201
|
Suganya N, Dornadula S, Chatterjee S, Mohanram RK. Quercetin improves endothelial function in diabetic rats through inhibition of endoplasmic reticulum stress-mediated oxidative stress. Eur J Pharmacol 2017; 819:80-88. [PMID: 29169872 DOI: 10.1016/j.ejphar.2017.11.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum (ER) stress attributes a crucial role in diabetes-induced endothelial dysfunction. The present study investigated the effects of quercetin, a potent antioxidant on the attenuation of ER stress-modulated endothelial dysfunction in streptozotocin (STZ)-induced diabetic rats. Oral administration of quercetin for six weeks to diabetic rats dose-dependently reduced the blood glucose levels and improved insulin secretion. Histopathological examination of pancreatic tissues in diabetic rats showed pathological changes such as shrunken islets, reduction in islet area and distorted β-cells, which were found to be restored by quercetin treatment. In addition, quercetin reduced the pancreatic ER stress-induced endothelial dysfunction as assessed by immunohistochemical analysis of C/ERB homologous protein (CHOP) and endothelin-1 (ET-1). Moreover, quercetin administration progressively increased the expression of vascular endothelial growth factor (VEGF) and its receptor, VEGFR2 in diabetes rats. Quercetin-mediated decrease in the nitric oxide (NO∙) and cyclic 3',5'- guanosine monophosphate (cGMP) levels were also observed in the diabetic rats. Quercetin treatment reduced the lipid peroxidation in the diabetic rats, meanwhile increased the total antioxidant capacity in the pancreas from diabetic rats. Altogether, these results demonstrated the vasoprotective effect of quercetin against STZ-induced ER stress in the pancreas of diabetic rats.
Collapse
Affiliation(s)
- Natarajan Suganya
- Department of Biotechnology, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Sireesh Dornadula
- SRM Research Institute, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chromepet, Chennai 600044, Tamil Nadu, India
| | | |
Collapse
|
202
|
Minakshi R, Rahman S, Jan AT, Archana A, Kim J. Implications of aging and the endoplasmic reticulum unfolded protein response on the molecular modality of breast cancer. Exp Mol Med 2017; 49:e389. [PMID: 29123254 PMCID: PMC5704197 DOI: 10.1038/emm.2017.215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important subcellular organelle that is involved in numerous activities required to achieve and maintain functional proteins in addition to its role in the biosynthesis of lipids and as a repository of intracellular Ca2+. The inability of the ER to cope with protein folding beyond its capacity causes disturbances that evoke ER stress. Cells possess molecular mechanisms aimed at clearing unwanted cargo from the ER lumen as an adaptive response, but failing to do so navigates the system towards cell death. This systemic approach is called the unfolded protein response. Aging insults cells through various perturbations in homeostasis that involve curtailing ER function by mitigating the expression of its resident chaperones and enzymes. Here the unfolded protein response (UPR) cannot protect the cell due to the weakening of its protective arm, which exacerbates imbalanced homeostasis. Aging predisposed breast malignancy activates the UPR, but tumor cells maneuver the mechanistic details of the UPR, favoring tumorigenesis and thereby eliciting a treacherous condition. Tumor cells exploit UPR pathways via crosstalk involving various signaling cascades that usher tumor cells to immortality. This review aims to present a collection of data that can delineate the missing links of molecular signatures between aging and breast cancer.
Collapse
Affiliation(s)
- Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
203
|
Endoplasmic Reticulum Stress in Hearing Loss. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2017. [DOI: 10.3390/ohbm1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
204
|
Mehmeti I, Lortz S, Avezov E, Jörns A, Lenzen S. ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E β-cells against lipotoxicity by improving the ER antioxidative capacity. Free Radic Biol Med 2017; 112:121-130. [PMID: 28751022 DOI: 10.1016/j.freeradbiomed.2017.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 12/16/2022]
Abstract
Increased circulating levels of saturated fatty acids (FFAs) and glucose are considered to be major mediators of β-cell dysfunction and death in T2DM. Although it has been proposed that endoplasmic reticulum (ER) and oxidative stress play a crucial role in gluco/lipotoxicity, their interplay and relative contribution to β-cell dysfunction and apoptosis has not been fully elucidated. In addition it is still unclear how palmitate - the physiologically most abundant long-chain saturated FFA - elicits ER stress and which immediate signals commit β-cells to apoptosis. To study the underlying mechanisms of palmitate-mediated ER stress and β-cell toxicity, we exploited the observation that the recently described ER-resident GPx7 and GPx8 are not expressed in rat β-cells. Expression of GPx7 or GPx8 attenuated FFAs-mediated H2O2 generation, ER stress, and apoptosis induction. These results could be confirmed by a H2O2-specific inactivating ER catalase, indicating that accumulation of H2O2 in the ER lumen is critical in FFA-induced ER stress. Furthermore, neither the expression of GPx7 nor of GPx8 increased insulin content or facilitated disulfide bond formation in insulin-secreting INS-1E cells. Hence, reduction of H2O2 by ER-GPx isoforms is not rate-limiting in oxidative protein folding in rat β-cells. These data suggest that FFA-mediated ER stress is partially dependent on oxidative stress and selective expression of GPx7 or GPx8 improves the ER antioxidative capacity of rat β-cells without compromising insulin production and the oxidative protein folding machinery.
Collapse
Affiliation(s)
- Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Edward Avezov
- University of Cambridge, Cambridge Institute for Medical Research, the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0XY, United Kingdom
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany; Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
205
|
Nakamura O, Moritoh S, Sato K, Maekawa S, Murayama N, Himori N, Omodaka K, Sogon T, Nakazawa T. Bilberry extract administration prevents retinal ganglion cell death in mice via the regulation of chaperone molecules under conditions of endoplasmic reticulum stress. Clin Ophthalmol 2017; 11:1825-1834. [PMID: 29066860 PMCID: PMC5644593 DOI: 10.2147/opth.s145159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To investigate the effect of bilberry extract anthocyanins on retinal ganglion cell (RGC) survival after optic nerve crush. Additionally, to determine details of the mechanism of the neuroprotective effect of bilberry extract anthocyanins and the involvement of endoplasmic reticulum stress suppression in the mouse retina. Materials and methods Anthocyanins in bilberry extract (100 mg/kg/day or 500 mg/kg/day) were administrated orally to C57BL/6J mice. The expression levels of various molecular chaperones were assessed with quantitative reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemistry. RGC survival was evaluated by measuring the gene expression of RGC markers and counting retrogradely labeled RGCs after optic nerve crush. Results The protein levels of Grp78 and Grp94 increased significantly in mice after bilberry extract administration. Increased Grp78 and Grp94 levels were detected in the inner nuclear layer and ganglion cell layer of the retina, surrounding the RGCs. Gene expression of Chop, Bax, and Atf4 increased in mice after optic nerve crush and decreased significantly after oral bilberry extract administration. RGC survival after nerve crush also increased with bilberry extract administration. Conclusion These results indicate that oral bilberry extract administration suppresses RGC death. Bilberry extract administration increased Grp78 and Grp94 protein levels, an effect which may underlie the neuroprotective effect of bilberry extract after optic nerve crush. Thus, bilberry extract has a potential role in neuroprotective treatments for retinal injuries, such as those which occur in glaucoma.
