dependent fast inactivation, nor by other slower inhibitory mechanisms. It also did not seem to involve intracellular Mg2+ or the polycations spermine and spermidine. Voltage step relaxation experiments revealed that the voltage-dependent conductance changes developed and reversed slowly, with a time constant of several seconds at -60 mV. In the presence of physiological levels of intracellular Ca2+ buffers, ICRAC was barely detectable when cells were clamped at -60 mV and dialysed with IP3 and thapsigargin, but at 0 mV the current in low Ca2+ buffer was as large as that seen in high Ca2+ buffer. Our results suggest that CRAC channels exhibit slow voltage-dependent conductance changes which can triple the current amplitude over the physiological range of voltages normally encountered by these cells. The role of this conductance change and possible underlying mechanisms are discussed.
Collapse
Affiliation(s)
- D Bakowski
- Laboratory of Molecular and Cellular Signalling, Department of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
218
|
Kilpeläinen P, Rybnikova E, Hietala O, Pelto-Huikko M. Expression of ODC and its regulatory protein antizyme in the adult rat brain. J Neurosci Res 2000; 62:675-85. [PMID: 11104505 DOI: 10.1002/1097-4547(20001201)62:5<675::aid-jnr6>3.0.co;2-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ornithine decarboxylase and its inhibitor protein, antizyme are key regulators of polyamine biosynthesis. We examined their expression in the adult rat brain using in situ hybridization and immunocytochemistry. Both genes were widely expressed and their expression patterns were mostly overlapping and relatively similar. The levels of antizyme mRNA were always higher than those of ornithine decarboxylase mRNA. The highest expression for both genes was detected in the cerebellar cortex, hippocampus, hypothalamic paraventricular and supraoptic nuclei, locus coeruleus, olfactory bulb, piriform cortex and pontine nuclei. Ornithine decarboxylase and antizyme mRNAs appeared to be localized in the nerve cells. ODC antibody displayed mainly cytoplasmic staining in all brain areas. Antizyme antibody staining was mainly cytoplasmic in the most brain areas, although predominantly nuclear staining was detected in some areas, most notably in the cerebellar cortex, anterior olfactory nucleus and frontal cortex. Our study is the first detailed and comparative analysis of ornithine decarboxylase and antizyme expression in the adult mammalian brain.
Collapse
Affiliation(s)
- P Kilpeläinen
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
219
|
Lancaster MK, Dibb KM, Quinn CC, Leach R, Lee JK, Findlay JB, Boyett MR. Residues and mechanisms for slow activation and Ba2+ block of the cardiac muscarinic K+ channel, Kir3.1/Kir3.4. J Biol Chem 2000; 275:35831-9. [PMID: 10956662 DOI: 10.1074/jbc.m006565200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms and residues responsible for slow activation and Ba(2+) block of the cardiac muscarinic K(+) channel, Kir3.1/Kir3.4, were investigated using site-directed mutagenesis. Mutagenesis of negatively charged residues located throughout the pore of the channel (in H5, M2, and proximal C terminus) reduced or abolished slow activation. The strongest effects resulted from mutagenesis of residues in H5 close to the selectivity filter; mutagenesis of residues in M2 and proximal C terminus equivalent to those identified as important determinants of the activation kinetics of Kir2.1 was less effective. In giant patches, slow activation was present in cell-attached patches, lost on excision of the patch, and restored on perfusion with polyamine. Mutagenesis of residues in H5 and M2 close to the selectivity filter also decreased Ba(2+) block of the channel. A critical residue for Ba(2+) block was identified in Kir3.4. Mutagenesis of the equivalent residue in Kir3.1 failed to have as pronounced an effect on Ba(2+) block, suggesting an asymmetry of the channel pore. It is concluded that slow activation is principally the result of unbinding of polyamines from negatively charged residues close to the selectivity filter of the channel and not an intrinsic gating mechanism. Ba(2+) block involves an interaction with the same residues.
Collapse
Affiliation(s)
- M K Lancaster
- School of Biomedical Sciences and Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
220
|
Ji J, Salapatek AM, Diamant NE. Inwardly rectifying K(+) channels in esophageal smooth muscle. Am J Physiol Gastrointest Liver Physiol 2000; 279:G951-60. [PMID: 11052992 DOI: 10.1152/ajpgi.2000.279.5.g951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The whole cell patch-clamp technique was used to investigate whether there were inwardly rectifying K(+) (K(ir)) channels in the longitudinal muscle of cat esophagus. Inward currents were observable on membrane hyperpolarization negative to the K(+) equilibrium potential (E(k)) in freshly isolated esophageal longitudinal muscle cells. The current-voltage relationship exhibited strong inward rectification with a reversal potential (E(rev)) of -76.5 mV. Elevation of external K(+) increased the inward current amplitude and positively shifted its E(rev) after the E(k), suggesting that potassium ions carry this current. External Ba(2+) and Cs(+) inhibited this inward current, with hyperpolarization remarkably increasing the inhibition. The IC(50) for Ba(2+) and Cs(+) at -60 mV was 2.9 and 1.6 mM, respectively. Furthermore, external Ba(2+) of 10 microM moderately depolarized the resting membrane potential of the longitudinal muscle cells by 6.3 mV while inhibiting the inward rectification. We conclude that K(ir) channels are present in the longitudinal muscle of cat esophagus, where they contribute to its resting membrane potential.
