201
|
Mallon BS, Hamilton RS, Kozhich OA, Johnson KR, Fann YC, Rao MS, Robey PG. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res 2013; 12:376-86. [PMID: 24374290 PMCID: PMC4157340 DOI: 10.1016/j.scr.2013.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 11/17/2022] Open
Abstract
Many studies have compared the genetic and epigenetic profiles of human induced pluripotent stem cells (hiPSCs) to human embryonic stem cells (hESCs) and yet the picture remains unclear. To address this, we derived a population of neural precursor cells (NPCs) from the H1 (WA01) hESC line and generated isogenic iPSC lines by reprogramming. The gene expression and methylation profile of three lines were compared to the parental line and intermediate NPC population. We found no gene probe with expression that differed significantly between hESC and iPSC samples under undifferentiated or differentiated conditions. Analysis of the global methylation pattern also showed no significant difference between the two PSC populations. Both undifferentiated populations were distinctly different from the intermediate NPC population in both gene expression and methylation profiles. One point to note is that H1 is a male line and so extrapolation to female lines should be cautioned. However, these data confirm our previous findings that there are no significant differences between hESCs and hiPSCs at the gene expression or methylation level.
Collapse
Affiliation(s)
- Barbara S Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rebecca S Hamilton
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olga A Kozhich
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang C Fann
- Bioinformatics Section, Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahendra S Rao
- NIH Center for Regenerative Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela G Robey
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Craniofacial and Skeletal Disease Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
202
|
Sarić T, Halbach M, Khalil M, Er F. Induced pluripotent stem cells as cardiac arrhythmic in vitro models and the impact for drug discovery. Expert Opin Drug Discov 2013; 9:55-76. [PMID: 24294840 DOI: 10.1517/17460441.2014.863275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The development of new antiarrhythmic agents is challenging and is hampered by high attrition rate of novel drug candidates. One of the reasons for this is limited predictability of existing preclinical models for drug assessment. Cardiomyocytes (CMs) derived from disease-specific induced pluripotent stem cells (iPSC) represent a novel in vitro cellular model of cardiac arrhythmias with an unprecedented potential for generating new mechanistic insight into disease pathophysiology and improving the process of drug development. AREAS COVERED This review outlines recent studies demonstrating the suitability and limitations of iPSC-derived CMs (iPS-CMs) for in vitro modeling inherited arrhythmias and drug testing. The authors focus on channelopathies and outline the properties of iPS-CMs, highlighting their utility and limitations for investigating the mechanism of cardiac arrhythmias and drug discovery. EXPERT OPINION The iPS-CMs represent a valuable addition to the already existing armamentarium of cardiac arrhythmic models. However, the superiority of iPS-CMs over other arrhythmia models has not yet been rigorously established and the limitations of the model must be overcome before its full potential for antiarrhythmic drug discovery can be realized. Nevertheless, iPS cell-based platforms hold a great potential for increasing our knowledge about cellular arrhythmia mechanisms and improving the drug discovery process.
Collapse
Affiliation(s)
- Tomo Sarić
- University of Cologne, Institute for Neurophysiology, Center for Physiology and Pathophysiology, Medical Center , Robert Koch Str. 39, 50931 Cologne , Germany +49 221 478 86686 ; +49 221 478-3834 ;
| | | | | | | |
Collapse
|
203
|
Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge PW, Patlolla B, Lee AS, Wu H, Beygui RE, Wu SM, Robbins RC, Bers DM, Wu JC. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 2013; 128:S3-13. [PMID: 24030418 DOI: 10.1161/circulationaha.112.000570] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Drug-induced arrhythmia is one of the most common causes of drug development failure and withdrawal from market. This study tested whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with a low-impedance microelectrode array (MEA) system could improve on industry-standard preclinical cardiotoxicity screening methods, identify the effects of well-characterized drugs, and elucidate underlying risk factors for drug-induced arrhythmia. hiPSC-CMs may be advantageous over immortalized cell lines because they possess similar functional characteristics as primary human cardiomyocytes and can be generated in unlimited quantities. METHODS AND RESULTS Pharmacological responses of beating embryoid bodies exposed to a comprehensive panel of drugs at 65 to 95 days postinduction were determined. Responses of hiPSC-CMs to drugs were qualitatively and quantitatively consistent with the reported drug effects in literature. Torsadogenic hERG blockers, such as sotalol and quinidine, produced statistically and physiologically significant effects, consistent with patch-clamp studies, on human embryonic stem cell-derived cardiomyocytes hESC-CMs. False-negative and false-positive hERG blockers were identified accurately. Consistent with published studies using animal models, early afterdepolarizations and ectopic beats were observed in 33% and 40% of embryoid bodies treated with sotalol and quinidine, respectively, compared with negligible early afterdepolarizations and ectopic beats in untreated controls. CONCLUSIONS We found that drug-induced arrhythmias can be recapitulated in hiPSC-CMs and documented with low impedance MEA. Our data indicate that the MEA/hiPSC-CM assay is a sensitive, robust, and efficient platform for testing drug effectiveness and for arrhythmia screening. This system may hold great potential for reducing drug development costs and may provide significant advantages over current industry standard assays that use immortalized cell lines or animal models.
Collapse
Affiliation(s)
- Enrique G Navarrete
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA (E.G.N., P.L., F.L., V.S.-F., T.G., A.S., P.W.B., A.S.L., H.W., S.M.W., J.C.W.); Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (E.G.N., P.L., F.L., V.S.-F., T.G., A.S., P.W.B., A.S.L., H.W., S.M.W.); Stanford Cardiovascular Institute, Stanford, CA (E.G.N., P.L., F.L., V.S.-F., C.S., T.G., P.W.B., B.P., A.S.L., H.W., R.E.B., S.M.W., R.C.R., J.C.W.); Department of Radiology, Stanford, CA (E.G.N., P.L., F.L., V.S.-F., T.G., P.W.B., A.S.L., H.W., J.C.W.); School of Mechanical Engineering, Stanford, CA (C.S.); Department of Cardiothoracic Surgery, Stanford, CA (B.P., R.E.B., R.C.R.); Department of Pharmacology, University of California, Davis, CA (D.M.B.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Poon E, Yan B, Zhang S, Rushing S, Keung W, Ren L, Lieu DK, Geng L, Kong CW, Wang J, Wong HS, Boheler KR, Li RA. Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation. PLoS One 2013; 8:e77784. [PMID: 24204964 PMCID: PMC3804624 DOI: 10.1371/journal.pone.0077784] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 12/26/2022] Open
Abstract
Human (h) embryonic stem cells (ESC) represent an unlimited source of cardiomyocytes (CMs); however, these differentiated cells are immature. Thus far, gene profiling studies have been performed with non-purified or non-chamber specific CMs. Here we took a combinatorial approach of using systems biology to guide functional discoveries of novel biological properties of purified hESC-derived ventricular (V) CMs. We profiled the transcriptomes of hESCs, hESC-, fetal (hF) and adult (hA) VCMs, and showed that hESC-VCMs displayed a unique transcriptomic signature. Not only did a detailed comparison between hESC-VCMs and hF-VCMs confirm known expression changes in metabolic and contractile genes, it further revealed novel differences in genes associated with reactive oxygen species (ROS) metabolism, migration and cell cycle, as well as potassium and calcium ion transport. Following these guides, we functionally confirmed that hESC-VCMs expressed IKATP with immature properties, and were accordingly vulnerable to hypoxia/reoxygenation-induced apoptosis. For mechanistic insights, our coexpression and promoter analyses uncovered a novel transcriptional hierarchy involving select transcription factors (GATA4, HAND1, NKX2.5, PPARGC1A and TCF8), and genes involved in contraction, calcium homeostasis and metabolism. These data highlight novel expression and functional differences between hESC-VCMs and their fetal counterparts, and offer insights into the underlying cell developmental state. These findings may lead to mechanism-based methods for in vitro driven maturation.
