201
|
Neutrophil and Eosinophil Extracellular Traps in Hodgkin Lymphoma. Hemasphere 2021; 5:e633. [PMID: 34485830 PMCID: PMC8410234 DOI: 10.1097/hs9.0000000000000633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Classic Hodgkin lymphoma (cHL), nodular sclerosis (NS) subtype, is characterized by the presence of Hodgkin/Reed-Sternberg (HRS) cells in an inflammatory background containing neutrophils and/or eosinophils. Both types of granulocytes release extracellular traps (ETs), web-like DNA structures decorated with histones, enzymes, and coagulation factors that promote inflammation, thrombosis, and tumor growth. We investigated whether ETs from neutrophils (NETs) or eosinophils (EETs) are detected in cHL, and evaluated their association with fibrosis. We also studied expression of protease-activated receptor-2 (PAR-2) and phospho-extracellular signal-related kinase (p-ERK), potential targets/effectors of ETs-associated elastase, in HRS cells. Expression of tissue factor (TF) was evaluated, given the procoagulant properties of ETs. We analyzed 32 HL cases, subclassified as 12 NS, 5 mixed-cellularity, 5 lymphocyte-rich, 1 lymphocyte-depleted, 4 nodular lymphocyte-predominant HL (NLPHL), and 5 reactive nodes. Notably, a majority of NS cHL cases exhibited NET formation by immunohistochemistry for citrullinated histones, with 1 case revealing abundant EETs. All other cHL subtypes as well as NLPHL were negative. Immunofluorescence microscopy confirmed NETs with filamentous/delobulated morphology. Moreover, ETs formation correlates with concurrent fibrosis (r = 0.7999; 95% CI, 0.6192-0.9002; P ≤ 0.0001). Results also showed that HRS cells in NS cHL expressed PAR-2 with nuclear p-ERK staining, indicating a neoplastic or inflammatory phenotype. Remarkably, TF was consistently detected in the endothelium of NS cHL cases compared with other subtypes, in keeping with a procoagulant status. A picture emerges whereby the release of ETs and resultant immunothrombosis contribute to the inflammatory tumor microenvironment of NS cHL. This is the first description of NETs in cHL.
Collapse
|
202
|
Erythrocyte interaction with neutrophil extracellular traps in coronary artery thrombosis following myocardial infarction. Pathology 2021; 54:87-94. [PMID: 34493386 DOI: 10.1016/j.pathol.2021.05.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/13/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
Cardiovascular disease, including myocardial infarction (MI), is the leading cause of death globally. Current antithrombotic medications used during MI treatment are predominantly directed towards platelet inhibition and, to a lesser extent, anticoagulation. Bleeding is a major risk of such treatment and could be circumvented by targeting other causative factors essential for arterial thrombus formation. We sought to re-evaluate the cellular composition of arterial thrombus in order to better understand mechanisms that lead to coronary artery thrombosis in acute MI. We performed detailed histological and immunohistochemical analysis of coronary artery thrombi aspirated from 26 patients undergoing emergency percutaneous coronary intervention for acute ST elevated myocardial infarction (STEMI). Coronary arterial thrombi had an unanticipated cellular heterogeneity. Neutrophil extracellular traps (NETs) were observed in thrombi as identified by anti-citrullinated histone 3 and anti-myeloperoxidase staining. Increased abundance of NETs was seen directly surrounding erythrocytes. Extracellular iron and erythrocyte fragments were also associated with areas of NETs suggesting a possible link. Our results shed light on potential involvement of erythrocytes in coronary arterial thrombosis through activation of platelets and induction of NETs. If supported by further in vitro and in vivo studies, novel therapies to inhibit NET formation or coagulation activation by erythrocyte release products, could bolster current myocardial infarction treatment.
Collapse
|
203
|
Bi R, Chen S, Chen S, Peng Q, Jin H, Hu B. The role of leukocytes in acute ischemic stroke-related thrombosis: a notable but neglected topic. Cell Mol Life Sci 2021; 78:6251-6264. [PMID: 34398251 PMCID: PMC11072166 DOI: 10.1007/s00018-021-03897-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is one of the most serious diseases today, and only a minority of patients are provided with effective clinical treatment. Importantly, leukocytes have gradually been discovered to play vital roles in stroke thrombosis, including promoting the activation of thrombin and the adhesion and aggregation of platelets. However, they have not received enough attention in the field of acute ischemic stroke. It is possible that we could not only prevent stroke-related thrombosis by inhibiting leukocyte activation, but also target leukocyte components to dissolve thrombi in the cerebral artery. In this review, we expound the mechanisms by which leukocytes are activated and participate in the formation of stroke thrombus, then describe the histopathology of leukocytes in thrombi of stroke patients and the influence of leukocyte composition on vascular recanalization effects and patient prognosis. Finally, we discuss the relevant antithrombotic strategies targeting leukocytes.
Collapse
Affiliation(s)
- Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shaolin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
204
|
Yaykasli KO, Schauer C, Muñoz LE, Mahajan A, Knopf J, Schett G, Herrmann M. Neutrophil Extracellular Trap-Driven Occlusive Diseases. Cells 2021; 10:2208. [PMID: 34571857 PMCID: PMC8466545 DOI: 10.3390/cells10092208] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of the innate immune system shed new insights into the pathologies of various diseases. The initial idea that NETs are a pivotal defense structure was gradually amended due to several deleterious effects in consecutive investigations. NETs formation is now considered a double-edged sword. The harmful effects are not limited to the induction of inflammation by NETs remnants but also include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding tubular structures like vessels or ducts and appear to be associated with the pathologies of various diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others. Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the development of new therapeutic approaches. Therefore, the purpose of this review is to address the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as prospective treatment modalities.
Collapse
Affiliation(s)
- Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Aparna Mahajan
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.); (L.E.M.); (A.M.); (J.K.); (G.S.); (M.H.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
205
|
A Multicenter Analysis of the Outcome of Cancer Patients with Neutropenia and COVID-19 Optionally Treated with Granulocyte-Colony Stimulating Factor (G-CSF): A Comparative Analysis. Cancers (Basel) 2021; 13:cancers13164205. [PMID: 34439359 PMCID: PMC8391975 DOI: 10.3390/cancers13164205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Approximately 15% of patients infected by SARS-CoV-2 develop a distress syndrome secondary to a host hyperinflammatory response induced by a cytokine storm. Myelosuppression is associated with a higher risk of infections and mortality. There are data to support methods of management for neutropenia and COVID-19. We present a multicenter experience during the first COVID-19 outbreak in neutropenic cancer patients infected by SARS-CoV-2. METHODS Clinical retrospective data were collected from neutropenic cancer patients with COVID-19. Comorbidities, tumor type, stage, treatment, neutropenia severity, G-CSF, COVID-19 parameters, and mortality were analyzed. A bivariate analysis of the impact on mortality was carried out. Additionally, we performed a multivariable logistic regression to predict respiratory failure and death. RESULTS Among the 943 cancer patients screened, 83 patients (11.3%) simultaneously had neutropenia and an infection with COVID-19. The lungs (26%) and breasts (22%) were the primary locations affected, and most patients had advanced disease (67%). In the logistic model, as adjusted covariates, sex, age, treatment (palliative vs. curative), tumor type, and the lowest level of neutrophils were used. A significant effect was obtained for the number of days of G-CSF treatment (OR = 1.4, 95% CI [1,1,03,92], p-value = 0.01). CONCLUSIONS Our findings suggest that a prolonged G-CSF treatment could be disadvantageous for these cancer patients with infections by COVID-19, with a higher probability of worse outcome.
Collapse
|
206
|
Shao BZ, Yao Y, Li JP, Chai NL, Linghu EQ. The Role of Neutrophil Extracellular Traps in Cancer. Front Oncol 2021; 11:714357. [PMID: 34476216 PMCID: PMC8406742 DOI: 10.3389/fonc.2021.714357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are vital components of innate and adaptive immunity. It is widely acknowledged that in various pathological conditions, neutrophils are activated and release condensed DNA strands, triggering the formation of neutrophil extracellular traps (NETs). NETs have been shown to be effective in fighting against microbial infections and modulating the pathogenesis and progression of diseases, including malignant tumors. This review describes the current knowledge on the biological characteristics of NETs. Additionally, the mechanisms of NETs in cancer are discussed, including the involvement of signaling pathways and the crosstalk between other cancer-related mechanisms, including inflammasomes and autophagy. Finally, based on previous and current studies, the roles of NET formation and the potential therapeutic targets and strategies related to NETs in several well-studied types of cancers, including breast, lung, colorectal, pancreatic, blood, neurological, and cutaneous cancers, are separately reviewed and discussed.