Collapse
Affiliation(s)
- J Ji
- Departments of Medicine and Physiology, University of Toronto, and Playfair Neuroscience Unit, Toronto Western Hospital, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|
221
|
Lopatin AN, Shantz LM, Mackintosh CA, Nichols CG, Pegg AE. Modulation of potassium channels in the hearts of transgenic and mutant mice with altered polyamine biosynthesis. J Mol Cell Cardiol 2000; 32:2007-24. [PMID: 11040105 DOI: 10.1006/jmcc.2000.1232] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inward rectification of cardiac I(K1)channels was modulated by genetic manipulation of the naturally occurring polyamines. Ornithine decarboxylase (ODC) was overexpressed in mouse heart under control of the cardiac alpha -myosin heavy chain promoter (alpha MHC). In ODC transgenic hearts, putrescine and cadaverine levels were highly elevated ( identical with 35-fold for putrescine), spermidine was increased 3.6-fold, but spermine was essentially unchanged. I(K1)density was reduced by identical with 38%, although the voltage-dependence of rectification was essentially unchanged. Interestingly, the fast component of transient outward (I(to,f)) current was increased, but the total outward current amplitude was unchanged. I(K1)and I(to)currents were also studied in myocytes from mutant Gyro (Gy) mice in which the spermine synthase gene is disrupted, leading to a complete loss of spermine. I(K1)current densities were not altered in Gy myocytes, but the steepness of rectification was reduced indicating a role for spermine in controlling rectification. Intracellular dialysis of myocytes with putrescine, spermidine and spermine caused reduction, no change and increase of the steepness of rectification, respectively. Taken together with kinetic analysis of I(K1)activation these results are consistent with spermine being a major rectifying factor at potentials positive to E(K), spermidine dominating at potentials around and negative to E(K), and putrescine playing no significant role in rectification in the mouse heart.
Collapse
Affiliation(s)
- A N Lopatin
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
222
|
Oliver D, Baukrowitz T, Fakler B. Polyamines as gating molecules of inward-rectifier K+ channels. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5824-9. [PMID: 10998040 DOI: 10.1046/j.1432-1327.2000.01669.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inward-rectifier potassium (Kir) channels comprise a superfamily of potassium (K+) channels with unique structural and functional properties. Expressed in virtually all types of cells they are responsible for setting the resting membrane potential, controlling the excitation threshold and secreting K+ ions. All Kir channels present an inwardly rectifying current-voltage relation, meaning that at any given driving force the inward flow of K+ ions exceeds the outward flow for the opposite driving force. This inward-rectification is due to a voltage-dependent block of the channel pore by intracellular polyamines and magnesium. The present molecular-biophysical understanding of inward-rectification and its physiological consequences is the topic of this review. In addition to polyamines, Kir channels are gated by intracellular protons, G-proteins, ATP and phospholipids depending on the respective Kir subfamily as detailed in the following review articles.
Collapse
Affiliation(s)
- D Oliver
- Department of Physiology II, University of Tübingen, Germany
| | | | | |
Collapse
|
223
|
Guo D, Lu Z. Pore block versus intrinsic gating in the mechanism of inward rectification in strongly rectifying IRK1 channels. J Gen Physiol 2000; 116:561-8. [PMID: 11004205 PMCID: PMC2230623 DOI: 10.1085/jgp.116.4.561] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IRK1 channel is inhibited by intracellular cations such as Mg(2+) and polyamines in a voltage-dependent manner, which renders its I-V curve strongly inwardly rectifying. However, even in excised patches exhaustively perfused with a commonly used artificial intracellular solution nominally free of Mg(2+) and polyamines, the macroscopic I-V curve of the channels displays modest rectification. This observation forms the basis of a hypothesis, alternative to the pore-blocking hypothesis, that inward rectification reflects the enhancement of intrinsic channel gating by intracellular cations. We find, however, that residual rectification is caused primarily by the commonly used pH buffer HEPES and/or some accompanying impurity. Therefore, inward rectification in the strong rectifier IRK1, as in the weak rectifier ROMK1, can be accounted for by voltage-dependent block of its ion conduction pore by intracellular cations.
Collapse
Affiliation(s)
- Donglin Guo
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhe Lu
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
224
|
Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 2000; 19:4248-56. [PMID: 10944107 PMCID: PMC302034 DOI: 10.1093/emboj/19.16.4248] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyamines have been implicated in a wide range of biological processes, including growth and development in bacteria and animals, but their function in higher plants is unclear. Here we show that the Arabidopsis: ACAULIS5 (ACL5) gene, whose inactivation causes a defect in the elongation of stem internodes by reducing cell expansion, encodes a protein that shares sequence similarity with the polyamine biosynthetic enzymes spermidine synthase and spermine synthase. Expression of the recombinant ACL5 protein in Escherichia coli showed that ACL5 possesses spermine synthase activity. Restoration of the acl5 mutant phenotype by somatic reversion of a transposon-induced allele suggests a non-cell-autonomous function for the ACL5 gene product. We also found that expression of the ACL5 cDNA under the control of a heat shock gene promoter in acl5 mutant plants restores the phenotype in a heat shock-dependent manner. The results of the experiments showed that polyamines play an essential role in promotion of internode elongation through cell expansion in Arabidopsis: We discuss the relationships to plant growth regulators such as auxin and gibberellins that have related functions.
