201
|
Kaput J, Ordovas JM, Ferguson L, van Ommen B, Rodriguez RL, Allen L, Ames BN, Dawson K, German B, Krauss R, Malyj W, Archer MC, Barnes S, Bartholomew A, Birk R, van Bladeren P, Bradford KJ, Brown KH, Caetano R, Castle D, Chadwick R, Clarke S, Clément K, Cooney CA, Corella D, Manica da Cruz IB, Daniel H, Duster T, Ebbesson SOE, Elliott R, Fairweather-Tait S, Felton J, Fenech M, Finley JW, Fogg-Johnson N, Gill-Garrison R, Gibney MJ, Gillies PJ, Gustafsson JA, Hartman JL, He L, Hwang JK, Jais JP, Jang Y, Joost H, Junien C, Kanter M, Kibbe WA, Koletzko B, Korf BR, Kornman K, Krempin DW, Langin D, Lauren DR, Ho Lee J, Leveille GA, Lin SJ, Mathers J, Mayne M, McNabb W, Milner JA, Morgan P, Muller M, Nikolsky Y, van der Ouderaa F, Park T, Pensel N, Perez-Jimenez F, Poutanen K, Roberts M, Saris WHM, Schuster G, Shelling AN, Simopoulos AP, Southon S, Tai ES, Towne B, Trayhurn P, Uauy R, Visek WJ, Warden C, Weiss R, Wiencke J, Winkler J, Wolff GL, Zhao-Wilson X, Zucker JD. The case for strategic international alliances to harness nutritional genomics for public and personal health. Br J Nutr 2005; 94:623-32. [PMID: 16277761 DOI: 10.1079/bjn20051585] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.
Collapse
Affiliation(s)
- Jim Kaput
- Center of Excellence in Nutritional Genomics, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Nieman DC, Davis JM, Henson DA, Gross SJ, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, McAnulty SR, McAnulty LS, Triplett NT. Muscle cytokine mRNA changes after 2.5 h of cycling: influence of carbohydrate. Med Sci Sports Exerc 2005; 37:1283-90. [PMID: 16118573 DOI: 10.1249/01.mss.0000175054.99588.b1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To study the effect of carbohydrate compared to placebo ingestion on plasma cytokines and muscle cytokine mRNA following 2.5 h of intensive cycling in 15 trained cyclists. METHODS Fifteen trained cyclists cycled for 2.5 h at 60% Wmax on two occasions while receiving 4 mL.kg.15 min carbohydrate (6%) (CHO) or placebo (PLA) beverages in a randomized, counterbalanced design. Blood and vastus lateralis muscle biopsy samples were collected before and after exercise and 12 h postexercise and compared to samples taken from five cyclists who rested in the lab during the exercise sessions. Blood cell counts were determined, and plasma was analyzed for interleukin (IL)-6, IL-10, IL-1 receptor antagonist (ra), IL-8, cortisol, epinephrine, glucose, and insulin. Muscle was analyzed for glycogen content and relative gene expression of four cytokines, IL-6, IL-8, tumor necrosis factor (TNF) alpha, and IL-1beta, using real-time quantitative reverse transcriptase polymerase chain reaction. RESULTS Plasma glucose and insulin were higher, and epinephrine, cortisol, IL-6, IL-10, and IL-1ra, but not IL-8, were significantly lower postexercise in CHO versus PLA. Muscle glycogen content decreased 68% immediately postexercise and the pattern of change did not differ between CHO and PLA. Muscle IL-6, IL-8, TNF-alpha, but not IL-1beta mRNA increased immediately postexercise compared to controls, with no differences between CHO and PLA. CONCLUSION CHO compared to PLA beverage ingestion attenuated the increase in plasma cortisol, epinephrine, IL-6, IL-10, and IL-1ra, but not muscle IL-6, IL-8, and TNF-alpha mRNA in athletes cycling 2.5 h at 60% Wmax.
Collapse
Affiliation(s)
- David C Nieman
- Department of Health, Leisure, and Exercise Science, Fischer Hamilton/Nycom Biochemistry Laboratory, Appalachian State University, Boone, NC 28608, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Keller C, Steensberg A, Hansen AK, Fischer CP, Plomgaard P, Pedersen BK. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J Appl Physiol (1985) 2005; 99:2075-9. [PMID: 16099893 DOI: 10.1152/japplphysiol.00590.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cytokine interleukin-6 (IL-6) exerts it actions via the IL-6 receptor (IL-6R) in conjunction with the ubiquitously expressed gp130 receptor. IL-6 is tightly regulated in response to exercise, being affected by factors such as exercise intensity and duration, as well as energy availability. Although the IL-6 response to exercise has been extensively studied, little is known about the regulation of the IL-6R response. In the present study, we aimed to investigate the effect of exercise, training, and glycogen availability, factors known to affect IL-6, on the regulation of gene expression of the IL-6R in human skeletal muscle. Human subjects performed either 10 wk of training with an acute exercise bout before and after the training period, or a low-glycogen vs. normal-glycogen acute exercise trial. The IL-6R mRNA response was evaluated in both trials. In response to acute exercise, an increase in IL-6R mRNA levels was observed. Neither training nor intramuscular glycogen levels had an effect on the IL-6R mRNA response to exercise. However, after 10 wk of training, the skeletal muscle expressed a higher mRNA level of IL-6R compared with before training. The present study demonstrated that the IL-6R gene expression levels in skeletal muscle are increased in response to acute exercise, a response that is very well conserved, being affected by neither training status nor intramuscular glycogen levels, as opposed to IL-6. However, after the training period, IL-6R mRNA production was increased in skeletal muscle, suggesting a sensitization of skeletal muscle to IL-6 at rest.