Collapse
Affiliation(s)
- Orie Nakamura
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Satoru Moritoh
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Namie Murayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Tetsuya Sogon
- R&D Department, Wakasa Seikatsu Co., Ltd., Kyoto, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
206
|
Affiliation(s)
- Esther Pilla
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kim Schneider
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
207
|
Kang X, Yang W, Feng D, Jin X, Ma Z, Qian Z, Xie T, Li H, Liu J, Wang R, Li F, Li D, Sun H, Wu S. Cartilage-Specific Autophagy Deficiency Promotes ER Stress and Impairs Chondrogenesis in PERK-ATF4-CHOP-Dependent Manner. J Bone Miner Res 2017; 32:2128-2141. [PMID: 28304100 DOI: 10.1002/jbmr.3134] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 01/07/2023]
Abstract
Autophagy is activated during nutritionally depleted or hypoxic conditions to facilitate cell survival. Because growth plate is an avascular and hypoxic tissue, autophagy may have a crucial role during chondrogenesis; however, the functional role and underlying mechanism of autophagy in regulation of growth plate remains elusive. In this study, we generated TamCart Atg7-/- (Atg7cKO) mice to explore the role of autophagy during endochondral ossification. Atg7cKO mice exhibited growth retardation associated with reduced chondrocyte proliferation and differentiation, and increased chondrocyte apoptosis. Meanwhile, we observed that Atg7 ablation mainly induced the PERK-ATF4-CHOP axis of the endoplasmic reticulum (ER) stress response in growth plate chondrocytes. Although Atg7 ablation induced ER stress in growth plate chondrocytes, the addition of phenylbutyric acid (PBA), a chemical chaperone known to attenuate ER stress, partly neutralized such effects of Atg7 ablation on longitudinal bone growth, indicating the causative interaction between autophagy and ER stress in growth plate. Consistent with these findings in vivo, we also observed that Atg7 ablation in cultured chondrocytes resulted in defective autophagy, elevated ER stress, decreased chondrocytes proliferation, impaired expression of col10a1, MMP-13, and VEGFA for chondrocyte differentiation, and increased chondrocyte apoptosis, while such effects were partly nullified by reduction of ER stress with PBA. In addition, Atg7 ablation-mediated impaired chondrocyte function (chondrocyte proliferation, differentiation, and apoptosis) was partly reversed in CHOP-/- cells, indicating the causative role of the PERK-ATF4-CHOP axis of the ER stress response in the action of autophagy deficiency in chondrocytes. In conclusion, our findings indicate that autophagy deficiency may trigger ER stress in growth plate chondrocytes and contribute to growth retardation, thus implicating autophagy as an important regulator during chondrogenesis and providing new insights into the clinical potential of autophagy in cartilage homeostasis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiaomin Kang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Wei Yang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Dongxu Feng
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China.,Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Xinxin Jin
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Zhengmin Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuang Qian
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Tianping Xie
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Huixia Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jiali Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Ruiqi Wang
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Fang Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Danhui Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shufang Wu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
208
|
Hall G, Kurosawa S, Stearns-Kurosawa DJ. Shiga Toxin Therapeutics: Beyond Neutralization. Toxins (Basel) 2017; 9:toxins9090291. [PMID: 28925976 PMCID: PMC5618224 DOI: 10.3390/toxins9090291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Ribotoxic Shiga toxins are the primary cause of hemolytic uremic syndrome (HUS) in patients infected with Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), a pathogen class responsible for epidemic outbreaks of gastrointestinal disease around the globe. HUS is a leading cause of pediatric renal failure in otherwise healthy children, resulting in a mortality rate of 10% and a chronic morbidity rate near 25%. There are currently no available therapeutics to prevent or treat HUS in STEC patients despite decades of work elucidating the mechanisms of Shiga toxicity in sensitive cells. The preclinical development of toxin-targeted HUS therapies has been hindered by the sporadic, geographically dispersed nature of STEC outbreaks with HUS cases and the limited financial incentive for the commercial development of therapies for an acute disease with an inconsistent patient population. The following review considers potential therapeutic targeting of the downstream cellular impacts of Shiga toxicity, which include the unfolded protein response (UPR) and the ribotoxic stress response (RSR). Outcomes of the UPR and RSR are relevant to other diseases with large global incidence and prevalence rates, thus reducing barriers to the development of commercial drugs that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Gregory Hall
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
209
|
Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol Metab 2017; 6:1024-1039. [PMID: 28951826 PMCID: PMC5605732 DOI: 10.1016/j.molmet.2017.06.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic β cell dysfunction and death are central in the pathogenesis of most if not all forms of diabetes. Understanding the molecular mechanisms underlying β cell failure is important to develop β cell protective approaches. SCOPE OF REVIEW Here we review the role of endoplasmic reticulum stress and dysregulated endoplasmic reticulum stress signaling in β cell failure in monogenic and polygenic forms of diabetes. There is substantial evidence for the presence of endoplasmic reticulum stress in β cells in type 1 and type 2 diabetes. Direct evidence for the importance of this stress response is provided by an increasing number of monogenic forms of diabetes. In particular, mutations in the PERK branch of the unfolded protein response provide insight into its importance for human β cell function and survival. The knowledge gained from different rodent models is reviewed. More disease- and patient-relevant models, using human induced pluripotent stem cells differentiated into β cells, will further advance our understanding of pathogenic mechanisms. Finally, we review the therapeutic modulation of endoplasmic reticulum stress and signaling in β cells. MAJOR CONCLUSIONS Pancreatic β cells are sensitive to excessive endoplasmic reticulum stress and dysregulated eIF2α phosphorylation, as indicated by transcriptome data, monogenic forms of diabetes and pharmacological studies. This should be taken into consideration when devising new therapeutic approaches for diabetes.
Collapse
Key Words
- ATF, activating transcription factor
- CHOP, C/EBP homologous protein
- CRISPR, clustered regularly interspaced short palindromic repeats
- CReP, constitutive repressor of eIF2α phosphorylation
- Diabetes
- ER, endoplasmic reticulum
- ERAD, ER-associated degradation
- Endoplasmic reticulum stress
- GCN2, general control non-derepressible-2
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide 1
- GWAS, genome-wide association study
- HNF1A, hepatocyte nuclear factor 1-α
- HRI, heme-regulated inhibitor kinase
- IAPP, islet amyloid polypeptide
- IER3IP1, immediate early response-3 interacting protein-1
- IRE1, inositol-requiring protein-1
- ISR, integrated stress response
- Insulin
- Islet
- MEHMO, mental retardation, epilepsy, hypogonadism and -genitalism, microcephaly and obesity
- MODY, maturity-onset diabetes of the young
- NRF2, nuclear factor, erythroid 2 like 2
- PBA, 4-phenyl butyric acid
- PERK, PKR-like ER kinase
- PKR, protein kinase RNA
- PP1, protein phosphatase 1
- PPA, phenylpropenoic acid glucoside
- Pancreatic β cell
- Pdx1, pancreatic duodenal homeobox 1
- RIDD, regulated IRE1-dependent decay
- RyR2, type 2 ryanodine receptor/Ca2+ release channel
- SERCA, sarcoendoplasmic reticulum Ca2+ ATPase
- TUDCA, taurine-conjugated ursodeoxycholic acid derivative
- UPR, unfolded protein response
- WFS, Wolfram syndrome
- XBP1, X-box binding protein 1
- eIF2, eukaryotic translation initiation factor 2
- eIF2α
- hESC, human embryonic stem cell
- hPSC, human pluripotent stem cell
- hiPSC, human induced pluripotent stem cell
- uORF, upstream open reading frame
Collapse
Affiliation(s)
- Miriam Cnop
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Paraskevi Salpea
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
210
|
Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein Response. Mol Cell Biol 2017; 37:MCB.00030-17. [PMID: 28652267 PMCID: PMC5574048 DOI: 10.1128/mcb.00030-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023] Open
Abstract
Mammalian Ecdysoneless (ECD) is a highly conserved ortholog of the DrosophilaEcd gene product whose mutations impair the synthesis of Ecdysone and produce cell-autonomous survival defects, but the mechanisms by which ECD functions are largely unknown. Here we present evidence that ECD regulates the endoplasmic reticulum (ER) stress response. ER stress induction led to a reduced ECD protein level, but this effect was not seen in PKR-like ER kinase knockout (PERK-KO) or phosphodeficient eukaryotic translation initiation factor 2α (eIF2α) mouse embryonic fibroblasts (MEFs); moreover, ECD mRNA levels were increased, suggesting impaired ECD translation as the mechanism for reduced protein levels. ECD colocalizes and coimmunoprecipitates with PERK and GRP78. ECD depletion increased the levels of both phospho-PERK (p-PERK) and p-eIF2α, and these effects were enhanced upon ER stress induction. Reciprocally, overexpression of ECD led to marked decreases in p-PERK, p-eIF2α, and ATF4 levels but robust increases in GRP78 protein levels. However, GRP78 mRNA levels were unchanged, suggesting a posttranscriptional event. Knockdown of GRP78 reversed the attenuating effect of ECD overexpression on PERK signaling. Significantly, overexpression of ECD provided a survival advantage to cells upon ER stress induction. Taken together, our data demonstrate that ECD promotes survival upon ER stress by increasing GRP78 protein levels to enhance the adaptive folding protein in the ER to attenuate PERK signaling.
Collapse
|
211
|
ARC is essential for maintaining pancreatic islet structure and β-cell viability during type 2 diabetes. Sci Rep 2017; 7:7019. [PMID: 28765602 PMCID: PMC5539143 DOI: 10.1038/s41598-017-07107-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/23/2017] [Indexed: 12/03/2022] Open
Abstract
Pancreatic β-cell loss through apoptosis is an important disease mechanism in type 2 diabetes. Apoptosis Repressor with CARD (ARC) is a cell death inhibitor that antagonizes multiple death programs. We previously reported that ARC is abundant in pancreatic β-cells and modulates survival of these cells in vitro. Herein we assessed the importance of endogenous ARC in maintaining islet structure and function in vivo. While generalized loss of ARC did not result in detectable abnormalities, its absence in ob/ob mice, a model of type 2 diabetes, induced a striking pancreatic phenotype: marked β-cell death, loss of β-cell mass, derangements of islet architecture, and impaired glucose-stimulated insulin secretion in vivo. These abnormalities contributed to worsening of hyperglycemia and glucose-intolerance in these mice. Mechanistically, the absence of ARC increased levels of C/EBP homologous protein (CHOP) in wild type isolated islets stimulated with ER stress and in ob/ob isolated islets at baseline. Deletion of CHOP in ob/ob; ARC −/− mice led to reversal of β-cell death and abnormalities in islet architecture. These data indicate that suppression of CHOP by endogenous levels of ARC is critical for β-cell viability and maintenance of normal islet structure in this model of type 2 diabetes.