Collapse
Affiliation(s)
- Y Hanzawa
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, N10, W8, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Thompson GA, Leyland ML, Ashmole I, Sutcliffe MJ, Stanfield PR. Residues beyond the selectivity filter of the K+ channel kir2.1 regulate permeation and block by external Rb+ and Cs+. J Physiol 2000; 526 Pt 2:231-40. [PMID: 10896714 PMCID: PMC2270013 DOI: 10.1111/j.1469-7793.2000.00231.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Kir2.1 channels are blocked by Rb+ and Cs+ in a voltage-dependent manner, characteristic of many inward rectifier K+ channels. Mutation of Ser165 in the transmembrane domain M2 to Leu (S165L) abolished Rb+ blockage and lowered Cs+ blocking affinity. At negative voltages Rb+ carried large inward currents. 2. A model of the Kir2.1 channel, built by homology with the structure of the Streptomyces lividans K+ channel KcsA, suggested the existence of an intersubunit hydrogen bond between Ser165 and Thr141 in the channel pore-forming P-region that helps stabilise the structure of this region. However, mutations of Thr141 and Ser165 did not produce effects consistent with a hydrogen bond between these residues being essential for blockage. 3. An alternative alignment between the M2 regions of Kir2.1 and KcsA suggested that Ser165 is itself a pore-lining residue, more directly affecting blockage. We were able to replace Ser165 with a variety of polar and non-polar residues, consistent with this residue being pore lining. Some of these changes affected channel blockage. 4. We tested the hypothesis that Asp172 - a residue implicated in channel gating by polyamines - formed an additional selectivity filter by using the triple mutant T141A/S165L/D172N. Large Rb+ and Cs+ currents were measured in this mutant. 5. We propose that both Thr141 and Ser165 are likely to provide binding sites for monovalent blocking cations in wild-type channels. These residues lie beyond the carbonyl oxygen tunnel thought to form the channel selectivity filter, which the blocking cations must therefore traverse.
Collapse
Affiliation(s)
- G A Thompson
- Ion Channel Group, Department of Cell Physiology and Pharmacology and Department of Chemistry, University of Leicester, PO Box 138, Leicester LE1 9HN, UK
| | | | | | | | | |
Collapse
|
226
|
Shieh RC. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes. J Physiol 2000; 526 Pt 2:241-52. [PMID: 10896715 PMCID: PMC2270019 DOI: 10.1111/j.1469-7793.2000.00241.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The decay of inward currents was characterized using the giant patch-clamp technique in the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus laevis oocytes. 2. The degree of decay was increased by strong hyperpolarization and reduced by increases in external [K+]. This voltage (membrane potential, Vm)- and K+-dependent decay is referred to as inactivation. The dissociation constant for the protective effects of external K+ ions against inactivation was about 5 mM and was not Vm dependent. 3. Internal K+ ions also showed mildly protective effects against inactivation when external K+ sites were not saturated. Results from variations in [K+] suggest that the hyperpolarization-induced inactivation of the Kir2.1 channels is not dependent on the driving force for K+ ions. 4. In the mutant which demonstrates higher external K+ affinity, the degree of inactivation was reduced. These results suggest that binding of K+ ions in the external channel pore mouth stabilizes channel opening. 5. Internal Mg2+ and polyamines induced time-dependent decay of inward currents in a dose-dependent but Vm-independent manner between -150 and -60 mV. The order of potency for Mg2+- and polyamine-induced decay was different from that for inward rectification. Furthermore, mutations with reduced inward rectification did not show parallel reduction of Mg2+- and polyamine-induced decay. These results suggest that the effects of internal Mg2+ and polyamines on Kir2.1 channels involve different binding sites. 6. This study provides evidence for Vm-dependent processes controlling the inactivation of the Kir2.1 channels.
Collapse
Affiliation(s)
- R C Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China.
| |
Collapse
|
227
|
Skatchkov SN, Eaton MJ, Krusek J, Veh RW, Biedermann B, Bringmann A, Pannicke T, Orkand RK, Reichenbach A. Spatial distribution of spermine/spermidine content and K(+)-current rectification in frog retinal glial (Müller) cells. Glia 2000; 31:84-90. [PMID: 10816609 DOI: 10.1002/(sici)1098-1136(200007)31:1<84::aid-glia80>3.0.co;2-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies in retinal glial (Müller) cells have suggested that (1) the dominant membrane currents are mediated by K(+) inward-rectifier (Kir) channels (Newman and Reichenbach, Trends Neurosci 19:307-312, 1996), and (2) rectification of these Kir channels is due largely to a block of outward currents by endogenous polyamines such as spermine/spermidine (SPM/SPD) (Lopatin et al., Nature 372:366-369, 1994). In frog Müller cells, the degree of rectification of Kir-mediated currents is significantly higher in the endfoot than in the somatic membrane (Skatchkov et al., Glia 27:171-181, 1999). This article shows that in these cells there is a topographical correlation between the local cytoplasmic SPM/SPD immunoreactivity and the ratio of inward to outward K(+) currents through the surrounding membrane area. Throughout the retina, Müller cell endfeet display a high SPM/SPD immunolabel (assessed by densitometry) and a large inward rectification of K(+) currents, as measured by the ratio of inward to outward current produced by step changes in [K(+)](o). In the retinal periphery, Müller cell somata are characterized by roughly one-half of the SPM/SPD immunoreactivity and K(+)-current rectification as the corresponding endfeet. In the retinal center, Müller cell somata are virtually devoid of both SPM/SPD immunolabel and K(+)-current inward rectification. Comparing one region of the retina with another, we find an exponential correlation between the local K(+) rectification and the local SPM/SPD content. This finding suggests that the degree of inward rectification in a given membrane area is determined by the local cytoplasmic polyamine concentration.