Collapse
Affiliation(s)
- Charlotte Keller
- Department of Infectious Disease, Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
204
|
Abstract
It has been recognized for some time that cardiovascular disease and type 2 diabetes are, to a major extent, inflammatory disorders associated with an environment characterized by a sedentary lifestyle together with abundant intakes of calories. Systemic low-level inflammation is suggested to be a cause as well as consequence of pathological processes with local tumor necrosis factor alpha production as an important biological driver. It is hypothesized that physical inactivity contributes to an enhanced proinflammatory burden independently of obesity, as regular muscle contractions mediate signals with myokines/cytokines as important messengers, which suppress proinflammatory activity at distant sites as well as within skeletal muscle. Muscle-derived interleukin (IL)-6 is considered to possess a central role in anti-inflammatory activities and health beneficial effects in relation to physical exercise. It is discussed how this fits the consistent observation that enhanced plasma levels of IL-6 represent a strong risk marker in chronic disorders associated with systemic low-level inflammation and all-cause mortality.
Collapse
Affiliation(s)
- Helle Bruunsgaard
- Centre of Inflammation and Metabolism, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| |
Collapse
|
205
|
Hilberg T, Deigner HP, Möller E, Claus RA, Ruryk A, Gläser D, Landre J, Brunkhorst FM, Reinhart K, Gabriel HHW, Russwurm S. Transcription in response to physical stress--clues to the molecular mechanisms of exercise-induced asthma. FASEB J 2005; 19:1492-4. [PMID: 16027142 DOI: 10.1096/fj.04-3063fje] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To clarify stress-induced immunological reactions and molecular events during exercise and the potential relevance to exercise-induced bronchoconstriction, transcriptional responses to standardized physical stress were determined. Six healthy, young volunteers underwent an endurance exercise of 90% of their individual anaerobic threshold for 90 min. Time-dependent alterations in the expression pattern of leukocytes from healthy, trained subjects were analyzed by DNA microarrays before and 2 h and 6 h after exercise. Starting out from a large collection of cDNA library clones comprising more than 70,000 human expressed sequence tags, we selected, designed, and immobilized oligonucleotide probes (60-70mers) for transcripts of 5000 stress- and inflammation-relevant genes. Exercise-induced stress provoked changes in the expression of 433 gene activities 2 h and/or 6 h after exercise, which could be grouped into six clusters. The most prominent feature was an enhanced transcription of two genes, coding for 5-lipoxygenase (ALOX5) and ALOX5-activating protein. Moreover, enhanced levels of leukotriene B4 (LTB4) and LTC4 (P<0.05) were detected in plasma after exercise. Our data demonstrate that exercise alters the activities of a distinct number of genes. In particular, they possibly provide novel insights into the molecular mechanisms of exercise-induced bronchoconstriction and suggest that enhanced transcription of ALOX5 and its activating protein together with a present predisposition of the subject critically contribute to exercise-induced asthma.
Collapse
Affiliation(s)
- Thomas Hilberg
- Department of Sports Medicine Friedrich-Schiller-University Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Scharhag J, Meyer T, Gabriel HHW, Schlick B, Faude O, Kindermann W. Does prolonged cycling of moderate intensity affect immune cell function? Br J Sports Med 2005; 39:171-7; discussion 171-7. [PMID: 15728699 PMCID: PMC1725141 DOI: 10.1136/bjsm.2004.013060] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Prolonged exercise may induce temporary immunosuppression with a presumed increased susceptibility for infection. However, there are only few data on immune cell function after prolonged cycling at moderate intensities typical for road cycling training sessions. METHODS The present study examined the influence on immune cell function of 4 h of cycling at a constant intensity of 70% of the individual anaerobic threshold. Interleukin-6 (IL-6) and C-reactive protein (CRP), leukocyte and lymphocyte populations, activities of natural killer (NK), neutrophils, and monocytes were examined before and after exercise, and also on a control day without exercise. RESULTS Cycling for 4 h induced a moderate acute phase response with increases in IL-6 from 1.0 (SD 0.5) before to 9.6 (5.6) pg/ml 1 h after exercise and CRP from 0.5 (SD 0.4) before to 1.8 (1.3) mg/l 1 day after exercise. Although absolute numbers of circulating NK cells, monocytes, and neutrophils increased during exercise, on a per cell basis NK cell activity, neutrophil and monocyte phagocytosis, and monocyte oxidative burst did not significantly change after exercise. However, a minor effect over time for neutrophil oxidative burst was noted, tending to decrease after exercise. CONCLUSIONS Prolonged cycling at moderate intensities does not seem to seriously alter the function of cells of the first line of defence. Therefore, the influence of a single typical road cycling training session on the immune system is only moderate and appears to be safe from an immunological point of view.
Collapse
Affiliation(s)
- J Scharhag
- Institute of Sports and Preventive Medicine, University of Saarland, Campus, Building 39.1, 66123 Saarbrücken, Germany.
| | | | | | | | | | | |
Collapse
|
207
|
Ho RC, Hirshman MF, Li Y, Cai D, Farmer JR, Aschenbach WG, Witczak CA, Shoelson SE, Goodyear LJ. Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 2005; 289:C794-801. [PMID: 15888549 DOI: 10.1152/ajpcell.00632.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor with important roles in regulating innate immune and inflammatory responses. NF-kappaB is activated through the phosphorylation of its inhibitor, IkappaB, by the IkappaB kinase (IKK) complex. Physical exercise elicits changes in skeletal muscle gene expression, yet signaling cascades and transcription factors involved remain largely unknown. To determine whether NF-kappaB signaling is regulated by exercise in vivo, rats were run on a motorized treadmill for 5-60 min. Exercise resulted in up to twofold increases in IKKalpha/beta phosphorylation in the soleus and red gastrocnemius muscles throughout the time course studied. In red gastrocnemius muscles, NF-kappaB activity increased 50% 1-3 h after 60 min of treadmill exercise, returning to baseline by 5 h. Contraction of isolated extensor digitorum longus muscles in vitro increased IKKalpha/beta phosphorylation sevenfold and this was accompanied by a parallel increase in IkappaBalpha phosphorylation. Additional kinases that are activated by exercise include p38, extracellular-signal regulated protein kinase (ERK), and AMP-activated protein kinase (AMPK). Inhibitors of p38 (SB-203580) and ERK (U-0126) blunted contraction-mediated IKK phosphorylation by 39 +/- 4% (P = 0.06) and 35 +/- 10% (P = 0.09), respectively, and in combination by 76 +/- 5% (P < 0.05), suggesting that these kinases might influence the activation of IKK and NF-kappaB during exercise. In contrast, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, an activator of AMPK, had no effect on either IKK or NF-kappaB activity. In conclusion, acute submaximal exercise transiently stimulates NF-kappaB signaling in skeletal muscle. This activation is a local event because it can occur in the absence of exercise-derived systemic factors.