Collapse
Affiliation(s)
| | | | | | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
207
|
Pérez-Olivares L, Soehnlein O. Contemporary Lifestyle and Neutrophil Extracellular Traps: An Emerging Link in Atherosclerosis Disease. Cells 2021; 10:1985. [PMID: 34440753 PMCID: PMC8394440 DOI: 10.3390/cells10081985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are networks of extracellular genetic material decorated with proteins of nuclear, granular and cytosolic origin that activated neutrophils expel under pathogenic inflammatory conditions. NETs are part of the host's innate immune defense system against invading pathogens. Interestingly, these extracellular structures can also be released in response to sterile inflammatory stimuli (e.g., shear stress, lipidic molecules, pro-thrombotic factors, aggregated platelets, or pro-inflammatory cytokines), as in atherosclerosis disease. Indeed, NETs have been identified in the intimal surface of diseased arteries under cardiovascular disease conditions, where they sustain inflammation via NET-mediated cell-adhesion mechanisms and promote cellular dysfunction and tissue damage via NET-associated cytotoxicity. This review will focus on (1) the active role of neutrophils and NETs as underestimated players of the inflammatory process during atherogenesis and lesion progression; (2) how these extracellular structures communicate with the main cell types present in the atherosclerotic lesion in the arterial wall; and (3) how these neutrophil effector functions interplay with lifestyle-derived risk factors such as an unbalanced diet, physical inactivity, smoking or lack of sleep quality, which represent major elements in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Laura Pérez-Olivares
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
| | - Oliver Soehnlein
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, 17165 Stockholm, Sweden
| |
Collapse
|
208
|
Zhang K, Jiang N, Sang X, Feng Y, Chen R, Chen Q. Trypanosoma brucei Lipophosphoglycan Induces the Formation of Neutrophil Extracellular Traps and Reactive Oxygen Species Burst via Toll-Like Receptor 2, Toll-Like Receptor 4, and c-Jun N-Terminal Kinase Activation. Front Microbiol 2021; 12:713531. [PMID: 34394064 PMCID: PMC8355521 DOI: 10.3389/fmicb.2021.713531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023] Open
Abstract
Trypanosoma brucei brucei is the causative agent of African animal trypanosomosis, which mainly parasitizes the blood of the host. Lipophosphoglycan (LPG), a polymer anchored to the surface of the parasites, activates the host immune response. In this study, we revealed that T. brucei LPG stimulated neutrophils to form neutrophil extracellular traps (NETs) and release the reactive oxygen species (ROS). We further analyzed the involvement of toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) and explored the activation of signaling pathway enzymes in response to LPG stimulation. During the stimulation of neutrophils by LPG, the blockade using anti-TLR2 and anti-TLR4 antibodies reduced the phosphorylation of c-Jun N-terminal kinase (JNK), the release of DNA from the NETs, and the burst of ROS. Moreover, the addition of JNK inhibitor and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor exhibited similar effects. Our data suggest that T. brucei LPG activates the phosphorylation of JNK through TLR2 and TLR4 recognition, which causes the formation of NETs and the burst of ROS.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
209
|
Pedersen S, Kristensen AF, Falkmer U, Christiansen G, Kristensen SR. Increased activity of procoagulant factors in patients with small cell lung cancer. PLoS One 2021; 16:e0253613. [PMID: 34288927 PMCID: PMC8294523 DOI: 10.1371/journal.pone.0253613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Small cell lung cancer (SCLC) patients have augmented risk of developing venous thromboembolism, but the mechanisms triggering this burden on the coagulation system remain to be understood. Recently, cell-derived microparticles carrying procoagulant phospholipids (PPL) and tissue factor (TF) in their membrane have attracted attention as possible contributors to the thrombogenic processes in cancers. The aims of this study were to assess the coagulation activity of platelet-poor plasma from 38 SCLC patients and to provide a detailed procoagulant profiling of small and large extracellular vesicles (EVs) isolated from these patients at the time of diagnosis, during and after treatment compared to 20 healthy controls. Hypercoagulability testing was performed by thrombin generation (TG), procoagulant phospholipid (PPL), TF activity, Protein C, FVIII activity and cell-free deoxyribonucleic acid (cfDNA), a surrogate measure for neutrophil extracellular traps (NETs). Our results revealed a coagulation activity that is significantly increased in the plasma of SCLC patients when compared to age-related healthy controls, but no substantial changes in coagulation activity during treatment and at follow-up. Although EVs in the patients revealed an increased PPL and TF activity compared with the controls, the TG profiles of EVs added to a standard plasma were similar for patients and controls. Finally, we found no differences in the coagulation profile of patients who developed VTE to those who did not, i.e. the tests could not predict VTE. In conclusion, we found that SCLC patients display an overall increased coagulation activity at time of diagnosis and during the disease, which may contribute to their higher risk of VTE.
Collapse
Affiliation(s)
- Shona Pedersen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- * E-mail:
| | - Anne Flou Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ursula Falkmer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
210
|
Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet 2021; 398:64-77. [PMID: 33984268 DOI: 10.1016/s0140-6736(20)32658-1] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/06/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Venous thromboembolism, comprising both deep vein thrombosis and pulmonary embolism, is a chronic illness that affects nearly 10 million people every year worldwide. Strong provoking risk factors for venous thromboembolism include major surgery and active cancer, but most events are unprovoked. Diagnosis requires a sequential work-up that combines assessment of clinical pretest probability for venous thromboembolism using a clinical score (eg, Wells score), D-dimer testing, and imaging. Venous thromboembolism can be considered excluded in patients with both a non-high clinical pretest probability and normal D-dimer concentrations. When required, ultrasonography should be done for a suspected deep vein thrombosis and CT or ventilation-perfusion scintigraphy for a suspected pulmonary embolism. Direct oral anticoagulants (DOACs) are the first-line treatment for almost all patients with venous thromboembolism (including those with cancer). After completing 3-6 months of initial treatment, anticoagulation can be discontinued in patients with venous thromboembolism provoked by a major transient risk factor. Patients whose long-term risk of recurrent venous thromboembolism outweighs the long-term risk of major bleeding, such as those with active cancer or men with unprovoked venous thromboembolism, should receive indefinite anticoagulant treatment. Pharmacological venous thromboembolism prophylaxis is generally warranted in patients undergoing major orthopaedic or cancer surgery. Ongoing research is focused on improving diagnostic strategies for suspected deep vein thrombosis, comparing different DOACs, developing safer anticoagulants, and further individualising approaches for the prevention and management of venous thromboembolism.
Collapse
Affiliation(s)
- Faizan Khan
- School of Epidemiology and Public Health, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Tobias Tritschler
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Susan R Kahn
- Department of Medicine, McGill University, Montreal, QC, Canada; Division of Internal Medicine and Division of Clinical Epidemiology, Jewish General Hospital/Lady Davis Institute, Montreal, QC, Canada
| | - Marc A Rodger
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
211
|
Liu X, Arfman T, Wichapong K, Reutelingsperger CPM, Voorberg J, Nicolaes GAF. PAD4 takes charge during neutrophil activation: Impact of PAD4 mediated NET formation on immune-mediated disease. J Thromb Haemost 2021; 19:1607-1617. [PMID: 33773016 PMCID: PMC8360066 DOI: 10.1111/jth.15313] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl arginine deiminase 4 (PAD4) is an enzyme that converts arginine into citrulline. PAD4 is expressed in neutrophils that, when activated, can drive the formation of neutrophil extracellular traps (NETs). Uncontrolled activation of PAD4 and subsequent citrullination of proteins is increasingly recognized as a driver of (auto)immune diseases. Currently, our understanding of PAD4 structure-function relationships and activity control in vivo is incomplete. AIMS To provide the current state-of-the-art on PAD4 structure-activity relationships and involvement of PAD4 in autoimmune disorders as well as in thrombo-inflammatory disease. MATERIALS & METHODS Literature review and molecular modelling Results: In this review, we used molecular modelling to generate a three-dimensional structure of the complete PAD4 molecule. Using our model, we discuss the catalytic conversion of the arginine substrate to citrulline. Besides mechanistic insight into PAD4 function, we give an overview of biological functions of PAD4 and mechanisms that influence its activation. In addition, we discuss the crucial role of PAD4-mediated citrullination of histones during the formation of NETs. Subsequently, we focus on the role of PAD4-mediated NET formation and its role in pathogenesis of rheumatoid arthritis, sepsis and (immune-)thrombosis. Finally, we summarize current efforts to design different classes of PAD4 inhibitors that are being developed for improved treatment of autoimmune disorders as well as thrombo-inflammatory disease. DISCUSSION Advances in PAD4 structure-function are still necessary to gain a complete insight in mechanisms that control PAD4 activity in vivo. The involvement of PAD4 in several diseases signifies the need for a PAD4 inhibitor. Although progress has been made to produce an isotype specific and potent PAD4 inhibitor, currently no PAD4 inhibitor is ready for clinical use. CONCLUSION More research into PAD4 structure and function and into the regulation of its activity is required for the development of PAD4 specific inhibitors that may prove vital to combat and prevent autoimmune disorders and (thrombo)inflammatory disease.
Collapse
Affiliation(s)
- Xiaosong Liu
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
| | - Tom Arfman
- Department of Molecular and Cellular HaemostasisSanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Kanin Wichapong
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
| | - Chris P. M. Reutelingsperger
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
| | - Jan Voorberg
- Department of Molecular and Cellular HaemostasisSanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Gerry A. F. Nicolaes
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
212
|
Orbán-Kálmándi R, Szegedi I, Sarkady F, Fekete I, Fekete K, Vasas N, Berényi E, Csiba L, Bagoly Z. A modified in vitro clot lysis assay predicts outcomes and safety in acute ischemic stroke patients undergoing intravenous thrombolysis. Sci Rep 2021; 11:12713. [PMID: 34135389 PMCID: PMC8208992 DOI: 10.1038/s41598-021-92041-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
The outcome of intravenous thrombolysis using recombinant tissue plasminogen activator (rt-PA) is only favorable in ≈ 40% of acute ischemic stroke (AIS) patients. Moreover, in ≈ 6-8% of cases, intracerebral hemorrhage (ICH) develops. We tested whether a modification of clot lysis assay (CLA), might predict therapy outcomes and safety. In this prospective observational study, blood samples of 231 AIS patients, all receiving intravenous rt-PA, were taken before thrombolysis. Cell-free DNA (cfDNA), CLA and CLA supplemented with cfDNA and histones (mCLA) were determined from the blood samples. Stroke severity was determined by NIHSS on admission. ICH was classified according to ECASSII. Short- and long-term outcomes were defined at 7 and 90 days post-event according to ΔNIHSS and by the modified Rankin Scale, respectively. Stroke severity demonstrated a step-wise positive association with cfDNA levels, while a negative association was found with the time to reach 50% lysis (50%CLT) parameter of CLA and mCLA. ROC analysis showed improved diagnostic performance of the mCLA. Logistic regression analysis proved that 50%CLT is a predictor of short-term therapy failure, while the AUC parameter predicts ICH occurrence. A modified CLA, supplemented with cfDNA and histones, might be a promising tool to predict short-term AIS outcomes and post-lysis ICH.
Collapse
Affiliation(s)
- Rita Orbán-Kálmándi
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - István Szegedi
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Ferenc Sarkady
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Nikolett Vasas
- Department of Radiology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - Ervin Berényi
- Department of Radiology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary.,ELKH-DE Cerebrovascular and Neurodegenerative Research Group, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Zsuzsa Bagoly
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary. .,ELKH-DE Cerebrovascular and Neurodegenerative Research Group, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary.
| |
Collapse
|
213
|
Jin K, Bardes EE, Mitelpunkt A, Wang JY, Bhatnagar S, Sengupta S, Krummel DP, Rothenberg ME, Aronow BJ. Implicating Gene and Cell Networks Responsible for Differential COVID-19 Host Responses via an Interactive Single Cell Web Portal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.07.447287. [PMID: 34127975 PMCID: PMC8202427 DOI: 10.1101/2021.06.07.447287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies have provided single-cell transcriptome profiles of host responses to SARS-CoV-2 infection. Critically lacking however is a datamine that allows users to compare and explore cell profiles to gain insights and develop new hypotheses. To accomplish this, we harmonized datasets from COVID-19 and other control condition blood, bronchoalveolar lavage, and tissue samples, and derived a compendium of gene signature modules per cell type, subtype, clinical condition, and compartment. We demonstrate approaches to probe these via a new interactive web portal (http://toppcell.cchmc.org/COVID-19). As examples, we develop three hypotheses: (1) a multicellular signaling cascade among alternatively differentiated monocyte-derived macrophages whose tasks include T cell recruitment and activation; (2) novel platelet subtypes with drastically modulated expression of genes responsible for adhesion, coagulation and thrombosis; and (3) a multilineage cell activator network able to drive extrafollicular B maturation via an ensemble of genes strongly associated with risk for developing post-viral autoimmunity.