Collapse
Affiliation(s)
- S N Skatchkov
- CMBN, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamon, Puerto Rico
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Intracellular polyamines inhibit the strongly rectifying IRK1 potassium channel by a mechanism different from that of a typical ionic pore blocker such as tetraethylammonium. As in other K(+) channels, in the presence of intracellular TEA, the IRK1 channel current decreases with increasing membrane voltage and eventually approaches zero. However, in the presence of intracellular polyamines, the channel current varies with membrane voltage in a complex manner: when membrane voltage is increased, the current decreases in two phases separated by a hump. Furthermore, contrary to the expectation for a nonpermeant ionic pore blocker, a significant residual IRK1 current persists at very positive membrane voltages; the amplitude of the residual current decreases with increasing polyamine concentration. This complex blocking behavior of polyamines can be accounted for by a minimal model whereby intracellular polyamines inhibit the IRK1 channel by inducing two blocked channel states. In each of the blocked states, a polyamine is bound with characteristic affinity and probability of traversing the pore. The proposal that polyamines traverse the pore at finite rates is supported by the observation that philanthotoxin-343 (spermine with a bulky chemical group attached to one end) acts as a nonpermeant ionic blocker in the IRK1 channel.
Collapse
Affiliation(s)
- Donglin Guo
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhe Lu
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
229
|
Abstract
Polyamines block the retinal cyclic nucleotide-gated channel from both the intracellular and extracellular sides. The voltage-dependent mechanism by which intracellular polyamines inhibit the channel current is complex: as membrane voltage is increased in the presence of polyamines, current inhibition is not monotonic, but exhibits a pronounced damped undulation. To understand the blocking mechanism of intracellular polyamines, we systematically studied the endogenous polyamines as well as a series of derivatives. The complex channel-blocking behavior of polyamines can be accounted for by a minimal model whereby a given polyamine species (e.g., spermine) causes multiple blocked channel states. Each blocked state represents a channel occupied by a polyamine molecule with characteristic affinity and probability of traversing the pore, and exhibits a characteristic dependence on membrane voltage and cGMP concentration.
Collapse
Affiliation(s)
- Donglin Guo
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhe Lu
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
230
|
Abstract
In recent years the functions of polyamines (putrescine, spermidine, and spermine) have been studied at the molecular level. Polyamines can modulate the functions of RNA, DNA, nucleotide triphosphates, proteins, and other acidic substances. A major part of the cellular functions of polyamines can be explained through a structural change of RNA which occurs at physiological concentrations of Mg(2+) and K(+) because most polyamines exist in a polyamine-RNA complex within cells. Polyamines were found to modulate protein synthesis at several different levels including stimulation of special kinds of protein synthesis, stimulation of the assembly of 30 S ribosomal subunits and stimulation of Ile-tRNA formation. Effects of polyamines on ion channels have also been reported and are gradually being clarified at the molecular level.
Collapse
Affiliation(s)
- K Igarashi
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | | |
Collapse
|
231
|
Krause E, Bienert M, Schmieder P, Wenschuh H. The Helix-Destabilizing Propensity Scale ofd-Amino Acids: The Influence of Side Chain Steric Effects. J Am Chem Soc 2000. [DOI: 10.1021/ja9940524] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
232
|
Iyer R, Wu Z, Woster PM, Delcour AH. Molecular basis for the polyamine-ompF porin interactions: inhibitor and mutant studies. J Mol Biol 2000; 297:933-45. [PMID: 10736228 DOI: 10.1006/jmbi.2000.3599] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By testing the sensitivity of Escherichia coli OmpF porin to various natural and synthetic polyamines of different lengths, charge and other molecular characteristics, we were able to identify the molecular properties required for compounds to act as inhibitors of OmpF in the nanomolar range. Inhibitors require at least two amine groups to be effective. For diamines, the optimum length of the hydrocarbon spacer was found to be of eight to ten methylene groups. Triamine molecules based on a 12-carbon motif were found to be more effective that spermidine, an eight-carbon trivalent derivative. But differences in inhibition efficiencies were also found for trivalent compounds depending on the relative position of the internal secondary amine group with respect to the terminal groups. Finally, quaternary ammonium derivatives had no effect, suggesting that the nature of the terminal amine is important for the interaction. From these observations, we deduce that inhibition efficiency in the nanomolar range requires a 12-carbon chain triamine with terminal primary amine groups and replacement of the eighth methylene by a secondary amine. The need for this type of molecular architecture suggests that inhibition is governed by interactions between specific amine groups and protein residues, and that this is not simply due to the accumulation of charges into the pore. Together with previous observations from site-directed mutagenesis studies and inspection of the crystal structure of OmpF, these results allowed us to propose three residues (D113, D121 and Y294) as putative sites of interaction between the channel and spermine. Alanine substitution at each of these three residues resulted in a loss of inhibition by spermine, while mutations of only D113 and D121 affected inhibition by spermidine. Based on these observations, we suggest a model for the molecular determinants involved in the porin-polyamine interaction.
Collapse
Affiliation(s)
- R Iyer
- Department of Biology, University of Houston, Houston, TX, 77204-5513, USA
| | | | | | | |
Collapse
|
233
|
Abstract
Several amine oxidases are involved in the metabolism of the natural polyamines putrescine, spermidine, and spermine, and play a role in the regulation of intracellular concentrations, and the elimination of these amines. Since the products of the amine oxidase-catalyzed reactions -- hydrogen peroxide and aminoaldehydes -- are cytotoxic, oxidative degradations of the polyamines have been considered as a cause of apoptotic cell death, among other things in brain injury. Since a generally accepted, unambiguous nomenclature for amine oxidases is missing, considerable confusion exists with regard to the polyamine oxidizing enzymes. Consequently the role of the different amine oxidases in physiological and pathological processes is frequently misunderstood. In the present overview the reactions, which are catalyzed by the different polyamine-oxidizing enzymes are summarized, and their potential role in brain damage is discussed.