Collapse
Affiliation(s)
- Richard C Ho
- Research Division, Joslin Diabetes Center, 1 Joslin Pl., Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
Regular exercise offers protection against all-cause mortality, primarily by protection against cardiovascular disease and Type 2 diabetes mellitus. The latter disorders have been associated with chronic low-grade systemic inflammation reflected by a two- to threefold elevated level of several cytokines. Adipose tissue contributes to the production of TNF-α, which is reflected by elevated levels of soluble TNF-α receptors, IL-6, IL-1 receptor antagonist, and C-reactive protein. We suggest that TNF-α rather than IL-6 is the driver behind insulin resistance and dyslipidemia and that IL-6 is a marker of the metabolic syndrome, rather than a cause. During exercise, IL-6 is produced by muscle fibers via a TNF-independent pathway. IL-6 stimulates the appearance in the circulation of other anti-inflammatory cytokines such as IL-1ra and IL-10 and inhibits the production of the proinflammatory cytokine TNF-α. In addition, IL-6 enhances lipid turnover, stimulating lipolysis as well as fat oxidation. We suggest that regular exercise induces suppression of TNF-α and thereby offers protection against TNF-α-induced insulin resistance. Recently, IL-6 was introduced as the first myokine, defined as a cytokine that is produced and released by contracting skeletal muscle fibers, exerting its effects in other organs of the body. Here we suggest that myokines may be involved in mediating the health-beneficial effects of exercise and that these in particular are involved in the protection against chronic diseases associated with low-grade inflammation such as diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Anne Marie W Petersen
- Dept. of Infectious Diseases, Rigshospitalet, Section 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | | |
Collapse
|
209
|
Akerstrom T, Steensberg A, Keller P, Keller C, Penkowa M, Pedersen BK. Exercise induces interleukin-8 expression in human skeletal muscle. J Physiol 2004; 563:507-16. [PMID: 15618276 PMCID: PMC1665593 DOI: 10.1113/jphysiol.2004.077610] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle has been recognized as an endocrine organ, and muscle cell cultures express several cytokines with potential hormonal effects. Interleukin-8 (IL-8), a chemokine, which induces angiogenesis, is expressed in working muscles; however, the cell source of origin has not been identified. We aimed to elucidate if IL-8 protein is: (1) expressed in contracting muscle fibres and (2) whether there is a release of IL-8 from exercising muscle. Seventeen healthy male volunteers were included in two independent protocols: 3 h of ergometer bicycle exercise at 60% of VO2,max (n = 6) or rest (n = 5), and 3 h of two-legged knee-extensor exercise at 60% of maximal workload (n = 6). Repetitive muscle biopsy samples were obtained from the vastus lateralis in all experiments. A marked increase in IL-8 mRNA was found in muscle biopsy samples obtained after exercise. A marked IL-8 protein expression was demonstrated within the cytoplasm of muscle fibres in biopsy samples obtained in the recovery phase following 3 h of bicycle exercise, and the peak occurred 3-6 h postexercise. A small transient net release of IL-8 from working muscle was found at 1.5 h of knee-extensor exercise. However, the small release of IL-8 from muscle did not result in an increase in the systemic plasma concentration of IL-8, suggesting that muscle-derived IL-8 may play a local role, e.g. in angiogenesis.
Collapse
Affiliation(s)
- Thorbjorn Akerstrom
- The Copenhagen Muscle Research Centre, Rigshospitalet, Faculty of Health, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
210
|
Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol (1985) 2004; 97:2214-9. [PMID: 15531573 DOI: 10.1152/japplphysiol.00491.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin-15 (IL-15) is an anabolic cytokine that is produced in skeletal muscle and directly affects muscle anabolism in animal and in vitro models. The contribution of IL-15 variability in muscle responses to 10 wk of resistance exercise training in young men and women was examined by measuring acute and chronic changes in IL-15 protein in plasma and characterizing genetic variation in the IL-15 receptor-α gene (IL15RA). Participants trained 3 days a week at 75% of one repetition maximum, performing three sets (6–10 repetitions) of 13 resistance exercises. Plasma IL-15 protein was significantly increased ( P < 0.05) immediately after acute resistance exercise but did not change with training and was not associated with variability in muscle responses with training. A single nucleotide polymorphism in exon 7 of IL15RA was strongly associated with muscle hypertrophy and accounted for 7.1% of the variation in regression modeling. A polymorphism in exon 4 was also independently associated with muscle hypertrophy and accounted for an additional 3.5% of the variation in hypertrophy. These results suggest that IL-15 is an important mediator of muscle mass response to resistance exercise training in humans and that genetic variation in IL15RA accounts for a significant proportion of the variability in this response.
Collapse
Affiliation(s)
- Steven E Riechman
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
211
|
Fischer CP, Plomgaard P, Hansen AK, Pilegaard H, Saltin B, Pedersen BK. Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2004; 287:E1189-94. [PMID: 15304377 DOI: 10.1152/ajpendo.00206.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men (n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher (P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold (P < 0.05) in response to exercise before the training period, but only 8-fold (P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 (P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.
