201
|
Kaikaew K, Steenbergen J, van Dijk TH, Grefhorst A, Visser JA. Sex Difference in Corticosterone-Induced Insulin Resistance in Mice. Endocrinology 2019; 160:2367-2387. [PMID: 31265057 PMCID: PMC6760317 DOI: 10.1210/en.2019-00194] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
Prolonged exposure to glucocorticoids (GCs) causes various metabolic derangements. These include obesity and insulin resistance, as inhibiting glucose utilization in adipose tissues is a major function of GCs. Although adipose tissue distribution and glucose homeostasis are sex-dependently regulated, it has not been evaluated whether GCs affect glucose metabolism and adipose tissue functions in a sex-dependent manner. In this study, high-dose corticosterone (rodent GC) treatment in C57BL/6J mice resulted in nonfasting hyperglycemia in male mice only, whereas both sexes displayed hyperinsulinemia with normal fasting glucose levels, indicative of insulin resistance. Metabolic testing using stable isotope-labeled glucose techniques revealed a sex-specific corticosterone-driven glucose intolerance. Corticosterone treatment increased adipose tissue mass in both sexes, which was reflected by elevated serum leptin levels. However, female mice showed more metabolically protective adaptations of adipose tissues than did male mice, demonstrated by higher serum total and high-molecular-weight adiponectin levels, more hyperplastic morphological changes, and a stronger increase in mRNA expression of adipogenic differentiation markers. Subsequently, in vitro studies in 3T3-L1 (white) and T37i (brown) adipocytes suggest that the increased leptin and adiponectin levels were mainly driven by the elevated insulin levels. In summary, this study demonstrates that GC-induced insulin resistance is more severe in male mice than in female mice, which can be partially explained by a sex-dependent adaptation of adipose tissues.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
202
|
Huang W, Queen NJ, McMurphy TB, Ali S, Cao L. Adipose PTEN regulates adult adipose tissue homeostasis and redistribution via a PTEN-leptin-sympathetic loop. Mol Metab 2019; 30:48-60. [PMID: 31767180 PMCID: PMC6812328 DOI: 10.1016/j.molmet.2019.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Despite the large body of work describing the tumor suppressor functions of Phosphatase and tensin homologue deleted on chromosome ten (PTEN), its roles in adipose homeostasis of adult animals are not yet fully understood. Here, we sought to determine the role of PTEN in whole-body adipose homeostasis. METHODS We genetically manipulated PTEN in specific fat depots through recombinant adeno-associated viral vector (rAAV)-based gene transfer of Cre recombinase to adult PTENflox mice. Additionally, we used a denervation agent, 6OHDA, to assess the role of sympathetic signaling in PTEN-related adipose remodeling. Furthermore, we chemically manipulated AKT signaling via a pan-AKT inhibitor, MK-2206, to assess the role of AKT in PTEN-related adipose remodeling. Finally, to understand the role of leptin and central signaling on peripheral tissues, we knocked down hypothalamic leptin receptor with a microRNA delivered by a rAAV vector. RESULTS Knockdown PTEN in individual fat depot resulted in massive expansion of the affected fat depot through activation of AKT signaling associated with suppression of lipolysis and induction of leptin. This hypertrophic expansion of the affected fat depot led to upregulation of PTEN level, higher lipolysis, and induction of white fat browning in other fat depots, and the compensatory reduced fat mass to maintain a set point of whole-body adiposity. Administration of AKT inhibitor MK-2206 prevented the adipose PTEN knockdown-associated effects. 6OHDA-mediated denervation demonstrated that sympathetic innervation was required for the PTEN knockdown-induced adipose redistribution. Knockdown hypothalamic leptin receptor attenuated the adipose redistribution induced by PTEN deficiency in individual fat depot. CONCLUSIONS Our results demonstrate the essential role of PTEN in adipose homeostasis, including mass and distribution in adulthood, and reveal an "adipose PTEN-leptin-sympathetic nervous system" feedback loop to maintain a set point of adipose PTEN and whole-body adiposity.
Collapse
Affiliation(s)
- Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Travis B McMurphy
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
203
|
Serum Amyloid P and a Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin Ligand Inhibit High-Fat Diet-Induced Adipose Tissue and Liver Inflammation and Steatosis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2400-2413. [PMID: 31539521 DOI: 10.1016/j.ajpath.2019.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
High-fat diet (HFD)-induced inflammation is associated with a variety of health risks. The systemic pentraxin serum amyloid P (SAP) inhibits inflammation. SAP activates the high-affinity IgG receptor Fcγ receptor I (FcγRI; CD64) and the lectin receptor dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209). Herein, we show that for mice on an HFD, injections of SAP and a synthetic CD209 ligand (1866) reduced HFD-increased adipose and liver tissue inflammation, adipocyte differentiation, and lipid accumulation in adipose tissue. HFD worsened glucose tolerance test results and caused increased adipocyte size; for mice on an HFD, SAP improved glucose tolerance test results and reduced adipocyte size. Mice on an HFD had elevated serum levels of IL-1β, IL-23, interferon (IFN)-β, IFN-γ, monocyte chemoattractant protein 1 [MCP-1; chemokine (C-C motif) ligand 2 (CCL2)], and tumor necrosis factor-α. SAP reduced serum levels of IL-23, IFN-β, MCP-1, and tumor necrosis factor-α, whereas 1866 reduced IFN-γ. In vitro, SAP, but not 1866, treated cells isolated from white fat tissue (stromal vesicular fraction) produced the anti-inflammatory cytokine IL-10. HFD causes steatosis, and both SAP and 1866 reduced it. Conversely, compared with control mice, SAP knockout mice fed on a normal diet had increased white adipocyte cell sizes, increased numbers of inflammatory cells in adipose and liver tissue, and steatosis; and these effects were exacerbated on an HFD. SAP and 1866 may inhibit some, but not all, of the effects of a high-fat diet.
Collapse
|
204
|
Ling Y, Carayol J, Galusca B, Canto C, Montaurier C, Matone A, Vassallo I, Minehira K, Alexandre V, Cominetti O, Núñez Galindo A, Corthésy J, Dayon L, Charpagne A, Métairon S, Raymond F, Descombes P, Casteillo F, Peoc'h M, Palaghiu R, Féasson L, Boirie Y, Estour B, Hager J, Germain N, Gheldof N. Persistent low body weight in humans is associated with higher mitochondrial activity in white adipose tissue. Am J Clin Nutr 2019; 110:605-616. [PMID: 31374571 PMCID: PMC6736451 DOI: 10.1093/ajcn/nqz144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/19/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Constitutional thinness (CT) is a state of low but stable body weight (BMI ≤18 kg/m2). CT subjects have normal-range hormonal profiles and food intake but exhibit resistance to weight gain despite living in the modern world's obesogenic environment. OBJECTIVE The goal of this study is to identify molecular mechanisms underlying this protective phenotype against weight gain. METHODS We conducted a clinical overfeeding study on 30 CT subjects and 30 controls (BMI 20-25 kg/m2) matched for age and sex. We performed clinical and integrative molecular and transcriptomic analyses on white adipose and muscle tissues. RESULTS Our results demonstrate that adipocytes were markedly smaller in CT individuals (mean ± SEM: 2174 ± 142 μm 2) compared with controls (3586 ± 216 μm2) (P < 0.01). The mitochondrial respiratory capacity was higher in CT adipose tissue, particularly at the level of complex II of the electron transport chain (2.2-fold increase; P < 0.01). This higher activity was paralleled by an increase in mitochondrial number (CT compared with control: 784 ± 27 compared with 675 ± 30 mitochondrial DNA molecules per cell; P < 0.05). No evidence for uncoupled respiration or "browning" of the white adipose tissue was found. In accordance with the mitochondrial differences, CT subjects had a distinct adipose transcriptomic profile [62 differentially expressed genes (false discovery rate of 0.1 and log fold change >0.75)], with many differentially expressed genes associating with positive metabolic outcomes. Pathway analyses revealed an increase in fatty acid oxidation ( P = 3 × 10-04) but also triglyceride biosynthesis (P = 3.6 × 10-04). No differential response to the overfeeding was observed in the 2 groups. CONCLUSIONS The distinct molecular signature of the adipose tissue in CT individuals suggests the presence of augm ented futile lipid cycling, rather than mitochondrial uncoupling, as a way to increase energy expenditure in CT individuals. We propose that increased mitochondrial function in adipose tissue is an important mediator in sustaining the low body weight in CT individuals. This knowledge could ultimately allow more targeted approaches for weight management treatment strategies. This trial was registered at clinicaltrials.gov as NCT02004821.