Collapse
Affiliation(s)
- Ellen Poon
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong, China
| | - Shaohong Zhang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, Guangzhou University, Guangzhou, China
| | - Stephanie Rushing
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Lihuan Ren
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Deborah K. Lieu
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California Davis, Davis, California, United States of America
| | - Lin Geng
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Chi-Wing Kong
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Jiaxian Wang
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
| | - Hau San Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Kenneth R. Boheler
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
- * E-mail:
| |
Collapse
|
205
|
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Res 2013; 11:1335-47. [PMID: 24095945 DOI: 10.1016/j.scr.2013.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/21/2013] [Accepted: 09/10/2013] [Indexed: 11/22/2022] Open
Abstract
Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers.
Collapse
|
206
|
Miklas JW, Nunes SS, Radisic M. Engineering Cardiac Tissues from Pluripotent Stem Cells for Drug Screening and Studies of Cell Maturation. Isr J Chem 2013. [DOI: 10.1002/ijch.201300064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
207
|
Li S, Chen G, Li RA. Calcium signalling of human pluripotent stem cell-derived cardiomyocytes. J Physiol 2013; 591:5279-90. [PMID: 24018947 DOI: 10.1113/jphysiol.2013.256495] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Loss of cardiomyocytes (CMs), which lack the innate ability to regenerate, due to ageing or pathophysiological conditions (e.g. myocardial infarction or MI) is generally considered irreversible, and can lead to conditions from cardiac arrhythmias to heart failure. Human (h) pluripotent stem cells (PSCs), including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs), can self-renew while maintaining their pluripotency to differentiate into all cell types, including CMs. Therefore, hPSCs provide a potential unlimited ex vivo source of human CMs for disease modelling, drug discovery, cardiotoxicity screening and cell-based heart therapies. As a fundamental property of working CMs, Ca(2+) signalling and its role in excitation-contraction coupling are well described. However, the biology of these processes in hPSC-CMs is just becoming understood. Here we review what is known about the immature Ca(2+)-handling properties of hPSC-CMs, at the levels of global transients and sparks, and the underlying molecular basis in relation to the development of various in vitro approaches to drive their maturation.
Collapse
Affiliation(s)
- Sen Li
- R. A. Li: 5/F Hong Kong Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong.
| | | | | |
Collapse
|
208
|
Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013; 113:810-34. [PMID: 23989721 PMCID: PMC3892665 DOI: 10.1161/circresaha.113.300219] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 12/28/2022]
Abstract
Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, KY, USA
| | | |
Collapse
|
209
|
Functional cardiomyocytes from human stem cells: a tool for determining the cardiotoxic potential of preclinical drugs. Future Med Chem 2013; 5:363-6. [PMID: 23495680 DOI: 10.4155/fmc.13.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
210
|
Ding V, Lew QJ, Chu KL, Natarajan S, Rajasegaran V, Gurumurthy M, Choo ABH, Chao SH. HEXIM1 induces differentiation of human pluripotent stem cells. PLoS One 2013; 8:e72823. [PMID: 23977357 PMCID: PMC3748041 DOI: 10.1371/journal.pone.0072823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023] Open
Abstract
Hexamethylene bisacetamide inducible protein 1 (HEXIM1) is best known as the inhibitor of positive transcription elongation factor b (P-TEFb), which is composed of cyclin-dependent kinase 9 (CDK9)/cyclin T1. P-TEFb is an essential regulator for the transcriptional elongation by RNA polymerase II. A genome-wide study using human embryonic stem cells shows that most mRNA synthesis is regulated at the stage of transcription elongation, suggesting a possible role for P-TEFb/HEXIM1 in the gene regulation of stem cells. In this report, we detected a marked increase in HEXIM1 protein levels in the differentiated human pluripotent stem cells (hPSCs) induced by LY294002 treatment. Since no changes in CDK9 and cyclin T1 were observed in the LY294002-treated cells, increased levels of HEXIM1 might lead to inhibition of P-TEFb activity. However, treatment with a potent P-TEFb inhibiting compound, flavopiridol, failed to induce hPSC differentiation, ruling out the possible requirement for P-TEFb kinase activity in hPSC differentiation. Conversely, differentiation was observed when hPSCs were incubated with hexamethylene bisacetamide, a HEXIM1 inducing reagent. The involvement of HEXIM1 in the regulation of hPSCs was further supported when overexpression of HEXIM1 concomitantly induced hPSC differentiation. Collectively, our study demonstrates a novel role of HEXIM1 in regulating hPSC fate through a P-TEFb-independent pathway.
Collapse
Affiliation(s)
- Vanessa Ding
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Qiao Jing Lew
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kai Ling Chu
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Subaashini Natarajan
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Vikneswari Rajasegaran
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Meera Gurumurthy
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Andre B. H. Choo
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Sheng-Hao Chao
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Microbiology, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
211
|
Chow MZ, Boheler KR, Li RA. Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Ther 2013; 4:97. [PMID: 23953772 PMCID: PMC3854712 DOI: 10.1186/scrt308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heart diseases remain a major cause of mortality and morbidity worldwide. However, terminally differentiated human adult cardiomyocytes (CMs) possess a very limited innate ability to regenerate. Directed differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into CMs has enabled clinicians and researchers to pursue the novel therapeutic paradigm of cell-based cardiac regeneration. In addition to tissue engineering and transplantation studies, the need for functional CMs has also prompted researchers to explore molecular pathways and develop strategies to improve the quality, purity and quantity of hESC-derived and iPSC-derived CMs. In this review, we describe various approaches in directed CM differentiation and driven maturation, and discuss potential limitations associated with hESCs and iPSCs, with an emphasis on the role of epigenetic regulation and chromatin remodeling, in the context of the potential and challenges of using hESC-CMs and iPSC-CMs for drug discovery and toxicity screening, disease modeling, and clinical applications.
Collapse
Affiliation(s)
- Maggie Zi Chow
- Stem Cell and Regenerative Medicine Consortium, Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong Jockey Club Building for Interdisciplinary Research, Pokfulam, Hong Kong
- Department of Physiology, The University of Hong Kong, 4th Floor, 21 Sassoon Road, Laboratory Block, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Kenneth R Boheler
- Stem Cell and Regenerative Medicine Consortium, Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong Jockey Club Building for Interdisciplinary Research, Pokfulam, Hong Kong
- Department of Physiology, The University of Hong Kong, 4th Floor, 21 Sassoon Road, Laboratory Block, Faculty of Medicine Building, Pokfulam, Hong Kong
- Molecular Cardiology and Stem Cell Unit, Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | - Ronald A Li
- Stem Cell and Regenerative Medicine Consortium, Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong Jockey Club Building for Interdisciplinary Research, Pokfulam, Hong Kong
- Department of Physiology, The University of Hong Kong, 4th Floor, 21 Sassoon Road, Laboratory Block, Faculty of Medicine Building, Pokfulam, Hong Kong
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, New York 10029-6574, USA
| |
Collapse
|
212
|
Wang J, Chen A, Lieu DK, Karakikes I, Chen G, Keung W, Chan CW, Hajjar RJ, Costa KD, Khine M, Li RA. Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias. Biomaterials 2013; 34:8878-86. [PMID: 23942210 DOI: 10.1016/j.biomaterials.2013.07.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/11/2013] [Indexed: 01/02/2023]
Abstract
Human (h) pluripotent stem cells (PSC) such as embryonic stem cells (ESC) can be directed into cardiomyocytes (CMs), representing a potential unlimited cell source for disease modeling, cardiotoxicity screening and myocardial repair. Although the electrophysiology of single hESC-CMs is now better defined, their multi-cellular arrhythmogenicity has not been thoroughly assessed due to the lack of a suitable experimental platform. Indeed, the generation of ventricular (V) fibrillation requires single-cell triggers as well as sustained multi-cellular reentrant events. Although native VCMs are aligned in a highly organized fashion such that electrical conduction is anisotropic for coordinated contractions, hESC-derived CM (hESC-CM) clusters are heterogenous and randomly organized, and therefore not representative of native conditions. Here, we reported that engineered alignment of hESC-VCMs on biomimetic grooves uniquely led to physiologically relevant responses. Aligned but not isotropic control preparations showed distinct longitudinal (L) and transverse (T) conduction velocities (CV), resembling the native human V anisotropic ratio (AR = LCV/TCV = 1.8-2.0). Importantly, the total incidence of spontaneous and inducible arrhythmias significantly reduced from 57% in controls to 17-23% of aligned preparations, thereby providing a physiological baseline for assessing arrhythmogenicity. As such, promotion of pro-arrhythmic effect (e.g., spatial dispersion by β adrenergic stimulation) could be better predicted. Mechanistically, such anisotropy-induced electrical stability was not due to maturation of the cellular properties of hESC-VCMs but their physical arrangement. In conclusion, not only do functional anisotropic hESC-VCMs engineered by multi-scale topography represent a more accurate model for efficacious drug discovery and development as well as arrhythmogenicity screening (of pharmacological and genetic factors), but our approach may also lead to future transplantable prototypes with improved efficacy and safety against arrhythmias.
