201
|
Boudreau A, Burke S, Collier J, Richard AJ, Ribnicky DM, Stephens JM. Mechanisms of Artemisia scoparia's Anti-Inflammatory Activity in Cultured Adipocytes, Macrophages, and Pancreatic β-Cells. Obesity (Silver Spring) 2020; 28:1726-1735. [PMID: 32741148 PMCID: PMC7483878 DOI: 10.1002/oby.22912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE An ethanolic extract of Artemisia scoparia (SCO) improves adipose tissue function and reduces negative metabolic consequences of high-fat feeding. A. scoparia has a long history of medicinal use across Asia and has anti-inflammatory effects in various cell types and disease models. The objective of the current study was to investigate SCO's effects on inflammation in cells relevant to metabolic health. METHODS Inflammatory responses were assayed in cultured adipocytes, macrophages, and insulinoma cells by quantitative polymerase chain reaction, immunoblotting, and NF-κB reporter assays. RESULTS In tumor necrosis factor α-treated adipocytes, SCO mitigated ERK and NF-κB signaling as well as transcriptional responses but had no effect on fatty acid-binding protein 4 secretion. SCO also reduced levels of deleted in breast cancer 1 protein in adipocytes and inhibited inflammatory gene expression in stimulated macrophages. Finally, in pancreatic β-cells, SCO decreased NF-κB-responsive promoter activity induced by IL-1β treatment. CONCLUSIONS SCO's ability to promote adipocyte development and function is thought to mediate its insulin-sensitizing actions in vivo. Our findings that SCO inhibits inflammatory responses through at least two distinct signaling pathways (ERK and NF-κB) in three cell types known to contribute to metabolic disease reveal that SCO may act more broadly than previously thought to improve metabolic health.
Collapse
Affiliation(s)
- Anik Boudreau
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Susan Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | | | - David M. Ribnicky
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- To whom correspondence should be addressed: Jacqueline Stephens, Louisiana State University, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, Phone (225) 763-2648, FAX (225) 578-2597,
| |
Collapse
|
202
|
Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21176275. [PMID: 32872570 PMCID: PMC7503727 DOI: 10.3390/ijms21176275] [Citation(s) in RCA: 1318] [Impact Index Per Article: 263.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM), one of the most common metabolic disorders, is caused by a combination of two primary factors: defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. Because insulin release and activity are essential processes for glucose homeostasis, the molecular mechanisms involved in the synthesis and release of insulin, as well as in its detection are tightly regulated. Defects in any of the mechanisms involved in these processes can lead to a metabolic imbalance responsible for the development of the disease. This review analyzes the key aspects of T2DM, as well as the molecular mechanisms and pathways implicated in insulin metabolism leading to T2DM and insulin resistance. For that purpose, we summarize the data gathered up until now, focusing especially on insulin synthesis, insulin release, insulin sensing and on the downstream effects on individual insulin-sensitive organs. The review also covers the pathological conditions perpetuating T2DM such as nutritional factors, physical activity, gut dysbiosis and metabolic memory. Additionally, because T2DM is associated with accelerated atherosclerosis development, we review here some of the molecular mechanisms that link T2DM and insulin resistance (IR) as well as cardiovascular risk as one of the most important complications in T2DM.
Collapse
|
203
|
Yang J, Guo Y, Henning SM, Chan B, Long J, Zhong J, Acin-Perez R, Petcherski A, Shirihai O, Heber D, Li Z. Ellagic Acid and Its Microbial Metabolite Urolithin A Alleviate Diet-Induced Insulin Resistance in Mice. Mol Nutr Food Res 2020; 64:e2000091. [PMID: 32783299 DOI: 10.1002/mnfr.202000091] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/27/2020] [Indexed: 12/15/2022]
Abstract
SCOPE This work aims at evaluating the effect of dietary ellagic acid (EA) and its microbial metabolite urolithin A (UA) on glucose metabolism and insulin resistance (IR) in mice with diet-induced IR. METHODS AND RESULTS DBA2J mice are fed a high fat/high sucrose diet (HF/HS) for 8 weeks to induce IR and then 0.1% EA, UA, or EA and UA (EA+UA) are added to the HF/HS-diet for another 8 weeks. UA significantly decreases fasting glucose and increases adiponectin compared with HF/HS-controls. During intraperitoneal insulin tolerance test, EA+UA significantly improve insulin-mediated glucose lowering effects at 15 and 120 min and reduce blood triglycerides compared with HF/HS-controls. Serum free fatty acids are significantly decreased by EA, UA, and EA+UA. Differential expression of genes related to mitochondrial function by EA, UA, and EA+UA in liver and skeletal muscle is observed. Primary hepatocytes from IR-mice have higher proton leak, basal and ATP-linked oxygen consumption rates compared with healthy controls. EA and EA+UA but not UA reduce the proton leak in hepatocytes from IR-mice. CONCLUSION EA and UA induce different metabolic benefits in IR mice. The effects of EA and UA on mitochondrial function suggest a potentially novel mechanism modulating metabolism.
Collapse
Affiliation(s)
- Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Brenda Chan
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jianfeng Long
- Department of Clinical Nutrition, 2nd XiangYa Hospital, Central South University, Changsha, 410011, China
| | - Jin Zhong
- Department of Pathology and Laboratory Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, 90095, USA
| | - Rebeca Acin-Perez
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Anton Petcherski
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Orian Shirihai
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - David Heber
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA, 90095, USA
| |
Collapse
|
204
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
205
|
Frasca D, Blomberg BB. Adipose tissue, immune aging, and cellular senescence. Semin Immunopathol 2020; 42:573-587. [PMID: 32785750 DOI: 10.1007/s00281-020-00812-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Obesity represents a serious health problem as it is rapidly increasing worldwide. Obesity is associated with reduced healthspan and lifespan, decreased responses to infections and vaccination, and increased frequency of inflammatory conditions typical of old age. Obesity is characterized by increased fat mass and remodeling of the adipose tissue (AT). In this review, we summarize published data on the different types of AT present in mice and humans, and their roles as fat storage as well as endocrine and immune tissues. We review the age-induced changes, including those in the distribution of fat in the body, in abundance and function of adipocytes and their precursors, and in the infiltration of immune cells from the peripheral blood. We also show that cells with a senescent-associated secretory phenotype accumulate in the AT of mice and humans with age, where they secrete several factors involved in the establishment and maintenance of local inflammation, oxidative stress, cell death, tissue remodeling, and infiltration of pro-inflammatory immune cells. Not only adipocytes and pre-adipocytes but also immune cells show a senescent phenotype in the AT. With the increase in human lifespan, it is crucial to identify strategies of intervention and target senescent cells in the AT to reduce local and systemic inflammation and the development of age-associated diseases. Several studies have indeed shown that senescent cells can be effectively targeted in the AT by selectively removing them or by inhibiting the pathways that lead to the secretion of pro-inflammatory factors.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
206
|
Kothari C, Diorio C, Durocher F. The Importance of Breast Adipose Tissue in Breast Cancer. Int J Mol Sci 2020; 21:ijms21165760. [PMID: 32796696 PMCID: PMC7460846 DOI: 10.3390/ijms21165760] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is a complex endocrine organ, with a role in obesity and cancer. Adipose tissue is generally linked to excessive body fat, and it is well known that the female breast is rich in adipose tissue. Hence, one can wonder: what is the role of adipose tissue in the breast and why is it required? Adipose tissue as an organ consists of adipocytes, an extracellular matrix (ECM) and immune cells, with a significant role in the dynamics of breast changes throughout the life span of a female breast from puberty, pregnancy, lactation and involution. In this review, we will discuss the importance of breast adipose tissue in breast development and its involvement in breast changes happening during pregnancy, lactation and involution. We will focus on understanding the biology of breast adipose tissue, with an overview on its involvement in the various steps of breast cancer development and progression. The interaction between the breast adipose tissue surrounding cancer cells and vice-versa modifies the tumor microenvironment in favor of cancer. Understanding this mutual interaction and the role of breast adipose tissue in the tumor microenvironment could potentially raise the possibility of overcoming breast adipose tissue mediated resistance to therapies and finding novel candidates to target breast cancer.
Collapse
Affiliation(s)
- Charu Kothari
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48508)
| |
Collapse
|
207
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
208
|
Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol 2020; 10:1047-1083. [PMID: 32941688 DOI: 10.1002/cphy.c190031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is a global epidemic in developed countries accounting for many of the metabolic and cardiorespiratory morbidities that occur in adults. These morbidities include type 2 diabetes, sleep-disordered breathing (SDB), obstructive sleep apnea, chronic intermittent hypoxia, and hypertension. Leptin, produced by adipocytes, is a master regulator of metabolism and of many other biological functions including central and peripheral circuits that control breathing. By binding to receptors on cells and neurons in the brainstem, hypothalamus, and carotid body, leptin links energy and metabolism to breathing. In this comprehensive article, we review the central and peripheral locations of leptin's actions that affect cardiorespiratory responses during health and disease, with a particular focus on obesity, SDB, and its effects during early development. Obesity-induced hyperleptinemia is associated with centrally mediated hypoventilation with decrease CO2 sensitivity. On the other hand, hyperleptinemia augments peripheral chemoreflexes to hypoxia and induces sympathoexcitation. Thus, "leptin resistance" in obesity is relative. We delineate the circuits responsible for these divergent effects, including signaling pathways. We review the unique effects of leptin during development on organogenesis, feeding behavior, and cardiorespiratory responses, and how undernutrition and overnutrition during critical periods of development can lead to cardiorespiratory comorbidities in adulthood. We conclude with suggestions for future directions to improve our understanding of leptin dysregulation and associated clinical diseases and possible therapeutic targets. Lastly, we briefly discuss the yin and the yang, specifically the contribution of relative adiponectin deficiency in adults with hyperleptinemia to the development of metabolic and cardiovascular disease. © 2020 American Physiological Society. Compr Physiol 10:1047-1083, 2020.