Collapse
Affiliation(s)
- Christian P Fischer
- Dept. of Infectious Diseases, Rigshospitalet, Blegdamsvej 9, Section M7641, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
212
|
Bailey DM, Ainslie PN, Jackson SK, Richardson RS, Ghatei M. Evidence against redox regulation of energy homoeostasis in humans at high altitude. Clin Sci (Lond) 2004; 107:589-600. [PMID: 15330755 DOI: 10.1042/cs20040085] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study examined if free radicals and associated inflammatory sequelae influenced metabolic biomarkers involved in the neuro-endocrinological regulation of energy homoeostasis at high altitude. Sixteen mountaineers (11 males/five females) were matched for physical fitness and caloric intake and assigned in a double-blind manner to either antioxidant (n=8) or placebo (n=8) supplementation, which was enforced for 7 days at sea level and during an 11-day ascent to 4780 m. Enteral prophylaxis incorporated a daily bolus dose of 1 g of L-ascorbate, 400 international units of D,L-α-tocopherol acetate and 600 mg of α-lipoic acid. EPR (electron paramagnetic resonance) spectroscopic detection of PBN (α-phenyl-tert-butylnitrone) adducts confirmed an increase in the venous concentration of carbon-centred radicals at high altitude in the placebo group, whereas a decrease was observed in the antioxidant group (P<0.05 compared with that at sea level). EPR detection of DMSO/A˙− (DMSO-supplemented ascorbate free radical) demonstrated that the increase in carbon-centred radicals at high altitude was associated with a decrease in ascorbate (r2=0.63; P<0.05). Ascent to high altitude (pooled placebo+antioxidant groups) also increased the expression of pro-inflammatory cytokines (P<0.05 compared with that at sea level) and biomarkers of skeletal tissue damage (P<0.05). Despite a general decrease in leptin, insulin and glucose at high altitude (pooled placebo+antioxidant groups; P<0.05 compared with that at sea level), persistent anorexia resulted in a selective loss of body fat (P<0.05). In conclusion, antioxidant prophylaxis decreased the concentration of carbon-centred radicals at high altitude (P<0.05 compared with the placebo group), but did not influence markers of inflammation, appetite-related peptides, ad libitum nutrient intake or body composition. Thus free radicals do not appear to be involved in the inflammatory response and subsequent control of eating behaviour at high altitude.
Collapse
Affiliation(s)
- Damian M Bailey
- Colorado Center for Altitude Medicine and Physiology, Departments of Anesthesiology and Surgery, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
213
|
Peake J, Wilson G, Mackinnon L, Coombes JS. Carbohydrate supplementation and alterations in neutrophils, and plasma cortisol and myoglobin concentration after intense exercise. Eur J Appl Physiol 2004; 93:672-8. [PMID: 15778896 DOI: 10.1007/s00421-004-1248-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2004] [Indexed: 11/29/2022]
Abstract
The present study examined the effect of carbohydrate supplementation on changes in neutrophil counts, and the plasma concentrations of cortisol and myoglobin after intense exercise. Eight well-trained male runners ran on a treadmill for 1 h at 85% maximal oxygen uptake on two separate occasions. In a double-blind cross-over design, subjects consumed either 750 ml of a 10% carbohydrate (CHO) drink or a placebo drink on each occasion. The order of the trials was counter-balanced. Blood was drawn immediately before and after exercise, and 1 h after exercise. Immediately after exercise, neutrophil counts (CHO, 49%; placebo, 65%; P<0.05), plasma concentrations of glucose (CHO, 43%; P<0.05), lactate (CHO, 130%; placebo, 130%; P<0.01), cortisol (CHO, 100%; placebo, 161%; P<0.01), myoglobin (CHO, 194%; placebo, 342%; P<0.01) all increased significantly. One hour post-exercise, plasma myoglobin concentration (CHO, 331%; placebo, 482%; P<0.01) and neutrophil count (CHO, 151%; placebo, 230% P<0.01) both increased further above baseline. CHO significantly attenuated plasma myoglobin concentration and the neutrophil count after exercise (P<0.01), but did not affect plasma cortisol concentration. The effects of CHO on plasma myoglobin concentration may be due to alterations in cytokine synthesis, insulin responses or myoglobin clearance rates from the bloodstream during exercise. Plasma cortisol responses to CHO during exercise may depend on the intensity of exercise, or the amount of CHO consumed. Lastly, cortisol appears to play a minor role in the mobilisation of neutrophils after intense exercise.
Collapse
Affiliation(s)
- Jonathan Peake
- School of Human Movement Studies, The University of Queensland, St. Lucia, 4072 Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
214
|
Abstract
That obesity is associated with insulin resistance and type II diabetes mellitus is well accepted. Overloading of white adipose tissue beyond its storage capacity leads to lipid disorders in non-adipose tissues, namely skeletal and cardiac muscles, pancreas, and liver, effects that are often mediated through increased non-esterified fatty acid fluxes. This in turn leads to a tissue-specific disordered insulin response and increased lipid deposition and lipotoxicity, coupled to abnormal plasma metabolic and (or) lipoprotein profiles. Thus, the importance of functional adipocytes is crucial, as highlighted by the disorders seen in both "too much" (obesity) and "too little" (lipodystrophy) white adipose tissue. However, beyond its capacity for fat storage, white adipose tissue is now well recognised as an endocrine tissue producing multiple hormones whose plasma levels are altered in obese, insulin-resistant, and diabetic subjects. The consequence of these hormonal alterations with respect to both glucose and lipid metabolism in insulin target tissues is just beginning to be understood. The present review will focus on a number of these hormones: acylation-stimulating protein, leptin, adiponectin, tumour necrosis factor alpha, interleukin-6, and resistin, defining their changes induced in obesity and diabetes mellitus and highlighting their functional properties that may protect or worsen lipid metabolism.