Collapse
|
212
|
Shen T, Li Y, Chen Z, Liang S, Guo Z, Wang P, Wu Q, Ba G, Fu Q. CHOP negatively regulates Polo-like kinase 2 expression via recruiting C/EBPα to the upstream-promoter in human osteosarcoma cell line during ER stress. Int J Biochem Cell Biol 2017; 89:207-215. [DOI: 10.1016/j.biocel.2017.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/09/2017] [Accepted: 06/22/2017] [Indexed: 01/06/2023]
|
213
|
Nam DH, Han JH, Lim JH, Park KM, Woo CH. CHOP Deficiency Ameliorates ERK5 Inhibition-Mediated Exacerbation of Streptozotocin-Induced Hyperglycemia and Pancreatic β-Cell Apoptosis. Mol Cells 2017; 40:457-465. [PMID: 28681594 PMCID: PMC5547215 DOI: 10.14348/molcells.2017.2296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 05/14/2017] [Accepted: 06/06/2017] [Indexed: 11/27/2022] Open
Abstract
Streptozotocin (STZ)-induced murine models of type 1 diabetes have been used to examine ER stress during pancreatic β-cell apoptosis, as this ER stress plays important roles in the pathogenesis and development of the disease. However, the mechanisms linking type 1 diabetes to the ER stress-modulating anti-diabetic signaling pathway remain to be addressed, though it was recently established that ERK5 (Extracellular-signal-regulated kinase 5) contributes to the pathogeneses of diabetic complications. This study was undertaken to explore the mechanism whereby ERK5 inhibition instigates pancreatic β-cell apoptosis via an ER stress-dependent signaling pathway. STZ-induced diabetic WT and CHOP deficient mice were i.p. injected every 2 days for 6 days under BIX02189 (a specific ERK5 inhibitor) treatment in order to evaluate the role of ERK5. Hyperglycemia was exacerbated by co-treating C57BL/6J mice with STZ and BIX02189 as compared with mice administered with STZ alone. In addition, immunoblotting data revealed that ERK5 inhibition activated the unfolded protein response pathway accompanying apoptotic events, such as, PARP-1 and caspase-3 cleavage. Interestingly, ERK5 inhibition-induced exacerbation of pancreatic β-cell apoptosis was inhibited in CHOP deficient mice. Moreover, transduction of adenovirus encoding an active mutant form of MEK5α, an upstream kinase of ERK5, inhibited STZ-induced unfolded protein responses and β-cell apoptosis. These results suggest that ERK5 protects against STZ-induced pancreatic β-cell apoptosis and hyperglycemia by interrupting the ER stress-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Dae-Hwan Nam
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415,
Korea
- Predictive Model Research Center, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
| | - Jung-Hwa Han
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415,
Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul 03760,
Korea
| | - Kwon Moo Park
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41566,
Korea
| | - Chang-Hoon Woo
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu 42415,
Korea
| |
Collapse
|
214
|
Abstract
Numerous environmental, physiological, and pathological insults disrupt protein-folding homeostasis in the endoplasmic reticulum (ER), referred to as ER stress. Eukaryotic cells evolved a set of intracellular signaling pathways, collectively termed the unfolded protein response (UPR), to maintain a productive ER protein-folding environment through reprogramming gene transcription and mRNA translation. The UPR is largely dependent on transcription factors (TFs) that modulate expression of genes involved in many physiological and pathological conditions, including development, metabolism, inflammation, neurodegenerative diseases, and cancer. Here we summarize the current knowledge about these mechanisms, their impact on physiological/pathological processes, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92307 USA
| |
Collapse
|
215
|
Rescue of Glaucomatous Neurodegeneration by Differentially Modulating Neuronal Endoplasmic Reticulum Stress Molecules. J Neurosci 2017; 36:5891-903. [PMID: 27225776 DOI: 10.1523/jneurosci.3709-15.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Axon injury is an early event in neurodegenerative diseases that often leads to retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. The connection of these two obviously sequential degenerative events, however, is elusive. Deciphering the upstream signals that trigger the neurodegeneration cascades in both neuronal soma and axon would be a key step toward developing the effective neuroprotectants that are greatly needed in the clinic. We showed previously that optic nerve injury-induced neuronal endoplasmic reticulum (ER) stress plays an important role in retinal ganglion cell (RGC) death. Using two in vivo mouse models of optic neuropathies (traumatic optic nerve injury and glaucoma) and adeno-associated virus-mediated RGC-specific gene targeting, we now show that differential manipulation of unfolded protein response pathways in opposite directions-inhibition of eukaryotic translation initiation factor 2α-C/EBP homologous protein and activation of X-box binding protein 1-promotes both RGC axons and somata survival and preserves visual function. Our results indicate that axon injury-induced neuronal ER stress plays an important role in both axon degeneration and neuron soma death. Neuronal ER stress is therefore a promising therapeutic target for glaucoma and potentially other types of neurodegeneration. SIGNIFICANCE STATEMENT Neuron soma and axon degeneration have distinct molecular mechanisms although they are clearly connected after axon injury. We previously demonstrated that axon injury induces neuronal endoplasmic reticulum (ER) stress and that manipulation of ER stress molecules synergistically promotes neuron cell body survival. Here we investigated the possibility that ER stress also plays a role in axon degeneration and whether ER stress modulation preserves neuronal function in neurodegenerative diseases. Our results suggest that neuronal ER stress is a general mechanism of degeneration for both neuronal cell body and axon, and that therapeutic targeting of ER stress produces significant functional recovery.
Collapse
|
216
|
Li H, Li Y, Xiang L, Zhang J, Zhu B, Xiang L, Dong J, Liu M, Xiang G. GDF11 Attenuates Development of Type 2 Diabetes via Improvement of Islet β-Cell Function and Survival. Diabetes 2017; 66:1914-1927. [PMID: 28450417 DOI: 10.2337/db17-0086] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been implicated in the regulation of islet development and a variety of aging conditions, but little is known about the physiological functions of GDF11 in adult pancreatic islets. Here, we showed that systematic replenishment of GDF11 not only preserved insulin secretion but also improved the survival and morphology of β-cells and improved glucose metabolism in both nongenetic and genetic mouse models of type 2 diabetes (T2D). Conversely, anti-GDF11 monoclonal antibody treatment caused β-cell failure and lethal T2D. In vitro treatment of isolated murine islets and MIN6 cells with recombinant GDF11 attenuated glucotoxicity-induced β-cell dysfunction and apoptosis. Mechanistically, the GDF11-mediated protective effects could be attributed to the activation of transforming growth factor-β/Smad2 and phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-FoxO1 signaling. These findings suggest that GDF11 repletion may improve β-cell function and mass and thus may lead to a new therapeutic approach for T2D.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Yixiang Li
- Radiation-Diagnostic/Oncology School of Medicine, Emory University, Atlanta, GA
| | - Lingwei Xiang
- Mathematics and Statistics Department, Georgia State University, Atlanta, GA
| | - JiaJia Zhang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| | - Guangda Xiang
- Department of Endocrinology, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei Province, China
| |
Collapse
|
217
|
Zhao H, Matsuzaka T, Nakano Y, Motomura K, Tang N, Yokoo T, Okajima Y, Han SI, Takeuchi Y, Aita Y, Iwasaki H, Yatoh S, Suzuki H, Sekiya M, Yahagi N, Nakagawa Y, Sone H, Yamada N, Shimano H. Elovl6 Deficiency Improves Glycemic Control in Diabetic db/ db Mice by Expanding β-Cell Mass and Increasing Insulin Secretory Capacity. Diabetes 2017; 66:1833-1846. [PMID: 28461456 DOI: 10.2337/db16-1277] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/18/2017] [Indexed: 11/13/2022]
Abstract
Dysfunctional fatty acid (FA) metabolism plays an important role in the pathogenesis of β-cell dysfunction and loss of β-cell mass in type 2 diabetes (T2D). Elovl6 is a microsomal enzyme that is responsible for converting C16 saturated and monounsaturated FAs into C18 species. We previously showed that Elovl6 played a critical role in the development of obesity-induced insulin resistance by modifying FA composition. To further define its role in T2D development, we assessed the effects of Elovl6 deletion in leptin receptor-deficient C57BL/KsJ db/db mice, a model of T2D. The db/db;Elovl6-/- mice had a markedly increased β-cell mass with increased proliferation and decreased apoptosis, an adaptive increase in insulin, and improved glycemic control. db/db islets were characterized by a prominent elevation of oleate (C18:1n-9), cell stress, and inflammation, which was completely suppressed by Elovl6 deletion. As a mechanistic ex vivo experiment, isolated islets from Elovl6-/- mice exhibited reduced susceptibility to palmitate-induced inflammation, endoplasmic reticulum stress, and β-cell apoptosis. In contrast, oleate-treated islets resulted in impaired glucose-stimulated insulin secretion with suppressed related genes irrespective of the Elovl6 gene. Taken together, Elovl6 is a fundamental factor linking dysregulated lipid metabolism to β-cell dysfunction, islet inflammation, and β-cell apoptosis in T2D, highlighting oleate as the potential culprit of β-cell lipotoxicity.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuta Nakano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaori Motomura