Collapse
Affiliation(s)
- N Seiler
- CIF INSERM 95-05, Institut de Recherche Contre les Cancers de l'Appareil Digestif, Strasbourg, France.
| |
Collapse
|
234
|
Cherian L, Goodman JC, Robertson CS. Brain nitric oxide changes after controlled cortical impact injury in rats. J Neurophysiol 2000; 83:2171-8. [PMID: 10758126 DOI: 10.1152/jn.2000.83.4.2171] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) and the NO end products, nitrate and nitrite, were measured at the impact site after a 5-m/s, 3-mm deformation controlled cortical impact injury in rats. Immediately after the impact injury and the NO and microdialysis probes could be replaced, there was an increase from baseline in NO concentration of 83 +/- 16 (SE) nM, compared with 0.5 +/- 4 nM in the sham injured animals (P < 0.001). This marked increase in NO occurred at the time of the initial rise in blood pressure (BP) and intracranial pressure (ICP) in response to the injury. After the initial increase in BP and ICP, the BP decreased and stabilized at a value which was approximately 20 mmHg below the preinjury values, and ICP plateaued at an average value of 20 mmHg, compared with 8 mmHg in the sham-injured animals. This provided an average cerebral perfusion pressure of 40-50 mmHg, compared with 65-75 mmHg for the sham-injured animals. These values were relatively constant for the remainder of the 3-h monitoring period. The NO values also stabilized during this time period. By 1 h after the impact injury the NO concentration measured directly using the NO electrode had decreased from baseline values by an average value of 25 +/- 6 nM. NO concentration remained significantly lower than baseline values throughout the remainder of the 3-h monitoring period. The concentration of nitrate/nitrite in the dialysate fluid also decreased by an average value of 341 +/- 283 nM 20-40 min after the injury. Dialysate nitrite/nitrate concentrations remained less than the preinjury baseline values throughout the remainder of the 3-h monitoring period. Preinjury treatment with L-nitro-arginine methyl ester (L-NAME) blunted the injury-induced increase in NO and resulted in more severe immediate intracranial hypertension and more severe systemic hypotension at one hour after injury. Mortality was also 67% with L-NAME pretreatment, compared with 1% in untreated animals.
Collapse
Affiliation(s)
- L Cherian
- Departments of Neurosurgery and Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
235
|
Stadnicka A, Bosnjak ZJ, Kampine JP, Kwok WM. Modulation of Cardiac Inward Rectifier K+ Current by Halothane and Isoflurane. Anesth Analg 2000. [DOI: 10.1213/00000539-200004000-00010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
236
|
Stadnicka A, Bosnjak ZJ, Kampine JP, Kwok WM. Modulation of cardiac inward rectifier K(+)current by halothane and isoflurane. Anesth Analg 2000; 90:824-33. [PMID: 10735783 DOI: 10.1097/00000539-200004000-00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED The cellular mechanisms that underlie general anesthetic actions on the inward rectifier K(+) current (IKir), a determinant of the resting potential in myocardium, are not fully understood. Using the whole-cell patch clamp technique, therefore, we investigated the effects of halothane and isoflurane on IKir in guinea pig ventricular myocytes. At membrane potentials negative to the equilibrium potential for potassium both anesthetics decreased amplitude of the steady-state inward IKir in a concentration- and voltage-dependent manner. The slope conductance was reduced, but the activation kinetics of the inward current were not altered. At potentials positive to the equilibrium potential for potassium, the outward current was increased by both anesthetics, which also caused small depolarizing shifts in the activation curve. With high internal magnesium concentration, the outward current increase by isoflurane was abolished, and the inward current block by halothane was attenuated. Spermine prevented the effects of both anesthetics on IKir at all membrane potentials tested. The results show voltage-dependent modulation of cardiac IKir channel by volatile anesthetics. Distinct modification of anesthetic effects by inward rectification gating agents, magnesium and spermine, suggests anesthetic interactions with the IKir channel protein. IMPLICATIONS Differential modulation of myocardial inward rectifier potassium current by volatile anesthetics under normal and altered rectification may contribute to the mechanism of dysrhythmic actions by these anesthetics.
Collapse
Affiliation(s)
- A Stadnicka
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
237
|
Fahlke C. Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations. Kidney Int 2000; 57:780-6. [PMID: 10720929 DOI: 10.1046/j.1523-1755.2000.00915.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The muscle Cl- channel, ClC-1, is a member of the ClC family of voltage-gated Cl- channels. Mutations in CLCN1, the gene encoding this channel, cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen). The functional characterization of these naturally occurring mutations not only allowed a better understanding of the pathophysiology of myotonia, it also provided important insights into the structure and function of the entire ClC channel family. This review describes recent experiments using a combination of cellular electrophysiology, molecular genetics, and recombinant DNA technology to study the molecular basis of ion permeation and selection in ClC-type chloride channels.
Collapse
Affiliation(s)
- C Fahlke
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
238
|
A molecular link between inward rectification and calcium permeability of neuronal nicotinic acetylcholine alpha3beta4 and alpha4beta2 receptors. J Neurosci 2000. [PMID: 10632582 DOI: 10.1523/jneurosci.20-02-00529.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many nicotinic acetylcholine receptors (nAChRs) expressed by central neurons are located at presynaptic nerve terminals. These receptors have high calcium permeability and exhibit strong inward rectification, two important physiological features that enable them to facilitate transmitter release. Previously, we showed that intracellular polyamines act as gating molecules to block neuronal nAChRs in a voltage-dependent manner, leading to inward rectification. Our goal is to identify the structural determinants that underlie the block by intracellular polyamines and govern calcium permeability of neuronal nAChRs. We hypothesize that two ring-like collections of negatively charged amino acids (cytoplasmic and intermediate rings) near the intracellular mouth of the pore mediate the interaction with intracellular polyamines and also influence calcium permeability. Using site-directed mutagenesis and electrophysiology on alpha(4)beta(2) and alpha(3)beta(4) receptors expressed in Xenopus oocytes, we observed that removing the five negative charges of the cytoplasmic ring had little effect on either inward rectification or calcium permeability. However, partial removal of negative charges of the intermediate ring diminished the high-affinity, voltage-dependent interaction between intracellular polyamines and the receptor, abolishing inward rectification. In addition, these nonrectifying mutant receptors showed a drastic reduction in calcium permeability. Our results indicate that the negatively charged glutamic acid residues at the intermediate ring form both a high-affinity binding site for intracellular polyamines and a selectivity filter for inflowing calcium ions; that is, a common site links inward rectification and calcium permeability of neuronal nAChRs. Physiologically, this molecular mechanism provides insight into how presynaptic nAChRs act to influence transmitter release.