Collapse
Affiliation(s)
- May Faraj
- Mike Rosenbloom Laboratory for Cardiovascular Research, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
215
|
Holmes AG, Watt MJ, Carey AL, Febbraio MA. Ionomycin, but not physiologic doses of epinephrine, stimulates skeletal muscle interleukin-6 mRNA expression and protein release. Metabolism 2004; 53:1492-5. [PMID: 15536607 DOI: 10.1016/j.metabol.2004.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been hypothesized that epinephrine may stimulate interleukin (IL)-6 gene expression in skeletal muscle. The aim of the present study was to examine the effect of epinephrine on IL-6 gene expression within, and protein release from, skeletal muscle. We hypothesized that physiologic epinephrine would neither result in an increase in IL-6 mRNA nor protein release from skeletal muscle. Soleus muscle was excised from 4-week-old anesthetized Sprague Dawley rats and incubated in a Krebs buffer with the addition of either saline (CON), epinephrine, at concentrations of 1,000 nmol/L (EPI 1,000), 100 nmol/L (EPI 100), or 10 nmol/L (EPI 10), or the calcium ionophore, ionomycin (IONO), a positive control. After a 1-hour incubation, muscle was collected and extracted for RNA, reverse transcribed, and IL-6 gene expression was determined by real-time polymerase chain reaction (PCR). An aliquot of incubation medium was also collected and analyzed for IL-6 protein by enzyme-linked immunosorbent (ELISA). EPI 1,000 and IONO increased (P < .05) IL-6 mRNA, whereas EPI 100 and EPI 10 were without effect. IL-6 protein release from skeletal muscle was increased in IONO (P < .05), but not in CON or EPI at any concentration. These data demonstrate that while pharmacologic concentrations of epinephrine activate IL-6 mRNA, supraphysiologic and high-physiologic doses appear to have little, if any, effect on IL-6 gene transcription in skeletal muscle. In addition, ionomycin can stimulate IL-6 gene expression and protein release after only 1 hour of exposure.
Collapse
Affiliation(s)
- A G Holmes
- Skeletal Muscle Research Laboratory, The School of Medical Sciences, RMIT University, Bundoora 3038, Victoria, Australia
| | | | | | | |
Collapse
|
216
|
Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Effects of Oat ??-Glucan on Innate Immunity and Infection after Exercise Stress. Med Sci Sports Exerc 2004; 36:1321-7. [PMID: 15292739 DOI: 10.1249/01.mss.0000135790.68893.6d] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To test the effects of oat beta-glucan (ObetaG) on respiratory infection, macrophage antiviral resistance, and NK cytotoxicity. METHODS Mice were randomly assigned to one of four groups: Ex-H2O, Ex-ObetaG, Con-H2O, or Con-ObetaG. ObetaG was fed in the drinking water for 10 d before intranasal inoculation of HSV-1 or sacrifice. Exercise consisted of treadmill running to volitional fatigue (approximately 140 min) for three consecutive days. Fifteen minutes after the last bout of exercise or rest, mice (N = 24) were intranasally inoculated with a standardized dose of HSV-1. Mice were monitored twice daily for morbidity and mortality. Additional mice were sacrificed after exercise, peritoneal macrophages were obtained via i.p. lavage and assayed for antiviral resistance to HSV-1 (N = 18), and spleens were harvested and assayed for NK cell cytotoxicity (N = 12). RESULTS Exercise stress was associated with a 28% increase in morbidity (P = 0.036) and 18% increase in mortality (P = 0.15). Ingestion of ObetaG before infection prevented this increase in morbidity (P = 0.048) and mortality (P = 0.05). Exercise stress was associated with a decrease in macrophage antiviral resistance (P = 0.007), which was blocked by ingestion of ObetaG (P < 0.001). There were no effects of exercise or ObetaG on NK cytotoxicity. CONCLUSION These data suggest that daily ingestion of ObetaG may offset the increased risk of URTI associated with exercise stress, which may be mediated, at least in part, by an increase in macrophage antiviral resistance.
Collapse
Affiliation(s)
- J Mark Davis
- Department of Exercise Science, Arnold School of Public Health, SC, USA.
| | | | | | | | | | | |
Collapse
|
217
|
Abstract
Few studies describe immune responses to exercise in children, compared with adults, and none have investigated the influence of carbohydrate (CHO) intake. We hypothesized less perturbation and a faster recovery of the immune system with exercise in children, regardless of supplemental energy. Twelve boys (9.8 +/- 0.1 y) and 10 men (22.1 +/- 0.5 y) cycled for 60 min at 70% o(2max) while drinking 6% CHO (CHO-T) or flavored water (FW-T). Blood samples were collected before (PRE), immediately after (POST), and 60 min after (REC) exercise. Boys, compared with men, had smaller (p < 0.05) increases in total leukocytes (28% versus 38%), natural killer (NK) cells (78% versus 236%), and NK T cells (42% versus 128%) at POST, averaged across beverage trials. Exercise did not increase tumor necrosis factor-alpha (TNF-alpha), but significantly (p < 0.05) increased IL-6 in men (189%), but not in boys (11%). In both trials, lymphocytes and T cells at REC were suppressed (p < 0.05), relative to PRE, in men (-21%), but not in boys (4%). IL-6 remained elevated ( p< 0.001) in men at REC, with no change from POST in boys. In boys, but not in men, CHO significantly (p < 0.05) attenuated increases in neutrophil, lymphocyte, and NK cell counts at POST. Neutrophils at REC in CHO-T were lower (p < 0.05) than in FW-T in men ( approximately 25%) and in boys ( approximately 17%). CHO had no effect on TNF-alpha or IL-6 in either group. Our results indicate a distinct pattern of the immune response to exercise and CHO intake in boys, compared with men.