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nie Tang
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomotaka Yokoo
- Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Hidaka City, Saitama, Japan
| | - Yuka Okajima
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
218
|
Flodby P, Li C, Liu Y, Wang H, Marconett CN, Laird-Offringa IA, Minoo P, Lee AS, Zhou B. The 78-kD Glucose-Regulated Protein Regulates Endoplasmic Reticulum Homeostasis and Distal Epithelial Cell Survival during Lung Development. Am J Respir Cell Mol Biol 2017; 55:135-49. [PMID: 26816051 DOI: 10.1165/rcmb.2015-0327oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, has been linked to endoplasmic reticulum (ER) stress. To investigate a causal role for ER stress in BPD pathogenesis, we generated conditional knockout (KO) mice (cGrp78(f/f)) with lung epithelial cell-specific KO of Grp78, a gene encoding the ER chaperone 78-kD glucose-regulated protein (GRP78), a master regulator of ER homeostasis and the unfolded protein response (UPR). Lung epithelial-specific Grp78 KO disrupted lung morphogenesis, causing developmental arrest, increased alveolar epithelial type II cell apoptosis, and decreased surfactant protein and type I cell marker expression in perinatal lungs. cGrp78(f/f) pups died immediately after birth, likely owing to respiratory distress. Importantly, Grp78 KO triggered UPR activation with marked induction of the proapoptotic transcription factor CCAAT/enhancer-binding proteins (C/EBP) homologous protein (CHOP). Increased expression of genes involved in oxidative stress and cell death and decreased expression of genes encoding antioxidant enzymes suggest a role for oxidative stress in alveolar epithelial cell (AEC) apoptosis. Increased Smad3 phosphorylation and expression of transforming growth factor-β/Smad3 targets Cdkn1a (encoding p21) and Gadd45a suggest that interactions among the apoptotic arm of the UPR, oxidative stress, and transforming growth factor-β/Smad signaling pathways contribute to Grp78 KO-induced AEC apoptosis and developmental arrest. Chemical chaperone Tauroursodeoxycholic acid reduced UPR activation and apoptosis in cGrp78(f/f) lungs cultured ex vivo, confirming a role for ER stress in observed AEC abnormalities. These results demonstrate a key role for GRP78 in AEC survival and gene expression during lung development through modulation of ER stress, and suggest the UPR as a potential therapeutic target in BPD.
Collapse
Affiliation(s)
- Per Flodby
- Departments of 1 Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | | | - Yixin Liu
- Departments of 1 Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Hongjun Wang
- Departments of 1 Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Crystal N Marconett
- 3 Surgery, and.,4 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California
| | - Ite A Laird-Offringa
- 3 Surgery, and.,5 Biochemistry and Molecular Biology, and.,4 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California
| | | | - Amy S Lee
- 5 Biochemistry and Molecular Biology, and.,4 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California
| | - Beiyun Zhou
- Departments of 1 Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine.,4 Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California
| |
Collapse
|
219
|
Lipid-induced endoplasmic reticulum stress in X-linked adrenoleukodystrophy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2255-2265. [PMID: 28666219 DOI: 10.1016/j.bbadis.2017.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
X-linked adrenoleukodystrophy (ALD) is a progressive neurodegenerative disease that is caused by mutations in the ABCD1 gene and characterized by elevated levels of very long-chain fatty acids (VLCFA) in plasma and tissues, with the most pronounced increase in the central nervous system. Virtually all male patients develop adrenal insufficiency and myelopathy (adrenomyeloneuropathy), but a subset develops a fatal cerebral demyelinating disease (known as cerebral ALD). Female patients may also develop myelopathy, but adrenal insufficiency or leukodystrophy are very rare. ALD has been associated with mitochondrial dysfunction, oxidative stress and bioenergetic failure, but the mechanism by which VLCFA accumulation triggers these effects has not been resolved thus far. In this study, we used primary human fibroblasts from normal subjects and ALD patients to investigate whether VLCFA can induce endoplasmic reticulum stress. We show that saturated VLCFA (C26:0) induce endoplasmic reticulum stress in fibroblasts from ALD patients, but not in controls. Furthermore, there is a clear correlation between the chain-length of the fatty acid and the induction of endoplasmic reticulum stress. Exposure of ALD fibroblasts to C26:0, resulted in increased expression of additional endoplasmic reticulum stress markers (EDEM1, GADD34 and CHOP) and in lipoapoptosis. This new insight into the underlying mechanism of VLCFA-induced toxicity is of great importance for the development of a disease modifying treatment for ALD aimed at the normalization of VLCFA levels in tissues.
Collapse
|
220
|
Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:261-276. [DOI: 10.1007/978-3-319-48382-5_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
221
|
Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J Cell Biochem 2017; 118:3577-3585. [PMID: 28460155 DOI: 10.1002/jcb.26097] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress has been considered as a major hallmark for the pathogenesis and development of type 2 diabetes mellitus (T2DM), but still it is debatable whether it is a mere aggregation of inflammatory-induced responses or clinical entity that underlies with various pathophysiological factors. In this regard, the latest studies have shown the increasing trends for the involvement of reactive oxygen species (ROS) and oxidative stress in the pathogenesis and development of T2DM. ROS are highly reactive species and almost all cellular components are chemically changed due to the influence of ROS that ultimately results in the production of lipid peroxidation. Lipid peroxidation is a major causative factor for the development of oxidative stress that leads to overt T2DM and its associated micro- and macro-vascular complications. In this article, we have briefly described the role of various causative factors, transcriptional and metabolic pathways which are responsible to increase the production of oxidative stress, a most pivotal factor for the pathogenesis and development of T2DM. Therefore, we conclude that measurement of oxidative stress biomarkers may be one of the optional tool for the diagnosis and prediction of T2DM. Moreover, the key findings described in this article also provides a new conceptual framework for forthcoming investigations on the role of oxidative stress in pathogenesis of T2DM and drug discovery. J. Cell. Biochem. 118: 3577-3585, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
222
|
Gupta D, Jetton TL, LaRock K, Monga N, Satish B, Lausier J, Peshavaria M, Leahy JL. Temporal characterization of β cell-adaptive and -maladaptive mechanisms during chronic high-fat feeding in C57BL/6NTac mice. J Biol Chem 2017; 292:12449-12459. [PMID: 28487366 DOI: 10.1074/jbc.m117.781047] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/29/2017] [Indexed: 12/18/2022] Open
Abstract
The onset of type 2 diabetes is characterized by transition from successful to failed insulin secretory compensation to obesity-related insulin resistance and dysmetabolism. Energy-rich diets in rodents are commonly studied models of compensatory increases in both insulin secretion and β cell mass. However, the mechanisms of these adaptive responses are incompletely understood, and it is also unclear why these responses eventually fail. We measured the temporal trends of glucose homeostasis, insulin secretion, β cell morphometry, and islet gene expression in C57BL/6NTac mice fed a 60% high-fat diet (HFD) or control diet for up to 16 weeks. A 2-fold increased hyperinsulinemia was maintained for the first 4 weeks of HFD feeding and then further increased through 16 weeks. β cell mass increased progressively starting at 4 weeks, principally through nonproliferative growth. Insulin sensitivity was not significantly perturbed until 11 weeks of HFD feeding. Over the first 8 weeks, we observed two distinct waves of increased expression of β cell functional and prodifferentiation genes. This was followed by activation of the unfolded protein response at 8 weeks and overt β cell endoplasmic reticulum stress at 12-16 weeks. In summary, β cell adaptation to an HFD in C57BL/6NTac mice entails early insulin hypersecretion and a robust growth phase along with hyperexpression of related genes that begin well before the onset of observed insulin resistance. However, continued HFD exposure results in cessation of gene hyperexpression, β cell functional failure, and endoplasmic reticulum stress. These data point to a complex but not sustainable integration of β cell-adaptive responses to nutrient overabundance, obesity development, and insulin resistance.