Collapse
Affiliation(s)
- Kang Jin
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Eric E. Bardes
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Alexis Mitelpunkt
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Pediatric Rehabilitation, Dana-Dwek Children’s Hospital, Tel Aviv Medical Center, Tel Aviv, 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Jake Y. Wang
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Surbhi Bhatnagar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45256, USA
- Lead contact
| |
Collapse
|
214
|
Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol 2021; 12:682853. [PMID: 34163481 PMCID: PMC8215340 DOI: 10.3389/fimmu.2021.682853] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenxu Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| |
Collapse
|
215
|
Tucker B, Vaidya K, Cochran BJ, Patel S. Inflammation during Percutaneous Coronary Intervention-Prognostic Value, Mechanisms and Therapeutic Targets. Cells 2021; 10:cells10061391. [PMID: 34199975 PMCID: PMC8230292 DOI: 10.3390/cells10061391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Periprocedural myocardial injury and myocardial infarction (MI) are not infrequent complications of percutaneous coronary intervention (PCI) and are associated with greater short- and long-term mortality. There is an abundance of preclinical and observational data demonstrating that high levels of pre-, intra- and post-procedural inflammation are associated with a higher incidence of periprocedural myonecrosis as well as future ischaemic events, heart failure hospitalisations and cardiac-related mortality. Beyond inflammation associated with the underlying coronary pathology, PCI itself elicits an acute inflammatory response. PCI-induced inflammation is driven by a combination of direct endothelial damage, liberation of intra-plaque proinflammatory debris and reperfusion injury. Therefore, anti-inflammatory medications, such as colchicine, may provide a novel means of improving PCI outcomes in both the short- and long-term. This review summarises periprocedural MI epidemiology and pathophysiology, evaluates the prognostic value of pre-, intra- and post-procedural inflammation, dissects the mechanisms involved in the acute inflammatory response to PCI and discusses the potential for periprocedural anti-inflammatory treatment.
Collapse
Affiliation(s)
- Bradley Tucker
- Heart Research Institute, 7 Eliza St., Newtown 2042, Australia;
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia;
- School of Medical Sciences, University of New South Wales, Kensington 2052, Australia;
| | - Kaivan Vaidya
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia;
- Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Blake J. Cochran
- School of Medical Sciences, University of New South Wales, Kensington 2052, Australia;
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza St., Newtown 2042, Australia;
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia;
- Royal Prince Alfred Hospital, Camperdown 2050, Australia
- Correspondence: ; Tel.: +61-2-9515-6111
| |
Collapse
|
216
|
Grob D, Conejeros I, López-Osorio S, Velásquez ZD, Segeritz L, Gärtner U, Schaper R, Hermosilla C, Taubert A. Canine Angiostrongylus vasorum-Induced Early Innate Immune Reactions Based on NETs Formation and Canine Vascular Endothelial Cell Activation In Vitro. BIOLOGY 2021; 10:biology10050427. [PMID: 34065858 PMCID: PMC8151090 DOI: 10.3390/biology10050427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Angiostrongylus vasorum is a cardiopulmonary nematode that affects canids, residing in the pulmonary artery and right atrium/ventricle. Due to its location, the parasite will have a close interaction with the different components of the innate immune system, including endothelial cells and polymorphonuclear neutrophils (PMN). Here we evaluated the expression of adhesion molecules of canine aortic endothelial cells (CAEC), and NETs formation by co-culture of freshly isolated canine PMN with A. vasorum L3. Overall, we found distinct inter-donor variations in adhesion molecule expression among CAEC isolates. Additionally, PMN and A. vasorum co-culture induced NETs release without affecting larval viability. Abstract Due to its localization in the canine blood stream, Angiostrongylus vasorum is exposed to circulating polymorphonuclear neutrophils (PMN) and the endothelial cells of vessels. NETs release of canine PMN exposed to A. vasorum infective stages (third stage larvae, L3) and early pro-inflammatory immune reactions of primary canine aortic endothelial cells (CAEC) stimulated with A. vasorum L3-derived soluble antigens (AvAg) were analyzed. Expression profiles of the pro-inflammatory adhesion molecules ICAM-1, VCAM-1, P-selectin and E-selectin were analyzed in AvAg-stimulated CAEC. Immunofluorescence analyses demonstrated that motile A. vasorum L3 triggered different NETs phenotypes, with spread NETs (sprNETs) as the most abundant. Scanning electron microscopy confirmed that the co-culture of canine PMN with A. vasorum L3 resulted in significant larval entanglement. Distinct inter-donor variations of P-selectin, E-selectin, ICAM-1 and VCAM-1 gene transcription and protein expression were observed in CAEC isolates which might contribute to the high individual variability of pathological findings in severe canine angiostrongylosis. Even though canine NETs did not result in larval killing, the entanglement of L3 might facilitate further leukocyte attraction to their surface. Since NETs have already been documented as involved in both thrombosis and endothelium damage events, we speculate that A. vasorum-triggered NETs might play a critical role in disease outcome in vivo.
Collapse
Affiliation(s)
- Daniela Grob
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
- Correspondence:
| | - Iván Conejeros
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Sara López-Osorio
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
- Grupo de Investigación CIBAV, Universidad de Antioquia UdeA, Medellín 050034, Colombia
| | - Zahady D. Velásquez
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Lisa Segeritz
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | | | - Carlos Hermosilla
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| | - Anja Taubert
- Institute for Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (S.L.-O.); (Z.D.V.); (L.S.); (C.H.); (A.T.)
| |
Collapse
|
217
|
Várady CBS, Oliveira AC, Monteiro RQ, Gomes T. Recombinant human DNase I for the treatment of cancer-associated thrombosis: A pre-clinical study. Thromb Res 2021; 203:131-137. [PMID: 34015562 DOI: 10.1016/j.thromres.2021.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
Cancer patients are more likely to develop thrombosis, and this co-morbidity is related to the worse prognosis of the disease. The increased formation of neutrophil extracellular traps (NETs) has been proposed as one of the mechanisms to explain cancer-associated thrombosis. In vivo, degradation of NETs with recombinant human DNase I (rhDNase I) prevents thrombus formation in mouse models. In this work, we evaluated the effect of two different chronic treatments with rhDNase I in a murine NET-dependent prothrombotic state in breast cancer model. Medium-term treatment (2.5 mg/kg rhDNase I for eight consecutive days) did not interfere with the primary growth of 4T1 tumors. On the other hand, it effectively prevented thrombus formation in the inferior vena cava stenosis model. Remarkably, medium-term treatment with rhDNase I showed minor impact in the tail-bleeding model. Different from the medium-term, the long-term treatment with rhDNase I (2.5 mg/kg for 18 successive days) drastically reduced the overall survival. Remarkably, the concomitant use of Ertapenem, a carbapenem antibiotic, and rhDNase I significantly attenuated the mortality observed in the long-term treatment. Our results suggest the therapeutic potential of rhDNase I to treat cancer-associated thrombosis, although its chronic use should be carefully evaluated and potentially harmful.
Collapse
Affiliation(s)
- Carolina B S Várady
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Ana Carolina Oliveira
- Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Robson Q Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Tainá Gomes
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Brazil.
| |
Collapse
|
218
|
Shah S, Karathanasi A, Revythis A, Ioannidou E, Boussios S. Cancer-Associated Thrombosis: A New Light on an Old Story. Diseases 2021; 9:34. [PMID: 34064390 PMCID: PMC8161803 DOI: 10.3390/diseases9020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated thrombosis (CAT) is a rising and significant phenomenon, becoming the second leading cause of death in cancer patients. Pathophysiology of CAT differs from thrombosis in the non-cancer population. There are additional risk factors for thrombosis specific to cancer including cancer type, histology, and treatment, such as chemotherapy. Recently developed scoring systems use these risk factors to stratify the degree of risk and encourage thromboprophylaxis in intermediate- to high-risk patients. Anticoagulation is safely used for prophylaxis and treatment of CAT. Both of these have largely been with low-molecular-weight heparin (LMWH), rather than the vitamin K antagonist (VKA); however, there has been increasing evidence for direct oral anticoagulant (DOAC) use. Consequently, international guidelines have also adapted to recommend the role of DOACs in CAT. Using DOACs is a turning point for CAT, but further research is warranted for their long-term risk profile. This review will discuss mechanisms, risk factors, prophylaxis and management of CAT, including both LMWH and DOACs. There will also be a comparison of current international guidelines and how they reflect the growing evidence base.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.S.); (A.K.); (A.R.)
| | - Afroditi Karathanasi
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.S.); (A.K.); (A.R.)
| | - Antonios Revythis
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.S.); (A.K.); (A.R.)
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Stergios Boussios
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.S.); (A.K.); (A.R.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
219
|
Feldman C, Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia (Nathan) 2021; 13:5. [PMID: 33894790 PMCID: PMC8068564 DOI: 10.1186/s41479-021-00083-w] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND It has been recognised for a considerable time-period, that viral respiratory infections predispose patients to bacterial infections, and that these co-infections have a worse outcome than either infection on its own. However, it is still unclear what exact roles co-infections and/or superinfections play in patients with COVID-19 infection. MAIN BODY This was an extensive review of the current literature regarding co-infections and superinfections in patients with SARS-CoV-2 infection. The definitions used were those of the Centers for Disease Control and Prevention (US), which defines coinfection as one occurring concurrently with the initial infection, while superinfections are those infections that follow on a previous infection, especially when caused by microorganisms that are resistant, or have become resistant, to the antibiotics used earlier. Some researchers have envisioned three potential scenarios of bacterial/SARS-CoV-2 co-infection; namely, secondary SARS-CoV-2 infection following bacterial infection or colonisation, combined viral/bacterial pneumonia, or secondary bacterial superinfection following SARS-CoV-2. There are a myriad of published articles ranging from letters to the editor to systematic reviews and meta-analyses describing varying ranges of co-infection and/or superinfection in patients with COVID-19. The concomitant infections described included other respiratory viruses, bacteria, including mycobacteria, fungi, as well as other, more unusual, pathogens. However, as will be seen in this review, there is often not a clear distinction made in the literature as to what the authors are referring to, whether true concomitant/co-infections or superinfections. In addition, possible mechanisms of the interactions between viral infections, including SARS-CoV-2, and other infections, particularly bacterial infections are discussed further. Lastly, the impact of these co-infections and superinfections in the severity of COVID-19 infections and their outcome is also described. CONCLUSION The current review describes varying rates of co-infections and/or superinfections in patients with COVID-19 infections, although often a clear distinction between the two is not clear in the literature. When they occur, these infections appear to be associated with both severity of COVID-19 as well as poorer outcomes.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
220
|
Orbán-Kálmándi R, Árokszállási T, Fekete I, Fekete K, Héja M, Tóth J, Sarkady F, Csiba L, Bagoly Z. A Modified in vitro Clot Lysis Assay Predicts Outcomes in Non-traumatic Intracerebral Hemorrhage Stroke Patients-The IRONHEART Study. Front Neurol 2021; 12:613441. [PMID: 33959087 PMCID: PMC8093390 DOI: 10.3389/fneur.2021.613441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Non-traumatic intracerebral hemorrhage (ICH) accounts for 10–15% of all strokes and results in a higher rate of mortality as compared to ischemic strokes. In the IRONHEART study, we aimed to find out whether a modified in vitro clot lysis assay method, that includes the effect of neutrophil extracellular traps (NETs) might predict ICH outcomes. Patients and Methods: In this prospective, observational study, 89 consecutive non-traumatic ICH patients were enrolled. Exclusion criteria included aneurysm rupture, cancer, liver- or kidney failure or hemorrhagic diathesis. On admission, detailed clinical and laboratory investigations were performed. ICH volume was estimated based on CT performed on admission, day 14 and 90. A conventional in vitro clot lysis assay (CLA) and a modified CLA (mCLA) including cell-free-DNA and histones were performed from stored platelet-free plasma taken on admission. Clot formation and lysis in case of both assays were defined using the following variables calculated from the turbidimetric curves: maximum absorbance, time to maximum absorbance, clot lysis times (CLT) and area under the curve (CLA AUC). Long-term ICH outcomes were defined 90 days post-event by the modified Rankin Scale (mRS). All patients or relatives provided written informed consent. Results: Patients with more severe stroke (NIHSS>10) presented significantly shorter clot lysis times of the mCLA in the presence of DNA and histone as compared to patients with milder stroke [10%CLT: NIHSS 0–10: median 31.5 (IQR: 21.0–40.0) min vs. NIHSS>10: 24 (18–31.0) min, p = 0.032]. Shorter clot lysis times of the mCLA showed significant association with non-survival by day 14 and with unfavorable long-term outcomes [mRS 0–1: 36.0 (22.5.0–51.0) min; mRS 2–5: 23.5 (18.0–36.0) min and mRS 6: 22.5 (18.0–30.5) min, p = 0.027]. Estimated ICH volume showed significant negative correlation with mCLA parameters, including 10%CLT (r = −0.3050, p = 0.009). ROC analysis proved good diagnostic performance of mCLA for predicting poor long-term outcomes [AUC: 0.73 (0.57–0.89)]. In a Kaplan-Meier survival analysis, those patients who presented with an mCLA 10%CLT result of >38.5 min on admission showed significantly better survival as compared to those with shorter clot lysis results (p=0.010). Conclusion: Parameters of mCLA correlate with ICH bleeding volume and might be useful to predict ICH outcomes.