Collapse
Affiliation(s)
- Brian W Timmons
- Children's Exercise and Nutrition Centre, Chedoke Hospital, Evel Bldg. (4 floor), Sanatorium Road, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
218
|
Chan MHS, Carey AL, Watt MJ, Febbraio MA. Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. Am J Physiol Regul Integr Comp Physiol 2004; 287:R322-7. [PMID: 15072962 DOI: 10.1152/ajpregu.00030.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the expression and induction of cytokines in human skeletal muscle during concentric contractions, eight males performed 60 min of bicycle exercise, with either a normal (Con) or reduced (Lo Gly) preexercise intramuscular glycogen content. Muscle biopsy samples were obtained before and after exercise and analyzed for glycogen and the mRNA expression of 13 cytokines. Resting muscle glycogen was higher ( P < 0.05) in Con compared with Lo Gly and was reduced ( P < 0.05) to 102 ± 32 vs. 17 ± 5 mmol U glycosyl/kg dry mass for Con and Lo Gly, respectively. We detected mRNA levels in human skeletal muscle for five cytokines, namely interleukin (IL)-1β, IL-6, IL-8, IL-15, and tumor necrosis factor-α. However, muscle contraction increased ( P < 0.05) the mRNA expression of IL-6 and IL-8 alone. In addition, the fold change for both IL-8 and IL-6 was markedly higher ( P < 0.05) in Lo Gly compared with Con. Given these results, we analyzed venous blood samples, obtained before and during exercise, for IL-6 and IL-8. Plasma IL-6 was not different at rest, and although the circulating concentration of this cytokine increased ( P < 0.05) it increased to a greater extent ( P < 0.05) throughout exercise in Lo Gly. In contrast, plasma IL-8 was not affected by exercise or treatment. These data demonstrate that cytokines are not ubiquitously expressed in skeletal muscle and that only IL-6 and IL-8 mRNA are increased during contraction of this mode and duration. Furthermore, the mRNA abundance of IL-6 and IL-8 appears to be influenced by glycogen availability in the contracting muscle.
Collapse
Affiliation(s)
- M H Stanley Chan
- Skeletal Muscle Research Laboratory, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
219
|
Mahoney DJ, Carey K, Fu MH, Snow R, Cameron-Smith D, Parise G, Tarnopolsky MA. Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol Genomics 2004; 18:226-31. [PMID: 15161965 DOI: 10.1152/physiolgenomics.00067.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies examining gene expression with RT-PCR typically normalize their mRNA data to a constitutively expressed housekeeping gene. The validity of a particular housekeeping gene must be determined for each experimental intervention. We examined the expression of various housekeeping genes following an acute bout of endurance (END) or resistance (RES) exercise. Twenty-four healthy subjects performed either a interval-type cycle ergometry workout to exhaustion (∼75 min; END) or 300 single-leg eccentric contractions (RES). Muscle biopsies were taken before exercise and 3 h and 48 h following exercise. Real-time RT-PCR was performed on β-actin, cyclophilin (CYC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and β2-microglobulin (β2M). In a second study, 10 healthy subjects performed 90 min of cycle ergometry at ∼65% of V̇o2 max, and we examined a fifth housekeeping gene, 28S rRNA, and reexamined β2M, from muscle biopsy samples taken immediately postexercise. We showed that CYC increased 48 h following both END and RES exercise (3- and 5-fold, respectively; P < 0.01), and 28S rRNA increased immediately following END exercise (2-fold; P = 0.02). β-Actin trended toward an increase following END exercise (1.85-fold collapsed across time; P = 0.13), and GAPDH trended toward a small yet robust increase at 3 h following RES exercise (1.4-fold; P = 0.067). In contrast, β2M was not altered at any time point postexercise. We conclude that β2M and β-actin are the most stably expressed housekeeping genes in skeletal muscle following RES exercise, whereas β2M and GAPDH are the most stably expressed following END exercise.
Collapse
Affiliation(s)
- Douglas J Mahoney
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | | | |
Collapse
|
220
|
Mastaloudis A, Morrow JD, Hopkins DW, Devaraj S, Traber MG. Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med 2004; 36:1329-41. [PMID: 15110397 DOI: 10.1016/j.freeradbiomed.2004.02.069] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 02/19/2004] [Indexed: 11/22/2022]
Abstract
To determine if 6 weeks of supplementation with vitamins E and C could alleviate exercise-induced lipid peroxidation and inflammation, we studied 22 runners during a 50 km ultramarathon. Subjects were randomly assigned to one of two groups: (1) placebos (PL) or (2) antioxidants (AO: 1000 mg vitamin C and 300 mg RRR-alpha-tocopheryl acetate). Blood samples were obtained prior to supplementation (baseline), after 3 weeks of supplementation, 1 h pre-, mid-, and postrace, 2 h postrace and for 6 days postrace. Plasma levels of alpha-tocopherol (alpha-TOH), ascorbic acid (AA), uric acid (UA), F2-isoprostanes (F2-IsoPs), tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and C-reactive protein (CRP) were measured. With supplementation, plasma alpha-TOH and AA increased in the AO but not the PL group. Although F2-IsoP levels were similar between groups at baseline, 28 +/- 2 (PL) and 27 +/- 3 pg/ml (AO), F2-IsoPs increased during the run only in the PL group (41 +/- 3 pg/ml). In PL women, F2-IsoPs were elevated postrace (p <.01), but returned to prerace concentrations by 2 h postrace. In PL men, F2-IsoP concentrations were higher postrace, 2 h postrace, and 1, 2, 3, 4, and 6 days postrace (PL vs. AO group, each p <.03). Markers of inflammation were increased dramatically in response to the run regardless of treatment group. Thus, AO supplementation prevented endurance exercise-induced lipid peroxidation but had no effect on inflammatory markers.