Collapse
Affiliation(s)
- Estelle B Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Silvia Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Debora Simoes Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Nikola Despotovic
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
209
|
Perrone MA, Babu Dasari J, Intorcia A, Gualtieri P, Marche M, Di Luozzo M, Merra G, Bernardini S, Romeo F, Sergi D. Phenotypic classification and biochemical profile of obesity for cardiovascular prevention. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.20.04259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
210
|
Sharma S, Khare P, Kumar A, Chunduri V, Kumar A, Kapoor P, Mangal P, Kondepudi KK, Bishnoi M, Garg M. Anthocyanin-Biofortified Colored Wheat Prevents High Fat Diet-Induced Alterations in Mice: Nutrigenomics Studies. Mol Nutr Food Res 2020; 64:e1900999. [PMID: 32383217 PMCID: PMC7507204 DOI: 10.1002/mnfr.201900999] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/20/2020] [Indexed: 12/22/2022]
Abstract
SCOPE Effective health-promoting results of either anthocyanins or whole wheat against chronic diseases are well reported. The current study is designed to understand the effect and underlying mechanism of anthocyanins-biofortified whole wheat on high-fat diet (HF)-induced obesity and its comorbidities. METHOD AND RESULTS Mice are fed a HFD supplemented with isoenergetic white, purple, or black whole wheat for 12 weeks and analyzed by physiological, biochemical, and nutrigenomics studies (qRT-PCR and RNA-Seq analysis). Black wheat significantly reduces body weight gain and fat pad. Both black and purple wheats reduce total cholesterol, triglyceride, and free fatty acid levels in serum, with the restoration of blood glucose and insulin resistance. Black wheat significantly elevates the expression of enzymes related to fatty acid balancing, β-oxidation, and oxidative stress that supported the biochemical and physiological positive outcomes. Moreover, the transcriptome analysis of adipose and liver tissue reveals activation of multiple pathways and genes related to fatty acid-β oxidation (crat, acca2, lonp2 etc.), antioxidative enzymes (gpx1, sod1, nxnl1 etc.), along with balancing of fatty acid metabolism specifically in black wheat supplemented mice. CONCLUSION Taken together, the results suggest that the incorporation of colored wheat (especially black wheat) in the diet can prevent obesity and related metabolic complications.
Collapse
Affiliation(s)
- Saloni Sharma
- Agri‐Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| | - Pragyanshu Khare
- Food and Nutritional Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| | - Ashish Kumar
- Agri‐Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| | - Venkatesh Chunduri
- Agri‐Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| | - Aman Kumar
- Agri‐Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| | - Payal Kapoor
- Agri‐Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| | - Priyanka Mangal
- Department of Natural ProductsNational Institute of Pharmaceutical Education and Research (NIPER)S.A.S. NagarMohaliPunjab160062India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| | - Monika Garg
- Agri‐Biotechnology DivisionNational Agri‐Food Biotechnology Institute (NABI)S.A.S. NagarMohaliPunjab140306India
| |
Collapse
|
211
|
Mair KM, Gaw R, MacLean MR. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020952019. [PMID: 32999709 PMCID: PMC7506791 DOI: 10.1177/2045894020952023] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a prevalent global public health issue characterized by excess body fat. Adipose tissue is now recognized as an important endocrine organ releasing an abundance of bioactive adipokines including, but not limited to, leptin, adiponectin and resistin. Obesity is a common comorbidity amongst pulmonary arterial hypertension patients, with 30% to 40% reported as obese, independent of other comorbidities associated with pulmonary arterial hypertension (e.g. obstructive sleep apnoea). An 'obesity paradox' has been observed, where obesity has been associated with subclinical right ventricular dysfunction but paradoxically may confer a protective effect on right ventricular function once pulmonary hypertension develops. Obesity and pulmonary arterial hypertension share multiple pathophysiological mechanisms including inflammation, oxidative stress, elevated leptin (proinflammatory) and reduced adiponectin (anti-inflammatory). The female prevalence of pulmonary arterial hypertension has instigated the hypothesis that estrogens may play a causative role in its development. Adipose tissue, a major site for storage and metabolism of sex steroids, is the primary source of estrogens and circulating estrogens levels which are elevated in postmenopausal women and men with pulmonary arterial hypertension. This review discusses the functions of adipose tissue in both health and obesity and the links between obesity and pulmonary arterial hypertension. Shared pathophysiological mechanisms and the contribution of specific fat depots, metabolic and sex-dependent differences are discussed.
Collapse
Affiliation(s)
- Kirsty M. Mair
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Margaret R. MacLean
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| |
Collapse
|
212
|
Marcelin G, Silveira ALM, Martins LB, Ferreira AV, Clément K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J Clin Invest 2020; 129:4032-4040. [PMID: 31498150 DOI: 10.1172/jci129192] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity originates from an imbalance between caloric intake and energy expenditure that promotes adipose tissue expansion, which is necessary to buffer nutrient excess. Patients with higher visceral fat mass are at a higher risk of developing severe complications such as type 2 diabetes and cardiovascular and liver diseases. However, increased fat mass does not fully explain obesity's propensity to promote metabolic diseases. With chronic obesity, adipose tissue undergoes major remodeling, which can ultimately result in unresolved chronic inflammation leading to fibrosis accumulation. These features drive local tissue damage and initiate and/or maintain multiorgan dysfunction. Here, we review the current understanding of adipose tissue remodeling with a focus on obesity-induced adipose tissue fibrosis and its relevance to clinical manifestations.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France
| | - Ana Letícia M Silveira
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís Bhering Martins
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene Vm Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France.,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
213
|
Vishvanath L, Gupta RK. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Invest 2020; 129:4022-4031. [PMID: 31573549 DOI: 10.1172/jci129191] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The manner in which white adipose tissue (WAT) expands and remodels directly impacts the risk of developing metabolic syndrome in obesity. Preferential accumulation of visceral WAT is associated with increased risk for insulin resistance, whereas subcutaneous WAT expansion is protective. Moreover, pathologic WAT remodeling, typically characterized by adipocyte hypertrophy, chronic inflammation, and fibrosis, is associated with insulin resistance. Healthy WAT expansion, observed in the "metabolically healthy" obese, is generally associated with the presence of smaller and more numerous adipocytes, along with lower degrees of inflammation and fibrosis. Here, we highlight recent human and rodent studies that support the notion that the ability to recruit new fat cells through adipogenesis is a critical determinant of healthy adipose tissue distribution and remodeling in obesity. Furthermore, we discuss recent advances in our understanding of the identity of tissue-resident progenitor populations in WAT made possible through single-cell RNA sequencing analysis. A better understanding of adipose stem cell biology and adipogenesis may lead to novel strategies to uncouple obesity from metabolic disease.
Collapse
|
214
|
Genetic variation, adipokines, and cardiometabolic disease. Curr Opin Pharmacol 2020; 52:33-39. [PMID: 32480034 DOI: 10.1016/j.coph.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Adipokines are adipocyte-secreted cell signalling proteins that travel to distant target organs and tissues, where they regulate a variety of biological actions implicated in cardiometabolic health. In the past decade, genome-wide association studies have identified multiple genetic variants associated with circulating levels of adipokines, providing new instruments for examining the role of adipokines in cardiometabolic pathologies. Currently, there is limited genetic evidence of causal relationships between adipokines and cardiometabolic disease, which is consistent with findings from randomized clinical trials that have thus far shown limited success for adipokine-based treatments in improving cardiometabolic health. Incorporating human genetic data in early phases of target selection is essential for enhancing the success of adipokine-based therapies for cardiometabolic disease.
Collapse
|
215
|
Adipokines as key players in β cell function and failure. Clin Sci (Lond) 2020; 133:2317-2327. [PMID: 31769478 DOI: 10.1042/cs20190523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The growing prevalence of obesity and its related metabolic diseases, mainly Type 2 diabetes (T2D), has increased the interest in adipose tissue (AT) and its role as a principal metabolic orchestrator. Two decades of research have now shown that ATs act as an endocrine organ, secreting soluble factors termed adipocytokines or adipokines. These adipokines play crucial roles in whole-body metabolism with different mechanisms of action largely dependent on the tissue or cell type they are acting on. The pancreatic β cell, a key regulator of glucose metabolism due to its ability to produce and secrete insulin, has been identified as a target for several adipokines. This review will focus on how adipokines affect pancreatic β cell function and their impact on pancreatic β cell survival in disease contexts such as diabetes. Initially, the "classic" adipokines will be discussed, followed by novel secreted adipocyte-specific factors that show therapeutic promise in regulating the adipose-pancreatic β cell axis.
Collapse
|
216
|
Comparison between Tibetan and Small-tailed Han sheep in adipocyte phenotype, lipid metabolism and energy homoeostasis regulation of adipose tissues when consuming diets of different energy levels. Br J Nutr 2020; 124:668-680. [PMID: 32406340 DOI: 10.1017/s0007114520001701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aimed to gain insight into how adipose tissue of Tibetan sheep regulates energy homoeostasis to cope with low energy intake under the harsh environment of the Qinghai-Tibetan Plateau (QTP). We compared Tibetan and Small-tailed Han sheep (n 24 of each breed), all wethers and 1·5 years of age, which were each divided randomly into four groups and offered diets of different digestible energy (DE) densities: 8·21, 9·33, 10·45 and 11·57 MJ DE/kg DM. When the sheep lost body mass and were assumed to be in negative energy balance: (1) adipocyte diameter in subcutaneous adipose tissue was smaller and decreased to a greater extent in Tibetan than in Small-tailed Han sheep, but the opposite occurred in the visceral adipose tissue; (2) Tibetan sheep showed higher insulin receptor mRNA expression and lower concentrations of catabolic hormones than Small-tailed Han sheep and (3) Tibetan sheep had lower capacity for glucose and fatty acid uptake than Small-tailed Han sheep. Moreover, Tibetan sheep had lower AMPKα mRNA expression but higher mammalian target of rapamycin mRNA expression in the adipocytes than Small-tailed Han sheep. We concluded that Tibetan sheep had lower catabolism but higher anabolism in adipose tissue and reduced the capacity for glucose and fatty acid uptake to a greater extent than Small-tailed Han sheep to maintain energy homoeostasis when in negative energy balance. These responses provide Tibetan sheep with a high ability to cope with low energy intake and with the harsh environment of the QTP.