Collapse
Affiliation(s)
- Yiin Ling
- Division of Endocrinology, Diabetes, Metabolism, and Eating Disorders, CHU St-Etienne, France,Eating Disorders, Addictions, and Extreme Bodyweight Research Group (TAPE) EA 7423, Jean Monnet University, St-Etienne, France
| | - Jérôme Carayol
- Metabolic Health, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Bogdan Galusca
- Division of Endocrinology, Diabetes, Metabolism, and Eating Disorders, CHU St-Etienne, France,Eating Disorders, Addictions, and Extreme Bodyweight Research Group (TAPE) EA 7423, Jean Monnet University, St-Etienne, France
| | - Carles Canto
- Metabolic Health, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Christophe Montaurier
- Clermont Auvergne University, INRA, Human Nutrition Unit, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, Clermont-Ferrand, France
| | - Alice Matone
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy
| | - Irene Vassallo
- Precision Medicine Group, Quartz Bio SA, Geneva, Switzerland
| | - Kaori Minehira
- Metabolic Health, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Virginie Alexandre
- Metabolic Health, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - John Corthésy
- Proteomics, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Loïc Dayon
- Proteomics, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Aline Charpagne
- Genomics, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Sylviane Métairon
- Genomics, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Frédéric Raymond
- Genomics, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Patrick Descombes
- Genomics, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | - Léonard Féasson
- Interuniversity Laboratory of Motricity and Biology (LIBM) EA 7424, Jean Monnet University, St-Etienne, France
| | - Yves Boirie
- Clermont Auvergne University, INRA, Human Nutrition Unit, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne, Clermont-Ferrand, France
| | - Bruno Estour
- Division of Endocrinology, Diabetes, Metabolism, and Eating Disorders, CHU St-Etienne, France,Eating Disorders, Addictions, and Extreme Bodyweight Research Group (TAPE) EA 7423, Jean Monnet University, St-Etienne, France
| | - Jörg Hager
- Metabolic Health, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Natacha Germain
- Division of Endocrinology, Diabetes, Metabolism, and Eating Disorders, CHU St-Etienne, France,Eating Disorders, Addictions, and Extreme Bodyweight Research Group (TAPE) EA 7423, Jean Monnet University, St-Etienne, France,N Germain (E-mail: )
| | - Nele Gheldof
- Metabolic Health, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland,Address correspondence to N Gheldof (E-mail: )
| |
Collapse
|
205
|
Sex-Specific Differences in Fat Storage, Development of Non-Alcoholic Fatty Liver Disease and Brain Structure in Juvenile HFD-Induced Obese Ldlr-/-.Leiden Mice. Nutrients 2019; 11:nu11081861. [PMID: 31405127 PMCID: PMC6723313 DOI: 10.3390/nu11081861] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sex-specific differences play a role in metabolism, fat storage in adipose tissue, and brain structure. At juvenile age, brain function is susceptible to the effects of obesity; little is known about sex-specific differences in juvenile obesity. Therefore, this study examined sex-specific differences in adipose tissue and liver of high-fat diet (HFD)-induced obese mice, and putative alterations between male and female mice in brain structure in relation to behavioral changes during the development of juvenile obesity. METHODS In six-week-old male and female Ldlr-/-.Leiden mice (n = 48), the impact of 18 weeks of HFD-feeding was examined. Fat distribution, liver pathology and brain structure and function were analyzed imunohisto- and biochemically, in cognitive tasks and with MRI. RESULTS HFD-fed female mice were characterized by an increased perigonadal fat mass, pronounced macrovesicular hepatic steatosis and liver inflammation. Male mice on HFD displayed an increased mesenteric fat mass, pronounced adipose tissue inflammation and microvesicular hepatic steatosis. Only male HFD-fed mice showed decreased cerebral blood flow and reduced white matter integrity. CONCLUSIONS At young age, male mice are more susceptible to the detrimental effects of HFD than female mice. This study emphasizes the importance of sex-specific differences in obesity, liver pathology, and brain function.
Collapse
|
206
|
Adipocyte β-arrestin-2 is essential for maintaining whole body glucose and energy homeostasis. Nat Commun 2019; 10:2936. [PMID: 31270323 PMCID: PMC6610117 DOI: 10.1038/s41467-019-11003-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/12/2019] [Indexed: 02/05/2023] Open
Abstract
β-Arrestins are major regulators of G protein-coupled receptor-mediated signaling processes. Their potential roles in regulating adipocyte function in vivo remain unexplored. Here we report the novel finding that mice lacking β-arrestin-2 (barr2) selectively in adipocytes show significantly reduced adiposity and striking metabolic improvements when consuming excess calories. We demonstrate that these beneficial metabolic effects are due to enhanced signaling through adipocyte β3-adrenergic receptors (β3-ARs), indicating that barr2 represents a potent negative regulator of adipocyte β3-AR activity in vivo. Interestingly, essentially all beneficial metabolic effects caused by adipocyte barr2 deficiency are absent in adipocyte barr2-PRDM16 double KO mice, indicating that the metabolic improvements caused by the lack of barr2 in adipocytes are mediated by the browning/beiging of white adipose tissue. Our data support the novel concept that 'G protein-biased' β3-AR agonists that do not promote β3-AR/barr2 interactions may prove useful for the treatment of obesity and related metabolic disorders.
Collapse
|
207
|
Macdougall CE, Wood EG, Solomou A, Scagliotti V, Taketo MM, Gaston-Massuet C, Marelli-Berg FM, Charalambous M, Longhi MP. Constitutive Activation of β-Catenin in Conventional Dendritic Cells Increases the Insulin Reserve to Ameliorate the Development of Type 2 Diabetes in Mice. Diabetes 2019; 68:1473-1484. [PMID: 31048369 DOI: 10.2337/db18-1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/11/2019] [Indexed: 11/13/2022]
Abstract
β-Cell failure is central to the development of type 2 diabetes mellitus (T2DM). Dysregulation of metabolic and inflammatory processes during obesity contributes to the loss of islet function and impaired β-cell insulin secretion. Modulating the immune system, therefore, has the potential to ameliorate diseases. We report that inducing sustained expression of β-catenin in conventional dendritic cells (cDCs) provides a novel mechanism to enhance β-cell insulin secretion. Intriguingly, cDCs with constitutively activated β-catenin induced islet expansion by increasing β-cell proliferation in a model of diet-induced obesity. We further found that inflammation in these islets was reduced. Combined, these effects improved β-cell insulin secretion, suggesting a unique compensatory mechanism driven by cDCs to generate a greater insulin reserve in response to obesity-induced insulin resistance. Our findings highlight the potential of immune modulation to improve β-cell mass and function in T2DM.
Collapse
Affiliation(s)
- Claire E Macdougall
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Elizabeth G Wood
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Antonia Solomou
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, London, U.K
| | - Valeria Scagliotti
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, London, U.K
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Carles Gaston-Massuet
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, London, U.K
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.
| |
Collapse
|
208
|
Withaferin A inhibits adipogenesis in 3T3-F442A cell line, improves insulin sensitivity and promotes weight loss in high fat diet-induced obese mice. PLoS One 2019; 14:e0218792. [PMID: 31226166 PMCID: PMC6588247 DOI: 10.1371/journal.pone.0218792] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
The increased prevalence of obesity and associated insulin resistance calls for effective therapeutic treatment of metabolic diseases. The current PPARγ-targeting antidiabetic drugs have undesirable side effects. The present study investigated the anti-diabetic and anti-obesity effects of withaferin A (WFA) in diet-induced obese (DIO) C57BL/6J mice and also the anti-adipogenic effect of WFA in differentiating 3T3- F442A cells. DIO mice were treated with WFA (6 mg/kg) or rosiglitazone (10 mg/kg) for 8 weeks. At the end of the treatment period, metabolic profile, liver function and inflammatory parameters were obtained. Expression of selective genes controlling insulin signaling, inflammation, adipogenesis, energy expenditure and PPARγ phosphorylation-regulated genes in epididymal fats were analyzed. Furthermore, the anti-adipogenic effect of WFA was evaluated in 3T3- F442A cell line. WFA treatment prevented weight gain without affecting food or caloric intake in DIO mice. WFA-treated group also exhibited lower epididymal and mesenteric fat pad mass, an improvement in lipid profile and hepatic steatosis and a reduction in serum inflammatory cytokines. Insulin resistance was reduced as shown by an improvement in glucose and insulin tolerance and serum adiponectin. WFA treatment upregulated selective insulin signaling (insr, irs1, slc2a4 and pi3k) and PPARγ phosphorylation-regulated (car3, selenbp1, aplp2, txnip, and adipoq) genes, downregulated inflammatory (tnf-α and il-6) genes and altered energy expenditure controlling (tph2 and adrb3) genes. In 3T3- F442A cell line, withaferin A inhibited adipogenesis as indicated by a decrease in lipid accumulation in differentiating adipocytes and protein expression of PPARγ and C/EBPα. The effect of rosiglitazone on physiological and lipid profiles, insulin resistance, some genes expression and differentiating adipocytes were markedly different. Our data suggest that WFA is a promising therapeutic agent for both diabetes and obesity.