Collapse
Affiliation(s)
- Dhananjay Gupta
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Thomas L Jetton
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Kyla LaRock
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Navjot Monga
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Basanthi Satish
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - James Lausier
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Mina Peshavaria
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446
| | - Jack L Leahy
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05446.
| |
Collapse
|
223
|
Qin P, Arabacilar P, Bernard RE, Bao W, Olzinski AR, Guo Y, Lal H, Eisennagel SH, Platchek MC, Xie W, Del Rosario J, Nayal M, Lu Q, Roethke T, Schnackenberg CG, Wright F, Quaile MP, Halsey WS, Hughes AM, Sathe GM, Livi GP, Kirkpatrick RB, Qu XA, Rajpal DK, Faelth Savitski M, Bantscheff M, Joberty G, Bergamini G, Force TL, Gatto GJ, Hu E, Willette RN. Activation of the Amino Acid Response Pathway Blunts the Effects of Cardiac Stress. J Am Heart Assoc 2017; 6:JAHA.116.004453. [PMID: 28487390 PMCID: PMC5524058 DOI: 10.1161/jaha.116.004453] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The amino acid response (AAR) is an evolutionarily conserved protective mechanism activated by amino acid deficiency through a key kinase, general control nonderepressible 2. In addition to mobilizing amino acids, the AAR broadly affects gene and protein expression in a variety of pathways and elicits antifibrotic, autophagic, and anti-inflammatory activities. However, little is known regarding its role in cardiac stress. Our aim was to investigate the effects of halofuginone, a prolyl-tRNA synthetase inhibitor, on the AAR pathway in cardiac fibroblasts, cardiomyocytes, and in mouse models of cardiac stress and failure. METHODS AND RESULTS Consistent with its ability to inhibit prolyl-tRNA synthetase, halofuginone elicited a general control nonderepressible 2-dependent activation of the AAR pathway in cardiac fibroblasts as evidenced by activation of known AAR target genes, broad regulation of the transcriptome and proteome, and reversal by l-proline supplementation. Halofuginone was examined in 3 mouse models of cardiac stress: angiotensin II/phenylephrine, transverse aortic constriction, and acute ischemia reperfusion injury. It activated the AAR pathway in the heart, improved survival, pulmonary congestion, left ventricle remodeling/fibrosis, and left ventricular function, and rescued ischemic myocardium. In human cardiac fibroblasts, halofuginone profoundly reduced collagen deposition in a general control nonderepressible 2-dependent manner and suppressed the extracellular matrix proteome. In human induced pluripotent stem cell-derived cardiomyocytes, halofuginone blocked gene expression associated with endothelin-1-mediated activation of pathologic hypertrophy and restored autophagy in a general control nonderepressible 2/eIF2α-dependent manner. CONCLUSIONS Halofuginone activated the AAR pathway in the heart and attenuated the structural and functional effects of cardiac stress.
Collapse
Affiliation(s)
- Pu Qin
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Pelin Arabacilar
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Roberta E Bernard
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Weike Bao
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Alan R Olzinski
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Yuanjun Guo
- Basic & Translational Research, School of Medicine, Vanderbilt University, Nashville, TN
| | - Hind Lal
- Basic & Translational Research, School of Medicine, Vanderbilt University, Nashville, TN
| | - Stephen H Eisennagel
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Michael C Platchek
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline, King of Prussia, PA
| | - Wensheng Xie
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline, King of Prussia, PA
| | - Julius Del Rosario
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Mohamad Nayal
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Quinn Lu
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline, King of Prussia, PA
| | - Theresa Roethke
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Christine G Schnackenberg
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Fe Wright
- Preclinical and Translational Imaging, Platform Technology and Science, GlaxoSmithKline, King of Prussia, PA
| | - Michael P Quaile
- Preclinical and Translational Imaging, Platform Technology and Science, GlaxoSmithKline, King of Prussia, PA
| | - Wendy S Halsey
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline, King of Prussia, PA
| | - Ashley M Hughes
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline, King of Prussia, PA
| | - Ganesh M Sathe
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline, King of Prussia, PA
| | - George P Livi
- Target and Pathway Validation, Target Sciences, GlaxoSmithKline, King of Prussia, PA
| | | | - Xiaoyan A Qu
- Computational Biology, Projects Clinical Platforms and Sciences, GlaxoSmithKline, King of Prussia, PA
| | - Deepak K Rajpal
- Computational Biology, Projects Clinical Platforms and Sciences, GlaxoSmithKline, King of Prussia, PA
| | | | | | - Gerard Joberty
- Cellzome GmbH, A GSK Company, GlaxoSmithKline, King of Prussia, PA
| | | | - Thomas L Force
- Basic & Translational Research, School of Medicine, Vanderbilt University, Nashville, TN
| | - Gregory J Gatto
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Erding Hu
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| | - Robert N Willette
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area GlaxoSmithKline, King of Prussia, PA
| |
Collapse
|
224
|
Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis. Sci Rep 2017; 7:1575. [PMID: 28484241 PMCID: PMC5431546 DOI: 10.1038/s41598-017-01805-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin:insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1α and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre-treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1α and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.
Collapse
|
225
|
The endoplasmic reticulum stress/autophagy pathway is involved in cholesterol-induced pancreatic β-cell injury. Sci Rep 2017; 7:44746. [PMID: 28294183 PMCID: PMC5353658 DOI: 10.1038/srep44746] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023] Open
Abstract
Lipotoxicity has been implicated in pancreatic β-cell dysfunction in type 2 diabetes, but the exact mechanisms remain unknown. The current study explored the role of the endoplasmic reticulum (ER) stress pathway in cholesterol-induced lipotoxicity. Two different insulinoma cell lines were treated with cholesterol with or without inhibitors. ER stress-associated proteins glucose-regulated protein (GRP) 78, activating transcription factor (ATF) 4 and C/EBP homologous protein (CHOP), as was phosphorylation of eukaryotic initiation factor (EIF) 2α, were all up-regulated by cholesterol. Cholesterol also up-regulated microtubule-associated protein 1 light chain 3 (LC3)-II and stimulated the formation of autophagic vacuoles and LC3-II aggregates. Cholesterol-induced autophagy and cell injuries were suppressed by pretreatment with the ER stress inhibitor 4-phenylbutyrate (4-PBA). Pretreatment with autophagy inhibitors E-64d/pepstatin A increased ER stress-induced cell injuries as indicated by increased cell apoptosis and decreased insulin secretion. These results suggest that cholesterol treatment induces apoptosis and dysfunction of β-cells, and enhances autophagy through activation of the ER stress pathway. More importantly, autophagy induced by cholesterol may protect β-cells against ER stress-associated cell damages.
Collapse
|
226
|
Battson ML, Lee DM, Gentile CL. Endoplasmic reticulum stress and the development of endothelial dysfunction. Am J Physiol Heart Circ Physiol 2017; 312:H355-H367. [DOI: 10.1152/ajpheart.00437.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Abstract
The vascular endothelium plays a critical role in cardiovascular homeostasis, and thus identifying the underlying causes of endothelial dysfunction has important clinical implications. In this regard, the endoplasmic reticulum (ER) has recently emerged as an important regulator of metabolic processes. Dysfunction within the ER, broadly termed ER stress, evokes the unfolded protein response (UPR), an adaptive pathway that aims to restore ER homeostasis. Although the UPR is the first line of defense against ER stress, chronic activation of the UPR leads to cell dysfunction and death and has recently been implicated in the pathogenesis of endothelial dysfunction. Numerous risk factors for endothelial dysfunction can induce ER stress, which may in turn disrupt endothelial function via direct effects on endothelium-derived vasoactive substances or by activating other pathogenic cellular networks such as inflammation and oxidative stress. This review summarizes the available data linking ER stress to endothelial dysfunction.
Collapse
Affiliation(s)
- M. L. Battson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - D. M. Lee
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - C. L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
227
|
Zhang L, Wang Y, Pandupuspitasari NS, Wu G, Xiang X, Gong Q, Xiong W, Wang CY, Yang P, Ren B. Endoplasmic reticulum stress, a new wrestler, in the pathogenesis of idiopathic pulmonary fibrosis. Am J Transl Res 2017; 9:722-735. [PMID: 28337301 PMCID: PMC5340708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) has attracted extensive attention for its unexplained progressive lung scarring, short median survival and its unresponsiveness to traditional therapies. Despite extensive studies, the mechanisms underlying IPF pathoetiologies, however, remain poorly understood. Recent advances delineated a potential function of endoplasmic reticulum (ER) stress in meeting the need of fibrotic response, which pinpointed a critical role for the unfolded protein response (UPR) pathways in IPF pathogenesis. In this review, we highlight the effect of ER stress and the activation of UPR on the survival, differentiation, function and proliferation of major profibrotic cells in lung tissues during the course of IPF, and discuss the feasibility whether targeting UPR components could be an orientation for developing effective therapeutic strategies against this devastating disorder in clinical settings.