Collapse
Affiliation(s)
- Jiaxian Wang
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
du Pré BC, Doevendans PA, van Laake LW. Stem cells for cardiac repair: an introduction. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:186-97. [PMID: 23888179 PMCID: PMC3708059 DOI: 10.3969/j.issn.1671-5411.2013.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/16/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.
Collapse
Affiliation(s)
- Bastiaan C du Pré
- Departments of Cardiology and Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, P.O. box 85500, 3508 GA Utrecht, the Netherlands
| | | | | |
Collapse
|
214
|
Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A 2013; 110:12667-72. [PMID: 23861494 DOI: 10.1073/pnas.1304053110] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heart disease remains a leading cause of death worldwide. Owing to the limited regenerative capacity of heart tissue, cardiac regenerative therapy has emerged as an attractive approach. Direct reprogramming of human cardiac fibroblasts (HCFs) into cardiomyocytes may hold great potential for this purpose. We reported previously that induced cardiomyocyte-like cells (iCMs) can be directly generated from mouse cardiac fibroblasts in vitro and vivo by transduction of three transcription factors: Gata4, Mef2c, and Tbx5, collectively termed GMT. In the present study, we sought to determine whether human fibroblasts also could be converted to iCMs by defined factors. Our initial finding that GMT was not sufficient for cardiac induction in HCFs prompted us to screen for additional factors to promote cardiac reprogramming by analyzing multiple cardiac-specific gene induction with quantitative RT-PCR. The addition of Mesp1 and Myocd to GMT up-regulated a broader spectrum of cardiac genes in HCFs more efficiently compared with GMT alone. The HCFs and human dermal fibroblasts transduced with GMT, Mesp1, and Myocd (GMTMM) changed the cell morphology from a spindle shape to a rod-like or polygonal shape, expressed multiple cardiac-specific proteins, increased a broad range of cardiac genes and concomitantly suppressed fibroblast genes, and exhibited spontaneous Ca(2+) oscillations. Moreover, the cells matured to exhibit action potentials and contract synchronously in coculture with murine cardiomyocytes. A 5-ethynyl-2'-deoxyuridine assay revealed that the iCMs thus generated do not pass through a mitotic cell state. These findings demonstrate that human fibroblasts can be directly converted to iCMs by defined factors, which may facilitate future applications in regenerative medicine.
Collapse
|
215
|
Addis RC, Epstein JA. Induced regeneration--the progress and promise of direct reprogramming for heart repair. Nat Med 2013; 19:829-36. [PMID: 23836233 PMCID: PMC3862032 DOI: 10.1038/nm.3225] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
Regeneration of cardiac tissue has the potential to transform cardiovascular medicine. Recent advances in stem cell biology and direct reprogramming, or transdifferentiation, have produced powerful new tools to advance this goal. In this Review we examine key developments in the generation of new cardiomyocytes in vitro as well as the exciting progress that has been made toward in vivo reprogramming of cardiac tissue. We also address controversies and hurdles that challenge the field.
Collapse
Affiliation(s)
- Russell C Addis
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
216
|
Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay. J Pharmacol Toxicol Methods 2013; 68:74-81. [DOI: 10.1016/j.vascn.2013.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 01/05/2023]
|
217
|
Fine M, Lu FM, Lin MJ, Moe O, Wang HR, Hilgemann DW. Human-induced pluripotent stem cell-derived cardiomyocytes for studies of cardiac ion transporters. Am J Physiol Cell Physiol 2013; 305:C481-91. [PMID: 23804202 DOI: 10.1152/ajpcell.00143.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes (iCell Cardiomyocytes) with ion channel activities that are remarkably similar to adult cardiomyocytes. Here, we extend this characterization to cardiac ion transporters. Additionally, we document facile molecular biological manipulation of iCell Cardiomyocytes to overexpress and knockdown transporters and regulatory proteins. Na/Ca exchange (NCX1) and Na/K pump currents were recorded via patch clamp, and Na/H and Cl/OH exchanges were recorded via oscillating proton-selective microelectrodes during patch clamp. Flux densities of all transport systems are similar to those of nonrodent adult cardiomyocytes. NCX1 protein and NCX1 currents decline after NCX1 small interfering (si)RNA transfection with similar time courses (τ ≈ 2 days), and an NCX1-Halo fusion protein is internalized after its extracellular labeling by AlexaFluor488 Ligand with a similar time course. Loss of the cardiac regulatory protein phospholemman (PLM) occurs over a longer time course (τ ≈ 60 h) after PLM small interfering RNA transfection. Similar to multiple previous reports for adult cardiomyocytes, Na/K pump currents in iCell Cardiomyocytes are not enhanced by activating cAMP production with either maximal or submaximal cytoplasmic Na and using either forskolin or isoproterenol to activate adenylate cyclases. Finally, we describe Ca influx-dependent changes of iCell Cardiomyocyte capacitance (Cm). Large increases of Cm occur during Ca influx via NCX1, thereby documenting large internal membrane reserves that can fuse to the sarcolemma, and subsequent declines of Cm document active endocytic processes. Together, these results document a great potential of iCell Cardiomyocytes for both short- and long-term studies of cardiac ion transporters and their regulation.
Collapse
Affiliation(s)
- Michael Fine
- Department of Physiology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
218
|
Chow MZY, Geng L, Kong CW, Keung W, Fung JCK, Boheler KR, Li RA. Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth. Stem Cells Dev 2013; 22:2678-90. [PMID: 23656529 DOI: 10.1089/scd.2013.0125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Epigenetic regulation is implicated in embryonic development and the control of gene expression in a cell-specific manner. However, little is known about the role of histone methylation changes on human cardiac differentiation and maturation. Using human embryonic stem cells (hESCs) and their derived ventricular (V) cardiomyocytes (CMs) as a model, we examined trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) on promoters of genes associated with cardiac electrophysiology, contraction, and Ca(2+) handling. To avoid ambiguities due to heterogeneous chamber-specific types, hESC-derived ventricular cardiomyocytes (VCMs) were selected by dual zeocin-GFP expression under the transcriptional control of the MLC2v promoter and confirmed electrophysiologically by its signature action potential phenotype. High levels of H3K4me3 are present on pluripotency genes in hESCs with an absence of H3K27me3. Human ESC-VCMS, relative to hESCs, were characterized by a profound loss of H3K27me3 and an enrichment of H3K4me3 marks on cardiac-specific genes, including MYH6, MYH7, MYL2, cTNT, and ANF. Gene transcripts encoding key voltage-gated ion channels and Ca(2+)-handling proteins in hESC-VCMs were significantly increased, which could be attributed to a distinct pattern of differential H3K4me3 and H3K27me3 profiles. Treatment of hESC-VCMs with the histone deacetylase inhibitor valproic acid increased H3K4me3 on gene promoters, induced hypertrophic growth (as gauged by cell volume and capacitance), and augmented cardiac gene expression, but it did not affect electrophysiological properties of these cells. Hence, cardiac differentiation of hESCs involves a dynamic shift in histone methylation, which differentially affects VCM gene expression and function. We conclude that the epigenetic state of hESC-VCMs is dynamic and primed to promote growth and developmental maturation, but that proper environmental stimuli with chromatin remodeling will be required to synergistically trigger global CM maturation to a more adult-like phenotype.