Collapse
|
209
|
Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine 2019; 44:489-501. [PMID: 31221584 PMCID: PMC6606747 DOI: 10.1016/j.ebiom.2019.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A positive energy balance promotes white adipose tissue (WAT) expansion which is characterized by activation of a repertoire of events including hypoxia, inflammation and extracellular matrix remodelling. The transmembrane glycoprotein CD248 has been implicated in all these processes in different malignant and inflammatory diseases but its potential impact in WAT and metabolic disease has not been explored. METHODS The role of CD248 in adipocyte function and glucose metabolism was evaluated by omics analyses in human WAT, gene knockdowns in human in vitro differentiated adipocytes and by adipocyte-specific and inducible Cd248 gene knockout studies in mice. FINDINGS CD248 is upregulated in white but not brown adipose tissue of obese and insulin-resistant individuals. Gene ontology analyses showed that CD248 expression associated positively with pro-inflammatory/pro-fibrotic pathways. By combining data from several human cohorts with gene knockdown experiments in human adipocytes, our results indicate that CD248 acts as a microenvironmental sensor which mediates part of the adipose tissue response to hypoxia and is specifically perturbed in white adipocytes in the obese state. Adipocyte-specific and inducible Cd248 knockouts in mice, both before and after diet-induced obesity and insulin resistance/glucose intolerance, resulted in increased microvascular density as well as attenuated hypoxia, inflammation and fibrosis without affecting fat cell volume. This was accompanied by significant improvements in insulin sensitivity and glucose tolerance. INTERPRETATION CD248 exerts detrimental effects on WAT phenotype and systemic glucose homeostasis which may be reversed by suppression of adipocyte CD248. Therefore, CD248 may constitute a target to treat obesity-associated co-morbidities.
Collapse
|
210
|
Haley MJ, Krishnan S, Burrows D, de Hoog L, Thakrar J, Schiessl I, Allan SM, Lawrence CB. Acute high-fat feeding leads to disruptions in glucose homeostasis and worsens stroke outcome. J Cereb Blood Flow Metab 2019; 39:1026-1037. [PMID: 29171775 PMCID: PMC6545621 DOI: 10.1177/0271678x17744718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic consumption of diets high in fat leads to obesity and can negatively affect brain function. Rodents made obese by long-term maintenance on a high-fat diet have worse outcome after experimental stroke. High-fat consumption for only three days does not induce obesity but has rapid effects on the brain including memory impairment. However, the effect of brief periods of high-fat feeding or high-fat consumption in the absence of obesity on stroke is unknown. We therefore tested the effect of an acute period of high-fat feeding (three days) in C57B/6 mice on outcome after middle cerebral artery occlusion (MCAo). In contrast to a chronic high-fat diet (7.5 months), an acute high-fat diet had no effect on body weight, adipose tissue, lipid profile or inflammatory markers (in periphery and the brain). Three days of high-fat feeding impaired glucose tolerance, increased plasma glucose and insulin and brain expression of the glucose transporter GLUT-1. Ischaemic damage was increased (48%) in mice fed an acute high-fat diet, and was associated with a further reduction in GLUT-1 in the ischaemic hemisphere. These data demonstrate that only a brief period of high-fat consumption has a negative effect on glucose homeostasis and worsens outcome after ischaemic stroke.
Collapse
Affiliation(s)
- Michael J Haley
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Siddharth Krishnan
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - David Burrows
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Leon de Hoog
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Jamie Thakrar
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Ingo Schiessl
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| |
Collapse
|
211
|
Ortega FJ, Moreno-Navarrete JM, Mercader JM, Gómez-Serrano M, García-Santos E, Latorre J, Lluch A, Sabater M, Caballano-Infantes E, Guzmán R, Macías-González M, Buxo M, Gironés J, Vilallonga R, Naon D, Botas P, Delgado E, Corella D, Burcelin R, Frühbeck G, Ricart W, Simó R, Castrillon-Rodríguez I, Tinahones FJ, Bosch F, Vidal-Puig A, Malagón MM, Peral B, Zorzano A, Fernández-Real JM. Cytoskeletal transgelin 2 contributes to gender-dependent adipose tissue expandability and immune function. FASEB J 2019; 33:9656-9671. [PMID: 31145872 DOI: 10.1096/fj.201900479r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During adipogenesis, preadipocytes' cytoskeleton reorganizes in parallel with lipid accumulation. Failure to do so may impact the ability of adipose tissue (AT) to shift between lipid storage and mobilization. Here, we identify cytoskeletal transgelin 2 (TAGLN2) as a protein expressed in AT and associated with obesity and inflammation, being normalized upon weight loss. TAGLN2 was primarily found in the adipose stromovascular cell fraction, but inflammation, TGF-β, and estradiol also prompted increased expression in human adipocytes. Tagln2 knockdown revealed a key functional role, being required for proliferation and differentiation of fat cells, whereas transgenic mice overexpressing Tagln2 using the adipocyte protein 2 promoter disclosed remarkable sex-dependent variations, in which females displayed "healthy" obesity and hypertrophied adipocytes but preserved insulin sensitivity, and males exhibited physiologic changes suggestive of defective AT expandability, including increased number of small adipocytes, activation of immune cells, mitochondrial dysfunction, and impaired metabolism together with decreased insulin sensitivity. The metabolic relevance and sexual dimorphism of TAGLN2 was also outlined by genetic variants that may modulate its expression and are associated with obesity and the risk of ischemic heart disease in men. Collectively, current findings highlight the contribution of cytoskeletal TAGLN2 to the obese phenotype in a gender-dependent manner.-Ortega, F. J., Moreno-Navarrete, J. M., Mercader, J. M., Gómez-Serrano, M., García-Santos, E., Latorre, J., Lluch, A., Sabater, M., Caballano-Infantes, E., Guzmán, R., Macías-González, M., Buxo, M., Gironés, J., Vilallonga, R., Naon, D., Botas, P., Delgado, E., Corella, D., Burcelin, R., Frühbeck, G., Ricart, W., Simó, R., Castrillon-Rodríguez, I., Tinahones, F. J., Bosch, F., Vidal-Puig, A., Malagón, M. M., Peral, B., Zorzano, A., Fernández-Real, J. M. Cytoskeletal transgelin 2 contributes to gender-dependent adipose tissue expandability and immune function.
Collapse
Affiliation(s)
- Francisco J Ortega
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - José M Moreno-Navarrete
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Josep M Mercader
- Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain
| | - María Gómez-Serrano
- Department of Endocrinology, Physiopathology, and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Eva García-Santos
- Department of Endocrinology, Physiopathology, and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Aina Lluch
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Mònica Sabater
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Estefanía Caballano-Infantes
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Rocío Guzmán
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-University of Cordoba-Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel Macías-González
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Service of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria de Malaga, Málaga, Spain
| | - Maria Buxo
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Jordi Gironés
- Department of Surgery, Institut d'Investigació Biomédica de Girona (IdIBGi), Girona, Spain
| | - Ramon Vilallonga
- Servicio de Cirugía General, Unidad de Cirugía Endocrina, Bariátrica y Metabólica, Hospital Universitario Vall d'Hebron, European Center of Excellence (EAC-BS), Barcelona, Spain
| | - Deborah Naon
- Departament de Bioquímica i Biología Molecular, Facultat de Biología, Institute for Research in Biomedicine (IRB Barcelona), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Patricia Botas
- Department of Medicine, University of Oviedo Endocrinology and Nutrition Service, Hospital Universitario Central de Asturias (HUCA) and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elias Delgado
- Department of Medicine, University of Oviedo Endocrinology and Nutrition Service, Hospital Universitario Central de Asturias (HUCA) and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Preventive Medicine and Public Health, Genetic and Molecular Epidemiology Unit, School of Medicine, University of Valencia, Valencia, Spain
| | - Remy Burcelin
- INSERM Unité 858, IFR31, Institut de Médecine Moléculaire de Rangueil, Université Paul Sabatier, Toulouse, France
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra (IdiSNA), Pamplona, Spain
| | - Wifredo Ricart
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Rafael Simó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Ignacio Castrillon-Rodríguez
- Departament de Bioquímica i Biología Molecular, Facultat de Biología, Institute for Research in Biomedicine (IRB Barcelona), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Service of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria de Malaga, Málaga, Spain
| | - Fátima Bosch
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Centre of Animal Biotechnology and Gene Therapy, School of Veterinary Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - María M Malagón
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-University of Cordoba-Reina Sofia University Hospital, Córdoba, Spain
| | - Belén Peral
- Department of Endocrinology, Physiopathology, and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biología Molecular, Facultat de Biología, Institute for Research in Biomedicine (IRB Barcelona), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M Fernández-Real
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology, and Nutrition (UDEN), Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| |
Collapse
|
212
|