Collapse
Affiliation(s)
- Rita Orbán-Kálmándi
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School University of Debrecen, Debrecen, Hungary
| | - Tamás Árokszállási
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Héja
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Tóth
- Department of Radiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Sarkady
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School University of Debrecen, Debrecen, Hungary
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Hungarian Academy of Sciences (MTA-DE) Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Bagoly
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School University of Debrecen, Debrecen, Hungary.,Hungarian Academy of Sciences (MTA-DE) Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
221
|
Chen WA, Fletcher HM, Payne KJ, Aka S, Thornburg MB, Gheorghe JD, Safi SB, Shavlik D, Oyoyo U, Boskovic DS. Platelet and neutrophil responses to Porphyromonas gingivalis in human whole blood. Mol Oral Microbiol 2021; 36:202-213. [PMID: 33811483 DOI: 10.1111/omi.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 01/19/2023]
Abstract
Porphyromonas gingivalis is a causative agent for periodontal disease. Binding of platelets to this gram-negative anaerobe can regulate host hemostatic (thrombus forming) and immune (neutrophil interacting) responses during bacterial infection. Additionally, in response to bacterial pathogens neutrophils can release their DNA, forming highly prothrombotic neutrophil extracellular traps (NETs), which then further enhance platelet responses. This study evaluates the role of P. gingivalis on platelet expression of CD62P, platelet-neutrophil interactions, and labeled neutrophil-associated DNA. Human whole blood was preincubated with varying P. gingivalis concentrations, with or without subsequent addition of adenosine diphosphate (ADP). Flow cytometry was employed to measure platelet expression of CD62P using PerCP-anti-CD61 and PE-anti-CD62P, platelet-neutrophil interactions using PerCP-anti-CD61 and FITC-anti-CD16, and the release of neutrophil DNA using FITC-anti-CD16 and Sytox Blue labeling. Preincubation with a high (6.25 × 106 CFU/mL) level of P. gingivalis significantly increased platelet expression of CD62P in ADP treated and untreated whole blood. In addition, platelet-neutrophil interactions were significantly increased after ADP stimulation, following 5-22 min preincubation of blood with high P. gingivalis CFU. However, in the absence of added ADP, platelet-neutrophil interactions increased in a manner dependent on the preincubation time with P. gingivalis. Moreover, after ADP addition, 16 min preincubation of whole blood with P. gingivalis led to increased labeling of neutrophil-associated DNA. Taken together, the results suggest that the presence of P. gingivalis alters platelet and neutrophil responses to increase platelet activation, platelet interactions with neutrophils, and the level of neutrophil antimicrobial NETs.
Collapse
Affiliation(s)
- William A Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hansel M Fletcher
- Division of Microbiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Kimberly J Payne
- Division of Anatomy, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sheryl Aka
- Department of Pathology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Melanie B Thornburg
- Department of Pathology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Joseph D Gheorghe
- Department of Pathology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Shahnaj Binte Safi
- Department of Epidemiology and Biostatistics, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - David Shavlik
- Department of Epidemiology and Biostatistics, School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Udochukwu Oyoyo
- Department of Dental Education Services, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | - Danilo S Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
222
|
Rios-Navarro C, Dios ED, Forteza MJ, Bodi V. Unraveling the thread of uncontrolled immune response in COVID-19 and STEMI: an emerging need for knowledge sharing. Am J Physiol Heart Circ Physiol 2021; 320:H2240-H2254. [PMID: 33844596 PMCID: PMC8384574 DOI: 10.1152/ajpheart.00934.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 that first emerged in Wuhan in December 2019 has resulted in the devastating pandemic of coronavirus disease 2019, creating an emerging need for knowledge sharing. Meanwhile, myocardial infarction is and will probably remain the foremost cause of death in the Western world throughout the coming decades. Severe deregulation of the immune system can unnecessarily expand the inflammatory response and participate in target and multiple organ failure, in infection but also in critical illness. Indeed, the course and fate of inflammatory cells observed in severe ST-elevation myocardial infarction (neutrophilia, monocytosis, and lymphopenia) almost perfectly mirror those recently reported in severe coronavirus disease 2019. A pleiotropic proinflammatory imbalance hampers adaptive immunity in favor of uncontrolled innate immunity and is associated with poorer structural and clinical outcomes. The goal of the present review is to gain greater insight into the cellular and molecular mechanisms underlying this canonical activation and downregulation of the two arms of the immune response in both entities, to better understand their pathophysiology and to open the door to innovative therapeutic options. Knowledge sharing can pave the way for therapies with the potential to significantly reduce mortality in both infectious and noninfectious scenarios.
Collapse
Affiliation(s)
- Cesar Rios-Navarro
- INCLIVA Health Research Institute, University of Valencia, Valencia, Spain
| | - Elena de Dios
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red-Cardiovascular, University of Valencia, Valencia, Spain
| | - Maria J Forteza
- Department of Medicine, Center of Molecular Medicine, Cardiovascular Medicine Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vicente Bodi
- INCLIVA Health Research Institute, University of Valencia, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red-Cardiovascular, University of Valencia, Valencia, Spain.,Cardiology Department, Hospital Clinico Universitario, University of Valencia, Valencia, Spain
| |
Collapse
|
223
|
Bora VR, Patel BM. The Deadly Duo of COVID-19 and Cancer! Front Mol Biosci 2021; 8:643004. [PMID: 33912588 PMCID: PMC8072279 DOI: 10.3389/fmolb.2021.643004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
As of September 19, 2020, about 30 million people have been infected with the novel corona virus disease 2019 (COVID-19) globally, and the numbers are increasing at an alarming rate. The disease has a tremendous impact on every aspect of life, but one of the biggest, related to human health and medical sciences, is its effect on cancer. Nearly 2% of the total COVID-19 patients prior to May 2020 had cancer, and the statistics are quite frightening as the patient can be referred to as "doubly unfortunate" to suffer from cancer with the added misery of infection with COVID-19. Data regarding the present situation are scarce, so this review will focus on the deadly duo of COVID-19 and cancer. The focus is on molecular links between COVID-19 and cancer as inflammation, immunity, and the role of angiotensin converting enzyme 2 (ACE2). Complications may arise or severity may increase in cancer patients due to restrictions imposed by respective authorities as an effort to control COVID-19. The impact may vary from patient to patient and factors may include a delay in diagnosis, difficulty managing both cancer therapy and COVID-19 at same time, troubles in routine monitoring of cancer patients, and delays in urgent surgical procedures and patient care. The effect of anti-cancer agents on the condition of cancer patients suffering from COVID-19 and whether these anti-cancer agents can be repurposed for effective COVID-19 treatment are discussed. The review will be helpful in the management of deadly duo of COVID-19 and cancer.
Collapse
Affiliation(s)
| | - Bhoomika M. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
224
|
Petito E, Falcinelli E, Paliani U, Cesari E, Vaudo G, Sebastiano M, Cerotto V, Guglielmini G, Gori F, Malvestiti M, Becattini C, Paciullo F, De Robertis E, Bury L, Lazzarini T, Gresele P. Association of Neutrophil Activation, More Than Platelet Activation, With Thrombotic Complications in Coronavirus Disease 2019. J Infect Dis 2021; 223:933-944. [PMID: 33280009 PMCID: PMC7798977 DOI: 10.1093/infdis/jiaa756] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 infection is associated with hypercoagulability, which predisposes to venous thromboembolism (VTE). We analyzed platelet and neutrophil activation in patients with coronavirus disease 2019 (COVID-19) and their association with VTE. METHODS Hospitalized patients with COVID-19 and age- and sex-matched healthy controls were studied. Platelet and leukocyte activation, neutrophil extracellular traps (NETs), and matrix metalloproteinase 9, a neutrophil-released enzyme, were measured. Four patients were restudied after recovery. The activating effect of plasma from patients with COVID-19 on control platelets and leukocytes and the inhibiting activity of common antithrombotic agents on it were studied. RESULTS A total of 36 patients with COVID-19 and 31 healthy controls were studied; VTE developed in 8 of 36 patients with COVID-19 (22.2%). Platelets and neutrophils were activated in patients with COVID-19. NET, but not platelet activation, biomarkers correlated with disease severity and were associated with thrombosis. Plasmatic matrix metalloproteinase 9 was significantly increased in patients with COVID-19. Platelet and neutrophil activation markers, but less so NETs, normalized after recovery. In vitro, plasma from patients with COVID-19 triggered platelet and neutrophil activation and NET formation, the latter blocked by therapeutic-dose low-molecular-weight heparin, but not by aspirin or dypiridamole. CONCLUSIONS Platelet and neutrophil activation are key features of patients with COVID-19. NET biomarkers may help to predict clinical worsening and VTE and may guide low-molecular-weight heparin treatment.