Collapse
Affiliation(s)
- Maggie Zi Ying Chow
- 1 Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong , Pok Fu Lam, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
219
|
Scavone A, Capilupo D, Mazzocchi N, Crespi A, Zoia S, Campostrini G, Bucchi A, Milanesi R, Baruscotti M, Benedetti S, Antonini S, Messina G, DiFrancesco D, Barbuti A. Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells. Circ Res 2013; 113:389-98. [PMID: 23753573 DOI: 10.1161/circresaha.113.301283] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE A cell-based biological pacemaker is based on the differentiation of stem cells and the selection of a population displaying the molecular and functional properties of native sinoatrial node (SAN) cardiomyocytes. So far, such selection has been hampered by the lack of proper markers. CD166 is specifically but transiently expressed in the mouse heart tube and sinus venosus, the prospective SAN. OBJECTIVE We have explored the possibility of using CD166 expression for isolating SAN progenitors from differentiating embryonic stem cells. METHODS AND RESULTS We found that in embryonic day 10.5 mouse hearts, CD166 and HCN4, markers of the pacemaker tissue, are coexpressed. Sorting embryonic stem cells for CD166 expression at differentiation day 8 selects a population of pacemaker precursors. CD166+ cells express high levels of genes involved in SAN development (Tbx18, Tbx3, Isl-1, Shox2) and function (Cx30.2, HCN4, HCN1, CaV1.3) and low levels of ventricular genes (Cx43, Kv4.2, HCN2, Nkx2.5). In culture, CD166+ cells form an autorhythmic syncytium composed of cells morphologically similar to and with the electrophysiological properties of murine SAN myocytes. Isoproterenol increases (+57%) and acetylcholine decreases (-23%) the beating rate of CD166-selected cells, which express the β-adrenergic and muscarinic receptors. In cocultures, CD166-selected cells are able to pace neonatal ventricular myocytes at a rate faster than their own. Furthermore, CD166+ cells have lost pluripotency genes and do not form teratomas in vivo. CONCLUSIONS We demonstrated for the first time the isolation of a nonteratogenic population of cardiac precursors able to mature and form a fully functional SAN-like tissue.
Collapse
Affiliation(s)
- Angela Scavone
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Law SK, Leung CSL, Yau KL, Tse CL, Wong CK, Leung FP, Mascheck L, Huang Y, Sauer H, Tsang SY. Regulation of multiple transcription factors by reactive oxygen species and effects of pro-inflammatory cytokines released during myocardial infarction on cardiac differentiation of embryonic stem cells. Int J Cardiol 2013; 168:3458-72. [PMID: 23706318 DOI: 10.1016/j.ijcard.2013.04.178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 01/30/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mechanism of how reactive oxygen species (ROS) regulate cardiac differentiation in the long-run is unclear and the effect of pro-inflammatory cytokines secreted during myocardial infarction on the cardiac differentiation of embryonic stem cells (ESCs) is unknown. The aims of this study were 1) to investigate the effect of ROS on cardiac differentiation and the regulations of transcription factors in ESC differentiation cultures and 2) to investigate the effect of pro-inflammatory cytokines on the expression of cardiac structural genes and whether this effect is mediated through ROS signaling. METHODS ESCs were differentiated using hanging drop method. Degree of cardiac differentiation was determined by the appearance of beating embryoid bodies (EBs) and by the expression of cardiac genes using real-time PCR and Western blot. Intracellular ROS level was examined by confocal imaging. RESULTS H2O2-treated EBs were found to have enhanced cardiac differentiation in the long run as reflected by, firstly, an earlier appearance of beating EBs, and secondly, an upregulation in cardiac structural protein expression at both mRNA and protein levels. Also, ROS upregulated the expression of several cardiac-related transcription factors, and increased the post-translationally-activated transcription factors SRF and AP-1. IL-1β, IL-10, IL-18 and TNF-α upregulated the expression of cardiac structural proteins and increased the ROS level in differentiating EBs. In addition, ROS scavenger reversed the cardiogenic effect of IL-10 and IL-18. CONCLUSIONS These results demonstrated that ROS enhance cardiac differentiation of ESCs through upregulating the expression and activity of multiple cardiac-related transcription factors. IL-1β, IL-10, IL-18 and TNF-α enhance cardiac differentiation and ROS may serve as the messenger in cardiogenic signaling from these cytokines.
Collapse
Affiliation(s)
- Sau Kwan Law
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Moyes KW, Sip CG, Obenza W, Yang E, Horst C, Welikson RE, Hauschka SD, Folch A, Laflamme MA. Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem Cells Dev 2013; 22:2315-25. [PMID: 23517131 DOI: 10.1089/scd.2012.0586] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An improved understanding of the factors that regulate the migration of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) would provide new insights into human heart development and suggest novel strategies to improve their electromechanical integration after intracardiac transplantation. Since nothing has been reported as to the factors controlling hESC-CM migration, we hypothesized that hESC-CMs would migrate in response to the extracellular matrix and soluble signaling molecules previously implicated in heart morphogenesis. To test this, we screened candidate factors by transwell assay for effects on hESC-CM motility, followed by validation via live-cell imaging and/or gap-closure assays. Fibronectin (FN) elicited a haptotactic response from hESC-CMs, with cells seeded on a steep FN gradient showing nearly a fivefold greater migratory activity than cells on uniform FN. Studies with neutralizing antibodies indicated that adhesion and migration on FN are mediated by integrins α-5 and α-V. Next, we screened 10 soluble candidate factors by transwell assay and found that the noncanonical Wnt, Wnt5a, elicited an approximately twofold increase in migration over controls. This effect was confirmed using the gap-closure assay, in which Wnt5a-treated hESC-CMs showed approximately twofold greater closure than untreated cells. Studies with microfluidic-generated Wnt5a gradients showed that this factor was chemoattractive as well as chemokinetic, and Wnt5a-mediated responses were inhibited by the Frizzled-1/2 receptor antagonist, UM206. In summary, hESC-CMs show robust promigratory responses to FN and Wnt5a, findings that have implications on both cardiac development and cell-based therapies.
Collapse
Affiliation(s)
- Kara White Moyes
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 2013; 34:5813-20. [PMID: 23642535 DOI: 10.1016/j.biomaterials.2013.04.026] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
Collapse
Affiliation(s)
- Donghui Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
223
|
Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 2013; 31:829-37. [PMID: 23355363 PMCID: PMC3749929 DOI: 10.1002/stem.1331] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPS-CM) may offer a number of advantages over previous cardiac models, however, questions of their immaturity complicate their adoption as a new in vitro model. hPS-CM differ from adult cardiomyocytes with respect to structure, proliferation, metabolism and electrophysiology, better approximating fetal cardiomyocytes. Time in culture appears to significantly impact phenotype, leading to what can be referred to as early and late hPS-CM. This work surveys the phenotype of hPS-CM, including structure, bioenergetics, sensitivity to damage, gene expression, and electrophysiology, including action potential, ion channels, and intracellular calcium stores, while contrasting fetal and adult CM with hPS-CM at early and late time points after onset of differentiation.
Collapse
Affiliation(s)
- Claire Robertson
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
| | - David D. Tran
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA
| | - Steven C. George
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA
- Department of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
224
|
Moon SH, Kang SW, Park SJ, Bae D, Kim SJ, Lee HA, Kim KS, Hong KS, Kim JS, Do JT, Byun KH, Chung HM. The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Biomaterials 2013; 34:4013-4026. [DOI: 10.1016/j.biomaterials.2013.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/10/2013] [Indexed: 11/15/2022]
|
225
|
Xu XQ, Sun W. Perspective from the heart: the potential of human pluripotent stem cell-derived cardiomyocytes. J Cell Biochem 2013; 114:39-46. [PMID: 22903726 DOI: 10.1002/jcb.24359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/08/2012] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells (hPSC) are self-renewing cells with the potential to differentiate into a variety of human cells. They hold great promise for regenerative medicine and serve as useful in vitro models for studying human biology. For the past few years, there is vast interest in applying these cells to advance cardiovascular medicine. Human cardiomyocytes can be readily generated from hPSC and they have been characterized extensively with regards to molecular and functional properties. They have been transplanted into animal models of cardiovascular diseases and also shown to be potentially useful reagents for drug discovery. Yet, despite great progress in this field, significant technical hurdles remain before these cells could be used clinically or for pharmaceutical research and development. Further research using novel approaches will be required to overcome these bottlenecks.