Collapse
|
239
|
Loussouarn G, Makhina EN, Rose T, Nichols CG. Structure and dynamics of the pore of inwardly rectifying K(ATP) channels. J Biol Chem 2000; 275:1137-44. [PMID: 10625656 DOI: 10.1074/jbc.275.2.1137] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inwardly rectifying K(+) currents are generated by a complex of four Kir (Kir1-6) subunits. Pore properties are conferred by the second transmembrane domain (M2) of each subunit. Using cadmium ions as a cysteine-interacting probe, we examined the accessibility of substituted cysteines in M2 of the Kir6.2 subunit of inwardly rectifying K(ATP) channels. The ability of Cd(2+) ions to inhibit channels was used as the estimate of accessibility. The distribution of Cd(2+) accessibility is consistent with an alpha-helical structure of M2. The apparent surface of reactivity is broad, and the most reactive residues correspond to the solvent-accessible residues in the bacterial KcsA channel crystal structure. In several mutants, single channel measurements indicated that inhibition occurred by a single transition from the open state to a zero-conductance state. Analysis of currents expressed from mixtures of control and L164C mutant subunits indicated that at least three cysteines are required for coordination of the Cd(2+) ion. Application of phosphatidylinositol 4,5-diphosphate to inside-out membrane patches stabilized the open state of all mutants and also reduced cadmium sensitivity. Moreover, the Cd(2+) sensitivity of several mutants was greatly reduced in the presence of inhibitory ATP concentrations. Taken together, these results are consistent with state-dependent accessibility of single Cd(2+) ions to coordination sites within a relatively narrow inner vestibule.
Collapse
Affiliation(s)
- G Loussouarn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
240
|
Properties, regulation, and role of potassium channels of smooth muscle. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2590(00)08010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
241
|
Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J. pH gating of ROMK (K(ir)1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci U S A 1999; 96:15298-303. [PMID: 10611379 PMCID: PMC24814 DOI: 10.1073/pnas.96.26.15298] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inward-rectifier K(+) channels of the ROMK (K(ir)1.1) subtype are responsible for K(+) secretion and control of NaCl absorption in the kidney. A hallmark of these channels is their gating by intracellular pH in the neutral range. Here we show that a lysine residue close to TM1, identified previously as a structural element required for pH-induced gating, is protonated at neutral pH and that this protonation drives pH gating in ROMK and other K(ir) channels. Such anomalous titration of this lysine residue (Lys-80 in K(ir)1.1) is accomplished by the tertiary structure of the K(ir) protein: two arginines in the distant N and C termini of the same subunit (Arg-41 and Arg-311 in K(ir)1.1) are located in close spatial proximity to the lysine allowing for electrostatic interactions that shift its pK(a) into the neutral pH range. Structural disturbance of this triad as a result from a number of point mutations found in patients with antenatal Bartter syndrome shifts the pK(a) of the lysine residue off the neutral pH range and results in channels permanently inactivated under physiological conditions. Thus, the results provide molecular understanding for normal pH gating of K(ir) channels as well as for the channel defects found in patients with antenatal Bartter syndrome.
Collapse
Affiliation(s)
- U Schulte
- Department of Physiology II, Ob dem Himmelreich 7, 72074 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Barrett-Jolley R, Dart C, Standen NB. Direct block of native and cloned (Kir2.1) inward rectifier K+ channels by chloroethylclonidine. Br J Pharmacol 1999; 128:760-6. [PMID: 10516659 PMCID: PMC1571662 DOI: 10.1038/sj.bjp.0702819] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We have investigated the inhibition of inwardly rectifying potassium channels by the alpha-adrenergic agonist/antagonist chloroethylclonidine (CEC). We used two preparations; two-electrode voltage-clamp of rat isolated flexor digitorum brevis muscle and whole-cell patch-clamp of cell lines transfected with Kir2.1 (IRK1). 2. In skeletal muscle and at a membrane potential of -50 mV, chloroethylclonidine (CEC), an agonist at alpha2-adrenergic receptors and an antagonist at alpha1x-receptors, was found to inhibit the inward rectifier current with a Ki of 30 microM. 3. The inhibition of skeletal muscle inward rectifier current by CEC was not mimicked by clonidine, adrenaline or noradrenaline and was not sensitive to high concentrations of alpha1-(prazosin) or alpha2-(rauwolscine) antagonists. 4. The degree of current inhibition by CEC was found to vary with the membrane potential (approximately 70% block at -50 mV c.f. approximately 10% block at -190 mV). The kinetics of this voltage dependence were further investigated using recombinant inward rectifier K+ channels (Kir2.1) expressed in the MEL cell line. Using a two pulse protocol, we calculated the time constant for block to be approximately 8 s at 0 mV, and the rate of unblock was described by the relationship tau=exp((Vm+149)/22) s. 5. This block was effective when CEC was applied to either the inside or the outside of patch clamped cells, but ineffective when a polyamine binding site (aspartate 172) was mutated to asparagine. 6. The data suggest that the clonidine-like imidazoline compound, CEC, inhibits inward rectifier K+ channels independently of alpha-receptors by directly blocking the channel pore, possibly at an intracellular polyamine binding site.