Collapse
Affiliation(s)
- Eleonora Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Ugo Paliani
- Division of Internal Medicine, ASL 1 Umbria, Città di Castello, Italy
| | - Enrica Cesari
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Gaetano Vaudo
- Unit of Internal Medicine, Terni University Hospital, Terni, Italy
| | - Manuela Sebastiano
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Vittorio Cerotto
- Section of Anesthesia, Intensive Care and Pain Medicine, Department of Emergency and Urgency, Città di Castello Hospital, Città di Castello, Italy
| | - Giuseppe Guglielmini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Fabio Gori
- Section of Anesthesia, Intensive Care, and Pain Medicine, Azienda Ospedaliera-Universitaria Santa Maria della Misericordia, Perugia, Italy
| | - Marco Malvestiti
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Cecilia Becattini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Francesco Paciullo
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Edoardo De Robertis
- Department of Surgical and Biomedical Sciences, Division of Anaesthesia, Analgesia, and Intensive Care, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Teseo Lazzarini
- Section of Anesthesia and Intensive Care, Presidio Alto Chiascio, USL Umbria 1, Gubbio, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
225
|
Nader E, Conran N, Romana M, Connes P. Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction. Compr Physiol 2021; 11:1785-1803. [PMID: 33792905 DOI: 10.1002/cphy.c200024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a hereditary disorder that leads to the production of an abnormal hemoglobin, hemoglobin S (HbS). HbS polymerizes in deoxygenated conditions, which can prompt red blood cell (RBC) sickling and leaves the RBCs more rigid, fragile, and prone to hemolysis. SCD patients suffer from a plethora of complications, ranging from acute complications, such as characteristic, frequent, and debilitating vaso-occlusive episodes to chronic organ damage. While RBC sickling is the primary event at the origin of vaso-occlusive processes, other factors that can further increase RBC transit times in the microcirculation may also be required to precipitate vaso-occlusive processes. The adhesion of RBC and leukocytes to activated endothelium and the formation of heterocellular aggregates, as well as increased blood viscosity, are among the mechanisms involved in slowing the progress of RBCs in deoxygenated vascular areas, favoring RBC sickling and promoting vascular occlusion. Chronic inflammatory processes and oxidative stress, which are perpetuated by hemolytic events and ischemia-reperfusion injury, result in this pan cellular activation and some acute events, such as stroke and acute chest syndrome, as well as chronic end-organ damage. Furthermore, impaired vasodilation and vasomotor hyperresponsiveness in SCD also contribute to vaso-occlusive processes. Treating SCD as a vascular disease in addition to its hematological perspective, the present article looks at the interplay between abnormal RBC physiology/integrity, vascular dysfunction and clinical severity in SCD, and discusses existing therapies and novel drugs in development that may ameliorate vascular complications in the disease. © 2021 American Physiological Society. Compr Physiol 11:1785-1803, 2021.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
226
|
Rosell A, Aguilera K, Hisada Y, Schmedes C, Mackman N, Wallén H, Lundström S, Thålin C. Prognostic value of circulating markers of neutrophil activation, neutrophil extracellular traps, coagulation and fibrinolysis in patients with terminal cancer. Sci Rep 2021; 11:5074. [PMID: 33658563 PMCID: PMC7930088 DOI: 10.1038/s41598-021-84476-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Predicting survival accurately in patients with advanced cancer is important in guiding interventions and planning future care. Objective tools are therefore needed. Blood biomarkers are appealing due to their rapid measurement and objective nature. Thrombosis is a common complication in cancer. Recent data indicate that tumor-induced neutrophil extracellular traps (NETs) are pro-thrombotic. We therefore performed a comprehensive investigation of circulating markers of neutrophil activation, NET formation, coagulation and fibrinolysis in 106 patients with terminal cancer. We found that neutrophil activation and NET markers were prognostic in terminal cancer patients. Interestingly, markers of coagulation and fibrinolysis did not have a prognostic value in this patient group, and there were weak or no correlations between these markers and markers of neutrophil activation and NETs. This suggest that NETs are linked to a poor prognosis through pathways independent of coagulation. Additional studies are needed to determine the utility of circulating neutrophil activation and NET markers, alone or in concert with established clinical parameters, as objective and reliable prognostic tools in advanced cancer.
Collapse
Affiliation(s)
- Axel Rosell
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden.
| | - Katherina Aguilera
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden
| | - Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Schmedes
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Håkan Wallén
- Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Lundström
- Palliative Care Services and R&D-Unit, Stockholms Sjukhem Foundation, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Thålin
- Department of Clinical Sciences, Danderyd Hospital, Division of Internal Medicine, Karolinska Institutet, Stockholm, 182 88, Sweden
| |
Collapse
|
227
|
Zuo Y, Kanthi Y, Knight JS, Kim AHJ. The interplay between neutrophils, complement, and microthrombi in COVID-19. Best Pract Res Clin Rheumatol 2021; 35:101661. [PMID: 33526325 PMCID: PMC7831864 DOI: 10.1016/j.berh.2021.101661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As of the end of 2020, coronavirus disease 2019 (COVID-19) remains a global healthcare challenge with alarming death tolls. In the absence of targeted therapies, supportive care continues to be the mainstay of treatment. The hallmark of severe COVID-19 is a thromboinflammatory storm driven by innate immune responses. This manifests clinically as acute respiratory distress syndrome, and in some patients, widespread thrombotic microangiopathy. Neutrophils and complement are key players in the innate immune system, and their role in perpetuating fatal severe COVID-19 continues to receive increasing attention. Here, we review the interplay between neutrophils, neutrophil extracellular traps, and complement in COVID-19 immunopathology, and highlight potential therapeutic strategies to combat these pathways.
Collapse
Affiliation(s)
- Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung and Blood Institute Bethesda, Maryland, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
228
|
YORMAZ B, ERGÜN D, TÜLEK B, ERGÜN R, ARSLAN U, KANAT F. Impact of low molecular weight heparin administration on the clinical course of the COVID-19 disease. Turk J Med Sci 2021; 51:28-38. [PMID: 32892540 PMCID: PMC7991848 DOI: 10.3906/sag-2006-184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background Lymphopenia is the most important criterion of mortality and discharging feature for patients infected with coronavirus disease 2019 (COVID-19). This study aimed to investigate the clinical impact of a low molecular weight heparin (LMWH) treatment on the clinical course of COVID-19. Materials and methods Patients’ clinical symptoms, radiologic outcomes, hematologic, biochemical, D-dimer, and C-reactive protein (CRP) results were obtained from their medical records. Participants were separated into 2 groups: one was treated with LMWH and the other was not. Improvement in the patients was compared before and after treatment. Results Ninety-six patients who were diagnosed with COVID-19 between April and May 2020 were retrospectively analyzed. The multivariable analysis showed that the count of lymphocytes, D-dimer, and CRP levels were significantly improved in the LMWH group, as compared to the control group (OR, (95% CI) 0.628 (0.248–0.965), P < 0.001); OR, (95% CI) 0.356 (0.089–0.674), P < 0.001, respectively). The area under the receiver operating characteristic (ROC) curve analysis was AUC: 0.679 ± 0.055, 0.615 ± 0.058, and 0.633 ± 0.057, respectively; the β-value was found to be –1.032, –0.026, and –0.465, respectively. Conclusion The LMWH treatment group demonstrated better laboratory findings, including recovery in the lymphocyte count, CRP, and D-dimer results.
Collapse
Affiliation(s)
- Burcu YORMAZ
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Dilek ERGÜN
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Baykal TÜLEK
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Recai ERGÜN
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Uğur ARSLAN
- Department of Microbiology, Faculty of Medicine, Selçuk University, KonyaTurkey
| | - Fikret KANAT
- Department of Pulmonology, Faculty of Medicine, Selçuk University, KonyaTurkey
| |
Collapse
|
229
|
Águila S, de los Reyes-García AM, Fernández-Pérez MP, Reguilón-Gallego L, Zapata-Martínez L, Ruiz-Lorente I, Vicente V, González-Conejero R, Martínez C. MicroRNAs as New Regulators of Neutrophil Extracellular Trap Formation. Int J Mol Sci 2021; 22:ijms22042116. [PMID: 33672737 PMCID: PMC7924615 DOI: 10.3390/ijms22042116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are formed after neutrophils expelled their chromatin content in order to primarily capture and eliminate pathogens. However, given their characteristics due in part to DNA and different granular proteins, NETs may induce a procoagulant response linking inflammation and thrombosis. Unraveling NET formation molecular mechanisms as well as the intracellular elements that regulate them is relevant not only for basic knowledge but also to design diagnostic and therapeutic tools that may prevent their deleterious effects observed in several inflammatory pathologies (e.g., cardiovascular and autoimmune diseases, cancer). Among the potential elements involved in NET formation, several studies have investigated the role of microRNAs (miRNAs) as important regulators of this process. miRNAs are small non-coding RNAs that have been involved in the control of almost all physiological processes in animals and plants and that are associated with the development of several pathologies. In this review, we give an overview of the actual knowledge on NETs and their implication in pathology with a special focus in cardiovascular diseases. We also give a brief overview on miRNA biology to later focus on the different miRNAs implicated in NET formation and the perspectives opened by the presented data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rocío González-Conejero
- Correspondence: (R.G.-C.); (C.M.); Tel.: +34-968341990 (R.G.-C. & C.M.); Fax: +34-968261914 (R.G.-C. & C.M.)
| | - Constantino Martínez
- Correspondence: (R.G.-C.); (C.M.); Tel.: +34-968341990 (R.G.-C. & C.M.); Fax: +34-968261914 (R.G.-C. & C.M.)
| |
Collapse
|
230
|
Ng H, Havervall S, Rosell A, Aguilera K, Parv K, von Meijenfeldt FA, Lisman T, Mackman N, Thålin C, Phillipson M. Circulating Markers of Neutrophil Extracellular Traps Are of Prognostic Value in Patients With COVID-19. Arterioscler Thromb Vasc Biol 2021; 41:988-994. [PMID: 33267662 PMCID: PMC7837697 DOI: 10.1161/atvbaha.120.315267] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The full spectrum of coronavirus disease 2019 (COVID-19) infection ranges from asymptomatic to acute respiratory distress syndrome, characterized by hyperinflammation and thrombotic microangiopathy. The pathogenic mechanisms are poorly understood, but emerging evidence suggest that excessive neutrophil extracellular trap (NET) formation plays a key role in COVID-19 disease progression. Here, we evaluate if circulating markers of NETs are associated with COVID-19 disease severity and clinical outcome, as well as to markers of inflammation and in vivo coagulation and fibrinolysis. Approach and Results: One hundred six patients with COVID-19 with moderate to severe disease were enrolled shortly after hospital admission and followed for 4 months. Acute and convalescent plasma samples as well as plasma samples from 30 healthy individuals were assessed for markers of NET formation: citrullinated histone H3, cell-free DNA, NE (neutrophil elastase). We found that all plasma levels of NET markers were elevated in patients with COVID-19 relative to healthy controls, that they were associated with respiratory support requirement and short-term mortality, and declined to those found in healthy individuals 4 months post-infection. The levels of the NET markers also correlated with white blood cells, neutrophils, inflammatory cytokines, and C-reactive protein, as well as to markers of in vivo coagulation, fibrinolysis, and endothelial damage. CONCLUSIONS Our findings suggest a role of NETs in COVID-19 disease progression, implicating their contribution to an immunothrombotic state. Further, we observed an association between circulating markers of NET formation and clinical outcome, demonstrating a potential role of NET markers in clinical decision-making, as well as for NETs as targets for novel therapeutic interventions in COVID-19.