Collapse
Affiliation(s)
- Angela Mastaloudis
- Departments of Exercise and Sport Science, Oregon State University, Corvallis, OR 97731, USA.
| | | | | | | | | |
Collapse
|
221
|
Nieman DC, Davis JM, Brown VA, Henson DA, Dumke CL, Utter AC, Vinci DM, Downs MF, Smith JC, Carson J, Brown A, McAnulty SR, McAnulty LS. Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol (1985) 2004; 96:1292-8. [PMID: 14672962 DOI: 10.1152/japplphysiol.01064.2003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thirty strength-trained subjects were randomized to carbohydrate (CHO) or placebo (Pla) groups and lifted weights for 2 h (10 exercises, 4 sets each, 10 repetitions, with 2- to 3-min rest intervals). Subjects received 10 ml·kg-1·h-1 CHO (6%) or Pla beverages during the weight training bout. Blood, saliva, and vastus lateralis muscle biopsy samples were collected before and after exercise. Blood cell counts were determined, and plasma was analyzed for IL-6, IL-10, IL-1 receptor antagonist (IL-1ra), IL-8, and cortisol. Muscle was analyzed for glycogen content and relative gene expression of 13 cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p35, IL-12p40, IL-15, IFN-γ, TNF-α) by use of real-time quantitative RT-PCR. Significant but modest increases were measured for plasma IL-6, IL-10, IL-1ra, and IL-8, but the pattern of increase did not differ between CHO and Pla groups. The rate of decrease in muscle glycogen content did not differ between CHO and Pla ( P = 0.463). Muscle cytokine mRNA was detected preexercise for IL-1β, IL-6, IL-15, IL-8, and TNF-α, and of these, IL-1β, IL-6, IL-8, and TNF-α were significantly increased after the 2-h weight training bout. The increase in mRNA (fold difference from preexercise) did not differ between CHO and Pla groups. In summary, CHO vs. Pla ingestion did not alter modest increases measured for plasma IL-6, IL-10, IL-1ra, and IL-8, and muscle gene expression for IL-1β, IL-6, IL-8, and TNF-α in strength-trained subjects lifting weights intensively for 2 h.
Collapse
Affiliation(s)
- D C Nieman
- Department of Health, Appalachian State University, Boone, NC 28608, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
BACKGROUND Interleukin (IL)-6 is locally produced in skeletal muscles and shows a remarkable increase in plasma after eccentric exercises. OBJECTIVE To elucidate the cell types in the muscles responsible for IL-6 production after eccentric exercises. STUDY DESIGN Controlled laboratory study. METHODS An eccentric contraction model was made using electrical stimulation. The authors investigated the muscle damage and regeneration processes after eccentric exercises histologically, and the cell types expressing IL-6 and its subcellular compartimentalization with time immunohistochemically after eccentric exercises. RESULTS Swollen myofibers were detected from 8 hours to 3 days after exercises. Disrupted myofibers were detected from 24 hours to 7 days, with a peak of 3 days. IL-6 was detected only in the cytoplasm of myofibers until 12 hours; thereafter, it was found in the inflammatory cells and proliferating satellite cells as well. The swollen myofibers were negatively stained for IL-6. The positive ratios of IL-6 in myofibers immediately increased after exercises, peaked in 12 hours, and then decreased. CONCLUSIONS After eccentric exercises, IL-6 expression increased in myofibers preceding the disruption of myofibers. IL-6 might be closely related to muscle damage caused by strenuous exercises.
Collapse
Affiliation(s)
- Akihito Tomiya
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
223
|
Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 2004; 72:223-61. [PMID: 15142684 DOI: 10.1016/j.pneurobio.2004.03.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/22/2004] [Indexed: 11/15/2022]
Abstract
This review addresses cerebral metabolic and neurohumoral alterations during prolonged exercise in humans with special focus on associations with fatigue. Global energy turnover in the brain is unaltered by the transition from rest to moderately intense exercise, apparently because exercise-induced activation of some brain regions including cortical motor areas is compensated for by reduced activity in other regions of the brain. However, strenuous exercise is associated with cerebral metabolic and neurohumoral alterations that may relate to central fatigue. Fatigue should be acknowledged as a complex phenomenon influenced by both peripheral and central factors. However, failure to drive the motorneurons adequately as a consequence of neurophysiological alterations seems to play a dominant role under some circumstances. During exercise with hyperthermia excessive accumulation of heat in the brain due to impeded heat removal by the cerebral circulation may elevate the brain temperature to >40 degrees C and impair the ability to sustain maximal motor activation. Also, when prolonged exercise results in hypoglycaemia, perceived exertion increases at the same time as the cerebral glucose uptake becomes low, and centrally mediated fatigue appears to arise as the cerebral energy turnover becomes restricted by the availability of substrates for the brain. Changes in serotonergic activity, inhibitory feed-back from the exercising muscles, elevated ammonia levels, and alterations in regional dopaminergic activity may also contribute to the impaired voluntary activation of the motorneurons after prolonged and strenuous exercise. Furthermore, central fatigue may involve depletion of cerebral glycogen stores, as signified by the observation that following exhaustive exercise the cerebral glucose uptake increases out of proportion to that of oxygen. In summary, prolonged exercise may induce homeostatic disturbances within the central nervous system (CNS) that subsequently attenuates motor activation. Therefore, strenuous exercise is a challenge not only to the cardiorespiratory and locomotive systems but also to the brain.
Collapse
Affiliation(s)
- Lars Nybo
- Department of Human Physiology, Institute of Exercise and Sport Sciences, August Krogh Institute, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
224
|
Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 2003; 24:113-9. [PMID: 14609022 DOI: 10.1023/a:1026070911202] [Citation(s) in RCA: 361] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For years the search for the stimulus that initiates and maintains the change of excitability or sensibility of the regulating centers in exercise has been progressing. For lack of more precise knowledge, it has been called the 'work stimulus', 'the work factor' or 'the exercise factor'. In other terms, one big challenge for muscle and exercise physiologists has been to determine how muscles signal to central and peripheral organs. Here we discuss the possibility that interleukin-6 (IL-6) could mediate some of the health beneficial effects of exercise. In resting muscle, the IL-6 gene is silent, but it is rapidly activated by contractions. The transcription rate is very fast and the fold changes of IL-6 mRNA is marked. IL-6 is released from working muscles into the circulation in high amounts. The IL-6 production is modulated by the glycogen content in muscles, and IL-6 thus works as an energy sensor. IL-6 exerts its effect on adipose tissue, inducing lipolysis and gene transcription in abdominal subcutaneous fat and increases whole body lipid oxidation. Furthermore, IL-6 inhibits low-grade TNF-alpha-production and may thereby inhibit TNF-alpha-induced insulin resistance and atherosclerosis development. We propose that IL-6 and other cytokines, which are produced and released by skeletal muscles, exerting their effects in other organs of the body, should be named 'myokines'.