Miranda K, Mehrpouya-Bahrami P, Nagarkatti PS, Nagarkatti M. Cannabinoid Receptor 1 Blockade Attenuates Obesity and Adipose Tissue Type 1 Inflammation Through miR-30e-5p Regulation of Delta-Like-4 in Macrophages and Consequently Downregulation of Th1 Cells. Front Immunol 2019; 10:1049. [PMID: 31134094 PMCID: PMC6523050 DOI: 10.3389/fimmu.2019.01049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity is characterized by chronic low-grade inflammation that contributes to development of cardiometabolic disorders. Cannabinoid receptor 1 (CB1) antagonists attenuate diet-induced obesity (DIO) and related inflammation, although the precise anti-inflammatory mechanisms involved have not been fully explored. In the current study we used a mouse model of DIO intervention to determine the microRNA (miRNA, miR)-mediated anti-obesity and anti-inflammatory effects of the CB1 antagonist, AM251. DIO mice that were fed high-fat diet (HFD) for 12 weeks were treated with AM251 (10 mg/kg) for an additional 4 weeks. HFD + AM251 mice experienced rapid and prolonged weight loss and reduced inflammatory M1 adipose tissue macrophage (ATM) infiltration. To investigate miRNA-mediated regulation of ATMs, F4/80+ cells from stromal vascular fractions (SVF) of epididymal fat were subjected to miR microarray analysis. Several miRs were differentially expressed in AM251-treated mice that were independent of calorie restriction. Prominently, miR-30e-5p was upregulated in ATMs from HFD + AM251 mice while the miR-30e-5p target, DLL4, was downregulated. Consistent with a decrease in DLL4-Notch signaling, fat storage and pro-inflammatory cytokine/chemokine expression was reduced following AM251 treatment. Furthermore, we found that AM251-treated macrophages can suppress DLL4-mediated Th1 polarization in CD4+ T cells. Together these data demonstrate that blocking CB1 receptors leads to upregulation of miR-30e-5p and down regulation of DLL4 in ATMs, which in turn suppress DLL4-Notch signaling-induced polarization of inflammatory Th1 cells and adipocyte energy storage. This combined effect of ATMs and T cells leads to an anti-inflammatory state and attenuation of DIO. These data support therapeutic potential of miR-30 in the treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Pegah Mehrpouya-Bahrami
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
213
|
Yiew NKH, Greenway C, Zarzour A, Ahmadieh S, Goo B, Kim D, Benson TW, Ogbi M, Tang YL, Chen W, Stepp D, Patel V, Hilton R, Lu XY, Hui DY, Kim HW, Weintraub NL. Enhancer of zeste homolog 2 (EZH2) regulates adipocyte lipid metabolism independent of adipogenic differentiation: Role of apolipoprotein E. J Biol Chem 2019; 294:8577-8591. [PMID: 30971429 DOI: 10.1074/jbc.ra118.006871] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/25/2019] [Indexed: 01/06/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), an epigenetic regulator that plays a key role in cell differentiation and oncogenesis, was reported to promote adipogenic differentiation in vitro by catalyzing trimethylation of histone 3 lysine 27. However, inhibition of EZH2 induced lipid accumulation in certain cancer and hepatocyte cell lines. To address this discrepancy, we investigated the role of EZH2 in adipogenic differentiation and lipid metabolism using primary human and mouse preadipocytes and adipose-specific EZH2 knockout (KO) mice. We found that the EZH2-selective inhibitor GSK126 induced lipid accumulation in human adipocytes, without altering adipocyte differentiation marker gene expression. Moreover, adipocyte-specific EZH2 KO mice, generated by crossing EZH2 floxed mice with adiponectin-Cre mice, displayed significantly increased body weight, adipose tissue mass, and adipocyte cell size and reduced very low-density lipoprotein (VLDL) levels, as compared with littermate controls. These phenotypic alterations could not be explained by differences in feeding behavior, locomotor activity, metabolic energy expenditure, or adipose lipolysis. In addition, human adipocytes treated with either GSK126 or vehicle exhibited comparable rates of glucose-stimulated triglyceride accumulation and fatty acid uptake. Mechanistically, lipid accumulation induced by GSK126 in adipocytes was lipoprotein-dependent, and EZH2 inhibition or gene deletion promoted lipoprotein-dependent lipid uptake in vitro concomitant with up-regulated apolipoprotein E (ApoE) gene expression. Deletion of ApoE blocked the effects of GSK126 to promote lipoprotein-dependent lipid uptake in murine adipocytes. Collectively, these results indicate that EZH2 inhibition promotes lipoprotein-dependent lipid accumulation via inducing ApoE expression in adipocytes, suggesting a novel mechanism of lipid regulation by EZH2.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia 30912; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Charlotte Greenway
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Abdalrahman Zarzour
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912; Department of Medicine (Division of Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Samah Ahmadieh
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912; Department of Medicine (Division of Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Brandee Goo
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912; Department of Medicine (Division of Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - David Kim
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Tyler W Benson
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Mourad Ogbi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Yao Liang Tang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912; Department of Medicine (Division of Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - David Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Vijay Patel
- Department of Cardiothoracic and Vascular Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Renee Hilton
- Department of Minimally Invasive and Digestive Diseases Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Xin-Yun Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912; Department of Medicine (Division of Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912; Department of Medicine (Division of Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia 30912.
| |
Collapse
|
214
|
Toney AM, Fan R, Xian Y, Chaidez V, Ramer-Tait AE, Chung S. Urolithin A, a Gut Metabolite, Improves Insulin Sensitivity Through Augmentation of Mitochondrial Function and Biogenesis. Obesity (Silver Spring) 2019; 27:612-620. [PMID: 30768775 DOI: 10.1002/oby.22404] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/08/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Urolithin A (UroA) is a major metabolite of ellagic acid produced following microbial catabolism in the gut. Emerging evidence has suggested that UroA modulates energy metabolism in various cells. However, UroA's physiological functions related to obesity and insulin resistance remain unclear. METHODS Male mice were intraperitoneally administrated either UroA or dimethyl sulfoxide (vehicle) along with a high-fat diet for 12 weeks. Insulin sensitivity was evaluated via glucose and insulin tolerance tests and acute insulin signaling. The effects of UroA on hepatic triglyceride accumulation, adipocyte size, mitochondrial DNA content, and proinflammatory gene expressions were determined. The impact of UroA on macrophage polarization and mitochondrial respiration were assessed in bone marrow-derived macrophages. RESULTS Administration of UroA (1) improved systemic insulin sensitivity, (2) attenuated triglyceride accumulation and elevated mitochondrial biogenesis in the liver, (3) reduced adipocyte hypertrophy and macrophage infiltration into the adipose tissue, and (4) altered M1/M2 polarization in peritoneal macrophages. In addition, UroA favored macrophage M2 polarization and mitochondrial respiration in bone marrow-derived macrophages. CONCLUSIONS UroA plays a direct role in improving systemic insulin sensitivity independent of its parental compounds. This work supports UroA's role in the metabolic benefits of ellagic acid-rich foods and highlights the significance of its microbial transformation in the gut.
Collapse
Affiliation(s)
- Ashley Mulcahy Toney
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rong Fan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Virginia Chaidez
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
215
|
Gligorovska L, Bursać B, Kovačević S, Veličković N, Matić G, Djordjevic A. Mif deficiency promotes adiposity in fructose-fed mice. J Endocrinol 2019; 240:133-145. [PMID: 30400058 DOI: 10.1530/joe-18-0333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
Abstract
The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in inflammation, regulation of energy metabolism and glucocorticoid action. Chronic low-grade inflammation may be caused by fructose intake, contributing to visceral adipose tissue (VAT) dysfunction. Since MIF is a known antagonist of glucocorticoid signaling, and deregulated glucocorticoid signaling can contribute to lipid metabolism disturbances, we hypothesized that altered MIF signaling might underlie fructose-induced adiposity through glucocorticoid action. We analyzed physiological and biochemical parameters, adipose tissue histology, insulin sensitivity and lipid metabolism in WT and MIF-/- C57Bl/6J mice consuming 20% fructose solution for 9 weeks. Glucocorticoid prereceptor metabolism and glucocorticoid receptor (GR) protein level were examined in VAT, together with the expression of glucocorticoid-target genes involved in lipid metabolism. The expression of adipogenic and lipogenic transcriptional regulators peroxisome proliferator-activated receptor gamma (PPARG) and sterol regulatory element-binding protein 1c (SREBP1c) was also assessed. Results showed disturbed insulin sensitivity in all MIF-/- mice, regardless of the diet. Mice on fructose diet had increased energy intake, but increased visceral adiposity and enlarged adipocytes were observed only in fructose-fed MIF-/- mice. Increased VAT corticosterone level and 11 beta-hydroxysteroid dehydrogenase type 1, hexose-6-phosphate dehydrogenase and GR protein levels were observed in the same animals, together with induced expression of examined lipogenic genes and accumulation of PPARG and SREBP1c. In conclusion, the results showed that dietary fructose was associated with increased visceral adiposity through activation of GR-regulated lipogenic genes, but only in the absence of MIF, which set the state of hyperinsulinemia and insulin resistance.