Collapse
Affiliation(s)
- Henry Ng
- Department of Medical Cell Biology, Uppsala University, SciLifeLab, Sweden (H.N., K.P., M.P.)
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (H.N., S.H., A.R., K.A., C.T.)
| | - Sebastian Havervall
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (H.N., S.H., A.R., K.A., C.T.)
| | - Axel Rosell
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (H.N., S.H., A.R., K.A., C.T.)
| | - Katherina Aguilera
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (H.N., S.H., A.R., K.A., C.T.)
| | - Kristel Parv
- Department of Medical Cell Biology, Uppsala University, SciLifeLab, Sweden (H.N., K.P., M.P.)
| | - Fien A. von Meijenfeldt
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands (F.A.v.M., T.L.)
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands (F.A.v.M., T.L.)
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, UNC Blood Research Center (N.M.)
| | - Charlotte Thålin
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden (H.N., S.H., A.R., K.A., C.T.)
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, SciLifeLab, Sweden (H.N., K.P., M.P.)
| |
Collapse
|
231
|
Zhang J, Yu M, Liu B, Zhou P, Zuo N, Wang Y, Feng Y, Zhang Y, Wang J, He Y, Wu Y, Dong Z, Hong L, Shi J. Neutrophil extracellular traps enhance procoagulant activity and thrombotic tendency in patients with obstructive jaundice. Liver Int 2021; 41:333-347. [PMID: 33159371 DOI: 10.1111/liv.14725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Patients with obstructive jaundice (OJ) are considered to be prothrombotic with increased risk of thromboembolism complications. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) and thrombosis risk in patients with OJ is unclear. In this study, we investigated NETs formation in OJ patients and the role of elevated unconjugated bilirubin (UCB) in inducing NETs, resulting in enhanced PCA and endothelial injury. METHODS NETs of OJ patients and healthy controls were measured. NETs PCA was assessed via coagulation time (CT), fibrin formation and purified coagulation complex production assays. Visualization of NETs and mitochondrial reactive oxygen species (MitoROS) were performed with a fluorescence microscope. We further used confocal microscopy to quantify the exposure of phosphatidylserine (PS), fibrin strands and FVa/Xa on Human umbilical vein endothelial cells (HUVECs). RESULTS Assessment of NETs components levels revealed greater NETs production in OJ patients than in healthy controls. Importantly, OJ-NETs were responsible for enhanced PCA. UCB induced NETs formation via MitoROS accumulation and mitochondrial mobilization. HUVECs cocultured with OJ NETs lost their cell-cell junctions and consequently converted to a procoagulant phenotype. The PCA was attenuated by using DNase I alone or in combination with lactadherin. CONCLUSIONS Our results suggest that UCB-induced NETs play a prominent role in promoting the hypercoagulable and prothrombotic state in OJ patients. The increased MitoROS accumulation in neutrophils initiated NETosis. NETs are promising targets for indicating or improving coagulation disorders in OJ patients.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Muxin Yu
- Jiaxing University College of Medicine, Jiaxing, China
| | - Biou Liu
- Department of General Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Zhou
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Nan Zuo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yufeng Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yiming Feng
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiaojiao Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yujing He
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinsong Wu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Luojia Hong
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jialan Shi
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Departments of Research and Medicine, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
232
|
Hopp MT, Imhof D. Linking Labile Heme with Thrombosis. J Clin Med 2021; 10:427. [PMID: 33499296 PMCID: PMC7865584 DOI: 10.3390/jcm10030427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Thrombosis is one of the leading causes of death worldwide. As such, it also occurs as one of the major complications in hemolytic diseases, like hemolytic uremic syndrome, hemorrhage and sickle cell disease. Under these conditions, red blood cell lysis finally leads to the release of large amounts of labile heme into the vascular compartment. This, in turn, can trigger oxidative stress and proinflammatory reactions. Moreover, the heme-induced activation of the blood coagulation system was suggested as a mechanism for the initiation of thrombotic events under hemolytic conditions. Studies of heme infusion and subsequent thrombotic reactions support this assumption. Furthermore, several direct effects of heme on different cellular and protein components of the blood coagulation system were reported. However, these effects are controversially discussed or not yet fully understood. This review summarizes the existing reports on heme and its interference in coagulation processes, emphasizing the relevance of considering heme in the context of the treatment of thrombosis in patients with hemolytic disorders.
Collapse
Affiliation(s)
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
| |
Collapse
|
233
|
Farouk AF, Shafqat A, Shafqat S, Kashir J, Alkattan K, Yaqinuddin A. COVID-19 associated cardiac disease: Is there a role of neutrophil extracellular traps in pathogenesis? AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
<abstract>
<p>The COVID-19 pandemic has driven an upheaval of new research, providing key insights into the pathogenesis of this disease. Lymphocytopenia, hyper-inflammation and cardiac involvement are prominent features of the disease and have prognostic value. However, the mechanistic links among these phenomena are not well understood. Likewise, some COVID-19 patients exhibit multi-organ failure with diseases affecting the cardiac system, appearing to be an emerging feature of the COVID-19 pandemic. Neutrophil extracellular traps (NETs) have been frequently correlated with larger infarct sizes and can predict major adverse cardiac events. However, the exact mechanism behind this remains unknown. Although the excessive NET formation can drive inflammation, particularly endothelial and promote thrombosis, it is essential to normal immunity. In this paper, we postulate the role of NETs in cardiac disease by providing an overview of the relationship between NET and inflammasome activities in lung and liver diseases, speculating a link between these entities in cardiac diseases as well. Future research is required to specify the role of NETs in COVID-19, since this carries potential therapeutic significance, as inhibition of NETosis could alleviate symptoms of this disease. Knowledge gained from this could serve to inform the assessment and therapeutics of other hyper inflammatory diseases affecting the heart and vasculature alike.</p>
</abstract>
Collapse
|
234
|
Yaqinuddin A, Almakadma AH, Kashir J. Kawasaki like disease in SARS-CoV-2 infected children – a key role for neutrophil and macrophage extracellular traps. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
235
|
Deguchi H, Morla S, Griffin JH. Novel blood coagulation molecules: Skeletal muscle myosin and cardiac myosin. J Thromb Haemost 2021; 19:7-19. [PMID: 32920971 PMCID: PMC7819347 DOI: 10.1111/jth.15097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Essentials Striated muscle myosins can promote prothrombin activation by FXa or FVa inactivation by APC. Cardiac myosin and skeletal muscle myosin are pro-hemostatic in murine tail cut bleeding models. Infused cardiac myosin exacerbates myocardial injury caused by myocardial ischemia reperfusion. Skeletal muscle myosin isoforms that circulate in human plasma can be grouped into 3 phenotypes. ABSTRACT: Two striated muscle myosins, namely skeletal muscle myosin (SkM) and cardiac myosin (CM), may potentially contribute to physiologic mechanisms for regulation of thrombosis and hemostasis. Thrombin is generated from activation of prothrombin by the prothrombinase (IIase) complex comprising factor Xa, factor Va, and Ca++ ions located on surfaces where these factors are assembled. We discovered that SkM and CM, which are abundant motor proteins in skeletal and cardiac muscles, can provide a surface for thrombin generation by the prothrombinase complex without any apparent requirement for phosphatidylserine or lipids. These myosins can also provide a surface that supports the inactivation of factor Va by activated protein C/protein S, resulting in negative feedback downregulation of thrombin generation. Although the physiologic significance of these reactions remains to be established for humans, substantive insights may be gleaned from murine studies. In mice, exogenously infused SkM and CM can promote hemostasis as they are capable of reducing tail cut bleeding. In a murine myocardial ischemia-reperfusion injury model, exogenously infused CM exacerbates myocardial infarction damage. Studies of human plasmas show that SkM antigen isoforms of different MWs circulate in human plasma, and they can be used to identify three plasma SkM phenotypes. A pilot clinical study showed that one SkM isoform pattern appeared to be linked to isolated pulmonary embolism. These discoveries enable multiple preclinical and clinical studies of SkM and CM, which should provide novel mechanistic insights with potential translational relevance for the roles of CM and SkM in the pathobiology of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shravan Morla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Division of Hematology, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
236
|
Dragoni G, De Hertogh G, Vermeire S. The Role of Citrullination in Inflammatory Bowel Disease: A Neglected Player in Triggering Inflammation and Fibrosis? Inflamm Bowel Dis 2021; 27:134-144. [PMID: 32426830 DOI: 10.1093/ibd/izaa095] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Citrullination is a posttranslational modification of proteins mediated by a specific family of enzymes called peptidylarginine deiminases (PAD). Dysregulation of these enzymes is involved in the etiology of various diseases, from cancer to autoimmune disorders. In inflammatory bowel disease (IBD), data for a role of citrullination in the disease process are starting to accumulate at different experimental levels including gene expression analyses, RNA, and protein quantifications. Most data have been generated in ulcerative colitis, but data in Crohn disease are lacking so far. In addition, the citrullination of histones is the fundamental process promoting inflammation through the formation of neutrophil extracellular traps (NETs). Interestingly, NETs have also been shown to activate fibroblasts into myofibroblasts in fibrotic interstitial lung disease. Therefore, citrullination merits more thorough study in the bowel to determine its role in driving disease complications such as fibrosis. In this review we describe the process of citrullination and the different players in this pathway, the role of citrullination in autoimmunity with a special focus on IBD, the emerging role for citrullination and NETs in triggering fibrosis, and, finally, how this process could be therapeutically targeted.