Collapse
Affiliation(s)
- Lei Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & TechnologyWuhan, China
| | - Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & TechnologyWuhan, China
| | - Nuruliarizki Shinta Pandupuspitasari
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & TechnologyWuhan, China
| | - Guorao Wu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & TechnologyWuhan, China
| | - Xudong Xiang
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Quan Gong
- Clinical and Molecular Immunology Research Center, Department of Immunology, Medical College of Yangtze UniversityJingzhou, Hubei, China
| | - Weining Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & TechnologyWuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & TechnologyWuhan, China
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & TechnologyWuhan, China
| | - Boxu Ren
- Clinical and Molecular Immunology Research Center, Department of Immunology, Medical College of Yangtze UniversityJingzhou, Hubei, China
| |
Collapse
|
228
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|
229
|
ER Stress Protein CHOP Mediates Insulin Resistance by Modulating Adipose Tissue Macrophage Polarity. Cell Rep 2017; 18:2045-2057. [DOI: 10.1016/j.celrep.2017.01.076] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/14/2016] [Accepted: 01/27/2017] [Indexed: 01/05/2023] Open
|
230
|
Abstract
The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress.
Collapse
|
231
|
Ribeiro CMP, Lubamba BA. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation. Int J Mol Sci 2017; 18:ijms18010118. [PMID: 28075361 PMCID: PMC5297752 DOI: 10.3390/ijms18010118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bob A Lubamba
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
232
|
Bhat TA, Chaudhary AK, Kumar S, O'Malley J, Inigo JR, Kumar R, Yadav N, Chandra D. Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:58-66. [PMID: 27988298 DOI: 10.1016/j.bbcan.2016.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Abrogation of endoplasmic reticulum (ER) protein folding triggered by exogenous or endogenous factors, stimulates a cellular stress response, termed ER stress. ER stress re-establishes ER homeostasis through integrated signaling termed the ER-unfolded protein response (UPRER). In the presence of severe toxic or prolonged ER stress, the pro-survival function of UPRER is transformed into a lethal signal transmitted to and executed through mitochondria. Mitochondria are key for both apoptotic and autophagic cell death. Thus ER is vital in sensing and coordinating stress pathways to maintain overall physiological homeostasis. However, this function is deregulated in cancer, resulting in resistance to apoptosis induction in response to various stressors including therapeutic agents. Here we review the connections between ER stress and mitochondrial apoptosis, describing potential cancer therapeutic targets.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
233
|
Park HR, Oh R, Wagner P, Panganiban R, Lu Q. New Insights Into Cellular Stress Responses to Environmental Metal Toxicants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:55-82. [PMID: 28325215 DOI: 10.1016/bs.ircmb.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposures to metal toxicants in the environment disrupt normal physiological functions and have been linked to the development of a myriad of human diseases. While the molecular and cellular mechanisms underlying metal toxicities remain to be fully understood, it is well appreciated that metal toxicants induce cellular stresses and that how cells respond to the stresses plays an important role in metal toxicity. In this review, we focus on how metal exposures induce stresses in the endoplasmic reticulum (ER) to elicit the unfolded protein response (UPR). We document the emerging evidence that induction of ER stress and UPR in the development of human diseases is associated with metal exposures. We also discuss the role of the interplay between ER stress and oxidative stress in metal toxicity. Finally, we review recent advances in functional genomics approaches and discuss how applications of these new tools could help elucidate the molecular mechanisms underlying cellular stresses induced by environmental metal toxicants.
Collapse
Affiliation(s)
- H-R Park
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - R Oh
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - P Wagner
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - R Panganiban
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Q Lu
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
234
|
Endoplasmic Reticulum Stress Enhances Mitochondrial Metabolic Activity in Mammalian Adrenals and Gonads. Mol Cell Biol 2016; 36:3058-3074. [PMID: 27697863 DOI: 10.1128/mcb.00411-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 01/21/2023] Open
Abstract
The acute response to stress consists of a series of physiological programs to promote survival by generating glucocorticoids and activating stress response genes that increase the synthesis of many chaperone proteins specific to individual organelles. In the endoplasmic reticulum (ER), short-term stress triggers activation of the unfolded protein response (UPR) module that either leads to neutralization of the initial stress or adaptation to it; chronic stress favors cell death. UPR induces expression of the transcription factor, C/EBP homology protein (CHOP), and its deletion protects against the lethal consequences of prolonged UPR. Here, we show that stress-induced CHOP expression coincides with increased metabolic activity. During stress, the ER and mitochondria come close to each other, resulting in the formation of a complex consisting of the mitochondrial translocase, translocase of outer mitochondrial membrane 22 (Tom22), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2) via its intermembrane space (IMS)-exposed charged unstructured loop region. Stress increased the circulation of phosphates, which elevated pregnenolone synthesis by 2-fold by increasing the stability of 3βHSD2 and its association with the mitochondrion-associated ER membrane (MAM) and mitochondrial proteins. In summary, cytoplasmic CHOP plays a central role in coordinating the interaction of MAM proteins with the outer mitochondrial membrane translocase, Tom22, to activate metabolic activity in the IMS by enhanced phosphate circulation.
Collapse
|
235
|
CHOP deficiency inhibits methylglyoxal-induced endothelial dysfunction. Biochem Biophys Res Commun 2016; 480:362-368. [DOI: 10.1016/j.bbrc.2016.10.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022]
|
236
|
Abstract
The burden of type 2 diabetes and its major complication cardiovascular disease is rapidly increasing worldwide. Understanding the underlying pathogenic mechanisms of these diseases is crucial to develop novel therapeutics. Recent work using genetic and biochemical methods in mouse models and human samples have identified disturbed calcium signalling and endoplasmic reticulum stress as emerging factors involved in the pathogenesis of many metabolic diseases. In this review, we will highlight the specific roles of calcium signalling and endoplasmic reticulum stress response in the development of insulin resistance and atherosclerosis.
Collapse
Affiliation(s)
- L Ozcan
- Department of Medicine, Columbia University, New York, NY, USA.
| | - I Tabas
- Department of Medicine, Columbia University, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
237
|
Abstract
Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rajiv R. Ratan
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
238
|
Zhang W, Chen L, Shen Y, Xu J. Rifampicin-induced injury in L02 cells is alleviated by 4-PBA via inhibition of the PERK-ATF4-CHOP pathway. Toxicol In Vitro 2016; 36:186-196. [DOI: 10.1016/j.tiv.2016.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 02/07/2023]
|
239
|
Mollereau B, Rzechorzek NM, Roussel BD, Sedru M, Van den Brink DM, Bailly-Maitre B, Palladino F, Medinas DB, Domingos PM, Hunot S, Chandran S, Birman S, Baron T, Vivien D, Duarte CB, Ryoo HD, Steller H, Urano F, Chevet E, Kroemer G, Ciechanover A, Calabrese EJ, Kaufman RJ, Hetz C. Adaptive preconditioning in neurological diseases - therapeutic insights from proteostatic perturbations. Brain Res 2016; 1648:603-616. [PMID: 26923166 PMCID: PMC5010532 DOI: 10.1016/j.brainres.2016.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 02/06/2023]
Abstract
In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson׳s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses and the molecular pathways they recruit might be exploited for therapeutic gain. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- B Mollereau
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France.
| | - N M Rzechorzek
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, United Kingdom
| | - B D Roussel
- Inserm, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, 14000 Caen, France
| | - M Sedru
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - D M Van den Brink
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - B Bailly-Maitre
- INSERM U1065, C3M, Team 8 (Hepatic Complications in Obesity), Nice, France
| | - F Palladino
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - D B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Santiago, Chile
| | - P M Domingos
- ITQB-UNL, Av. da Republica, EAN, 2780-157 Oeiras, Portugal
| | - S Hunot
- Inserm, U 1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - S Chandran
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - S Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS UMR 8249, ESPCI ParisTech, PSL Research University, 75005 Paris, France
| | - T Baron
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Neurodegenerative Diseases Unit, 31, avenue Tony Garnier, 69364 Lyon Cedex 07, France
| | - D Vivien
- Inserm, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, 14000 Caen, France
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Rua Larga, and Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - H D Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - H Steller
- Howard Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - F Urano
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, MO 63110 USA
| | - E Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - G Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Cell Biology and Metabolomics platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women׳s and Children׳s Health, Karolinska University Hospital, Stockholm, Sweden
| | - A Ciechanover
- The Polak Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 30196, Israel
| | - E J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA 01003, USA
| | - R J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - C Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
240
|
Hamilton R, Walsh M, Singh R, Rodriguez K, Gao X, Rahman MM, Chaudhuri A, Bhattacharya A. Oxidative damage to myelin proteins accompanies peripheral nerve motor dysfunction in aging C57BL/6 male mice. J Neurol Sci 2016; 370:47-52. [PMID: 27772785 DOI: 10.1016/j.jns.2016.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
Abstract
Aging is associated with a decline in peripheral nerve function of both motor and sensory nerves. The decline in function of peripheral sensorimotor nerves with aging has been linked to sarcopenia, the age-related decline in muscle mass and function that significantly compromises the quality of life in older humans. In this study, we report a significant increase in oxidized fatty acids and insoluble protein carbonyls in sciatic nerves of aged C57BL/6 male mice (28-30mo) that exhibit a profound decline in motor nerve function and degenerative changes in both axon and myelin structure, compared to young mice (6-8mo). Our data further suggests that this age-related loss of function of peripheral motor nerves is likely precipitated by changes in mechanisms that protect and/or repair oxidative damage. We predict that interventions that target these mechanisms may protect against age-related decline in peripheral sensorimotor nerve function and likely improve the debilitating outcome of sarcopenia in older humans.