Collapse
Affiliation(s)
- R Barrett-Jolley
- Ion Channel Group, Department of Cell Physiology and Pharmacology, Leicester University, PO Box 138, Leicester LE1 9HN.
| | | | | |
Collapse
|
243
|
Hrnjez BJ, Song JC, Prasad M, Mayol JM, Matthews JB. Ammonia blockade of intestinal epithelial K+ conductance. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G521-32. [PMID: 10484376 DOI: 10.1152/ajpgi.1999.277.3.g521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ammonia profoundly inhibits cAMP-dependent Cl- secretion in model T84 human intestinal crypt epithelia. Because colonic lumen concentrations of ammonia are high (10-70 mM), ammonia may be a novel regulator of secretory diarrheal responsiveness. We defined the target of ammonia action by structure-function analysis with a series of primary amines (ammonia, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, and octylamine) that vary principally in size and lipid solubilities. The amine concentrations required for 50% inhibition of Cl- secretion in intact monolayers and 50% inhibition of outward K+ current (IK) in apically permeabilized monolayers vs. the logs of the respective amine partition coefficients give two plots that are strikingly similar in character. Half-maximal inhibition of short-circuit current (Isc) by ammonia was seen at 6 mM and for IK at 4 mM; half-maximal inhibition for octylamine was 0.24 mM and 0.19 mM for Isc and IK, respectively. The preferentially water-soluble hydrophilic amines (ammonia, methylamine, ethylamine) increase in blocking ability with decreasing size and lipophilicity. Conversely, the preferentially lipid-soluble hydrophobic (propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine) amines increase in blocking ability with increasing size and lipophilicity. Ammonia does not affect isolated apical Cl- conductance; amine-induced changes in cytosolic and endosomal pH do not correlate with secretory inhibition. We propose that ammonia in its protonated ammonium form (NH4+) inhibits cAMP-dependent Cl- secretion in T84 monolayers by blocking basolateral K+ channels.
Collapse
Affiliation(s)
- B J Hrnjez
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Harvard Digestive Diseases Center, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
244
|
Spassova M, Lu Z. Tuning the voltage dependence of tetraethylammonium block with permeant ions in an inward-rectifier K+ channel. J Gen Physiol 1999; 114:415-26. [PMID: 10469731 PMCID: PMC2229458 DOI: 10.1085/jgp.114.3.415] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the role of permeating ions in determining blocking ion-induced rectification, we examined block of the ROMK1 inward-rectifier K+ channel by intracellular tetraethylammonium in the presence of various alkali metal ions in both the extra- and intracellular solutions. We found that the channel exhibits different degrees of rectification when different alkali metal ions (all at 100 mM) are present in the extra- and intracellular solution. A quantitative analysis shows that an external ion site in the ROMK1 pore binds various alkali metal ions (Na+, K+, Rb+, and Cs+) with different affinities, which can in turn be altered by the binding of different permeating ions at an internal site through a nonelectrostatic mechanism. Consequently, the external site is saturated to a different level under the various ionic conditions. Since rectification is determined by the movement of all energetically coupled ions in the transmembrane electrical field along the pore, different degrees of rectification are observed in various combinations of extra- and intracellular permeant ions. Furthermore, the external and internal ion-binding sites in the ROMK1 pore appear to have different ion selectivity: the external site selects strongly against the smaller Na+, but only modestly among the three larger ions, whereas the internal site interacts quite differently with the larger K+ and Rb+ ions.
Collapse
Affiliation(s)
- Maria Spassova
- From the Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhe Lu
- From the Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
245
|
Lu T, Zhu YG, Yang J. Cytoplasmic amino and carboxyl domains form a wide intracellular vestibule in an inwardly rectifying potassium channel. Proc Natl Acad Sci U S A 1999; 96:9926-31. [PMID: 10449796 PMCID: PMC22312 DOI: 10.1073/pnas.96.17.9926] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied the structural components and architecture of the intracellular vestibule of a strongly rectifying channel (Kir2.1) expressed in Xenopus oocytes. Putative vestibule-lining residues were identified by systematically examining covalent modification by sulfhydryl-specific reagents of cysteine residues engineered into two cytoplasmic regions. In a stretch of 33 amino acids in the amino terminus (from C54 to V86) and 22 amino acids in the carboxyl terminus (from R213 to S234), 15 and 11 residues, respectively, were found to be accessible to methanethiosulfonate ethylammonium (MTSEA) or methanethiosulfonate ethyltrimethylammonium (MTSET) and presumably project into the aqueous intracellular vestibule. The pattern of accessibility suggests that both stretches may adopt an extended loop structure. To explore the physical dimension of the intracellular vestibule, we covalently linked a constrained number (one to four) of positively charged moieties of different sizes to the E224 position and found that this vestibule region is sufficiently wide to accommodate four modifying groups with dimensions of 12 A x 10 A x 6 A. These results suggest that regions in both the amino and carboxyl domains of Kir2.1 channel form a long and wide intracellular vestibule that protrudes beyond the membrane into the cytoplasm.