Collapse
|
217
|
Wang S, Cao S, Arhatte M, Li D, Shi Y, Kurz S, Hu J, Wang L, Shao J, Atzberger A, Wang Z, Wang C, Zang W, Fleming I, Wettschureck N, Honoré E, Offermanns S. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat Commun 2020; 11:2303. [PMID: 32385276 PMCID: PMC7211025 DOI: 10.1038/s41467-020-16026-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
White adipose tissue (WAT) expansion in obesity occurs through enlargement of preexisting adipocytes (hypertrophy) and through formation of new adipocytes (adipogenesis). Adipogenesis results in WAT hyperplasia, smaller adipocytes and a metabolically more favourable form of obesity. How obesogenic WAT hyperplasia is induced remains, however, poorly understood. Here, we show that the mechanosensitive cationic channel Piezo1 mediates diet-induced adipogenesis. Mice lacking Piezo1 in mature adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed a high fat diet (HFD) resulting in larger adipocytes, increased WAT inflammation and reduced insulin sensitivity. Opening of Piezo1 in mature adipocytes causes the release of the adipogenic fibroblast growth factor 1 (FGF1), which induces adipocyte precursor differentiation through activation of the FGF-receptor-1. These data identify a central feed-back mechanism by which mature adipocytes control adipogenesis during the development of obesity and suggest Piezo1-mediated adipocyte mechano-signalling as a mechanism to modulate obesity and its metabolic consequences. Adipose tissue expansion occurs via enlargement of adipocytes as well as the generation of new fat cells, the latter being associated with more favorable metabolic outcomes. Here, the authors show that activation of adipocyte Piezo1 results in release of FGF1 and stimulates the differentiation of adipocyte precursor cells.
Collapse
Affiliation(s)
- ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany. .,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China.
| | - Shuang Cao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China
| | - Malika Arhatte
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Yue Shi
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China
| | - Sabrina Kurz
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lei Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Jingchen Shao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Ann Atzberger
- Max Planck Institute for Heart and Lung Research, Flow Cytometry Service Group, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany.,Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany. .,Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
218
|
Abstract
Obesity contributes to reduced life expectancy, impaired quality of life, and disabilities, mainly in those individuals who develop cardiovascular diseases, type 2 diabetes, osteoarthritis, and cancer. However, there is a large variation in the individual risk to developing obesity-associated comorbid diseases that cannot simply be explained by the extent of adiposity. Observations that a proportion of individuals with obesity have a significantly lower risk for cardiometabolic abnormalities led to the concept of metabolically healthy obesity (MHO). Although there is no clear definition, normal glucose and lipid metabolism parameters-in addition to the absence of hypertension-usually serve as criteria to diagnose MHO. Biological mechanisms underlying MHO lower amounts of ectopic fat (visceral and liver), and higher leg fat deposition, expandability of subcutaneous adipose tissue, preserved insulin sensitivity, and beta-cell function as well as better cardiorespiratory fitness compared to unhealthy obesity. Whereas the absence of metabolic abnormalities may reduce the risk of type 2 diabetes and cardiovascular diseases in metabolically healthy individuals compared to unhealthy individuals with obesity, it is still higher in comparison with healthy lean individuals. In addition, MHO seems to be a transient phenotype further justifying therapeutic weight loss attempts-even in this subgroup-which might not benefit from reducing body weight to the same extent as patients with unhealthy obesity. Metabolically healthy obesity represents a model to study mechanisms linking obesity to cardiometabolic complications. Metabolically healthy obesity should not be considered a safe condition, which does not require obesity treatment, but may guide decision-making for a personalized and risk-stratified obesity treatment.
Collapse
Affiliation(s)
- Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany and Helmholtz Institute for Metabolic, Obesity and Vascular Research, Helmholtz Zentrum München, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
219
|
Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 158:1899-1912. [PMID: 32061598 DOI: 10.1053/j.gastro.2019.12.054] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Adipose tissue and the liver play significant roles in the regulation of whole-body energy homeostasis, but they have not evolved to cope with the continuous, chronic, nutrient surplus seen in obesity. In this review, we detail how prolonged metabolic stress leads to adipose tissue dysfunction, inflammation, and adipokine release that results in increased lipid flux to the liver. Overall, the upshot of hepatic fat accumulation alongside an insulin-resistant state is that hepatic lipid enzymatic pathways are modulated and overwhelmed, resulting in the selective buildup of toxic lipid species, which worsens the pro-inflammatory and pro-fibrotic shift observed in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Vian Azzu
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge.
| | - Michele Vacca
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Samuel Virtue
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Michael Allison
- The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge
| | - Antonio Vidal-Puig
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
220
|
Shahen VA, Gerbaix M, Koeppenkastrop S, Lim SF, McFarlane KE, Nguyen ANL, Peng XY, Weiss NB, Brennan-Speranza TC. Multifactorial effects of hyperglycaemia, hyperinsulinemia and inflammation on bone remodelling in type 2 diabetes mellitus. Cytokine Growth Factor Rev 2020; 55:109-118. [PMID: 32354674 DOI: 10.1016/j.cytogfr.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Bones undergo continuous cycles of bone remodelling that rely on the balance between bone formation and resorption. This balance allows the bone to adapt to changes in mechanical loads and repair microdamages. However, this balance is susceptible to upset in various conditions, leading to impaired bone remodelling and abnormal bones. This is usually indicated by abnormal bone mineral density (BMD), an indicator of bone strength. Despite this, patients with type 2 diabetes mellitus (T2DM) exhibit normal to high BMD, yet still suffer from an increased risk of fractures. The activity of the bone cells is also altered as indicated by the reduced levels of bone turnover markers in T2DM observed in the circulation. The underlying mechanisms behind these skeletal outcomes in patients with T2DM remain unclear. This review summarises recent findings regarding inflammatory cytokine factors associated with T2DM to understand the mechanisms involved and considers potential therapeutic interventions.
Collapse
Affiliation(s)
- V A Shahen
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - M Gerbaix
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - S Koeppenkastrop
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - S F Lim
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - K E McFarlane
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Amanda N L Nguyen
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - X Y Peng
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - N B Weiss
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - T C Brennan-Speranza
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; School of Public Health, Faculty of Medicine and Health, The University of Sydney, Australia.
| |
Collapse
|
221
|
Kim J, Choi A, Kwon YH. Maternal Protein Restriction Altered Insulin Resistance and Inflammation-Associated Gene Expression in Adipose Tissue of Young Adult Mouse Offspring in Response to a High-Fat Diet. Nutrients 2020; 12:nu12041103. [PMID: 32316103 PMCID: PMC7230574 DOI: 10.3390/nu12041103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Maternal protein restriction is associated with increased risk of insulin resistance and inflammation in adulthood offspring. Here, we investigated whether maternal protein restriction could alter the risk of metabolic syndrome in postweaning high-fat (HF)-diet-challenged offspring, with focus on epididymal adipose tissue gene expression profile. Female ICR mice were fed a control (C) or a low-protein (LP) diet for two weeks before mating and throughout gestation and lactation, and their male offspring were fed an HF diet for 22 weeks (C/HF and LP/HF groups). A subset of offspring of control dams was fed a low-fat control diet (C/C group). In response to postweaning HF diet, serum insulin level and the homeostasis model assessment of insulin resistance (HOMA-IR) were increased in control offspring. Maternal LP diet decreased HOMA-IR and adipose tissue inflammation, and increased serum adiponectin level in the HF-diet-challenged offspring. Accordingly, functional analysis revealed that differentially expressed genes (DEGs) enriched in cytokine production were downregulated in the LP/HF group compared to the C/HF group. We also observed the several annotated gene ontology terms associated with innate immunity and phagocytosis in down-regulated DEGs between LP/HF and C/C groups. In conclusion, maternal protein restriction alleviated insulin resistance and inflammation in young offspring mice fed a HF diet but may impair development of immune system in offspring.
Collapse
Affiliation(s)
- Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.K.); (A.C.)
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.K.); (A.C.)
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.K.); (A.C.)
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-6833
| |
Collapse
|
222
|
Chen L, Li J, Yang G. A comparative review of intelectins. Scand J Immunol 2020; 92:e12882. [PMID: 32243627 DOI: 10.1111/sji.12882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Intelectin (ITLN) is a new type of glycan-binding lectin. It has been demonstrated to agglutinate bacteria probably due to its carbohydrate-binding capacity, suggesting its role in an innate immune response. It is involved not only in many physiological processes but also in some human diseases such as asthma, heart disease, inflammatory bowel disease, chronic obstructive pulmonary disease and cancer. Up to now, intelectin orthologs have been identified in placozoans, urochordatas, cephalochordates and several vertebrates, such as cyclostomata, fish, amphibians and mammals. Although the sequences of intelectins in different species are conserved, their expression patterns, quaternary structures and functions differ considerably among and within species. We summarize the evolution of the intelectin gene family, the tissue distribution, structure and functions of intelectins. We conclude that intelectin plays a role in innate immune response and there are still potential functions of intelectin awaiting discovery.