Collapse
Affiliation(s)
- Gabriele Dragoni
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Italy
| | - Gert De Hertogh
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
237
|
Shi H, Zuo Y, Yalavarthi S, Gockman K, Zuo M, Madison JA, Blair C, Woodward W, Lezak SP, Lugogo NL, Woods RJ, Lood C, Knight JS, Kanthi Y. Neutrophil calprotectin identifies severe pulmonary disease in COVID-19. J Leukoc Biol 2021; 109:67-72. [PMID: 32869342 PMCID: PMC7902293 DOI: 10.1002/jlb.3covcra0720-359r] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Severe cases of coronavirus disease 2019 (COVID-19) are regularly complicated by respiratory failure. Although it has been suggested that elevated levels of blood neutrophils associate with worsening oxygenation in COVID-19, it is unknown whether neutrophils are drivers of the thrombo-inflammatory storm or simple bystanders. To better understand the potential role of neutrophils in COVID-19, we measured levels of the neutrophil activation marker S100A8/A9 (calprotectin) in hospitalized patients and determined its relationship to severity of illness and respiratory status. Patients with COVID-19 (n = 172) had markedly elevated levels of calprotectin in their blood. Calprotectin tracked with other acute phase reactants including C-reactive protein, ferritin, lactate dehydrogenase, and absolute neutrophil count, but was superior in identifying patients requiring mechanical ventilation. In longitudinal samples, calprotectin rose as oxygenation worsened. When tested on day 1 or 2 of hospitalization (n = 94 patients), calprotectin levels were significantly higher in patients who progressed to severe COVID-19 requiring mechanical ventilation (8039 ± 7031 ng/ml, n = 32) as compared to those who remained free of intubation (3365 ± 3146, P < 0.0001). In summary, serum calprotectin levels track closely with current and future COVID-19 severity, implicating neutrophils as potential perpetuators of inflammation and respiratory compromise in COVID-19.
Collapse
Affiliation(s)
- Hui Shi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Melanie Zuo
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacqueline A Madison
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Blair
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wrenn Woodward
- Michigan Clinical Research Unit, University of Michigan, Ann Arbor, Michigan, USA
| | - Sean P Lezak
- Michigan Clinical Research Unit, University of Michigan, Ann Arbor, Michigan, USA
| | - Njira L Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert J Woods
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christian Lood
- Division of Rheumatology, University of Washington, Department of Medicine, Seattle, Washington, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
238
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
239
|
Robinson PC, Liew DFL, Liew JW, Monaco C, Richards D, Shivakumar S, Tanner HL, Feldmann M. The Potential for Repurposing Anti-TNF as a Therapy for the Treatment of COVID-19. MED 2020; 1:90-102. [PMID: 33294881 PMCID: PMC7713589 DOI: 10.1016/j.medj.2020.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) currently has few effective treatments. Given the uncertainty surrounding the effectiveness and uptake of a vaccine, it is important that the search for treatments continue. An exaggerated inflammatory state is likely responsible for much of the morbidity and mortality in COVID-19. Elevated levels of tumor necrosis factor (TNF), a key pro-inflammatory cytokine, have been shown to be associated with increased COVID-19 mortality. In patients with rheumatoid arthritis, TNF blockade reduces not only biologically active TNF but other pro-inflammatory cytokines important in COVID-19 hyperinflammation. Observational data from patients already on anti-TNF therapy show a reduced rate of COVID-19 poor outcomes and death compared with other immune-suppressing therapies. Anti-TNF has a long history of safe use, including in special at-risk populations, and is widely available. The case to adequately assess anti-TNF as a treatment for COVID-19 is compelling.
Collapse
Affiliation(s)
- Philip C Robinson
- University of Queensland Faculty of Medicine, Herston, Queensland, Australia
- Department of Medicine, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, Queensland, Australia
| | - David F L Liew
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Pharmacology and Therapeutics, Austin Health, Heidelberg, Victoria, Australia
| | - Jean W Liew
- Section of Rheumatology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Duncan Richards
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
- Oxford Clinical Trials Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Senthuran Shivakumar
- Department of Clinical Pharmacology and Therapeutics, Austin Health, Heidelberg, Victoria, Australia
| | - Helen L Tanner
- University of Queensland Faculty of Medicine, Herston, Queensland, Australia
- Department of Medicine, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, Queensland, Australia
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
240
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
241
|
Páramo J. Neutrophils as instigators of thrombosis: Beyond antimicrobial protection. Rev Clin Esp 2020. [DOI: 10.1016/j.rceng.2019.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
242
|
Páramo JA. Neutrophils as instigators of thrombosis: Beyond antimicrobial protection. Rev Clin Esp 2020; 220:583-586. [PMID: 32107018 DOI: 10.1016/j.rce.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 10/24/2022]
Abstract
When activated, neutrophils release structures (NETs) composed of DNA, histones and granular proteins that provide an ideal matrix for platelet activation and coagulation mechanisms, thereby contributing to the pathogenesis of thrombosis in venous and arterial territories, as well as cancer-associated thrombosis. NETs play a key role in immunothrombosis, a term that describes the relationship between the immune response and coagulation.
Collapse
Affiliation(s)
- J A Páramo
- Servicio de Hematología, CUN. Laboratorio Aterotrombosis, CIMA. Universidad de Navarra, IdiSNA, CIBERCV, Pamplona, España.
| |
Collapse
|
243
|
Xu Y, Lu B, Zhang N, Liang Y, Gao Y, Ye X, Liu W. Neutrophil extracellular traps are not produced in pediatric patients with one-lung ventilation: a prospective, single-center, observational study. Transl Pediatr 2020; 9:775-783. [PMID: 33457299 PMCID: PMC7804480 DOI: 10.21037/tp-20-337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND One-lung ventilation (OLV) may cause lung injury and induce pulmonary pro-inflammation; this ventilator-induced lung injury is associated with neutrophil infiltration. The infiltrated neutrophils release neutrophil extracellular traps (NETs), which are associated with tissue damage. It is not known whether NETs are involved in the pathogenesis of one-lung injury and if they could be a potential therapeutic target. In the present study, we quantified NETs in bronchoalveolar lavage fluid from pediatric patients who underwent OLV and assessed their relationship with prognosis. METHODS Eighteen patients with congenital pulmonary cysts or pulmonary sequestration were enrolled in this prospective monocentric study. Myeloperoxidase (MPO) levels, NET markers [i.e., citrullinated histone-3 (CH-3) and free double-stranded DNA (dsDNA)], and inflammatory cytokine levels in bronchoalveolar lavage fluid were assessed. Continuous variables were compared using the paired t-test. The association of NET concentration in bronchoalveolar lavage fluid and clinical parameters was assessed using linear regression analyses. RESULTS dsDNA concentration in bronchoalveolar lavage fluid was higher after OLV than before OLV in both the affected lung (0.23±0.30 vs. 0.97±1.05, P<0.05) and the healthy lung (0.28±0.19 vs. 2.45±2.23, P<0.05). However, there were no significant differences in concentrations of MPO, CH-3, and inflammatory cytokines before and after OLV. Serum interleukin (IL)-6 concentration was higher after OLV than before (t=-3.222, P=0.007). Moreover, no associations between dsDNA concentration in bronchoalveolar lavage fluid and the duration of postoperative mechanical ventilation, postoperative hospital stay, and chest high-resolution computed tomography score were observed. The durations of OLV, anesthesia, and operation, as well as the amount of blood loss, had no significant influence on postoperative dsDNA concentration in bronchoalveolar lavage fluid. CONCLUSIONS NETs in bronchoalveolar lavage fluid are not involved in patients who undergo OLV.
Collapse
Affiliation(s)
- Yingyi Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bingtai Lu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufeng Liang
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Gao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxin Ye
- School of Computer Science and Engineering, The University of New South Wales, Sydney, Kensington, Australia
| | - Wei Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
244
|
Chan N, Sobieraj-Teague M, Eikelboom JW. Direct oral anticoagulants: evidence and unresolved issues. Lancet 2020; 396:1767-1776. [PMID: 33248499 DOI: 10.1016/s0140-6736(20)32439-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Currently licenced direct oral anticoagulants selectively target thrombin (eg, dabigatran) or coagulation factor Xa (eg, apixaban, betrixaban, edoxaban, and rivaroxaban). Designed to be given in fixed doses without routine monitoring, direct oral anticoagulants have a lower propensity for food and drug interactions than do vitamin K antagonists, and in randomised controlled trials involving around 250 000 patients, they were at least as effective for prevention and treatment of thrombosis and were associated with a lower risk of life-threatening bleeding. The absolute benefits of direct oral anticoagulants over vitamin K antagonists are modest; however, guidelines recommend them in preference to vitamin K antagonists for most indications because of their ease of use and superior safety. The greatest benefits of direct oral anticoagulants are likely to be in patients who were previously deemed unsuitable for vitamin K antagonist therapy. The emergence of generic preparations is expected to further increase the uptake of direct oral anticoagulants, particularly in countries where they are currently not widely used because of cost. Direct oral anticoagulants are contraindicated in patients with mechanical heart valves and should be used with caution or avoided in patients with advanced kidney or liver disease. In this Therapeutics paper, we review the pharmacology of direct oral anticoagulants, summarise the evidence that led to their approval and incorporation into treatment guidelines, and explore key unresolved issues. We also briefly discuss future perspectives for the development of oral anticoagulants.
Collapse
Affiliation(s)
- Noel Chan
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada; Population Health Research Institute, Hamilton, ON, Canada; Hamilton General Hospital and McMaster University, Hamilton, ON, Canada.
| | | | - John W Eikelboom
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada; Population Health Research Institute, Hamilton, ON, Canada; Hamilton General Hospital and McMaster University, Hamilton, ON, Canada
| |
Collapse
|
245
|
Kamposioras K, Mauri D, Papadimitriou K, Anthoney A, Hindi N, Petricevic B, Dambrosio M, Valachis A, Kountourakis P, Kopecky J, Kuhar CG, Popovic L, Chilingirova NP, Zarkavelis G, de Mello RA, Plavetić ND, Christopoulos C, Mostert B, Goffin JR, Tzachanis D, Saraireh HH, Ma F, Pavese I, Tolia M. Synthesis of Recommendations From 25 Countries and 31 Oncology Societies: How to Navigate Through Covid-19 Labyrinth. Front Oncol 2020; 10:575148. [PMID: 33330049 PMCID: PMC7711151 DOI: 10.3389/fonc.2020.575148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Pandemic COVID-19 is an unexpected challenge for the oncological community, indicating potential detrimental effects on cancer patients. Our aim was to summarize the converging key points providing a general guidance in order to support decision making, pertaining to the oncologic care in the middle of a global outbreak. METHODS We did an international online search in twenty five countries that have managed a surge in cancer patient numbers. We collected the recommendations from thirty one medical oncology societies. RESULTS By synthesizing guidelines for a) oncology service delivery adjustments, b) general and specific treatment adaptations, and c) discrepancies from guidelines comparison, we present a clinical synopsis with the forty more crucial statements. A Covid-19 risk stratification base was also created in order to obtain a quick, objective patient assessment and a risk-benefit evaluation on a case-by-case basis. CONCLUSIONS In an attempt to face these complex needs and due to limited understanding of COVID-19, a variability of recommendations based on general epidemiological and infectious disease principles rather than definite cancer-related evidence has evolved. Additionally, the absence of an effective treatment or vaccine requires the development of cancer management guidance, capitalizing on comprehensive COVID-19 oncology experience globally.