Collapse
Affiliation(s)
- T Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
246
|
Skatchkov S, Kru?ek J, Reichenbach A, Orkand R. Potassium buffering by M�ller cells isolated from the center and periphery of the frog retina. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199908)27:2<171::aid-glia7>3.0.co;2-f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
247
|
Abstract
KATP channels are a newly defined class of potassium channels based on the physical association of an ABC protein, the sulfonylurea receptor, and a K+ inward rectifier subunit. The beta-cell KATP channel is composed of SUR1, the high-affinity sulfonylurea receptor with multiple TMDs and two NBFs, and KIR6.2, a weak inward rectifier, in a 1:1 stoichiometry. The pore of the channel is formed by KIR6.2 in a tetrameric arrangement; the overall stoichiometry of active channels is (SUR1/KIR6.2)4. The two subunits form a tightly integrated whole. KIR6.2 can be expressed in the plasma membrane either by deletion of an ER retention signal at its C-terminal end or by high-level expression to overwhelm the retention mechanism. The single-channel conductance of the homomeric KIR6.2 channels is equivalent to SUR/KIR6.2 channels, but they differ in all other respects, including bursting behavior, pharmacological properties, sensitivity to ATP and ADP, and trafficking to the plasma membrane. Coexpression with SUR restores the normal channel properties. The key role KATP channel play in the regulation of insulin secretion in response to changes in glucose metabolism is underscored by the finding that a recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is caused by mutations in KATP channel subunits that result in the loss of channel activity. KATP channels set the resting membrane potential of beta-cells, and their loss results in a constitutive depolarization that allows voltage-gated Ca2+ channels to open spontaneously, increasing the cytosolic Ca2+ levels enough to trigger continuous release of insulin. The loss of KATP channels, in effect, uncouples the electrical activity of beta-cells from their metabolic activity. PHHI mutations have been informative on the function of SUR1 and regulation of KATP channels by adenine nucleotides. The results indicate that SUR1 is important in sensing nucleotide changes, as implied by its sequence similarity to other ABC proteins, in addition to being the drug sensor. An unexpected finding is that the inhibitory action of ATP appears to be through a site located on KIR6.2, whose affinity for ATP is modified by SUR1. A PHHI mutation, G1479R, in the second NBF of SUR1 forms active KATP channels that respond normally to ATP, but fail to activate with MgADP. The result implies that ATP tonically inhibits KATP channels, but that the ADP level in a fasting beta-cell antagonizes this inhibition. Decreases in the ADP level as glucose is metabolized result in KATP channel closure. Although KATP channels are the target for sulfonylureas used in the treatment of NIDDM, the available data suggest that the identified KATP channel mutations do not play a major role in diabetes. Understanding how KATP channels fit into the overall scheme of glucose homeostasis, on the other hand, promises insight into diabetes and other disorders of glucose metabolism, while understanding the structure and regulation of these channels offers potential for development of novel compounds to regulate cellular electrical activity.
Collapse
Affiliation(s)
- L Aguilar-Bryan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
248
|
Lee JK, John SA, Weiss JN. Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1. J Gen Physiol 1999; 113:555-64. [PMID: 10102936 PMCID: PMC2217169 DOI: 10.1085/jgp.113.4.555] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have studied interactions between polyamines and the polyamine toxins philanthotoxin and argiotoxin on inward rectification in Kir2.1. We present evidence that high affinity polyamine block is not consistent with direct open channel block, but instead involves polyamines binding to another region of the channel (intrinsic gate) to form a blocking complex that occludes the pore. This interaction defines a novel mechanism of ion channel closure.
Collapse
Affiliation(s)
- J K Lee
- UCLA Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
249
|
Chavez RA, Gray AT, Zhao BB, Kindler CH, Mazurek MJ, Mehta Y, Forsayeth JR, Yost CS. TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 1999; 274:7887-92. [PMID: 10075682 DOI: 10.1074/jbc.274.12.7887] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potassium channels are found in all mammalian cell types, and they perform many distinct functions in both excitable and non-excitable cells. These functions are subserved by several different families of potassium channels distinguishable by primary sequence features as well as by physiological characteristics. Of these families, the tandem pore domain potassium channels are a new and distinct class, primarily distinguished by the presence of two pore-forming domains within a single polypeptide chain. We have cloned a new member of this family, TWIK-2, from a human brain cDNA library. Primary sequence analysis of TWIK-2 shows that it is most closely related to TWIK-1, especially in the pore-forming domains. Northern blot analysis reveals the expression of TWIK-2 in all human tissues assayed except skeletal muscle. Human TWIK-2 expressed heterologously in Xenopus oocytes is a non-inactivating weak inward rectifier with channel properties similar to TWIK-1. Pharmacologically, TWIK-2 channels are distinct from TWIK-1 channels in their response to quinidine, quinine, and barium. TWIK-2 is inhibited by intracellular, but not extracellular, acidification. This new clone reveals the existence of a subfamily in the tandem pore domain potassium channel family with weak inward rectification properties.
Collapse
Affiliation(s)
- R A Chavez
- Elan Pharmaceuticals, Menlo Park, California 94025, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Lu T, Nguyen B, Zhang X, Yang J. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 1999; 22:571-80. [PMID: 10197536 DOI: 10.1016/s0896-6273(00)80711-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inwardly rectifying K+ channels bind intracellular magnesium and polyamines to generate inward rectification. We have examined the architecture of the inner pore of Kir2.1 channels by covalently attaching a constrained number (from one to four) of positively charged moieties of different sizes to the channel. Our results indicate that the inner pore is formed solely by the second transmembrane segment and is unprecedentedly wide. At a position critical for inward rectification (D172), the pore is sufficiently wide to bind three Mg2+ ions or polyamine molecules simultaneously. Single-channel recordings directly demonstrate that partially modified channels exhibit distinct subconductance levels. Such a wide inner pore may greatly facilitate ion permeation and high-affinity binding of multiple pore blockers to generate strong inward rectification.
Collapse
Affiliation(s)
- T Lu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|