Collapse
Affiliation(s)
- Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jinyi Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
223
|
Huang CL, Xiao LL, Xu M, Li J, Li SF, Zhu CS, Lin YL, He R, Li X. Chemerin deficiency regulates adipogenesis is depot different through TIMP1. Genes Dis 2020; 8:698-708. [PMID: 34291141 PMCID: PMC8278540 DOI: 10.1016/j.gendis.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/22/2020] [Accepted: 04/03/2020] [Indexed: 01/07/2023] Open
Abstract
Adipocytes and immune cells are vital for the development of adipose tissue. Adipokines secreted by adipocytes regulate adipogenesis and body metabolism. Chemerin is one of the adipokines. However, the function and mechanism of chemerin in adipose tissue are not fully illuminated. Compared with wild type (WT) mice, Rarres2−/− mice gained weight and significantly increased fat distribution in subcutaneous adipose tissue (SAT), rather than visceral adipose tissue (VAT) on high fat diet (HFD). PPARγ and C/EBPα, the master regulators of adipogenesis, were up-regulated in SAT and down-regulated in VAT in Rarres2−/− mice comparing with WT mice. Inspite of chemerin deficiency or not, the ratio of adipocyte-progenitors to total cells and the differentiation capacity of adipocyte-progenitors were similar in SAT and VAT, but macrophage infiltration in VAT was more severe than in SAT in Rarres2−/− mice. Furthermore, CD45+ immune cells supernatant from Rarres2−/− SAT promoted the differentiation of adipocyte-progenitors and 3T3-L1 cells. Adipokine array assay of CD45+ immune cells supernatant revealed that metalloproteinase inhibitor 1 (TIMP1), an inhibitor of adipogenesis, was reduced in Rarres2−/− SAT, but increased in Rarres2−/− VAT. As we specifically knocked down chemerin in SAT, TIMP1 was down-regulated and adipogenesis was promoted with reducing infiltration of macrophages. The present study demonstrates that the effects of chemerin on adipose tissue is depot different, and specific knock down chemerin in SAT promote adipogenesis and improve glucose tolerance test (GTT) and insulin tolerance test (ITT). This suggests a potential therapeutic target for chemerin in the treatment of obesity related metabolic disorder.
Collapse
Affiliation(s)
- Cheng-Long Huang
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400016, PR China
| | - Liu-Ling Xiao
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Key Laboratory of Metabolic Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, 200032, PR China
| | - Min Xu
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jun Li
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shu-Fen Li
- Key Laboratory of Metabolic Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, 200032, PR China
| | - Cui-Song Zhu
- Key Laboratory of Metabolic Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, 200032, PR China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, PR China
| | - Yu-Li Lin
- Department of Immunology, Fudan University Shanghai Medical College, Shanghai, 200032, PR China
| | - Rui He
- Department of Immunology, Fudan University Shanghai Medical College, Shanghai, 200032, PR China
| | - Xi Li
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400016, PR China
- Corresponding author. Biology Science Institutes, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing 400032, PR China.
| |
Collapse
|
224
|
Sun C, Sakashita H, Kim J, Tang Z, Upchurch GM, Yao L, Berry WL, Griffin TM, Olson LE. Mosaic Mutant Analysis Identifies PDGFRα/PDGFRβ as Negative Regulators of Adipogenesis. Cell Stem Cell 2020; 26:707-721.e5. [PMID: 32229310 DOI: 10.1016/j.stem.2020.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/26/2019] [Accepted: 03/06/2020] [Indexed: 01/01/2023]
Abstract
Adipocyte progenitors (APs) express platelet-derived growth factor receptors (PDGFRs), PDGFRα and PDGFRβ. Elevated PDGFRα signaling inhibits adipogenesis and promotes fibrosis; however, the function of PDGFRs in APs remains unclear. We combined lineage tracing and functional analyses in a sequential dual-recombinase approach that creates mosaic Pdgfr mutant cells by Cre/lox recombination with a linked Flp/frt reporter to track individual cell fates. Using mosaic lineage labeling, we show that adipocytes are derived from the Pdgfra lineage during postnatal growth and adulthood. In contrast, adipocytes are only derived from the mosaic Pdgfrb lineage during postnatal growth. Functionally, postnatal mosaic deletion of PDGFRα enhances adipogenesis and adult deletion enhances β3-adrenergic-receptor-induced beige adipocyte formation. Mosaic deletion of PDGFRβ also enhances white, brown, and beige adipogenesis. These data show that both PDGFRs are cell-autonomous inhibitors of adipocyte differentiation and implicate downregulation of PDGF signaling as a critical event in the transition from AP to adipocyte.
Collapse
Affiliation(s)
- Chengyi Sun
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hiromi Sakashita
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jang Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Zifeng Tang
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - G Michael Upchurch
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
225
|
Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res 2020; 155:104741. [PMID: 32151679 DOI: 10.1016/j.phrs.2020.104741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Adipocyte account for the largest component in breast tissue. Dysfunctional adipocyte metabolism, such as metaflammation in metabolically abnormal obese patients, will cause hyperplasia and hypertrophy of its constituent adipocytes. Inflamed adipose tissue is one of the biggest risk factors causing breast cancer. Factors linking adipocyte metabolism to breast cancer include dysfunctional secretion of proinflammatory mediators, proangiogenic factors and estrogens. The accumulation of tumor supporting cells and systemic effects, such as insulin resistance, dyslipidemia and oxidative stress, which are caused by abnormal adipocyte metabolism, further contribute to a more aggressive tumor microenvironment and stimulate breast cancer stem cell to influence the development and progression of breast cancer. Here, in this review, we focus on the adipocyte metabolism in regulating breast cancer progression, and discuss the potential targets which can be used for breast cancer therapy.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
226
|
Bittel AJ, Bittel DC, Mittendorfer B, Patterson BW, Okunade AL, Yoshino J, Porter LC, Abumrad NA, Reeds DN, Cade WT. A single bout of resistance exercise improves postprandial lipid metabolism in overweight/obese men with prediabetes. Diabetologia 2020; 63:611-623. [PMID: 31873788 PMCID: PMC7002271 DOI: 10.1007/s00125-019-05070-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Prediabetes is associated with postprandial hypertriacylglycerolaemia. Resistance exercise acutely lowers postprandial plasma triacylglycerol (TG); however, the changes in lipid metabolism that mediate this reduction are poorly understood. The aim of this study was to identify the constitutive metabolic mechanisms underlying the changes in postprandial lipid metabolism after resistance exercise in obese men with prediabetes. METHODS We evaluated the effect of a single bout of whole-body resistance exercise (seven exercises, three sets, 10-12 repetitions at 80% of one-repetition maximum) on postprandial lipid metabolism in ten middle-aged (50 ± 9 years), overweight/obese (BMI: 33 ± 3 kg/m2), sedentary men with prediabetes (HbA1c >38 but <48 mmol/mol [>5.7% but <6.5%]), or fasting plasma glucose >5.6 mmol/l but <7.0 mmol/l or 2 h OGTT glucose >7.8 mmol/l but <11.1 mmol/l). We used a randomised, crossover design with a triple-tracer mixed meal test (ingested [(13C4)3]tripalmitin, i.v. [U-13C16]palmitate and [2H5]glycerol) to evaluate chylomicron-TG and total triacylglycerol-rich lipoprotein (TRL)-TG kinetics. We used adipose tissue and skeletal muscle biopsies to evaluate the expression of genes regulating lipolysis and lipid oxidation, skeletal muscle respirometry to evaluate oxidative capacity, and indirect calorimetry to assess whole-body lipid oxidation. RESULTS The single bout of resistance exercise reduced the lipaemic response to a mixed meal in obese men with prediabetes without changing chylomicron-TG or TRL-TG fractional clearance rates. However, resistance exercise reduced endogenous and meal-derived fatty acid incorporation into chylomicron-TG and TRL-TG. Resistance exercise also increased whole-body lipid oxidation, skeletal muscle mitochondrial respiration, oxidative gene expression in skeletal muscle, and the expression of key lipolysis genes in adipose tissue. CONCLUSIONS/INTERPRETATION A single bout of resistance exercise improves postprandial lipid metabolism in obese men with prediabetes, which may mitigate the risk for cardiovascular disease and type 2 diabetes.
Collapse
Affiliation(s)
- Adam J Bittel
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA.