Collapse
Affiliation(s)
- Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, China, Xiamen, Fujian, 361005, PR China.
| | | |
Collapse
|
226
|
SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2013; 110:E1685-94. [PMID: 23589888 DOI: 10.1073/pnas.1221022110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. Two main mechanisms have been proposed: (i) the "voltage-clock," where the hyperpolarization-activated funny current If causes diastolic depolarization that triggers action potential cycling; and (ii) the "Ca(2+) clock," where cyclical release of Ca(2+) from Ca(2+) stores depolarizes the membrane during diastole via activation of the Na(+)-Ca(2+) exchanger. Nonetheless, these mechanisms remain controversial. Here, we used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to study their autonomous beating mechanisms. Combined current- and voltage-clamp recordings from the same cell showed the so-called "voltage and Ca(2+) clock" pacemaker mechanisms to operate in a mutually exclusive fashion in different cell populations, but also to coexist in other cells. Blocking the "voltage or Ca(2+) clock" produced a similar depolarization of the maximal diastolic potential (MDP) that culminated by cessation of action potentials, suggesting that they converge to a common pacemaker component. Using patch-clamp recording, real-time PCR, Western blotting, and immunocytochemistry, we identified a previously unrecognized Ca(2+)-activated intermediate K(+) conductance (IK(Ca), KCa3.1, or SK4) in young and old stage-derived hESC-CMs. IK(Ca) inhibition produced MDP depolarization and pacemaker suppression. By shaping the MDP driving force and exquisitely balancing inward currents during diastolic depolarization, IK(Ca) appears to play a crucial role in human embryonic cardiac automaticity.
Collapse
|
227
|
He JQ, January CT, Thomson JA, Kamp TJ. Human embryonic stem cell-derived cardiomyocytes: drug discovery and safety pharmacology. Expert Opin Drug Discov 2013; 2:739-53. [PMID: 23488962 DOI: 10.1517/17460441.2.5.739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human embryonic stem cells (hESCs) can provide potentially unlimited quantities of a wide range of human cell types that can be used in drug discovery and development, basic research and regenerative medicine. In this review, the authors describe the differentiation of hESCs into cardiomyocytes and outline the properties of hESC-derived cardiomyocytes (hESC-CMs), including their cardiac-type action potentials and contractile characteristics. In vitro cellular assays using hESC-CMs, which can be genetically engineered to create target-specific reporters as well as human disease models, will have applications at multiple stages of the drug discovery process. Furthermore, cardiac safety pharmacology assays evaluating the risk of proarrhythmic side effects associated with QT prolongation may be enhanced in their predictive value with the use of hESC-CMs.
Collapse
Affiliation(s)
- Jia-Qiang He
- Cellular Dynamics International, Inc., 525 Science Drive, Suite 200, Madison, WI 53711, USA +1 608 263 4856 ; +1 608 263 0405 ;
| | | | | | | |
Collapse
|
228
|
Jonsson MK, van Veen TA, Goumans MJ, Vos MA, Duker G, Sartipy P. Improvement of cardiac efficacy and safety models in drug discovery by the use of stem cell-derived cardiomyocytes. Expert Opin Drug Discov 2013; 4:357-72. [PMID: 23485039 DOI: 10.1517/17460440902794912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pharmaceutical industry suffers from high attrition rates during late phases of drug development. Improved models for early evaluation of drug efficacy and safety are needed to address this problem. Recent developments have illustrated that human stem cell-derived cardiomyocytes are attractive for using as a model system for different cardiac diseases and as a model for screening, safety pharmacology and toxicology. OBJECTIVE In this review, we discuss contemporary drug discovery models and their characteristics for cardiac efficacy testing and safety assessment. Additionally, we evaluate various sources of stem cells and how these cells could potentially improve early screening and safety models. CONCLUSION We conclude that human stem cells offer a source of physiologically relevant cells that show great potential as a future tool in cardiac drug discovery. However, some technical challenges related to cell differentiation and production and also to validation of improved platforms remain and must be overcome before successful application can become a reality.
Collapse
Affiliation(s)
- Malin Kb Jonsson
- University Medical Center Utrecht, Division Heart & Lungs, Department of Medical Physiology, Yalelaan 50, 3584 CM Utrecht, The Netherlands +46 31 7065571 ; +46 31 7763766 ;
| | | | | | | | | | | |
Collapse
|
229
|
Park SJ, Bae D, Moon SH, Chung HM. Modification of a purification and expansion method for human embryonic stem cell-derived cardiomyocytes. Cardiology 2013; 124:139-50. [PMID: 23428747 DOI: 10.1159/000346390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to develop a simple and efficient purification method for human embryonic stem cell (hESC)-derived cardiomyocytes (CMs) using a low-glucose culture system. In addition, we investigated whether intercellular adhesion between single hESC-CMs plays a critical role in enhancing proliferation of purified hESC-CMs. METHOD hESCs were cultured in suspension to form human embryoid bodies (hEBs) from which ∼15% contracting clusters were derived after 15-20 days in culture. To purify CMs from contracting hEBs, we first manually isolated contracting clumps that were re-cultured on gelatin-coated plates with media containing a low concentration of glucose. The purified hESC-CMs were cultured at different densities to examine whether cell-cell contact enhances proliferation of hESC-CMs. RESULTS Purified CMs demonstrated spontaneous contraction and strongly expressed the CM-specific markers cardiac troponin T and slow myosin heavy chain. We investigated the purification efficiency by examining the expression levels of cardiac-related genes and the expression of MitoTracker Red dye. In addition, purified hESC-CMs in low-glucose culture demonstrated a 1.5-fold increase in their proliferative capacity compared to those cultured as single hESC-CMs. CONCLUSION A low level of glucose is efficient in purifying hESC-CMs and intercellular adhesion between individual hESC-CMs plays a critical role in enhancing hESC-CM proliferation.
Collapse
Affiliation(s)
- Soon-Jung Park
- Stem Cell Research Laboratory, CHA Stem Cell Institute, CHA University, Seol 135-081, Korea
| | | | | | | |
Collapse
|
230
|
Lieu DK, Fu JD, Chiamvimonvat N, Tung KC, McNerney GP, Huser T, Keller G, Kong CW, Li RA. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythm Electrophysiol 2013; 6:191-201. [PMID: 23392582 DOI: 10.1161/circep.111.973420] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Human embryonic stem cells (hESCs) can be efficiently and reproducibly directed into cardiomyocytes (CMs) using stage-specific induction protocols. However, their functional properties and suitability for clinical and other applications have not been evaluated. METHODS AND RESULTS Here we showed that CMs derived from multiple pluripotent human stem cell lines (hESC: H1, HES2) and types (induced pluripotent stem cell) using different in vitro differentiation protocols (embryoid body formation, endodermal induction, directed differentiation) commonly displayed immature, proarrhythmic action potential properties such as high degree of automaticity, depolarized resting membrane potential, Phase 4- depolarization, and delayed after-depolarization. Among the panoply of sarcolemmal ionic currents investigated (I(Na)(+)/I(CaL)(+)/I(Kr)(+)/I(NCX)(+)/I(f)(+)/I(to)(+)/I(K1)(-)/I(Ks)(-)), we pinpointed the lack of the Kir2.1-encoded inwardly rectifying K(+) current (I(K1)) as the single mechanistic contributor to the observed immature electrophysiological properties in hESC-CMs. Forced expression of Kir2.1 in hESC-CMs led to robust expression of Ba(2+)-sensitive I(K1) and, more importantly, completely ablated all the proarrhythmic action potential traits, rendering the electrophysiological phenotype indistinguishable from the adult counterparts. These results provided the first link of a complex developmentally arrested phenotype to a major effector gene, and importantly, further led us to develop a bio-mimetic culturing strategy for enhancing maturation. CONCLUSIONS By providing the environmental cues that are missing in conventional culturing method, this approach did not require any genetic or pharmacological interventions. Our findings can facilitate clinical applications, drug discovery, and cardiotoxicity screening by improving the yield, safety, and efficacy of derived CMs.