Collapse
Affiliation(s)
- Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| |
Collapse
|
216
|
Chayama Y, Ando L, Sato Y, Shigenobu S, Anegawa D, Fujimoto T, Taii H, Tamura Y, Miura M, Yamaguchi Y. Molecular Basis of White Adipose Tissue Remodeling That Precedes and Coincides With Hibernation in the Syrian Hamster, a Food-Storing Hibernator. Front Physiol 2019; 9:1973. [PMID: 30745884 PMCID: PMC6360343 DOI: 10.3389/fphys.2018.01973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian hibernators store fat extensively in white adipose tissues (WATs) during pre-hibernation period (Pre-HIB) to prepare for hibernation. However, the molecular mechanisms underlying the pre-hibernation remodeling of WAT have not been fully elucidated. Syrian hamsters, a food-storing hibernator, can hibernate when exposed to a winter-like short day photoperiod and cold ambient temperature (SD-Cold). Animals subjected to prolonged SD-Cold had smaller white adipocytes and beige-like cells within subcutaneous inguinal WAT (iWAT). Time-course analysis of gene expression with RNA-sequencing and quantitative PCR demonstrated that the mRNA expression of not only genes involved in lipid catabolism (lipolysis and beta-oxidation) but also lipid anabolism (lipogenesis and lipid desaturation) was simultaneously up-regulated prior to hibernation onset in the animals. The enhanced capacity of both lipid catabolism and lipid anabolism during hibernation period (HIB) is striking contrast to previous observations in fat-storing hibernators that only enhance catabolism during HIB. The mRNA expression of mTORC1 and PPAR signaling molecules increased, and pharmacological activation of PPARs indeed up-regulated lipid metabolism genes in iWAT explants from Syrian hamsters. These results suggest that the Syrian hamster rewires lipid metabolisms while preparing for hibernation to effectively utilize body fat and synthesize it from food intake during HIB.
Collapse
Affiliation(s)
- Yuichi Chayama
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Lisa Ando
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuya Sato
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Daisuke Anegawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Fujimoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Taii
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Tamura
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
217
|
Deletion of translin (Tsn) induces robust adiposity and hepatic steatosis without impairing glucose tolerance. Int J Obes (Lond) 2019; 44:254-266. [PMID: 30647452 PMCID: PMC6629527 DOI: 10.1038/s41366-018-0315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
Objective: Translin knockout (KO) mice display robust adiposity. Recent studies indicate that translin and its partner protein, trax, regulate the microRNA and ATM kinase signaling pathways, both of which have been implicated in regulating metabolism. In the course of characterizing the metabolic profile of these mice, we found that they display normal glucose tolerance despite their elevated adiposity. Accordingly, we investigated why translin KO mice display this paradoxical phenotype. Methods: To help distinguish between the metabolic effects of increased adiposity and those of translin deletion per se, we compared three groups: (1) wild-type (WT), (2) translin KO mice on a standard chow diet, and (3) adiposity-matched WT mice that were placed on a high-fat diet until they matched translin KO adiposity levels. All groups were scanned to determine their body composition and tested to evaluate their glucose and insulin tolerance. Plasma, hepatic and adipose tissue samples were collected and used for histological and molecular analyses. Results: Translin KO mice show normal glucose tolerance whereas adiposity-matched WT mice, placed on a high-fat diet, do not. In addition, translin KO mice display prominent hepatic steatosis that is more severe than that of adiposity-matched WT mice. Unlike adiposity-matched WT mice, translin KO mice display three key features that have been shown to reduce susceptibility to insulin resistance: increased accumulation of subcutaneous fat, increased levels of circulating adiponectin and decreased Tnfα expression in hepatic and adipose tissue. Conclusions: The ability of translin KO mice to retain normal glucose tolerance in the face of marked adipose tissue expansion may be due to the three protective factors noted above. Further studies aimed at defining the molecular bases for this combination of protective phenotypes may yield new approaches to limit the adverse metabolic consequences of obesity.
Collapse
|
218
|
Vincent V, Thakkar H, Aggarwal S, Mridha AR, Ramakrishnan L, Singh A. ATP-binding cassette transporter A1 (ABCA1) expression in adipose tissue and its modulation with insulin resistance in obesity. Diabetes Metab Syndr Obes 2019; 12:275-284. [PMID: 30881070 PMCID: PMC6395069 DOI: 10.2147/dmso.s186565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Adipose tissue dysfunction is at the center of metabolic dysfunctions associated with obesity. Through studies in isolated adipocytes and mouse models, ATP-binding cassette transporter A1 (ABCA1) expression in the adipose tissue has been shown to regulate high-density lipoprotein (HDL) cholesterol levels in the circulation and insulin sensitivity at both adipose tissue and whole-body levels. We aimed to explore the possible link between ABCA1 expression in the adipose tissue and metabolic derangements associated with obesity in humans. PATIENTS AND METHODS This exploratory study among individuals who were lean (body mass index [BMI]: 22.3±0.34 kg/m2, n=28) and obese (BMI: 44.48±5.3 kg/m2, n=34) compared the expression of ABCA1, adiponectin and GLUT4 (SLC2A4) in visceral and subcutaneous adipose tissue using quantitative real-time PCR and immunohistochemistry. Homeostatic model assessment for insulin resistance (HOMA-IR) and adipose tissue insulin resistance (adipo-IR) were used as insulin resistance markers. RESULTS Visceral adipose tissue from individuals who were obese had significantly lower ABCA1 (P=0.04 for mRNA and protein) and adiponectin (P=0.001 for mRNA) expression compared to that from lean individuals. Subcutaneous adipose tissue did not show any significant difference in the expression. When individuals were divided into insulin-sensitive (IS) and insulin-resistant (IR) groups based on HOMA-IR, IR individuals had lower ABCA1 (P=0.0001 for mRNA and P=0.009 for protein) expression compared to IS individuals in visceral adipose tissue, but not in subcutaneous adipose tissue. The difference was significant after adjusting for age, gender and BMI. ABCA1 mRNA expression in visceral adipose tissue correlated negatively with both HOMA-IR (r=-0.44, P=0.0003) and adipo-IR (r=-0.35, P=0.005) after adjusting for age, gender and BMI. ABCA1 expression in either visceral or subcutaneous adipose tissue did not have any significant correlation with HDL cholesterol levels or mean adipocyte area. CONCLUSION Obesity and insulin resistance are associated with lower expression of ABCA1 in visceral adipose tissue in humans.
Collapse
Affiliation(s)
- Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India,
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India,
| | - Sandeep Aggarwal
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India,
| |
Collapse
|
219
|
Coyne ES, Bédard N, Gong YJ, Faraj M, Tchernof A, Wing SS. The deubiquitinating enzyme USP19 modulates adipogenesis and potentiates high-fat-diet-induced obesity and glucose intolerance in mice. Diabetologia 2019; 62:136-146. [PMID: 30386869 DOI: 10.1007/s00125-018-4754-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Elucidating the molecular mechanisms of fat accumulation and its metabolic consequences is crucial to understanding and treating obesity, an epidemic disease. We have previously observed that Usp19 deubiquitinating enzyme-null mice (Usp19-/-) have significantly lower fat mass than wild-type (WT) mice. Thus, this study aimed to provide further understanding of the role of ubiquitin-specific peptidase 19 (USP19) in fat development, obesity and diabetes. METHODS In this study, the metabolic phenotypes of WT and Usp19-/- mice were compared. The stromal vascular fractions (SVFs) of inguinal fat pads from WT and Usp19-/- mice were isolated and cells were differentiated into adipocytes in culture to assess their adipogenic capacity. Mice were fed a high-fat diet (HFD) for 18 weeks. Body composition, glucose metabolism and metabolic variables were assessed. In addition, following insulin injection, signalling activity was analysed in the muscle, liver and adipose tissue. Finally, the correlation between the expression of Usp19 mRNA and adipocyte function genes in human adipose tissue was analysed. RESULT Upon adipogenic differentiation, SVF cells from Usp19-/- failed to accumulate lipid and upregulate adipogenic genes, unlike cells from WT mice. Usp19-/- mice were also found to have smaller fat pads throughout the lifespan and a higher percentage of lean mass, compared with WT mice. When fed an HFD, Usp19-/- mice were more glucose tolerant, pyruvate tolerant and insulin sensitive than WT mice. Moreover, HFD-fed Usp19-/- mice had enhanced insulin signalling in the muscle and the liver, but not in adipose tissue. Finally, USP19 mRNA expression in human adipose tissue was positively correlated with the expression of important adipocyte genes in abdominal fat depots, but not subcutaneous fat depots. CONCLUSIONS/INTERPRETATION USP19 is an important regulator of fat development. Its inactivation in mice exerts effects on multiple tissues, which may protect against the negative metabolic effects of high-fat feeding. These findings suggest that inhibition of USP19 could have therapeutic potential to protect from the deleterious consequences of obesity and diabetes.