| | - Daniel C Bittel
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Adewole L Okunade
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Lane C Porter
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - W Todd Cade
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA
| |
Collapse
|
227
|
Kusminski CM, Ghaben AL, Morley TS, Samms RJ, Adams AC, An Y, Johnson JA, Joffin N, Onodera T, Crewe C, Holland WL, Gordillo R, Scherer PE. A Novel Model of Diabetic Complications: Adipocyte Mitochondrial Dysfunction Triggers Massive β-Cell Hyperplasia. Diabetes 2020; 69:313-330. [PMID: 31882562 PMCID: PMC7034182 DOI: 10.2337/db19-0327] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/08/2019] [Indexed: 12/17/2022]
Abstract
Obesity-associated type 2 diabetes mellitus (T2DM) entails insulin resistance and loss of β-cell mass. Adipose tissue mitochondrial dysfunction is emerging as a key component in the etiology of T2DM. Identifying approaches to preserve mitochondrial function, adipose tissue integrity, and β-cell mass during obesity is a major challenge. Mitochondrial ferritin (FtMT) is a mitochondrial matrix protein that chelates iron. We sought to determine whether perturbation of adipocyte mitochondria influences energy metabolism during obesity. We used an adipocyte-specific doxycycline-inducible mouse model of FtMT overexpression (FtMT-Adip mice). During a dietary challenge, FtMT-Adip mice are leaner but exhibit glucose intolerance, low adiponectin levels, increased reactive oxygen species damage, and elevated GDF15 and FGF21 levels, indicating metabolically dysfunctional fat. Paradoxically, despite harboring highly dysfunctional fat, transgenic mice display massive β-cell hyperplasia, reflecting a beneficial mitochondria-induced fat-to-pancreas interorgan signaling axis. This identifies the unique and critical impact that adipocyte mitochondrial dysfunction has on increasing β-cell mass during obesity-related insulin resistance.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas S Morley
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Ricardo J Samms
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Andrew C Adams
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Yu An
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Joshua A Johnson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
228
|
Yang P, Dong X, Zhang Y. MicroRNA profiles in plasma samples from young metabolically healthy obese patients and miRNA-21 are associated with diastolic dysfunction via TGF-β1/Smad pathway. J Clin Lab Anal 2020; 34:e23246. [PMID: 32108968 PMCID: PMC7307369 DOI: 10.1002/jcla.23246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Metabolically healthy obese patients accounts for a large part of obese population, but its clinical significance and cardiac dysfunction are often underestimated. The microRNA profiles of metabolically healthy obese patients were investigated in the study, and the selected microRNA (miRNA) based on our microarray assay will be further verified in a relatively large metabolically healthy obese population. Methods microRNA microarray was performed from six metabolically healthy obese and 6 health control blood samples. Based on the bioinformatics analysis, we further measured RT‐PCR, fibrosis markers, echocardiograms, and TGF‐β1/Smad signaling pathway in 600 metabolically healthy obese population. Results We found that miRNAs expression characteristics in metabolically healthy obese groups were markedly different from healthy control group. MiRNA‐21 was significantly increased in the samples of metabolically healthy obese patients. Besides, miRNA‐21 levels were associated with cardiac fibrosis marker. Meanwhile, higher miRNA‐21 levels were related to elevated E/E′. Besides, patients with the highest miRNA‐21 quartile showed the lowest ratio of E/A. These associations between miRNA‐21 and diastolic function parameters were independent of obesity and other confounding variables. Of note, TGF‐β1and Smad 3 were significantly upregulated while Smad 7 was downregulated according to the miRNA‐21 quartiles in metabolically healthy obese group. Conclusions We demonstrated the profiles of circulating microRNAs in metabolically healthy obese patients. Increased plasma miRNA‐21 levels were related to impaired diastolic function independent of other relevant confounding variables. MiRNA‐21 could be one of the mechanistic links between obesity and diastolic dysfunction through regulating cardiac fibrosis via TGF‐β1/Smad signaling pathway in obese hearts, which may serve as a novel target of disease intervention.
Collapse
Affiliation(s)
- Pengkang Yang
- Department of Cardiology, Xi'an No.1 hospital, Xi'an, China
| | - Xin Dong
- Department of Cardiology, Xi'an No.4 hospital, Xi'an, China.,Health Science Center Xi'an Jiaotong University, Xi'an, China
| | - Yuyang Zhang
- Department of Cardiology, Xi'an No.1 hospital, Xi'an, China
| |
Collapse
|
229
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 745] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
230
|
Yu H, Chhabra KH, Thompson Z, Jones GL, Kiran S, Shangguan G, Low MJ. Hypothalamic POMC deficiency increases circulating adiponectin despite obesity. Mol Metab 2020; 35:100957. [PMID: 32244188 PMCID: PMC7082555 DOI: 10.1016/j.molmet.2020.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Objective The steep rise in the prevalence of obesity and its related metabolic syndrome have become a major worldwide health concerns. Melanocortin peptides from hypothalamic arcuate nucleus (Arc) POMC neurons induce satiety to limit food intake. Consequently, Arc Pomc-deficient mice (ArcPomc−/−) exhibit hyperphagia and obesity. Previous studies demonstrated that the circulating levels of adiponectin, a protein abundantly produced and secreted by fat cells, negatively correlate with obesity in both rodents and humans. However, we found that ArcPomc−/− mice have increased circulating adiponectin levels despite obesity. Therefore, we investigated the physiological function and underlying mechanisms of hypothalamic POMC in regulating systemic adiponectin levels. Methods Circulating adiponectin was measured in obese ArcPomc−/− mice at ages 4–52 weeks. To determine whether increased adiponectin was a direct result of ArcPomc deficiency or a secondary effect of obesity, we examined plasma adiponectin levels in calorie-restricted mice with or without a history of obesity and in ArcPomc−/− mice before and after genetic restoration of Pomc expression in the hypothalamus. To delineate the mechanisms causing increased adiponectin in ArcPomc−/− mice, we determined sympathetic outflow to adipose tissue by assessing epinephrine, norepinephrine, and tyrosine hydroxylase protein levels and measured the circulating adiponectin in the mice after acute norepinephrine or propranolol treatments. In addition, adiponectin mRNA and protein levels were measured in discrete adipose tissue depots to ascertain which fat depots contributed the most to the high level of adiponectin in the ArcPomc−/− mice. Finally, we generated compound Adiopoq−/−:ArcPomc−/− mice and compared their growth, body composition, and glucose homeostasis to the individual knockout mouse strains and their wild-type controls. Results Obese ArcPomc−/− female mice had unexpectedly increased plasma adiponectin compared to wild-type siblings at all ages greater than 8 weeks. Despite chronic calorie restriction to achieve normal body weights, higher adiponectin levels persisted in the ArcPomc−/− female mice. Genetic restoration of Pomc expression in the Arc or acute treatment of the ArcPomc−/− female mice with melanotan II reduced adiponectin levels to control littermate values. The ArcPomc−/− mice had defective thermogenesis and decreased epinephrine, norepinephrine, and tyrosine hydroxylase protein levels in their fat pads, indicating reduced sympathetic outflow to adipose tissue. Injections of norepinephrine into the ArcPomc−/− female mice reduced circulating adiponectin levels, whereas injections of propranolol significantly increased adiponectin levels. Despite the beneficial effects of adiponectin on metabolism, the deletion of adiponectin alleles in the ArcPomc−/− mice did not exacerbate their metabolic abnormalities. Conclusion In summary, to the best of our knowledge, this study provides the first evidence that despite obesity, the ArcPomc−/− mouse model has high circulating adiponectin levels, which demonstrated that increased fat mass is not necessarily correlated with hypoadiponectinemia. Our investigation also found a previously unknown physiological pathway connecting POMC neurons via the sympathetic nervous system to circulating adiponectin, thereby shedding light on the biological regulation of adiponectin. Obese female hypothalamic-specific Pomc-deficient mice have unexpectedly elevated circulating adiponectin. Restoration of Pomc expression in the hypothalamus reduces plasma adiponectin. Low sympathetic output to subcutaneous fat depots in the Pomc-deficient mice contributes to high adiponectin levels. Deletion of adiponectin in hypothalamic-specific Pomc-deficient mice does not alter their metabolic phenotype.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| | - Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Zoe Thompson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Graham L Jones
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sylee Kiran
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; School of Literature, Science, and Arts, University of Michigan, Ann Arbor, MI, USA
| | - Gary Shangguan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
231
|
D’Souza K, Mercer A, Mawhinney H, Pulinilkunnil T, Udenigwe CC, Kienesberger PC. Whey Peptides Stimulate Differentiation and Lipid Metabolism in Adipocytes and Ameliorate Lipotoxicity-Induced Insulin Resistance in Muscle Cells. Nutrients 2020; 12:nu12020425. [PMID: 32041341 PMCID: PMC7071342 DOI: 10.3390/nu12020425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
Deregulation of lipid metabolism and insulin function in muscle and adipose tissue are hallmarks of systemic insulin resistance, which can progress to type 2 diabetes. While previous studies suggested that milk proteins influence systemic glucose homeostasis and insulin function, it remains unclear whether bioactive peptides generated from whey alter lipid metabolism and its accumulation in muscle and adipose tissue. Therefore, we incubated murine 3T3-L1 preadipocytes and C2C12 myotubes with a whey peptide mixture produced through pepsin-pancreatin digestion, mimicking peptides generated in the gut from whey protein hydrolysis, and examined its effect on indicators of lipid metabolism and insulin sensitivity. Whey peptides, particularly those derived from bovine serum albumin (BSA), promoted 3T3-L1 adipocyte differentiation and triacylglycerol (TG) accumulation in accordance with peroxisome proliferator-activated receptor γ (PPARγ) upregulation. Whey/BSA peptides also increased lipolysis and mitochondrial fat oxidation in adipocytes, which was associated with the upregulation of peroxisome proliferator-activated receptor δ (PPARδ). In C2C12 myotubes, whey but not BSA peptides ameliorated palmitate-induced insulin resistance, which was associated with reduced inflammation and diacylglycerol accumulation, and increased sequestration of fatty acids in the TG pool. Taken together, our study suggests that whey peptides generated via pepsin-pancreatin digestion profoundly alter lipid metabolism and accumulation in adipocytes and skeletal myotubes.
Collapse
Affiliation(s)
- Kenneth D’Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine, Saint John, NB E2L 4L5 Canada (A.M.); (T.P.)
| | - Angella Mercer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine, Saint John, NB E2L 4L5 Canada (A.M.); (T.P.)
| | - Hannah Mawhinney
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine, Saint John, NB E2L 4L5 Canada (A.M.); (T.P.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Petra C. Kienesberger
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine, Saint John, NB E2L 4L5 Canada (A.M.); (T.P.)