Collapse
Affiliation(s)
- Deborah K Lieu
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Myers FB, Abilez OJ, Zarins CK, Lee LP. Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters. LAB ON A CHIP 2013. [PMID: 23207961 PMCID: PMC3556464 DOI: 10.1039/c2lc40905d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stem cell therapies hold great promise for repairing tissues damaged due to disease or injury. However, a major obstacle facing this field is the difficulty in identifying cells of a desired phenotype from the heterogeneous population that arises during stem cell differentiation. Conventional fluorescence flow cytometry and magnetic cell purification require exogenous labeling of cell surface markers which can interfere with the performance of the cells of interest. Here, we describe a non-genetic, label-free cell cytometry method based on electrophysiological response to stimulus. As many of the cell types relevant for regenerative medicine are electrically-excitable (e.g. cardiomyocytes, neurons, smooth muscle cells), this technology is well-suited for identifying cells from heterogeneous stem cell progeny without the risk and expense associated with molecular labeling or genetic modification. Our label-free cell cytometer is capable of distinguishing clusters of undifferentiated human induced pluripotent stem cells (iPSC) from iPSC-derived cardiomyocyte (iPSC-CM) clusters. The system utilizes a microfluidic device with integrated electrodes for both electrical stimulation and recording of extracellular field potential (FP) signals from suspended cells in flow. The unique electrode configuration provides excellent rejection of field stimulus artifact while enabling sensitive detection of FPs with a noise floor of 2 μV(rms). Cells are self-aligned to the recording electrodes via hydrodynamic flow focusing. Based on automated analysis of these extracellular signals, the system distinguishes cardiomyocytes from non-cardiomyocytes. This is an entirely new approach to cell cytometry, in which a cell's functionality is assessed rather than its expression profile or physical characteristics.
Collapse
Affiliation(s)
- Frank B. Myers
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
| | - Oscar J. Abilez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Surgery, Stanford University, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Bio-X Program, Stanford University, Stanford, CA 94305, USA
| | - Christopher K. Zarins
- Department of Surgery, Stanford University, Stanford, CA 94305, USA
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Bio-X Program, Stanford University, Stanford, CA 94305, USA
| | - Luke P. Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
- Corresponding author:
| |
Collapse
|
232
|
Abstract
Genetic mutations in ion channel genes that are associated with cardiac arrhythmias have been identified over the past several decades. However, little is known about the pathophysiological processes. An important limitation has been the difficulty of using human cardiomyocytes to study arrhythmias and identify drugs. To circumvent this issue, we have developed a method using human-induced pluripotent stem cells to generate cardiomyocytes from individuals with Timothy syndrome (TS), a genetic disorder characterized by QT prolongation, ventricular tachycardia, and autism. The TS ventricular-like cardiomyocytes exhibit deficits in contraction, electrical signaling, and calcium handling, as revealed by live cell imaging and electrophysiological studies. We tested candidate drugs in TS cardiomyocytes and found that roscovitine could successfully rescue these cellular phenotypes. The use of a human cellular model of cardiac arrhythmias provides a useful new platform not only to study disease mechanisms but also to develop new therapies to treat cardiac arrhythmias.
Collapse
|
233
|
Nguemo F, Fleischmann BK, Gupta MK, Šarić T, Malan D, Liang H, Pfannkuche K, Bloch W, Schunkert H, Hescheler J, Reppel M. The L-type Ca2+ channels blocker nifedipine represses mesodermal fate determination in murine embryonic stem cells. PLoS One 2013; 8:e53407. [PMID: 23320083 PMCID: PMC3539992 DOI: 10.1371/journal.pone.0053407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 11/28/2012] [Indexed: 01/20/2023] Open
Abstract
Dihydropyridines (DHP), which nifedipine is a member of, preferentially block Ca(2+) channels of different cell types. Moreover, influx of Ca(2+) through L-type Ca(2+) channels (LTCCs) activates Ca(2+) signaling pathways, which in turn contribute to numerous cellular processes. Although LTCCs are expressed in undifferentiated cells, very little is known about its contributions to the transcriptional regulation of mesodermal and cardiac genes. This study aimed to examine the contribution of LTCCs and the effect of nifedipine on the commitment of pluripotent stem cells toward the cardiac lineage in vitro. The murine embryonic stem (ES, cell line D3) and induced pluripotent stem (iPS, cell clone 09) cells were differentiated into enhanced green fluorescence protein (EGFP) expressing spontaneously beating cardiomyocytes (CMs). Early treatment of differentiating cells with 10 µM nifedipine led to a significant inhibition of the cardiac mesoderm formation and cardiac lineage commitment as revealed by gene regulation analysis. This was accompanied by the inhibition of spontaneously occurring Ca(2+) transient and reduction of LTCCs current density (I(CaL)) of differentiated CMs. In addition, nifedipine treatment instigated a pronounced delay of the spontaneous beating embryoid body (EB) and led to a poor surface localization of L-type Ca(2+) channel α(1C) (Ca(V)1.2) subunits. Contrary late incubation of pluripotent stem cells with nifedipine was without any impact on the differentiation process and did not affect the derived CMs function. Our data indicate that nifedipine blocks the determined path of pluripotent stem cells to cardiomyogenesis by inhibition of mesodermal commitment at early stages of differentiation, thus the proper upkeep Ca(2+) concentration and pathways are essentially required for cardiac gene expression, differentiation and function.
Collapse
Affiliation(s)
- Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Manoj K. Gupta
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Tomo Šarić
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Huamin Liang
- Department of Physiology, Huazhong University of Science and Technology, Tongji Medical College, Wuhan, China
| | - Kurt Pfannkuche
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University, Cologne, Germany
| | | | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Michael Reppel
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Department of Cardiology, Medical University of Lübeck, Lübeck, Germany
| |
Collapse
|
234
|
Embryonic stem (ES) cell-derived cardiomyocytes: A good candidate for cell therapy applications. Cell Biol Int 2013; 33:325-36. [DOI: 10.1016/j.cellbi.2008.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 10/24/2008] [Accepted: 12/05/2008] [Indexed: 01/31/2023]
|
235
|
Gorospe G, Younes L, Tung L, Vidal R. A metamorphosis distance for embryonic cardiac action potential interpolation and classification. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2013; 16:469-476. [PMID: 24505700 DOI: 10.1007/978-3-642-40811-3_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of human embryonic stem cell cardiomyocytes (hESC-CMs) in tissue transplantation and repair has led to major recent advances in cardiac regenerative medicine. However, to avoid potential arrhythmias, it is critical that hESC-CMs used in replacement therapy be electrophysiologically compatible with the adult atrial, ventricular, and nodal phenotypes. The current method for classifying the electrophysiology of hESC-CMs relies mainly on the shape of the cell's action potential (AP), which each expert subjectively decides if it is nodal- like, atrial-like or ventricular-like. However, the classification is difficult because the shape of the AP of an hESC-CMs may not coincide with that of a mature cell. In this paper, we propose to use a metamorphosis distance for comparing the AP of an hESC-CMs to that of an adult cell model. This involves constructing a family of APs corresponding to different stages of the maturation process, and measuring the amount of deformation between APs. Experiments show that the proposed distance leads to better interpolation and classification results.