Collapse
Affiliation(s)
- Erin S Coyne
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Nathalie Bédard
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., Room E02.7232, Montréal, QC, H4A 3J1, Canada
| | - Ying Jia Gong
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., Room E02.7232, Montréal, QC, H4A 3J1, Canada
| | - May Faraj
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Montréal Diabetes Research Center, Montréal, QC, Canada
| | - André Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Université Laval, Québec, QC, Canada
| | - Simon S Wing
- Department of Biochemistry, McGill University, Montréal, QC, Canada.
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, 1001 Décarie Blvd., Room E02.7232, Montréal, QC, H4A 3J1, Canada.
- Montréal Diabetes Research Center, Montréal, QC, Canada.
| |
Collapse
|
220
|
Kim B, Kwon J, Kim MS, Park H, Ji Y, Holzapfel W, Hyun CK. Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice. PLoS One 2018; 13:e0210120. [PMID: 30596786 PMCID: PMC6312313 DOI: 10.1371/journal.pone.0210120] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Recently, modulation of gut microbiota by probiotics treatment has been emerged as a promising strategy for treatment of metabolic disorders. Apart from lactic acid bacteria, Bacillus species (Bacillus spp.) have also been paid attention as potential probiotics, but nevertheless, the molecular mechanisms for their protective effect against metabolic dysfunction remain to be elucidated. In this study, we demonstrate that a probiotic mixture composed of 5 different Bacillus spp. protects mice from high-fat diet (HFD)-induced obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD). Probiotic Bacillus treatment substantially attenuated body weight gain and enhanced glucose tolerance by sensitizing insulin action in skeletal muscle and epididymal adipose tissue (EAT) of HFD-fed mice. Bacillus-treated HFD-fed mice also exhibited significantly suppressed chronic inflammation in the liver, EAT and skeletal muscle, which was observed to be associated with reduced HFD-induced intestinal permeability and enhanced adiponectin production. Additionally, Bacillus treatment significantly reversed HFD-induced hepatic steatosis. In Bacillus-treated mice, hepatic expression of lipid oxidative genes was significantly increased, and lipid accumulation in subcutaneous and mesenteric adipose tissues were significantly decreased, commensurate with down-regulated expression of genes involved in lipid uptake and lipogenesis. Although, in Bacillus-treated mice, significant alterations in gut microbiota composition was not observed, the enhanced expression of tight junction-associated proteins showed a possibility of improving gut barrier function by Bacillus treatment. Our findings provide possible explanations how Bacillus probiotics protect diet-induced obese mice against metabolic disorders, identifying the treatment of probiotic Bacillus as a potential therapeutic approach.
Collapse
Affiliation(s)
- Bobae Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Jeonghyeon Kwon
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Min-Seok Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Haryung Park
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Yosep Ji
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Holzapfel Effective Microbes (HEM), Pohang, Gyungbuk, Republic of Korea
| | - Wilhelm Holzapfel
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Holzapfel Effective Microbes (HEM), Pohang, Gyungbuk, Republic of Korea
| | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang, Gyungbuk, Republic of Korea
- Department of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
221
|
Amersfoort J, Douna H, Schaftenaar FH, Foks AC, Kröner MJ, van Santbrink PJ, van Puijvelde GHM, Bot I, Kuiper J. Defective Autophagy in T Cells Impairs the Development of Diet-Induced Hepatic Steatosis and Atherosclerosis. Front Immunol 2018; 9:2937. [PMID: 30619297 PMCID: PMC6299070 DOI: 10.3389/fimmu.2018.02937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Macroautophagy (or autophagy) is a conserved cellular process in which cytoplasmic cargo is targeted for lysosomal degradation. Autophagy is crucial for the functional integrity of different subsets of T cells in various developmental stages. Since atherosclerosis is an inflammatory disease of the vessel wall which is partly characterized by T cell mediated autoimmunity, we investigated how advanced atherosclerotic lesions develop in mice with T cells that lack autophagy-related protein 7 (Atg7), a protein required for functional autophagy. Mice with a T cell-specific knock-out of Atg7 (Lck-Cre Atg7f/f) had a diminished naïve CD4+ and CD8+ T cell compartment in the spleen and mediastinal lymph node as compared to littermate controls (Atg7f/f). Lck-Cre Atg7f/f and Atg7f/f mice were injected intravenously with rAAV2/8-D377Y-mPCSK9 and fed a Western-type diet to induce atherosclerosis. While Lck-Cre Atg7f/f mice had equal serum Proprotein Convertase Subtilisin/Kexin type 9 levels as compared to Atg7f/f mice, serum cholesterol levels were significantly diminished in Lck-Cre Atg7f/f mice. Histological analysis of the liver revealed less steatosis, and liver gene expression profiling showed decreased expression of genes associated with hepatic steatosis in Lck-Cre Atg7f/f mice as compared to Atg7f/f mice. The level of hepatic CD4+ and CD8+ T cells was greatly diminished but both CD4+ and CD8+ T cells showed a relative increase in their IFNγ and IL-17 production upon Atg7 deficiency. Atg7 deficiency furthermore reduced the hepatic NKT cell population which was decreased to < 0.1% of the lymphocyte population. Interestingly, T cell-specific knock-out of Atg7 decreased the mean atherosclerotic lesion size in the tri-valve area by over 50%. Taken together, T cell-specific deficiency of Atg7 resulted in a decrease in hepatic steatosis and limited inflammatory potency in the (naïve) T cell compartment in peripheral lymphoid tissues, which was associated with a strong reduction in experimental atherosclerosis.
Collapse
Affiliation(s)
- Jacob Amersfoort
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | - Hidde Douna
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | | | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | | | | | - Ilze Bot
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, Netherlands
| |
Collapse
|
222
|
Park JH, Wee SY, Chang J, Hong S, Lee JH, Cho KW, Choi CY. Carboxytherapy-Induced Fat loss is Associated with VEGF-Mediated Vascularization. Aesthetic Plast Surg 2018; 42:1681-1688. [PMID: 30194505 DOI: 10.1007/s00266-018-1222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/26/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Carboxytherapy is the transcutaneous administration of CO2 gas for therapeutic purposes. Although this non-surgical procedure has been widely used for reducing localized adiposity, its effectiveness on fat loss in obese patients and its underlying mechanisms remain unclear. METHODS C57BL/6 mice were fed with a high-fat diet for 8 weeks to generate obese animal models. Obese mice were randomly assigned to two groups: One group was administered air to both inguinal fat pads (air/air), and the other group was treated with air to the left inguinal fat pad and with CO2 to the right inguinal fat pad (air/CO2). Each group was treated every other day for 2 weeks. Morphological changes and expression levels of genes associated with lipogenesis and vascularization in fat were determined by histological and qRT-PCR analyses. RESULTS Mice treated with air/CO2 showed lower body weights and blood glucose levels compared to air/air-treated mice. Paired comparison analysis revealed that CO2 administration significantly decreased adipose tissue weights and adipocyte sizes compared to air treatment. Additionally, CO2 treatment markedly increased vessel numbers and expressions of Vegfa and Fgf1 genes in adipose tissues. The expressions of Fasn and Fabp4 genes were also modestly reduced in CO2-treated adipose tissue. Moreover, Ucp1 expression, the target gene of VEGF and a key regulator in energy expenditure, was significantly increased in CO2-treated adipose tissue. CONCLUSIONS Carboxytherapy is effective in the reduction of localized fat in obese patients which is mechanistically associated with alteration of the vasculature involved in VEGF. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
223
|
Morrison MC, Verschuren L, Salic K, Verheij J, Menke A, Wielinga PY, Iruarrizaga‐Lejarreta M, Gole L, Yu W, Turner S, Caspers MP, Martínez‐Arranz I, Pieterman E, Stoop R, van Koppen A, van den Hoek AM, Mato JM, Hanemaaijer R, Alonso C, Kleemann R. Obeticholic Acid Modulates Serum Metabolites and Gene Signatures Characteristic of Human NASH and Attenuates Inflammation and Fibrosis Progression in Ldlr-/-.Leiden Mice. Hepatol Commun 2018; 2:1513-1532. [PMID: 30556039 PMCID: PMC6287481 DOI: 10.1002/hep4.1270] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Concerns have been raised about whether preclinical models sufficiently mimic molecular disease processes observed in nonalcoholic steatohepatitis (NASH) patients, bringing into question their translational value in studies of therapeutic interventions in the process of NASH/fibrosis. We investigated the representation of molecular disease patterns characteristic for human NASH in high-fat diet (HFD)-fed Ldlr-/-.Leiden mice and studied the effects of obeticholic acid (OCA) on these disease profiles. Multiplatform serum metabolomic profiles and genome-wide liver transcriptome from HFD-fed Ldlr-/-.Leiden mice were compared with those of NASH patients. Mice were profiled at the stage of mild (24 weeks HFD) and severe (34 weeks HFD) fibrosis, and after OCA intervention (24-34 weeks; 10 mg/kg/day). Effects of OCA were analyzed histologically, biochemically, by immunohistochemistry, using deuterated water technology (de novo collagen formation), and by its effect on the human-based transcriptomics and metabolomics signatures. The transcriptomics and metabolomics profile of Ldlr-/-.Leiden mice largely reflected the molecular signature of NASH patients. OCA modulated the expression of these molecular profiles and quenched specific proinflammatory-profibrotic pathways. OCA attenuated specific facets of cellular inflammation in liver (F4/80-positive cells) and reduced crown-like structures in adipose tissue. OCA reduced de novo collagen formation and attenuated further progression of liver fibrosis, but did not reduce fibrosis below the level before intervention. Conclusion: HFD-fed Ldlr-/-.Leiden mice recapitulate molecular transcriptomic and metabolomic profiles of NASH patients, and these signatures are modulated by OCA. Intervention with OCA in developing fibrosis reduces collagen deposition and de novo synthesis but does not resolve already manifest fibrosis in the period studied. These data show that human molecular signatures can be used to evaluate the translational character of preclinical models for NASH.