- Correspondence: ; Tel.: +1-506-636-6971
| |
Collapse
|
232
|
Perdicaro DJ, Rodriguez Lanzi C, Gambarte Tudela J, Miatello RM, Oteiza PI, Vazquez Prieto MA. Quercetin attenuates adipose hypertrophy, in part through activation of adipogenesis in rats fed a high-fat diet. J Nutr Biochem 2020; 79:108352. [PMID: 32145471 DOI: 10.1016/j.jnutbio.2020.108352] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
An impaired capacity of adipose tissue expansion leads to adipocyte hypertrophy, inflammation and insulin resistance (IR) under positive energy balance. We previously showed that a grape pomace extract, rich in flavonoids including quercetin (Q), attenuates adipose hypertrophy. This study investigated whether dietary Q supplementation promotes adipogenesis in the epididymal white adipose tissue (eWAT) of rats consuming a high-fat diet, characterizing key adipogenic regulators in 3T3-L1 pre-adipocytes. Consumption of a high-fat diet for 6 weeks caused IR, increased plasma TNFα concentrations, eWAT weight, adipocyte size and the eWAT/brown adipose tissue (BAT) ratio. These changes were accompanied by decreased levels of proteins involved in angiogenesis, VEGF-A and its receptor 2 (VEGF-R2), and of two central adipogenic regulators, i.e. PPARγ and C/EBPα, and proteins involved in mature adipocyte formation, i.e. fatty acid synthase (FAS) and adiponectin. Q significantly reduced adipocyte size and enhanced angiogenesis and adipogenesis without changes in eWAT weight and attenuated systemic IR and inflammation. In addition, high-fat diet consumption increased eWAT hypoxia inducible factor-1 alpha (HIF-1α) levels and those of proteins involved in adipose inflammation (TLR-4, CD68, MCP-1, JNK) and activation of endoplasmic reticulum (ER) stress, i.e. ATF-6 and XBP-1. Q mitigated all these events. Q and quercetin 3-glucoronide prevented TNFα-mediated downregulation of adipogenesis during 3T3-L1 pre-adipocytes early differentiation. Together, Q capacity to promote a healthy adipose expansion enhancing angiogenesis and adipogenesis may contribute to reduced adipose hypertrophy, inflammation and IR. Consumption of diets rich in Q could be useful to counteract the adverse effects of high-fat diet-induced adipose dysfunction.
Collapse
Affiliation(s)
- Diahann J Perdicaro
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cecilia Rodriguez Lanzi
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Roberto M Miatello
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, USA
| | - Marcela A Vazquez Prieto
- Laboratorio de Nutrición y Fisiopatología de la Obesidad, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
233
|
Virtue S, Petkevicius K, Moreno-Navarrete JM, Jenkins B, Hart D, Dale M, Koulman A, Fernández-Real JM, Vidal-Puig A. Peroxisome Proliferator-Activated Receptor γ2 Controls the Rate of Adipose Tissue Lipid Storage and Determines Metabolic Flexibility. Cell Rep 2020; 24:2005-2012.e7. [PMID: 30134163 PMCID: PMC6113930 DOI: 10.1016/j.celrep.2018.07.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/15/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023] Open
Abstract
One understudied function of white adipose tissue (AT) is its role in postprandial lipid buffering. In this study, we demonstrate that mice lacking the adipose tissue-specific transcription factor peroxisome proliferator-activated receptor γ2 (PPARγ2) exhibit a defect in their rate of adipose tissue lipid storage. Impaired adipose tissue storage rate reduces metabolic flexibility, without compromising fasted glucose tolerance or insulin sensitivity, even following prolonged high-fat feeding. However, acutely overfeeding PPARγ2-KO mice caused a 10-fold increase in insulin levels compared with controls. Although impaired adipose tissue storage rate did not result in insulin resistance in young mice, 1-year-old PPARγ2-KO mice developed skeletal muscle insulin resistance. Our data indicate that failed adipose tissue storage may occur prior to defects in glucose handling and that overfeeding protocols may uncover genes controlling adipose tissue storage rate, as opposed to capacity, and act as a diagnostic test for early-stage human metabolic disease. Mice lacking PPARγ2 have impaired adipose tissue lipid storage rate Low adipose tissue storage rate leads to metabolic inflexibility Acute hypercaloric challenges can detect impaired adipose tissue lipid storage rate Chronic adipose tissue metabolic inflexibility leads to insulin resistance with age
Collapse
Affiliation(s)
- Sam Virtue
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK.
| | - Kasparas Petkevicius
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - José Maria Moreno-Navarrete
- Biomedical Research Institute of Girona (IDIBGI), CIBERobn Pathophysiology of Obesity and Nutrition, Hospital of Girona "Dr. Josep Trueta," Avinguda de França s/n, and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Benjamin Jenkins
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Daniel Hart
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Martin Dale
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Albert Koulman
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - José Manuel Fernández-Real
- Biomedical Research Institute of Girona (IDIBGI), CIBERobn Pathophysiology of Obesity and Nutrition, Hospital of Girona "Dr. Josep Trueta," Avinguda de França s/n, and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Antonio Vidal-Puig
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.
| |
Collapse
|
234
|
Masschelin PM, Cox AR, Chernis N, Hartig SM. The Impact of Oxidative Stress on Adipose Tissue Energy Balance. Front Physiol 2020; 10:1638. [PMID: 32038305 PMCID: PMC6987041 DOI: 10.3389/fphys.2019.01638] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Overnutrition and sedentary activity reinforce the growing trend of worldwide obesity, insulin resistance, and type 2 diabetes. However, we have limited insight into how food intake generates sophisticated metabolic perturbations associated with obesity. Accumulation of mitochondrial oxidative stress contributes to the metabolic changes in obesity, but the mechanisms and significance are unclear. In white adipose tissue (WAT), mitochondrial oxidative stress, and the generation of reactive oxygen species (ROS) impact the endocrine and metabolic function of fat cells. The central role of mitochondria in nutrient handling suggests pharmacological targeting of pathological oxidative stress likely improves the metabolic profile of obesity. This review will summarize the critical pathogenic mechanisms of obesity-driven oxidative stress in WAT.
Collapse
Affiliation(s)
- Peter M Masschelin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Natasha Chernis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
235
|
Adiyaman SC, Ozer M, Saydam BO, Akinci B. The Role of Adiponectin in Maintaining Metabolic Homeostasis. Curr Diabetes Rev 2020; 16:95-103. [PMID: 31267874 DOI: 10.2174/1573399815666190702155733] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/22/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Adiponectin is an adipocyte-derived cytokine closely associated with obesity, altered body adipose tissue distribution, insulin resistance, and cardiovascular diseases. INTRODUCTION Evidence from animal and human studies demonstrate that adiponectin plays an important role in the regulation of glucose and lipid metabolism. Adiponectin increases insulin sensitivity and improves systemic lipid metabolism. Although research efforts on adiponectin mostly aim towards its endocrine functions, this adipocyte-derived molecule also has profound autocrine and paracrine functions. CONCLUSION In this review, our aim is to discuss the role of adiponectin in maintaining metabolic homeostasis and its association with cardiovascular health. The proper identification of these roles is of great importance, which has the potential to identify a wealth of novel targets for the treatment of diabetes and related cardio-metabolic diseases.
Collapse
Affiliation(s)
| | - Muhammet Ozer
- Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Basak Ozgen Saydam
- Division of Endocrinology and Metabolism, Dokuz Eylul University, Izmir, Turkey
| | - Baris Akinci
- Division of Endocrinology and Metabolism, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
236
|
Lewis KT, MacDougald OA. Local interactions in the bone marrow microenvironment and their contributions to systemic metabolic processes. LIPID SIGNALING AND METABOLISM 2020:63-80. [DOI: 10.1016/b978-0-12-819404-1.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
237
|
|
238
|
Xing Y, Zhang C, Zhai F, Zhou T, Cui X, Han Z, Peng D, Tong G. Study on the Mechanism of Shugan Xiaozhi Fang on Cells with Non-alcoholic Fatty Liver Disease. OPEN CHEM 2019; 17:1328-1338. [DOI: 10.1515/chem-2019-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
AbstractCells with non-alcoholic fatty liver disease (NAFLD) were studied to determine the mechanism of liver deficiency via the AdipoR2-PPARa pathway. NAFLD cells were randomly divided into a normal control group, blank control group, model group, low dose group, medium dose group, and high dose group. The NAFLD models were established by incubating the cells with linoleic acid (LA) and palmitic acid (PA) (2:1) for 24 h. The test groups were incubated with different doses of Shugan Xiaozhi Fang extract. The pathological changes in cells that accumulated lipids were detected by Oil Red O staining. Malondialdehyde (MDA) and triglyceride (TG) levels were measured. The apoptosis of cells was evaluated by flow cytometry. The levels of AdipoR2, PPARa, CD36, acyl-CoA mRNA, and protein were confirmed by RT- PCR and Western blot. The results of the Oil Red O staining demonstrated that the NAFLD cell model was successfully established. Compared with the model group, the levels of TG and MDA in the groups that received low, medium, and high doses of Shugan Xiaozhi were significantly lower (P<0.01), and a dose effect was evident. In addition, the expression of AdipoR2, PPARa, CD36, acyl-CoA protein, and mRNA in the Shugan Xiaozhi-treated groups was upregulated. Furthermore, the levels of AdipoR2, PPAR, CD36, acyl-CoA protein, and mRNA in all drug treatment groups that were extracted from L-O2 normal human hepatocytes were significantly upregulated (P<0.01). Moreover, the factor pattern of HepG2 human liver carcinoma cells was similar to that of L-O2. The levels of AdipoR, CD36, acyl-CoA, and AdipoR mRNA in the HepG2 low group were increased (P<0.05). AdipoR, PPAR, CD36, and acyl-CoA protein levels and AdipoR mRNA expression were significantly increased in the intermediate dose group and high dose group (P<0.01). Shugan Xiaozhi Fang attenuates hepatic lipid deposition in NAFLD induced by incubating with LA and PA for 24 h, which is associated with the activation of the AdipoR2-PPARα pathway.