Collapse
|
236
|
Yang HT, Zhang M, Huang J, Liang H, Zhang P, Boheler KR. Cardiomyocytes derived from pluripotent stem cells: Progress and prospects from China. Exp Cell Res 2013; 319:120-5. [DOI: 10.1016/j.yexcr.2012.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
|
237
|
Sequiera GL, Mehta A, Ooi TH, Shim W. Ontogenic development of cardiomyocytes derived from transgene-free human induced pluripotent stem cells and its homology with human heart. Life Sci 2013; 92:63-71. [DOI: 10.1016/j.lfs.2012.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/03/2012] [Accepted: 10/26/2012] [Indexed: 12/18/2022]
|
238
|
Abstract
Due to the extremely limited proliferative capacity of adult cardiomyocytes, human embryonic (pluripotent) stem cell derived cardiomyocytes (hESC-CMs) are currently almost the only reliable source of human heart cells which are suited to large-scale production. These cells have the potential for wide-scale application in drug discovery, heart disease research and cell-based heart repair. Embryonic atrial-, ventricular- and nodal-like cardiomyocytes can be obtained from differentiated human embryonic stem cells (hESCs). In recent years, several highly efficient cardiac differentiation protocols have been developed. Significant progress has also been made on understanding cardiac subtype specification, which is the key to reducing the heterogeneity of hESC-CMs, a major obstacle to the utilization of these cells in medical research and future cell-based replacement therapies. Herein we review recent progress in cardiac differentiation of hESCs and cardiac subtype specification, and discuss potential applications in drug screening and cell-based heart regeneration.
Collapse
Affiliation(s)
- Junjie Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
239
|
Eckhardt LL. Phenotype, genotype, and cellular physiology: Need for clarity in characterization. Heart Rhythm 2012; 9:1993-4. [DOI: 10.1016/j.hrthm.2012.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Indexed: 11/27/2022]
|
240
|
Kadota S, Minami I, Morone N, Heuser JE, Agladze K, Nakatsuji N. Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets. Eur Heart J 2012. [PMID: 23201623 DOI: 10.1093/eurheartj/ehs418] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS Development of a human cell-derived reentrant arrhythmia model is needed for studying the mechanisms of disease and accurate drug response. METHODS AND RESULTS We differentiated human pluripotent stem cells (hPSCs) into cardiomyocytes, and then re-plated them into cell sheets that proved capable of forming electrically coupled assemblies. We monitored the function of these re-plated sheets optically with the Ca(2+) sensitive dye Fluo-4, and found that they generated characteristic waves of activity whose velocity and patterns of propagation depended upon the concentration of sodium channel blockers; lidocaine and tetrodotoxin, and also the time after re-plating, as well as the applied stimulation frequency. Importantly, reentrant spiral-wave propagation could be generated in these sheets by applying high-frequency stimulation, particularly when cell-density in the sheets was relatively low. This was because cardiac troponin T-positive cells were more non-homogeneously distributed at low cell densities. Especially in such sheets, we could terminate spiral waves by administering the anti-arrhythmic drugs; nifekalant, E-4031, sotalol, and quinidine. We also found that in these sheets, nifekalant showed a clear dose-dependent increase in the size of the unexcitable 'cores' of these induced spiral waves, an important parallel with the treatment for ventricular tachycardia in the clinical situation, which was not shown properly in cardiac-cell sheets derived from dissociated rodent hearts. CONCLUSIONS We have succeeded in creating from hPSCs a valuable type of cardiomyocyte sheet that is capable of generating reentrant arrhythmias, and thus is demonstrably useful for screening and testing all sorts of drugs with anti-arrhythmic potential.
Collapse
Affiliation(s)
- Shin Kadota
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, iCeMS Research Building, Yoshida Honmachi, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
241
|
Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012; 489:322-5. [PMID: 22864415 PMCID: PMC3443324 DOI: 10.1038/nature11317] [Citation(s) in RCA: 546] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/12/2012] [Indexed: 12/12/2022]
Abstract
Transplantation studies in mice and rats have shown that human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts1–3, but two critical issues related to their electrophysiological behavior in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear if these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea pig model to show hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia (VT). To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically-encoded calcium sensor, GCaMP34, 5. By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 host-graft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair.
Collapse
|
242
|
Moon SH, Ban K, Kim C, Kim SS, Byun J, Song MK, Park IH, Yu SP, Yoon YS. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Int J Cardiol 2012; 168:41-52. [PMID: 23044428 DOI: 10.1016/j.ijcard.2012.09.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/18/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs) hold great promise for treating ischemic heart disease. However, current protocols for differentiating hPSCs either result in low yields or require expensive cytokines. METHODS Here we developed a novel two dimensional (2D) stepwise differentiation system that generates a high yield of cardiomyocytes (CMs) from hPSCs without using special cytokines. Initially, undifferentiated hPSCs were transferred onto Matrigel-coated plates without forming embryoid bodies (EBs) for a few days and were cultured in bFGF-depleted human embryonic stem cells (hESCs) medium. When linear cell aggregation appeared in the margins of the hPSC colonies, the medium was changed to DMEM supplemented with 10% fetal bovine serum (FBS). Thereafter when cell clusters became visible, the medium was changed to DMEM with 20% FBS. RESULTS AND CONCLUSIONS At about two weeks of culture, contracting clusters began to appear and the number of contracting clusters continuously increased, reaching approximately 70% of all clusters. These clusters were dissociated by two-step enzyme treatment to monolayered CMs, of which ~90% showed CM phenotypes confirmed by an α-myosin heavy chain reporter system. Electrophysiologic studies demonstrated that the hPSC-derived CMs showed three major CM action potential types with 61 to 78% having a ventricular-CM phenotype. This differentiation system showed a clear spatiotemporal role of the surrounding endodermal cells for differentiation of mesodermal cell clusters into CMs. In conclusion, this system provides a novel platform to generate CMs from hPSCs at high yield without using cytokines and to study the development of hPSCs into CMs.
Collapse
Affiliation(s)
- Sung-Hwan Moon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 2012; 111:344-58. [PMID: 22821908 DOI: 10.1161/circresaha.110.227512] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since human embryonic stem cells were first differentiated to beating cardiomyocytes a decade ago, interest in their potential applications has increased exponentially. This has been further enhanced over recent years by the discovery of methods to induce pluripotency in somatic cells, including those derived from patients with hereditary cardiac diseases. Human pluripotent stem cells have been among the most challenging cell types to grow stably in culture, but advances in reagent development now mean that most laboratories can expand both embryonic and induced pluripotent stem cells robustly using commercially available products. However, differentiation protocols have lagged behind and in many cases only produce the cell types required with low efficiency. Cardiomyocyte differentiation techniques were also initially inefficient and not readily transferable across cell lines, but there are now a number of more robust protocols available. Here, we review the basic biology underlying the differentiation of pluripotent cells to cardiac lineages and describe current state-of-the-art protocols, as well as ongoing refinements. This should provide a useful entry for laboratories new to this area to start their research. Ultimately, efficient and reliable differentiation methodologies are essential to generate desired cardiac lineages to realize the full promise of human pluripotent stem cells for biomedical research, drug development, and clinical applications.
Collapse
Affiliation(s)
- Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
244
|
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Zambidis ET, Tung L. Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:166-77. [PMID: 22971665 PMCID: PMC3910285 DOI: 10.1016/j.pbiomolbio.2012.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Since the first description of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), these cells have garnered tremendous interest for their potential use in patient-specific analysis and therapy. Additionally, hiPSC-CMs can be derived from donor cells from patients with specific cardiac disorders, enabling in vitro human disease models for mechanistic study and therapeutic drug assessment. However, a full understanding of their electrophysiological and contractile function is necessary before this potential can be realized. Here, we review this emerging field from a functional perspective, with particular emphasis on beating rate, action potential, ionic currents, multicellular conduction, calcium handling and contraction. We further review extant hiPSC-CM disease models that recapitulate genetic myocardial disease.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - David W. Hunter
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| | - Elias T. Zambidis
- Institute for Cell Engineering and Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD
| |
Collapse
|
245
|
Santini MP, Rosenthal N. Myocardial regenerative properties of macrophage populations and stem cells. J Cardiovasc Transl Res 2012; 5:700-12. [PMID: 22684511 PMCID: PMC3447141 DOI: 10.1007/s12265-012-9383-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/24/2012] [Indexed: 01/02/2023]
Abstract
The capacity to regenerate damaged tissue and appendages is lost to some extent in higher vertebrates such as mammals, which form a scar tissue at the expenses of tissue reconstitution and functionality. Whereas this process can protect from further damage and elicit fast healing, it can lead to functional deterioration in organs such as the heart. Based on the analyses performed in the last years, stem cell therapies may not be sufficient to induce cardiac regeneration and additional approaches are required to overcome scar formation. Among these, the immune cells and their humoral response have become a key parameter in regenerative processes. In this review, we will describe the recent findings on the possible therapeutical use of progenitor and immune cells to rescue a damaged heart.