Collapse
Affiliation(s)
- Ryan Hamilton
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Michael Walsh
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Rashmi Singh
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Karl Rodriguez
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xiaoli Gao
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Md Mizanur Rahman
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Asish Chaudhuri
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Arunabh Bhattacharya
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
| |
Collapse
|
241
|
Maganti AV, Tersey SA, Syed F, Nelson JB, Colvin SC, Maier B, Mirmira RG. Peroxisome Proliferator-activated Receptor-γ Activation Augments the β-Cell Unfolded Protein Response and Rescues Early Glycemic Deterioration and β Cell Death in Non-obese Diabetic Mice. J Biol Chem 2016; 291:22524-22533. [PMID: 27613867 DOI: 10.1074/jbc.m116.741694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes is an autoimmune disorder that is characterized by a failure of the unfolded protein response in islet β cells with subsequent endoplasmic reticulum stress and cellular death. Thiazolidinediones are insulin sensitizers that activate the nuclear receptor PPAR-γ and have been shown to partially ameliorate autoimmune type 1 diabetes in humans and non-obese diabetic (NOD) mice. We hypothesized that thiazolidinediones reduce β cell stress and death independently of insulin sensitivity. To test this hypothesis, female NOD mice were administered pioglitazone during the pre-diabetic phase and assessed for insulin sensitivity and β cell function relative to controls. Pioglitazone-treated mice showed identical weight gain, body fat distribution, and insulin sensitivity compared with controls. However, treated mice showed significantly improved glucose tolerance with enhanced serum insulin levels, reduced β cell death, and increased β cell mass. The effect of pioglitazone was independent of actions on T cells, as pancreatic lymph node T cell populations were unaltered and T cell proliferation was unaffected by pioglitazone. Isolated islets of treated mice showed a more robust unfolded protein response, with increases in Bip and ATF4 and reductions in spliced Xbp1 mRNA. The effect of pioglitazone appears to be a direct action on β cells, as islets from mice treated with pioglitazone showed reductions in PPAR-γ (Ser-273) phosphorylation. Our results demonstrate that PPAR-γ activation directly improves β cell function and survival in NOD mice by enhancing the unfolded protein response and suggest that blockade of PPAR-γ (Ser-273) phosphorylation may prevent type 1 diabetes.
Collapse
Affiliation(s)
- Aarthi V Maganti
- From the Department of Cellular and Integrative Physiology.,Center for Diabetes and Metabolic Diseases
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Farooq Syed
- Department of Pediatrics and the Herman B Wells Center
| | | | - Stephanie C Colvin
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Bernhard Maier
- Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center
| | - Raghavendra G Mirmira
- From the Department of Cellular and Integrative Physiology, .,Center for Diabetes and Metabolic Diseases.,Department of Pediatrics and the Herman B Wells Center.,Department of Medicine, and.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and.,Indiana Biosciences Research Institute, Indianapolis, Indiana 46202
| |
Collapse
|
242
|
Phelps EA, Cianciaruso C, Michael IP, Pasquier M, Kanaani J, Nano R, Lavallard V, Billestrup N, Hubbell JA, Baekkeskov S. Aberrant Accumulation of the Diabetes Autoantigen GAD65 in Golgi Membranes in Conditions of ER Stress and Autoimmunity. Diabetes 2016; 65:2686-99. [PMID: 27284108 PMCID: PMC5001175 DOI: 10.2337/db16-0180] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic islet β-cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in β-cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes γ-aminobutyric acid, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary β-cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes. The palmitoylated form has heightened immunogenicity, exhibiting increased uptake by antigen-presenting cells and T-cell stimulation compared with the nonpalmitoylated form. Similar accumulation of GAD65 in Golgi membranes is observed in human β-cells in pancreatic sections from GAD65 autoantibody-positive individuals who have not yet progressed to clinical onset of T1D and from patients with T1D with residual β-cell mass and ongoing T-cell infiltration of islets. We propose that aberrant accumulation of immunogenic GAD65 in Golgi membranes facilitates inappropriate presentation to the immune system after release from stressed and/or damaged β-cells, triggering autoimmunity.
Collapse
Affiliation(s)
- Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Iacovos P Michael
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miriella Pasquier
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jamil Kanaani
- Departments of Medicine, Microbiology and Immunology and Diabetes Center, University of California San Francisco, San Francisco, CA
| | - Rita Nano
- Diabetes Research Institute, IRCCS, Pancreatic Islet Processing Facility, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Institute for Molecular Engineering, University of Chicago, Chicago, IL
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Departments of Medicine, Microbiology and Immunology and Diabetes Center, University of California San Francisco, San Francisco, CA
| |
Collapse
|
243
|
Differences in metabolic biomarkers in the blood and gene expression profiles of peripheral blood mononuclear cells among normal weight, mildly obese and moderately obese subjects. Br J Nutr 2016; 116:1022-32. [DOI: 10.1017/s0007114516002993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractWe compared metabolic biomarkers in the blood and peripheral blood mononuclear cell (PBMC) gene expression profiles among normal weight (BMI, 18·5–23 kg/m2), mildly obese (BMI, 25–27·5 kg/m2) and moderately obese Korean adult men (BMI, 27·5–30 kg/m2). High leptin, lipids (except LDL- and HDL-cholesterol) and apoB levels and low adiponectin and HDL-cholesterol levels were present in the plasma of both mildly and moderately obese subjects. Circulating levels of inflammatory cytokines and markers of insulin resistance, oxidative stress and liver damage were altered in moderately obese subjects but not in mildly obese subjects. PBMC transcriptome data showed enrichment of pathways involved in energy metabolism, insulin resistance, bone metabolism, cancer, inflammation and fibrosis in both mildly and moderately obese subjects. Signalling pathways involved in oxidative phosphorylation, TAG synthesis, carbohydrate metabolism and insulin production; mammalian target of rapamycin, forkhead box O, ras-proximate-1, RAS and transforming growth factor-β signalling; as well as extracellular matrix–receptor interaction were enriched only in moderately obese subjects, indicating that changes in PBMC gene expression profiles, according to metabolic disturbances, were associated with the development and/or aggravation of obesity. In particular, fourteen and fifteen genes differentially expressed only in mildly obese subjects and in both mildly and moderately obese subjects, respectively, could be used as early or stable biomarkers for diagnosing and treating obesity-associated metabolic disturbance. We characterised BMI-associated metabolic and molecular biomarkers in the blood and provided clues about potential blood-based targets for preventing or treating obesity-related complications.
Collapse
|
244
|
Liu H, Cao D, Liu H, Liu X, Mai W, Lan H, Huo W, Zheng Q. The Herbal Medicine Cordyceps sinensis Protects Pancreatic Beta Cells from Streptozotocin-Induced Endoplasmic Reticulum Stress. Can J Diabetes 2016; 40:329-35. [DOI: 10.1016/j.jcjd.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
|
245
|
Rahman K, Liu Y, Kumar P, Smith T, Thorn NE, Farris AB, Anania FA. C/EBP homologous protein modulates liraglutide-mediated attenuation of non-alcoholic steatohepatitis. J Transl Med 2016; 96:895-908. [PMID: 27239734 PMCID: PMC4965279 DOI: 10.1038/labinvest.2016.61] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
The CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), a major transcriptional regulator of endoplasmic reticulum (ER) stress-mediated apoptosis, is implicated in lipotoxicity-induced ER stress and hepatocyte apoptosis in non-alcoholic fatty liver disease (NAFLD). We have previously demonstrated that the glucagon-like peptide-1 (GLP-1) agonist, liraglutide, protects steatotic hepatocytes from lipotoxicity-induced apoptosis by improved handling of free fatty acid (FFA)-induced ER stress. In the present study, we investigated whether CHOP is critical for GLP-1-mediated restoration of ER homeostasis and mitigation of hepatocyte apoptosis in a murine model of NASH (non-alcoholic steatohepatitis). Our data show that despite similar caloric intake, CHOP KO (CHOP(-/-)) mice fed a diet high in fat, fructose, and cholesterol (HFCD) for 16 weeks developed more severe histological features of NASH compared with wild-type (WT) controls. Severity of NASH in HFCD-fed CHOP(-/-) mice correlated with significant decrease in peroxisomal β-oxidation, and increased de novo lipogenesis and ER stress-mediated hepatocyte apoptosis. Four weeks of liraglutide treatment markedly attenuated steatohepatitis in HFCD-fed WT mice by improving insulin sensitivity, and suppressing de novo lipogenesis and ER stress-mediated hepatocyte apoptosis. However, in the absence of CHOP, liraglutide did not improve insulin sensitivity, nor suppress peroxisomal β-oxidation or ER stress-mediated hepatocyte apoptosis. Taken together, these data indicate that CHOP protects hepatocytes from HFCD-induced ER stress, and has a significant role in the mechanism of liraglutide-mediated protection against NASH pathogenesis.