Collapse
Affiliation(s)
- Yufeng Xing
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Chuantao Zhang
- Department of Respiration, Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China, 610072
| | - Fenfen Zhai
- Shenzhen Futian Center for chronic disease control, 9 Xinsha Road, Futian District, Shenzhen, Guangdong, China, 518048
| | - Tianran Zhou
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Xiang Cui
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Zhiyi Han
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Deti Peng
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Guangdong Tong
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, 1 Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| |
Collapse
|
239
|
Nakano Y. Adult-Onset Diseases in Low Birth Weight Infants: Association with Adipose Tissue Maldevelopment. J Atheroscler Thromb 2019; 27:397-405. [PMID: 31866623 PMCID: PMC7242223 DOI: 10.5551/jat.rv17039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Low birth weight (LBW) infants have higher risk of developing insulin resistance and its comorbidities later in life. The concept of “developmental origins of health and disease” suggests that intrauterine and postnatal environments have an important role in increasing these risks. The risk of such adult-onset diseases in LBW infants might be associated with adipose tissue maldevelopment including altered body composition and increased amount of visceral fat, which is the same mechanism as that in children and adults with metabolic syndrome. However, LBW infants often have different characteristics: they are not always overweight or obese over their life course. The inconsistency might be associated with the thrifty phenotype, which is produced in response to impaired growth potential and decreased lean body mass. LBW infants tend to be obese within the limits of impaired growth potential. Through our previous investigations evaluating longitudinal changes in adiponectin levels at an early stage of life, we speculated that probably, the intrauterine life of term infants or the period up to term-equivalent age in preterm infants might be the key age for the development of adipose tissues including fat cells. Because of that, we hypothesized that the smaller number of adipocytes in LBW infants might be associated with overloading of single adipocytes and impaired adipose tissue expandability. The possible mechanisms are discussed from the perspective of adipose tissue maldevelopment in LBW infants.
Collapse
Affiliation(s)
- Yuya Nakano
- Department of Pediatrics, Showa University School of Medicine
| |
Collapse
|
240
|
Abstract
Obesity is characterized by increased adipose tissue mass and has been associated with a strong predisposition towards metabolic diseases and cancer. Thus, it constitutes a public health issue of major proportion. The expansion of adipose depots can be driven either by the increase in adipocyte size (hypertrophy) or by the formation of new adipocytes from precursor differentiation in the process of adipogenesis (hyperplasia). Notably, adipocyte expansion through adipogenesis can offset the negative metabolic effects of obesity, and the mechanisms and regulators of this adaptive process are now emerging. Over the past several years, we have learned a considerable amount about how adipocyte fate is determined and how adipogenesis is regulated by signalling and systemic factors. We have also gained appreciation that the adipogenic niche can influence tissue adipogenic capability. Approaches aimed at increasing adipogenesis over adipocyte hypertrophy can now be explored as a means to treat metabolic diseases.
Collapse
|
241
|
Fan R, You M, Toney AM, Kim J, Giraud D, Xian Y, Ye F, Gu L, Ramer-Tait AE, Chung S. Red Raspberry Polyphenols Attenuate High-Fat Diet-Driven Activation of NLRP3 Inflammasome and its Paracrine Suppression of Adipogenesis via Histone Modifications. Mol Nutr Food Res 2019; 64:e1900995. [PMID: 31786828 DOI: 10.1002/mnfr.201900995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Indexed: 12/28/2022]
Abstract
SCOPE The authors aim to investigate the mechanisms by which red raspberry (RR) polyphenolic fractions regulate obesity and inflammation with an emphasis on the crosstalk between adipose tissue macrophages (ATM) and adipocyte progenitors. METHODS AND RESULTS C57BL/6 male mice are fed either a high-fat (HF) diet or an HF diet supplemented with a RR polyphenolic fraction from whole fruit, pulp, or seed. Supplementation with pulp significantly increases energy expenditure and reduces HF-diet-induced obesity and insulin resistance. The pulp, and to a lesser extent, whole polyphenols, decreases the recruitment of ATM, activation of the nod-like receptor protein 3 (NLRP3) inflammasome, and adipocyte hypertrophy, which is associated with epigenetic modulation of adipogenesis (e.g., H3K27Ac, H3K9Ac). Results from an IL-1β reporter assay in J774 macrophages recapitulate the inhibitory role of RR polyphenols on NLRP3 inflammasome activation. Using conditioned media from macrophages, it is demonstrated that RR polyphenols reverse the IL-1β-mediated epigenetic suppression of H3K27Ac in adipocyte progenitor cells. CONCLUSIONS RR polyphenols from pulp and whole fruit serve as an inhibitor for NLRP3 inflammasome activation and an epigenetic modifier to regulate adipogenesis, which confers resistance against diet-induced obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Mikyoung You
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Ashley M Toney
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Judy Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - David Giraud
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Feng Ye
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA
| | - Liwei Gu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| |
Collapse
|
242
|
Loss of Transcriptional Repression by BCL6 Confers Insulin Sensitivity in the Setting of Obesity. Cell Rep 2019; 25:3283-3298.e6. [PMID: 30566857 PMCID: PMC6377366 DOI: 10.1016/j.celrep.2018.11.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/24/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022] Open
Abstract
Accumulation of visceral adiposity is directly linked to the morbidity of obesity, while subcutaneous body fat is considered more benign. We have identified an unexpected role for B cell lymphoma 6 (BCL6), a critical regulator of immunity, in the developmental expansion of subcutaneous adipose tissue. In adipocyte-specific knockout mice (Bcl6AKO), we found that Bcl6 deletion results in strikingly increased inguinal, but not perigonadal, adipocyte size and tissue mass in addition to marked insulin sensitivity. Genome-wide RNA expression and DNA binding analyses revealed that BCL6 controls gene networks involved in cell growth and fatty acid biosynthesis. Using deuterium label incorporation and comprehensive adipokine and lipid profiling, we discovered that ablation of adipocyte Bcl6 enhances subcutaneous adipocyte lipogenesis, increases levels of adiponectin and fatty acid esters of hydroxy fatty acids (FAHFAs), and prevents steatosis. Thus, our studies identify BCL6 as a negative regulator of subcutaneous adipose tissue expansion and metabolic health. Senagolage et al. identify BCL6 as a key regulator of body fat distribution. BCL6 directly represses fatty acid biosynthetic and growth genes in adipocytes. Mice constitutively lacking adipocyte Bcl6 exhibit expansion of their subcutaneous adipose tissue, enhanced insulin sensitivity, and protection from hepatic steatosis.
Collapse
|
243
|
Drareni K, Ballaire R, Barilla S, Mathew MJ, Toubal A, Fan R, Liang N, Chollet C, Huang Z, Kondili M, Foufelle F, Soprani A, Roussel R, Gautier JF, Alzaid F, Treuter E, Venteclef N. GPS2 Deficiency Triggers Maladaptive White Adipose Tissue Expansion in Obesity via HIF1A Activation. Cell Rep 2019; 24:2957-2971.e6. [PMID: 30208320 PMCID: PMC6153369 DOI: 10.1016/j.celrep.2018.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic white adipose tissue (WAT) represents a maladaptive mechanism linked to the risk for developing type 2 diabetes in humans. However, the molecular events that predispose WAT to hypertrophy are poorly defined. Here, we demonstrate that adipocyte hypertrophy is triggered by loss of the corepressor GPS2 during obesity. Adipocyte-specific GPS2 deficiency in mice (GPS2 AKO) causes adipocyte hypertrophy, inflammation, and mitochondrial dysfunction during surplus energy. This phenotype is driven by HIF1A activation that orchestrates inadequate WAT remodeling and disrupts mitochondrial activity, which can be reversed by pharmacological or genetic HIF1A inhibition. Correlation analysis of gene expression in human adipose tissue reveals a negative relationship between GPS2 and HIF1A, adipocyte hypertrophy, and insulin resistance. We propose therefore that the obesity-associated loss of GPS2 in adipocytes predisposes for a maladaptive WAT expansion and a pro-diabetic status in mice and humans. Adipose-specific GPS2 deficiency predisposes for adipocyte hypertrophy Loss of GPS2 triggers transcriptional activation of HIF1A pathways Deregulation of GPS2-HIF1A interplay provokes disrupted mitochondrial activity GPS2 and HIF1A levels are negatively correlated in human adipose tissue
Collapse
Affiliation(s)
- Karima Drareni
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Raphaëlle Ballaire
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Inovarion, 75013 Paris, France
| | - Serena Barilla
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Mano J Mathew
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Amine Toubal
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Rongrong Fan
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Ning Liang
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Catherine Chollet
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Zhiqiang Huang
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Maria Kondili
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Fabienne Foufelle
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Antoine Soprani
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Clinique Geoffroy Saint-Hilaire, Ramsey General de Santé, Paris, France
| | - Ronan Roussel
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Bichat Hospital, AP-HP, Paris, France; Faculty of Medicine, University Paris-Diderot, Paris, France
| | - Jean-François Gautier
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Lariboisière Hospital, Department of Diabetes, Clinical Investigation Centre (CIC-9504), University Paris-Diderot, Paris, France; Faculty of Medicine, University Paris-Diderot, Paris, France
| | - Fawaz Alzaid
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Eckardt Treuter
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden.
| | - Nicolas Venteclef
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.
| |
Collapse
|
244
|
Lin JZ, Rabhi N, Farmer SR. Myocardin-Related Transcription Factor A Promotes Recruitment of ITGA5+ Profibrotic Progenitors during Obesity-Induced Adipose Tissue Fibrosis. Cell Rep 2019; 23:1977-1987. [PMID: 29768198 DOI: 10.1016/j.celrep.2018.04.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023] Open
Abstract
Adipose tissue fibrosis is associated with inflammation and insulin resistance in human obesity. In particular, visceral fat fibrosis is correlated with hyperlipidemia and ectopic fat accumulation. Myocardin-related transcription factor A (MRTFA) is an important coactivator that mediates the transcription of extracellular matrix and other fibrogenic genes. Here, we examine the role of MRTFA in the development of adipose tissue fibrosis and identify a signaling pathway that regulates the fate of vascular progenitors. We demonstrate that obesity induces the formation of Sca1-, Sma+, ITGA5+ fibrogenic progenitor cells (FPCs) in adipose tissue. MRTFA deficiency in mice shifts the fate of perivascular progenitors from FPCs to adipocyte precursor cells and protects against chronic obesity-induced fibrosis and accompanying metabolic dysfunction, without a shift in energy expenditure. Our findings highlight the ITGA5-MRTFA pathway as a potential target to ameliorate obesity-associated metabolic disease.