Collapse
Affiliation(s)
- B K Pedersen
- The Copenhagen Muscle Research Centre, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Keller C, Keller P, Marshal S, Pedersen BK. IL-6 gene expression in human adipose tissue in response to exercise--effect of carbohydrate ingestion. J Physiol 2003; 550:927-31. [PMID: 12794182 PMCID: PMC2343082 DOI: 10.1113/jphysiol.2003.044883] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin-6 (IL-6) is a cytokine involved in a number of immunological processes, but it is also linked to exercise and possibly energy status. During exercise, muscle IL-6 mRNA levels and plasma IL-6 levels are increased and further augmented when intramuscular glycogen levels are low. In contrast, the increase in plasma IL-6 is blunted if carbohydrate is administered, indicating a substrate-regulated induction of IL-6 in human skeletal muscle. Recent studies have demonstrated that IL-6 is also released from adipose tissue in response to an exercise bout. Furthermore, IL-6 has been demonstrated to have a lipolytic effect, thus possibly playing a role in mobilisation of energy as free fatty acids (FFA) in response to exercise. The purpose of the present study was to investigate the gene expression pattern of IL-6 in adipose tissue in response to exercise, and to determine whether gene expression was affected by the ingestion of carbohydrate. Eight male subjects performed 3 h of bicycling with ingestion of a carbohydrate drink or placebo. Fat biopsy samples and blood samples were obtained before, during and in the recovery phase of exercise. Both plasma IL-6 and adipose IL-6 mRNA levels increased in response to exercise. IL-6 gene expression was lower (P<0.05) in the CHO trial (1.98-fold increase, confidence interval (CI) 1.16-3.83) compared with the control (6.49-fold increase, CI 3.57-13.91) at end of exercise. Furthermore, CHO ingestion blunted the increase in plasma IL-6 levels (P<0.05) at end of exercise (26.0+/-3.7 pg ml(-1) in the control vs. 15.6+/-2.4 pg ml(-1) in the CHO trial). In conclusion, exercise results in an increase in IL-6 gene expression in adipose tissue in response to exercise, an effect that is significantly blunted by ingestion of carbohydrate.
Collapse
|
226
|
Febbraio MA, Ott P, Nielsen HB, Steensberg A, Keller C, Krustrup P, Secher NH, Pedersen BK. Hepatosplanchnic clearance of interleukin-6 in humans during exercise. Am J Physiol Endocrinol Metab 2003; 285:E397-402. [PMID: 12857677 DOI: 10.1152/ajpendo.00134.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytokine interleukin (IL)-6 can increase markedly in the circulation during exercise, but whether the liver is a source of this increase is unknown. The aim of this study was to measure IL-6 flux across the hepatosplanchnic tissues in humans. To elevate systemic concentrations of IL-6, six healthy male subjects performed 120 min of semirecumbent cycling, and blood samples were simultaneously obtained from a brachial artery and the hepatic vein before and during exercise for the analysis of IL-6. Hepatosplanchnic blood flow (HBF) was measured using the indocyanine green infusion technique. Net hepatosplanchnic IL-6 balance was calculated from these measures. HBF was 1.3 +/- 0.1 l/min at rest and was not reduced throughout exercise, averaging 1.1 +/- 0.2 l/min. Arterial plasma IL-6 markedly increased (P < 0.05) from 1.8 +/- 0.6 ng/l at rest to 14.3 +/- 3.2 ng/l after 120 min of exercise. The hepatosplanchnic viscera did not contribute to this increase, since there was a net hepatosplanchnic IL-6 uptake (0.8 +/- 0.3 vs. 5.5 +/- 1.9 ng/min, rest vs. 120 min; P < 0.05). These data demonstrate that the hepatosplanchnic viscera remove IL-6 from the circulation in humans. This removal may constitute a mechanism limiting the negative chronic metabolic action of chronically elevated circulating IL-6.
Collapse
Affiliation(s)
- Mark A Febbraio
- Skeletal Muscle Research Laboratory, School of Medical Sciences, RMIT Univ., Bundoora, Victoria 3083, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, Krustrup P, Ott P, Secher NH, Pedersen BK. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol 2003; 549:607-12. [PMID: 12702735 PMCID: PMC2342952 DOI: 10.1113/jphysiol.2003.042374] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To examine whether glucose ingestion during exercise affects the release of interleukin-6 (IL-6) from the contracting limb, seven men performed 120 min of semi-recumbent cycling on two occasions while ingesting either 250 ml of a 6.4 % carbohydrate (GLU trial) or sweet placebo (CON trial) beverage at the onset of, and at 15 min intervals throughout, exercise. Muscle biopsies obtained before and immediately after exercise were analysed for glycogen and IL-6 mRNA expression. Blood samples were simultaneously obtained from a brachial artery and a femoral vein prior to and during exercise and leg blood flow was measured by thermodilution in the femoral vein. Net leg IL-6 release, and net leg glucose and free fatty acid (FFA) uptake, were calculated from these measurements. The arterial IL-6 concentration was lower (P < 0.05) after 120 min of exercise in GLU, but neither intramuscular glycogen nor IL-6 mRNA were different when comparing GLU with CON. However, net leg IL-6 release was attenuated (P < 0.05) in GLU compared with CON. This corresponded with an enhanced (P < 0.05) glucose uptake and a reduced (P < 0.05) FFA uptake in GLU. These results demonstrate that glucose ingestion during exercise attenuates leg IL-6 release but does not decrease intramuscular expression of IL-6 mRNA.
Collapse
Affiliation(s)
- Mark A Febbraio
- Copenhagen Muscle Research Centre, Department of Infectious Diseases, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|