Collapse
Affiliation(s)
- Martine C. Morrison
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems BiologyNetherlands Organisation for Applied Scientific ResearchZeistThe Netherlands
| | - Kanita Salic
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Joanne Verheij
- Department of PathologyAmsterdam Medical CenterAmsterdamThe Netherlands
| | - Aswin Menke
- Department of PathologyTriskelion B.V.ZeistThe Netherlands
| | - Peter Y. Wielinga
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | | | - Laurent Gole
- Computational BioImage Analysis Unit, Agency of Science, Technology and Research (A*STAR), Institute of Molecular and Cell BiologySingapore
| | - Wei‐Miao Yu
- Computational BioImage Analysis Unit, Agency of Science, Technology and Research (A*STAR), Institute of Molecular and Cell BiologySingapore
| | | | - Martien P.M. Caspers
- Department of Microbiology and Systems BiologyNetherlands Organisation for Applied Scientific ResearchZeistThe Netherlands
| | | | - Elsbet Pieterman
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Reinout Stoop
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Arianne van Koppen
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | - Anita M. van den Hoek
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | | | - Roeland Hanemaaijer
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| | | | - Robert Kleemann
- Department of Metabolic Health ResearchNetherlands Organization for Applied Scientific ResearchLeidenThe Netherlands
| |
Collapse
|
224
|
Bursać B, Djordjevic A, Veličković N, Milutinović DV, Petrović S, Teofilović A, Gligorovska L, Preitner F, Tappy L, Matić G. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet. Mol Cell Endocrinol 2018; 476:110-118. [PMID: 29729371 DOI: 10.1016/j.mce.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/04/2018] [Accepted: 04/29/2018] [Indexed: 12/28/2022]
Abstract
Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction.
Collapse
Affiliation(s)
- Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia.
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Snježana Petrović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Tadeuša Košćuška 1, Belgrade, 11129, Serbia
| | - Ana Teofilović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Frederic Preitner
- Mouse Metabolic Facility (MEF), Center for Integrative genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Luc Tappy
- Department of Physiology, University of Lausanne, UNIL-CHUV, Rue du Bugnon 7, CH-1005, Lausanne, Switzerland
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| |
Collapse
|
225
|
Nguyen LT, Chen H, Zaky A, Pollock C, Saad S. SIRT1 overexpression attenuates offspring metabolic and liver disorders as a result of maternal high-fat feeding. J Physiol 2018; 597:467-480. [PMID: 30381838 DOI: 10.1113/jp276957] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Maternal high-fat diet (MHF) consumption led to metabolic and liver disorders in male offspring, which are associated with reduced sirtuin (SIRT)1 expression and activity in the offspring liver SIRT1 overexpression in MHF offspring reduced their body weight and adiposity and normalized lipid metabolic markers in epididymal and retroperitoneal adipose tissues SIRT1 overexpression in MHF offspring improved glucose tolerance, as well as systemic and hepatic insulin sensitivity SIRT1 overexpression ameliorated MHF-induced lipogenesis, oxidative stress and fibrogenesis in the liver of offspring. ABSTRACT Maternal obesity can increase the risk of metabolic disorders in the offspring. However, the underlying mechanism responsible for this is not clearly understood. Previous evidence implied that sirtuin (SIRT)1, a potent regulator of energy metabolism and stress responses, may play an important role. In the present study, we have shown, in C57BL/6 mice, that maternal high-fat diet (HFD) consumption can induce a pre-diabetic and non-alcoholic fatty liver disease phenotype in the offspring, associated with reduced SIRT1 expression in the hypothalamus, white adipose tissues (WAT) and liver. Importantly, the overexpression of SIRT1 in these offspring significantly attenuated the excessive accumulation of epididymal (Epi) white adipose tissue (WAT) and retroperitoneal (Rp)WAT (P < 0.001), glucose intolerance and insulin resistance (both P < 0.05) at weaning age. These changes were associated with the suppression of peroxisome proliferator-activated receptor gamma (PPAR)γ (P < 0.01), PPARγ-coactivator 1-alpha (P < 0.05) and sterol regulatory element-binding protein-1c in EpiWAT (P < 0.01), whereas there was increased expression of PPARγ in RpWAT (P < 0.05). In the liver, PPARγ mRNA expression, as well as Akt protein expression and activity, were increased (P < 0.05), whereas fatty acid synthase and carbohydrate response element binding protein were downregulated (P < 0.05), supporting increased insulin sensitivity and reduced lipogenesis in the liver. In addition, hepatic expression of endogenous anti-oxidants, including glutathione peroxidase 1 and catalase, was increased (P < 0.01 and P < 0.05 respectively), whereas collagen and fibronectin deposition was suppressed (P < 0.01). Collectively, the present study provides direct evidence of the mechanistic significance of SIRT1 in maternal HFD-induced metabolic dysfunction in offspring and suggests that SIRT1 is a promising target for fetal reprogramming.
Collapse
Affiliation(s)
- Long T Nguyen
- Renal medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Amgad Zaky
- Renal medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Carol Pollock
- Renal medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Renal medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
226
|
Ferguson D, Blenden M, Hutson I, Du Y, Harris CA. Mouse Embryonic Fibroblasts Protect ob/ob Mice From Obesity and Metabolic Complications. Endocrinology 2018; 159:3275-3286. [PMID: 30085057 PMCID: PMC6109302 DOI: 10.1210/en.2018-00561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
The global obesity epidemic is fueling alarming rates of diabetes, associated with increased risk of cardiovascular disease and cancer. Leptin is a hormone secreted by adipose tissue that is a key regulator of body weight (BW) and energy expenditure. Leptin-deficient humans and mice are obese, diabetic, and infertile and have hepatic steatosis. Although leptin replacement therapy can alleviate the pathologies seen in leptin-deficient patients and mouse models, treatment is costly and requires daily injections. Because adipocytes are the source of leptin secretion, we investigated whether mouse embryonic fibroblasts (MEFs), capable of forming adipocytes, could be injected into ob/ob mice and prevent the metabolic phenotype seen in these leptin-deficient mice. We performed a single subcutaneous injection of MEFs into leptin-deficient ob/ob mice. The MEF injection formed a single fat pad that is histologically similar to white adipose tissue. The ob/ob mice receiving MEFs (obRs) had significantly lower BW compared with nontreated ob/ob mice, primarily because of decreased adipose tissue mass. Additionally, obR mice had significantly less liver steatosis and greater glucose tolerance and insulin sensitivity. obR mice also manifested lower food intake and greater energy expenditure than ob/ob mice, providing a mechanism underlying their metabolic improvement. Furthermore, obRs have sustained metabolic protection and restoration of fertility. Collectively, our studies show the importance of functional adipocytes in preventing metabolic abnormalities seen in leptin deficiency and point to the possibility of cell-based therapies for the treatment of leptin-deficient states.