Collapse
Affiliation(s)
- Jean Z Lin
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
245
|
Pan Z, Zhou Z, Zhang H, Zhao H, Song P, Wang D, Yin J, Zhao W, Xie Z, Wang F, Li Y, Guo C, Zhu F, Zhang L, Wang Q. CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis. Stem Cell Res Ther 2019; 10:355. [PMID: 31779686 PMCID: PMC6883612 DOI: 10.1186/s13287-019-1459-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND White adipose tissue includes subcutaneous and visceral adipose tissue (SAT and VAT) with different metabolic features. SAT protects from metabolic disorders, while VAT promotes them. The proliferative and adipogenic potentials of adipose-derived stem cells (ADSCs) are critical for maintaining adipose tissue homeostasis through driving adipocyte hyperplasia and inhibiting pathological hypertrophy. However, it remains to be elucidated the critical molecules that regulate different potentials of subcutaneous and visceral ADSCs (S-ADSCs, V-ADSCs) and mediate distinct metabolic properties of SAT and VAT. CD90 is a glycosylphosphatidylinositol-anchored protein on various cells, which is also expressed on ADSCs. However, its expression patterns and differential regulation on S-ADSCs and V-ADSCs remain unclear. METHODS S-ADSCs and V-ADSCs were detected for CD90 expression. Proliferation, colony formation, cell cycle, mitotic clonal expansion, and adipogenic differentiation were assayed in S-ADSCs, V-ADSCs, or CD90-silenced S-ADSCs. Glucose tolerance test and adipocyte hypertrophy were examined in mice after silencing of CD90 in SAT. CD90 expression and its association with CyclinD1 and Leptin were analyzed in adipose tissue from mice and humans. Regulation of AKT by CD90 was detected using a co-transfection system. RESULTS Compared with V-ADSCs, S-ADSCs expressed high level of CD90 and showed increases in proliferation, mitotic clonal expansion, and adipogenic differentiation, together with AKT activation and G1-S phase transition. CD90 silencing inhibited AKT activation and S phase entry, thereby curbing proliferation and mitotic clonal expansion of S-ADSCs. In vivo CD90 silencing in SAT inhibited S-ADSC proliferation, which caused adipocyte hypertrophy and glucose intolerance in mice. Furthermore, CD90 was highly expressed in SAT rather than in VAT in human and mouse, which had positive correlation with CyclinD1 but negative correlation with Leptin. CD90 promoted AKT activation through recruiting its pleckstrin homology domain to plasma membrane. CONCLUSIONS CD90 is differentially expressed on S-ADSCs and V-ADSCs, and plays critical roles in ADSC proliferation, mitotic clonal expansion, and hemostasis of adipose tissue and metabolism. These findings identify CD90 as a crucial modulator of S-ADSCs and V-ADSCs to mediate distinct metabolic features of SAT and VAT, thus proposing CD90 as a valuable biomarker or target for evaluating ADSC potentials, monitoring or treating obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Zhenzhen Pan
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Huiying Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Hui Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Peixuan Song
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Di Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jilong Yin
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Wanyi Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zhaoxiang Xie
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
246
|
Jacobs DT, Allard BA, Pottorf TS, Silva LM, Wang W, Al-Naamani A, Agborbesong E, Wang T, Carr DA, Tran PV. Intraflagellar-transport A dysfunction causes hyperphagia-induced systemic insulin resistance in a pre-obese state. FASEB J 2019; 34:148-160. [PMID: 31914634 DOI: 10.1096/fj.201900751r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Deletion of murine Thm1, an intraflagellar transport A (IFT-A) component that mediates ciliary protein trafficking, causes hyperphagia, obesity, and metabolic syndrome. The role of Thm1 or IFT-A in adipogenesis and insulin sensitivity is unknown. Here, we report that Thm1 knockdown in 3T3-L1 pre-adipocytes promotes adipogenesis and enhances insulin sensitivity in vitro. Yet, pre-obese Thm1 conditional knockout mice show systemic insulin resistance. While insulin-induced AKT activation in Thm1 mutant adipose depots and skeletal muscle are similar to those of control littermates, an attenuated insulin response arises in the mutant liver. Insulin treatment of control and Thm1 mutant primary hepatocytes results in similar AKT activation. Moreover, pair-feeding Thm1 conditional knockout mice produces a normal insulin response, both in the liver and systemically. Thus, hyperphagia caused by a cilia defect, induces hepatic insulin resistance via a non-cell autonomous mechanism. In turn, hepatic insulin resistance drives systemic insulin resistance prior to an obese phenotype. These data demonstrate that insulin signaling across cell types is regulated differentially, and that the liver is particularly susceptible to hyperphagia-induced insulin resistance and a critical determinant of systemic insulin resistance.
Collapse
Affiliation(s)
- Damon T Jacobs
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Bailey A Allard
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Luciane M Silva
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Wei Wang
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Aisha Al-Naamani
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Ewud Agborbesong
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Tao Wang
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Dajanae A Carr
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
247
|
Low-Carbohydrate Diet Inhibits Different Advanced Glycation End Products in Kidney Depending on Lipid Composition but Causes Adverse Morphological Changes in a Non-Obese Model Mice. Nutrients 2019; 11:nu11112801. [PMID: 31744125 PMCID: PMC6893679 DOI: 10.3390/nu11112801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 02/04/2023] Open
Abstract
Low carbohydrate diets (LC diets) have been noted for adverse health effects. In addition, the effect of lipid composition on an LC diet is unclear. In this study, we used an LC diet containing two different lipids, lard (LC group) and medium-chain triglyceride oil (MCT-LC group), to examine the effect of an LC diet in non-obese mice. Male C57BL/6J mice were fed the control diet or one of the experimental diets ad libitum for 13 weeks. Increased renal weight and glomerular hypertrophy, as well as enlargement of intraglomerular small vessels with wall thickening, were seen in the LC and MCT-LC groups. Renal AMP-activated protein kinase activity was significantly decreased only in the LC diet group. On the other hand, epididymal adipose tissue weight and adipocyte area were markedly decreased only in the MCT-LC group. A positive effect was also observed in the kidney, where different advanced glycation end products, Nε-(carboxyethyl)-lysine and Nε-(carboxymethyl)-lysine, were inhibited depending on the lipid composition of the LC diet. Our findings suggest that, in non-obese conditions, low dietary intake of carbohydrates had both positive and negative impacts. The safety of diets low in carbohydrates, including the effects of fatty acid composition, requires further investigation.
Collapse
|
248
|
Park J, Huh JY, Oh J, Kim JI, Han SM, Shin KC, Jeon YG, Choe SS, Park J, Kim JB. Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes Dev 2019; 33:1657-1672. [PMID: 31727774 PMCID: PMC6942052 DOI: 10.1101/gad.329557.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
In this study, Park et al. set out to elucidate the mechanism by which adipose-resident invariant natural killer T cells (iNKT) cells impact adipose tissue remodeling in obesity. Using in vitro and ex vivo approaches, the authors found that, in obesity, adipose iNKT cells can kill hypertrophic and pro-inflammatory adipocytes via FasL-Fas-dependent apoptosis, thus providing new insight into the role adipose iNKT cells play in promoting healthy adipose tissue remodeling. In obesity, adipose tissue undergoes dynamic remodeling processes such as adipocyte hypertrophy, hypoxia, immune responses, and adipocyte death. However, whether and how invariant natural killer T (iNKT) cells contribute to adipose tissue remodeling are elusive. In this study, we demonstrate that iNKT cells remove unhealthy adipocytes and stimulate the differentiation of healthy adipocytes. In obese adipose tissue, iNKT cells were abundantly found nearby dead adipocytes. FasL-positive adipose iNKT cells exerted cytotoxic effects to eliminate hypertrophic and pro-inflammatory Fas-positive adipocytes. Furthermore, in vivo adipocyte-lineage tracing mice model showed that activation of iNKT cells by alpha-galactosylceramide promoted adipocyte turnover, eventually leading to potentiation of the insulin-dependent glucose uptake ability in adipose tissue. Collectively, our data propose a novel role of adipose iNKT cells in the regulation of adipocyte turnover in obesity.
Collapse
Affiliation(s)
- Jeu Park
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jong In Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Cheul Shin
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yong Geun Jeon
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
249
|
The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci 2019; 20:ijms20225638. [PMID: 31718027 PMCID: PMC6887733 DOI: 10.3390/ijms20225638] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood–brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.
Collapse
|
250
|
Osteoarthritis Is a Low-Grade Inflammatory Disease: Obesity's Involvement and Herbal Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2037484. [PMID: 31781260 PMCID: PMC6874989 DOI: 10.1155/2019/2037484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is considered a major cause of disability around the globe. This handicapping disease causes important cartilage and bone alteration that is associated with serious pains and loss of joint function. Despite its frequent association with obesity, the aetiology of OA is not fully understood. In this review, the different aspects of OA and its correlation with obesity were analysed. Through examining different mechanisms by which obesity may trigger and/or exacerbate OA, we point out some relevant signalling pathways that may evolve as candidates for pharmacological drug development. As such, we also suggest a review of different herbal medicines (HMs) and their main compounds, which specifically interfere with the identified pathways. We have shown that obesity's involvement in OA is not only limited to the mechanical weight exerted on the joints (mechanical hypothesis), but also induces an inflammatory state by different mechanisms, including increased leptin expression, compromised gut mucosa, and/or gut microbiota disruption. The main signalling pathways involved in OA inflammation, which are associated with obesity, are protein tyrosine phosphatase 1B (PTP1B) and TLR4 or DAP12. Moreover, we also underline the contamination of plant extracts with LPS as an important factor to consider when studying HM's effects on articular cells. By summarizing recent publications, this review aims at highlighting newly established aspects of obesity involvement in OA other than the mechanical one.
Collapse
|