Collapse
|
246
|
Zwi-Dantsis L, Gepstein L. Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci 2012; 69:3285-99. [PMID: 22960788 PMCID: PMC11114685 DOI: 10.1007/s00018-012-1078-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/12/2012] [Accepted: 06/26/2012] [Indexed: 12/29/2022]
Abstract
Myocardial stem cell therapies are emerging as novel therapeutic paradigms for myocardial repair, but are hampered by the lack of sources for autologous human cardiomyocytes. An exciting development in the field of cardiovascular regenerative medicine is the ability to reprogram adult somatic cells into pluripotent stem cell lines (induced pluripotent stem cells, iPSCs) and to coax their differentiation into functional cardiomyocytes. This technology holds great promise for the emerging disciplines of personalized and regenerative medicine, because of the ability to derive patient-specific iPSCs that could potentially elude the immune system. The current review describes the latest techniques of generating iPSCs as well as the methods used to direct their differentiation towards the cardiac lineage. We then detail the unique potential as well as the possible hurdles on the road to clinical utilizing of the iPSCs derived cardiomyocytes in the emerging field of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- The Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion’s Faculty of Medicine, Technion–Israel Institute of Technology, POB 9649, 31096 Haifa, Israel
- The Biotechnology Interdisciplinary Unit, Technion–Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- The Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion’s Faculty of Medicine, Technion–Israel Institute of Technology, POB 9649, 31096 Haifa, Israel
| |
Collapse
|
247
|
Sheng X, Reppel M, Nguemo F, Mohammad FI, Kuzmenkin A, Hescheler J, Pfannkuche K. Human pluripotent stem cell-derived cardiomyocytes: response to TTX and lidocain reveals strong cell to cell variability. PLoS One 2012; 7:e45963. [PMID: 23029342 PMCID: PMC3459939 DOI: 10.1371/journal.pone.0045963] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023] Open
Abstract
Stem cell derived cardiomyocytes generated either from human embryonic stem cells (hESC-CMs) or human induced pluripotent stem cells (hiPSC-CMs) hold great promise for the investigation of early developmental processes in human cardiomyogenesis and future cell replacement strategies. We have analyzed electrophysiological properties of hESC-CMs (HES2) and hiPSC-CMs, derived from reprogrammed adult foreskin fibroblasts that have previously been found to be highly similar in terms of gene expression. In contrast to the similarity found in the expression profile we found substantial differences in action potentials (APs) and sodium currents at late stage (day 60) of in vitro differentiation with higher sodium currents in hiPSC-CMs. Sensitivity to lidocain was considerably reduced in hESC-CMs as compared to hiPSC-CMs, and the effect could not be explained by differences in beating frequency. In contrast, sensitivity to tetrodotoxin (TTX) was higher in hESC-CMs suggesting different contributions of TTX-sensitive and TTX-resistant sodium channels to AP generation. These data point to physiological differences that are not necessarily detected by genomics. We conclude that novel pharmacological screening-assays using hiPSC-CMs need to be applied with some caution.
Collapse
Affiliation(s)
- Xiaowu Sheng
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
- Department of Physiology and German-Chinese Stem Cell Center, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | - Filomain Nguemo
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Farooq Ibrahem Mohammad
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
- Biotechnology Research Center, Al Nahrain University, Baghdad, Iraq
| | - Alexey Kuzmenkin
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Kurt Pfannkuche
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
- Clinic and Polyclinic for Paedriatric Cardiology, University of Cologne, Cologne, Germany
| |
Collapse
|
248
|
Puppala D, Collis LP, Sun SZ, Bonato V, Chen X, Anson B, Pletcher M, Fermini B, Engle SJ. Comparative gene expression profiling in human-induced pluripotent stem cell--derived cardiocytes and human and cynomolgus heart tissue. Toxicol Sci 2012; 131:292-301. [PMID: 22982684 DOI: 10.1093/toxsci/kfs282] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cardiotoxicity is one of the leading causes of drug attrition. Current in vitro models insufficiently predict cardiotoxicity, and there is a need for alternative physiologically relevant models. Here we describe the gene expression profile of human-induced pluripotent stem cell-derived cardiocytes (iCC) postthaw over a period of 42 days in culture and compare this profile to human fetal and adult as well as adult cynomolgus nonhuman primate (NHP, Macaca fascicularis) heart tissue. Our results indicate that iCC express relevant cardiac markers such as ion channels (SCN5A, KCNJ2, CACNA1C, KCNQ1, and KCNH2), tissue-specific structural markers (MYH6, MYLPF, MYBPC3, DES, TNNT2, and TNNI3), and transcription factors (NKX2.5, GATA4, and GATA6) and lack the expression of stem cell markers (FOXD3, GBX2, NANOG, POU5F1, SOX2, and ZFP42). Furthermore, we performed a functional evaluation of contractility of the iCC and showed functional and pharmacological correlations with myocytes isolated from adult NHP hearts. These results suggest that stem cell-derived cardiocytes may represent a novel in vitro model to study human cardiac toxicity with potential ex vivo and in vivo translation.
Collapse
Affiliation(s)
- Dinesh Puppala
- Compound Safety Prediction, Pfizer, Inc., Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
Heart attack remains the leading cause of death in both men and women worldwide. Stem cell-based therapies, including the use of engineered cardiac tissues, have the potential to treat the massive cell loss and pathological remodeling resulting from heart attack. Specifically, embryonic and induced pluripotent stem cells are a promising source for generation of therapeutically relevant numbers of functional cardiomyocytes and engineering of cardiac tissues in vitro. This review will describe methodologies for successful differentiation of pluripotent stem cells towards the cardiovascular cell lineages as they pertain to the field of cardiac tissue engineering. The emphasis will be placed on comparing the functional maturation in engineered cardiac tissues and developing heart and on methods to quantify cardiac electrical and mechanical function at different spatial scales.
Collapse
Affiliation(s)
- Brian Liau
- Department of Biomedical Engineering, Faculty of Cardiology, Duke University, Room 136 Hudson Hall, Durham, NC 27708, USA
| | | | | |
Collapse
|
250
|
Wang Y, Zhang WY, Hu S, Lan F, Lee AS, Huber B, Lisowski L, Liang P, Huang M, de Almeida PE, Won JH, Sun N, Robbins RC, Kay MA, Urnov FD, Wu JC. Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging. Circ Res 2012; 111:1494-503. [PMID: 22967807 DOI: 10.1161/circresaha.112.274969] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Molecular imaging has proven to be a vital tool in the characterization of stem cell behavior in vivo. However, the integration of reporter genes has typically relied on random integration, a method that is associated with unwanted insertional mutagenesis and positional effects on transgene expression. OBJECTIVE To address this barrier, we used genome editing with zinc finger nuclease (ZFN) technology to integrate reporter genes into a safe harbor gene locus (PPP1R12C, also known as AAVS1) in the genome of human embryonic stem cells and human induced pluripotent stem cells for molecular imaging. METHODS AND RESULTS We used ZFN technology to integrate a construct containing monomeric red fluorescent protein, firefly luciferase, and herpes simplex virus thymidine kinase reporter genes driven by a constitutive ubiquitin promoter into a safe harbor locus for fluorescence imaging, bioluminescence imaging, and positron emission tomography imaging, respectively. High efficiency of ZFN-mediated targeted integration was achieved in both human embryonic stem cells and induced pluripotent stem cells. ZFN-edited cells maintained both pluripotency and long-term reporter gene expression. Functionally, we successfully tracked the survival of ZFN-edited human embryonic stem cells and their differentiated cardiomyocytes and endothelial cells in murine models, demonstrating the use of ZFN-edited cells for preclinical studies in regenerative medicine. CONCLUSION Our study demonstrates a novel application of ZFN technology to the targeted genetic engineering of human pluripotent stem cells and their progeny for molecular imaging in vitro and in vivo.
Collapse
Affiliation(s)
- Yongming Wang
- Department of Medicine, Division of Cardiology, Stanford School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|