Collapse
Affiliation(s)
- Khalidur Rahman
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA,Corresponding Author: Khalidur Rahman, PhD, Assistant Professor of Medicine, Emory University School of Medicine, 615 Michael Street, Suite 201, Atlanta, GA 30322, Phone: 404-712-2867 or 404-727-5638, Fax: 404-727-5767
| | | | - Pradeep Kumar
- Division of Digestive Diseases, Emory University, Atlanta, GA
| | - Tekla Smith
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA
| | | | - Alton B. Farris
- Department of Pathology, Emory University Hospital, Atlanta, GA
| | - Frank A. Anania
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA
| |
Collapse
|
246
|
Shah S, Carriveau WJ, Li J, Campbell SL, Kopinski PK, Lim HW, Daurio N, Trefely S, Won KJ, Wallace DC, Koumenis C, Mancuso A, Wellen KE. Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget 2016; 7:43713-43730. [PMID: 27248322 PMCID: PMC5190055 DOI: 10.18632/oncotarget.9666] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/08/2016] [Indexed: 01/18/2023] Open
Abstract
The androgen receptor (AR) plays a central role in prostate tumor growth. Inappropriate reactivation of the AR after androgen deprivation therapy promotes development of incurable castration-resistant prostate cancer (CRPC). In this study, we provide evidence that metabolic features of prostate cancer cells can be exploited to sensitize CRPC cells to AR antagonism. We identify a feedback loop between ATP-citrate lyase (ACLY)-dependent fatty acid synthesis, AMPK, and the AR in prostate cancer cells that could contribute to therapeutic resistance by maintaining AR levels. When combined with an AR antagonist, ACLY inhibition in CRPC cells promotes energetic stress and AMPK activation, resulting in further suppression of AR levels and target gene expression, inhibition of proliferation, and apoptosis. Supplying exogenous fatty acids can restore energetic homeostasis; however, this rescue does not occur through increased β-oxidation to support mitochondrial ATP production. Instead, concurrent inhibition of ACLY and AR may drive excess ATP consumption as cells attempt to cope with endoplasmic reticulum (ER) stress, which is prevented by fatty acid supplementation. Thus, fatty acid metabolism plays a key role in coordinating ER and energetic homeostasis in CRPC cells, thereby sustaining AR action and promoting proliferation. Consistent with a role for fatty acid metabolism in sustaining AR levels in prostate cancer in vivo, AR mRNA levels in human prostate tumors correlate positively with expression of ACLY and other fatty acid synthesis genes. The ACLY-AMPK-AR network can be exploited to sensitize CRPC cells to AR antagonism, suggesting novel therapeutic opportunities for prostate cancer.
Collapse
Affiliation(s)
- Supriya Shah
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Whitney J Carriveau
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sydney L Campbell
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Piotr K Kopinski
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Natalie Daurio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony Mancuso
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
247
|
Meyerovich K, Ortis F, Allagnat F, Cardozo AK. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol 2016; 57:R1-R17. [PMID: 27067637 DOI: 10.1530/jme-15-0306] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
Abstract
Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.
Collapse
Affiliation(s)
- Kira Meyerovich
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fernanda Ortis
- Department of Cell and Developmental BiologyUniversidade de São Paulo, São Paulo, Brazil
| | - Florent Allagnat
- Department of Vascular SurgeryCentre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alessandra K Cardozo
- ULB Center for Diabetes ResearchUniversité Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
248
|
Bensellam M, Maxwell EL, Chan JY, Luzuriaga J, West PK, Jonas JC, Gunton JE, Laybutt DR. Hypoxia reduces ER-to-Golgi protein trafficking and increases cell death by inhibiting the adaptive unfolded protein response in mouse beta cells. Diabetologia 2016; 59:1492-1502. [PMID: 27039902 DOI: 10.1007/s00125-016-3947-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Hypoxia may contribute to beta cell failure in type 2 diabetes and islet transplantation. The adaptive unfolded protein response (UPR) is required for endoplasmic reticulum (ER) homeostasis. Here we investigated whether or not hypoxia regulates the UPR in beta cells and the role the adaptive UPR plays during hypoxic stress. METHODS Mouse islets and MIN6 cells were exposed to various oxygen (O2) tensions. DNA-damage inducible transcript 3 (DDIT3), hypoxia-inducible transcription factor (HIF)1α and HSPA5 were knocked down using small interfering (si)RNA; Hspa5 was also overexpressed. db/db mice were used. RESULTS Hypoxia-response genes were upregulated in vivo in the islets of diabetic, but not prediabetic, db/db mice. In isolated mouse islets and MIN6 cells, O2 deprivation (1-5% vs 20%; 4-24 h) markedly reduced the expression of adaptive UPR genes, including Hspa5, Hsp90b1, Fkbp11 and spliced Xbp1. Coatomer protein complex genes (Copa, Cope, Copg [also known as Copg1], Copz1 and Copz2) and ER-to-Golgi protein trafficking were also reduced, whereas apoptotic genes (Ddit3, Atf3 and Trb3 [also known as Trib3]), c-Jun N-terminal kinase (JNK) phosphorylation and cell death were increased. Inhibition of JNK, but not HIF1α, restored adaptive UPR gene expression and ER-to-Golgi protein trafficking while protecting against apoptotic genes and cell death following hypoxia. DDIT3 knockdown delayed the loss of the adaptive UPR and partially protected against hypoxia-induced cell death. The latter response was prevented by HSPA5 knockdown. Finally, Hspa5 overexpression significantly protected against hypoxia-induced cell death. CONCLUSIONS/INTERPRETATION Hypoxia inhibits the adaptive UPR in beta cells via JNK and DDIT3 activation, but independently of HIF1α. Downregulation of the adaptive UPR contributes to reduced ER-to-Golgi protein trafficking and increased beta cell death during hypoxic stress.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Emma L Maxwell
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Jude Luzuriaga
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Phillip K West
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium
| | - Jenny E Gunton
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
- Westmead Hospital, Sydney, NSW, Australia
- The Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Australia, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
249
|
Wang Y, Zhao X, Wu X, Dai Y, Chen P, Xie L. microRNA-182 Mediates Sirt1-Induced Diabetic Corneal Nerve Regeneration. Diabetes 2016; 65:2020-31. [PMID: 27207535 DOI: 10.2337/db15-1283] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/06/2016] [Indexed: 11/13/2022]
Abstract
Sensory neurons are particularly susceptible to neuronal damage in diabetes, and silent mating type information regulation 2 homolog 1 (Sirt1) has been recently identified as a key gene in neuroprotection and wound healing. We found that the expression of Sirt1 was downregulated in trigeminal sensory neurons of diabetic mice. A microRNA microarray analysis identified microRNA-182 (miR-182) as a Sirt1 downstream effector, and the expression level of miR-182 was increased by Sirt1 overexpression in trigeminal neurons; Sirt1 bound to the promoter of miR-182 and regulated its transcription. We also revealed that miR-182 enhanced neurite outgrowth in isolated trigeminal sensory neurons and overcame the detrimental effects of hyperglycemia by stimulating corneal nerve regeneration by decreasing the expression of one of its target genes, NOX4. Furthermore, the effects of miR-182 on corneal nerve regeneration are associated with a functional recovery of corneal sensation in hyperglycemic conditions. These data demonstrate that miR-182 is a key regulator in diabetic corneal nerve regeneration through targeting NOX4, suggesting that miR-182 might be a potential target for the treatment of diabetic sensory nerve regeneration and diabetic keratopathy.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaowen Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoming Wu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Peng Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
250
|
Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol 2016; 16:469-84. [PMID: 27346803 DOI: 10.1038/nri.2016.62] [Citation(s) in RCA: 532] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.
Collapse
Affiliation(s)
- Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| |
Collapse
|