Collapse
Affiliation(s)
| | - Davide Mauri
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | | | - Alan Anthoney
- Leeds Institute of Medical Research at St James’ Hospital, University of Leeds, Leeds, United Kingdom
| | - Nadia Hindi
- Department of Medical Oncology, University Hospital Virgen del Rocío, Sevilla, Spain
- TERABIS Group, IBiS (Instituto de Biomedicina de Sevilla)/HUVR/CSIC/Universidad deSevilla), Sevilla, Spain
| | - Branka Petricevic
- Medizinische Abteilung, Zentrum für Onkologie und Hämatologie mit Ambulanz und alliativstation Wilhelminenspital, Vienna, Austria
| | - Mario Dambrosio
- Department of Clinical Oncology, Clinica San Carlo, Milan, Italy
| | - Antonis Valachis
- Department of Oncology, Faculty of Medicine & Health, Örebro University, Örebro, Sweden
| | | | - Jindrich Kopecky
- Department of Clinical Oncology, University Hospital, Charles University—Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia
| | - Cvetka Grašič Kuhar
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Lazar Popovic
- Oncology Institute of Vojvodina, University of Novi Sad, Novi Sad, Serbia
| | - Nataliya P. Chilingirova
- University Specialized Hospital for Active Treatment in Oncology, Medical Oncology Clinic, Sofia, Bulgaria
- Medical University Pleven, Pleven, Bulgaria
| | - George Zarkavelis
- Department of Medical Oncology, University Hospital of Ioannina, Ioannina, Greece
| | - Ramon Andrade de Mello
- Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Natalija Dedić Plavetić
- University Hospital Centre, Zagreb Department of Oncology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Christos Christopoulos
- Service de Radiothérapie Oncologique, Groupe Hospitalier Intercommunal Le Raincy-Montfermeil, Montfermeil, France
| | - Bianca Mostert
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - John R. Goffin
- Department of Oncology, McMaster University Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Dimitiros Tzachanis
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States
| | | | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ida Pavese
- Service d’Oncologie, GHT Grand Paris Nord-Est, Montfermeil, France
| | - Maria Tolia
- Department of Radiotherapy, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
246
|
Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, Sule G, Gockman K, Madison JA, Zuo M, Yadav V, Wang J, Woodard W, Lezak SP, Lugogo NL, Smith SA, Morrissey JH, Kanthi Y, Knight JS. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020; 12:eabd3876. [PMID: 33139519 PMCID: PMC7724273 DOI: 10.1126/scitranslmed.abd3876] [Citation(s) in RCA: 442] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Patients with COVID-19 are at high risk for thrombotic arterial and venous occlusions. Lung histopathology often reveals fibrin-based blockages in the small blood vessels of patients who succumb to the disease. Antiphospholipid syndrome is an acquired and potentially life-threatening thrombophilia in which patients develop pathogenic autoantibodies targeting phospholipids and phospholipid-binding proteins (aPL antibodies). Case series have recently detected aPL antibodies in patients with COVID-19. Here, we measured eight types of aPL antibodies in serum samples from 172 patients hospitalized with COVID-19. These aPL antibodies included anticardiolipin IgG, IgM, and IgA; anti-β2 glycoprotein I IgG, IgM, and IgA; and anti-phosphatidylserine/prothrombin (aPS/PT) IgG and IgM. We detected aPS/PT IgG in 24% of serum samples, anticardiolipin IgM in 23% of samples, and aPS/PT IgM in 18% of samples. Antiphospholipid autoantibodies were present in 52% of serum samples using the manufacturer's threshold and in 30% using a more stringent cutoff (≥40 ELISA-specific units). Higher titers of aPL antibodies were associated with neutrophil hyperactivity, including the release of neutrophil extracellular traps (NETs), higher platelet counts, more severe respiratory disease, and lower clinical estimated glomerular filtration rate. Similar to IgG from patients with antiphospholipid syndrome, IgG fractions isolated from patients with COVID-19 promoted NET release from neutrophils isolated from healthy individuals. Furthermore, injection of IgG purified from COVID-19 patient serum into mice accelerated venous thrombosis in two mouse models. These findings suggest that half of patients hospitalized with COVID-19 become at least transiently positive for aPL antibodies and that these autoantibodies are potentially pathogenic.
Collapse
Affiliation(s)
- Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Shi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Rheumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A Madison
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie Zuo
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vinita Yadav
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jintao Wang
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Wrenn Woodard
- Michigan Clinical Research Unit, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean P Lezak
- Michigan Clinical Research Unit, University of Michigan, Ann Arbor, MI 48109, USA
| | - Njira L Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
247
|
Hofbauer TM, Ondracek AS, Mangold A, Scherz T, Nechvile J, Seidl V, Brostjan C, Lang IM. Neutrophil Extracellular Traps Induce MCP-1 at the Culprit Site in ST-Segment Elevation Myocardial Infarction. Front Cell Dev Biol 2020; 8:564169. [PMID: 33240874 PMCID: PMC7680894 DOI: 10.3389/fcell.2020.564169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Leukocyte-mediated inflammation is crucial in ST-segment elevation myocardial infarction (STEMI). We recently observed that neutrophil extracellular traps (NETs) are increased at the culprit site, promoting activation and differentiation of fibrocytes, cells with mesenchymal and leukocytic properties. Fibrocyte migration is mediated by monocyte chemoattractant protein (MCP)-1 and C-C chemokine receptor type 2 (CCR2). We investigated the interplay between NETs, fibrocyte function, and MCP-1 in STEMI. Methods Culprit site and peripheral blood samples of STEMI patients were drawn during primary percutaneous coronary intervention. MCP-1 and the NET marker citrullinated histone H3 (citH3) were measured by ELISA while double-stranded DNA was stained with a fluorescent dye. The influence of MCP-1 on NET formation in vitro was assessed using isolated healthy donor neutrophils. Human coronary artery endothelial cells (hCAECs) were stimulated with isolated NETs, and MCP-1 gene expression was measured by ELISA and qPCR. CCR2 expression of culprit site and peripheral blood fibrocytes was characterized by flow cytometry. Healthy donor fibrocyte receptor expression and chemotaxis were investigated in response to stimulation with MCP-1 and NETs in vitro. Results NETs and concentrations of MCP-1 were increased at the culprit site of 50 consecutive STEMI patients. NET stimulation of hCAECs induced transcription of ICAM-1, IL-6, and MCP-1, and secretion of MCP-1. MCP-1 promoted NET formation of healthy donor neutrophils in vitro. An increasing MCP-1 gradient correlated with fibrocyte accumulation at the culprit site. Locally increased MCP-1 levels were negatively correlated with CCR2 expression on fibrocytes. MCP-1 and NETs induced CCR2 downregulation on fibrocytes in vitro. NETs did not function as a chemotactic stimulus for fibrocytes or monocytes and could block migration in response to MCP-1 for both cell populations. Conclusion NETs function as signaling scaffolds at the culprit site of STEMI. NETs assist MCP-1 and ICAM-1 release from culprit site coronary artery endothelial cells. MCP-1 facilitates further NETosis. Monocytes enter the culprit site along an MCP-1 gradient, to transdifferentiate into fibrocytes in the presence of NETs.
Collapse
Affiliation(s)
- Thomas M Hofbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Anna S Ondracek
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Andreas Mangold
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherz
- Department of Dermatology and Venereology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Johanna Nechvile
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Veronika Seidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
248
|
Abstract
Studies of patients with COVID-19 have demonstrated markedly dysregulated coagulation and a high risk of morbid arterial and venous thrombotic events. Elevated levels of blood neutrophils and neutrophil extracellular traps (NETs) have recently been described in patients with COVID-19. However, their potential role in COVID-19-associated thrombosis remains incompletely understood. In order to elucidate the potential role of hyperactive neutrophils and NET release in COVID-19-associated thrombosis, we conducted a case–control study of patients hospitalized with COVID-19 who developed thrombosis, as compared with gender- and age-matched COVID-19 patients without clinical thrombosis. We found that remnants of NETs (cell-free DNA, myeloperoxidase-DNA complexes, and citrullinated histone H3) and neutrophil-derived S100A8/A9 (calprotectin) in patient sera were associated with higher risk of morbid thrombotic events in spite of prophylactic anticoagulation. These observations underscore the need for urgent investigation into the potential relationship between NETs and unrelenting thrombosis in COVID-19, as well as novel approaches for thrombosis prevention.
Collapse
|
249
|
Locke M, Longstaff C. Extracellular Histones Inhibit Fibrinolysis through Noncovalent and Covalent Interactions with Fibrin. Thromb Haemost 2020; 121:464-476. [PMID: 33131044 DOI: 10.1055/s-0040-1718760] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histones released into circulation as neutrophil extracellular traps are causally implicated in the pathogenesis of arterial, venous, and microvascular thrombosis by promoting coagulation and enhancing clot stability. Histones induce structural changes in fibrin rendering it stronger and resistant to fibrinolysis. The current study extends these observations by defining the antifibrinolytic mechanisms of histones in purified, plasma, and whole blood systems. Although histones stimulated plasminogen activation in solution, they inhibited plasmin as competitive substrates. Protection of fibrin from plasmin digestion is enhanced by covalent incorporation of histones into fibrin, catalyzed by activated transglutaminase, coagulation factor FXIII (FXIIIa). All histone subtypes (H1, H2A, H2B, H3, and H4) were crosslinked to fibrin. A distinct, noncovalent mechanism explains histone-accelerated lateral aggregation of fibrin protofibrils, resulting in thicker fibers with higher mass-to-length ratios and in turn hampered fibrinolysis. However, histones were less effective at delaying fibrinolysis in the absence of FXIIIa activity. Therapeutic doses of low-molecular-weight heparin (LMWH) prevented covalent but not noncovalent histone-fibrin interactions and neutralized the effects of histones on fibrinolysis. This suggests an additional antithrombotic mechanism for LMWH beyond anticoagulation. In conclusion, for the first time we report that histones are crosslinked to fibrin by FXIIIa and promote fibrinolytic resistance which can be overcome by FXIIIa inhibitors and histone-binding heparinoids. These findings provide a rationale for targeting the FXIII-histone-fibrin axis to destabilize fibrin and prevent potentially thrombotic fibrin networks.
Collapse
Affiliation(s)
- Matthew Locke
- Biotherapeutics Division, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| | - Colin Longstaff
- Biotherapeutics Division, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom
| |
Collapse
|
250
|
Gautam I, Storad Z, Filipiak L, Huss C, Meikle CK, Worth RG, Wuescher LM. From Classical to Unconventional: The Immune Receptors Facilitating Platelet Responses to Infection and Inflammation. BIOLOGY 2020; 9:E343. [PMID: 33092021 PMCID: PMC7589078 DOI: 10.3390/biology9100343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Platelets have long been recognized for their role in maintaining the balance between hemostasis and thrombosis. While their contributions to blood clotting have been well established, it has been increasingly evident that their roles extend to both innate and adaptive immune functions during infection and inflammation. In this comprehensive review, we describe the various ways in which platelets interact with different microbes and elicit immune responses either directly, or through modulation of leukocyte behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (I.G.); (Z.S.); (L.F.); (C.H.); (C.K.M.); (R.G.W.)
| |
Collapse
|