Collapse
Affiliation(s)
- Daniel Ferguson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Mitchell Blenden
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, Florida
| | - Irina Hutson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Yingqiu Du
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Charles A Harris
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Veterans Affairs St. Louis Healthcare System, John Cochran Division, St. Louis, Missouri
| |
Collapse
|
227
|
Nilsson E, King SE, McBirney M, Kubsad D, Pappalardo M, Beck D, Sadler-Riggleman I, Skinner MK. Vinclozolin induced epigenetic transgenerational inheritance of pathologies and sperm epimutation biomarkers for specific diseases. PLoS One 2018; 13:e0202662. [PMID: 30157260 PMCID: PMC6114855 DOI: 10.1371/journal.pone.0202662] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Exposure to vinclozolin has been shown to induce the epigenetic transgenerational inheritance of increased susceptibility to disease, and to induce transgenerational changes to the epigenome. In the current study, gestating F0 generation rats were exposed to vinclozolin, and the subsequent F1, F2 and transgenerational F3 generations were evaluated for diseases and pathologies. F1 and F2 generation rats exhibited few abnormalities. However, F3 generation rats showed transgenerational increases in testis, prostate, and kidney disease, changes in the age of puberty onset in males, and an increased obesity rate in females. Overall there was an increase in the rate of animals with disease, and in the incidence of animals with multiple diseases. The objective of the current study was to analyze the sperm epigenome of F3 generation rats with specific abnormalities and compare them to rats without those abnormalities, in an effort to find epigenetic biomarkers of transgenerational disease. Unique signatures of differential DNA methylation regions (DMRs) in sperm were found that associated with testis disease, prostate disease and kidney disease. Confounding factors identified were the presence of multiple diseases in the analysis and the limited number of animals without disease. These results further our understanding of the mechanisms governing epigenetic transgenerational inheritance, and may lead in the future to the use of epigenetic biomarkers that will help predict an individual's susceptibility for specific diseases.
Collapse
Affiliation(s)
- Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Stephanie E. King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Deepika Kubsad
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Michelle Pappalardo
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
228
|
Silvester AJ, Aseer KR, Yun JW. Ablation of DJ-1 impairs brown fat function in diet-induced obese mice. Biochimie 2018; 154:107-118. [PMID: 30142366 DOI: 10.1016/j.biochi.2018.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
This study was conducted to investigate the effects of DJ-1 deficiency on brown adipose tissue (BAT) function in mice. DJ-1 knockout (KO) mouse models and wild-type littermates placed on a normal diet or high-fat diet were utilized to demonstrate the direct consequences of DJ-1 deletion on BAT characteristics, thermogenic ability, lipid metabolism, and microenvironment regulation. Global DJ-1 KO mice had defective brown adipose tissue activity culminating in a profound whitening of BAT. Despite aberrations in inactive BAT associated with greater lipid accretion, decreased sympathetic activity, mitochondrial dysfunction, reduced vascularity, and autophagy activation, we found that the body weight and energy balance were unaffected in male mice depleted of DJ-1. Taken together, the results of this study suggest that male DJ-1 KO mice exhibit defects in BAT activity but do not gain more weight, revealing that BAT activity is not necessarily required for predisposing DJ-1 KO mice to obesity. Therefore, therapeutic targeting of DJ-1 in BAT could provide novel insights into the treatment of obesity.
Collapse
Affiliation(s)
| | - Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
229
|
M1 macrophage subtypes activation and adipocyte dysfunction worsen during prolonged consumption of a fructose-rich diet. J Nutr Biochem 2018; 61:173-182. [PMID: 30245336 DOI: 10.1016/j.jnutbio.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
Abstract
Fructose-rich diet (FRD) has been associated with obesity development, which is characterized by adipocytes hypertrophy and chronic low-grade inflammation. Interaction of adipocytes and immune cells plays a key role in adipose tissue (AT) alterations in obesity. We assessed the metabolic and immune impairments in AT in a murine obesity model induced by FRD at different periods. Adult Swiss mice were divided into groups of 6 and 10 weeks of fructose (FRD 6wk, FRD 10wk) or water intake (CTR 6wk, CTR 10wk). FRD induced increased in body weight, epidydimal AT mass, and plasmatic and liver Tg, and impaired insulin sensitivity. Also, hypertrophic adipocytes from FRD 6wk-10wk mice showed higher IL-6 when stimulated with LPS and leptin secretion. Several of these alterations worsened in FRD 10wk. Regarding AT inflammation, FRD mice have increased TNFα, IL-6 and IL1β, and decrease in IL-10 and CD206 mRNA levels. Using CD11b, LY6C, CD11c and CD206 as macrophages markers, we identified for first time in AT M1 (M1a: Ly6C+/-CD11c+CD206- and M1b: Ly6C+/-CD11c+CD206+) and M2 subtypes (Ly6C+/-CD11c-CD206+). M1a phenotype increased from 6 weeks onward, while Ly6C+/- M1b phenotype increased only after 10 weeks. Finally, co-culture of RAW264.7 (monocytes cell line) and CTR or FRD adipocytes showed that FRD 10wk adipocytes increased IL-6 expression in non- or LPS-stimulated monocytes. Our results showed that AT dysfunction got worse as the period of fructose consumption was longer. Inflammatory macrophage subtypes increased depending on the period of FRD intake, and hypertrophic adipocytes were able to create an environment that favored M1 phenotype in vitro.
Collapse
|
230
|
Bagchi RA, Ferguson BS, Stratton MS, Hu T, Cavasin MA, Sun L, Lin YH, Liu D, Londono P, Song K, Pino MF, Sparks LM, Smith SR, Scherer PE, Collins S, Seto E, McKinsey TA. HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight 2018; 3:120159. [PMID: 30089714 PMCID: PMC6129125 DOI: 10.1172/jci.insight.120159] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Little is known about the biological function of histone deacetylase 11 (HDAC11), which is the lone class IV HDAC. Here, we demonstrate that deletion of HDAC11 in mice stimulates brown adipose tissue (BAT) formation and beiging of white adipose tissue (WAT). Consequently, HDAC11-deficient mice exhibit enhanced thermogenic potential and, in response to high-fat feeding, attenuated obesity, improved insulin sensitivity, and reduced hepatic steatosis. Ex vivo and cell-based assays revealed that HDAC11 catalytic activity suppresses the BAT transcriptional program, in both the basal state and in response to β-adrenergic receptor signaling, through a mechanism that is dependent on physical association with BRD2, a bromodomain and extraterminal (BET) acetyl-histone-binding protein. These findings define an epigenetic pathway for the regulation of energy homeostasis and suggest the potential for HDAC11-selective inhibitors for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Rushita A. Bagchi
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Matthew S. Stratton
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tianjing Hu
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria A. Cavasin
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lei Sun
- George Washington University Cancer Center, Washington, DC, USA
| | - Ying-Hsi Lin
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dianxin Liu
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Pilar Londono
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kunhua Song
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria F. Pino
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Lauren M. Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sheila Collins
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Edward Seto
- George Washington University Cancer Center, Washington, DC, USA
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, and
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
231
|
Nagy CT, Koncsos G, Varga ZV, Baranyai T, Tuza S, Kassai F, Ernyey AJ, Gyertyán I, Király K, Oláh A, Radovits T, Merkely B, Bukosza N, Szénási G, Hamar P, Mathé D, Szigeti K, Pelyhe C, Jelemenský M, Onódi Z, Helyes Z, Schulz R, Giricz Z, Ferdinandy P. Selegiline reduces adiposity induced by high-fat, high-sucrose diet in male rats. Br J Pharmacol 2018; 175:3713-3726. [PMID: 29971762 DOI: 10.1111/bph.14437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Incidence and severity of obesity are increasing worldwide, however, efficient and safe pharmacological treatments are not yet available. Certain MAO inhibitors reduce body weight, although their effects on metabolic parameters have not been investigated. Here, we have assessed effects of a widely used, selective MAO-B inhibitor, selegiline, on metabolic parameters in a rat model of diet-induced obesity. EXPERIMENTAL APPROACH Male Long-Evans rats were given control (CON) or a high-fat (20%), high-sucrose (15%) diet (HFS) for 25 weeks. From week 16, animals were injected s.c. with 0.25 mg·kg-1 selegiline (CON + S and HFS + S) or vehicle (CON, HFS) once daily. Whole body, subcutaneous and visceral fat was measured by CT, and glucose and insulin tolerance were tested. Expression of glucose transporters and chemokines was assessed by quantitative RT-PCR. KEY RESULTS Selegiline decreased whole body fat, subcutaneous- and visceral adiposity, measured by CT and epididymal fat weight in the HFS group, compared with HFS placebo animals, without influencing body weight. Oral glucose tolerance and insulin tolerance tests showed impaired glucose homeostasis in HFS and HFS + S groups, although insulin levels in plasma and pancreas were unchanged. HFS induced expression of Srebp-1c, Glut1 and Ccl3 in adipose tissue, which were alleviated by selegiline. CONCLUSIONS AND IMPLICATIONS Selegiline reduced adiposity, changes in adipose tissue energy metabolism and adipose inflammation induced by HFS diet without affecting the increased body weight, impairment of glucose homeostasis, or behaviour. These results suggest that selegiline could mitigate harmful effects of visceral adiposity.
Collapse
Affiliation(s)
- Csilla Terézia Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Koncsos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sebestyén Tuza
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Kassai
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Aliz Judit Ernyey
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nóra Bukosza
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Szénási
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Clinical Experimental Research Institute, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Translational Medicine Institute, Faculty of Medicine, Pécs University, Pécs, Hungary
| | - Domokos Mathé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Csilla Pelyhe
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Marek Jelemenský
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Germany
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
232
|
Nguyen LT, Chen H, Mak C, Zaky A, Pollock C, Saad S. SRT1720 attenuates obesity and insulin resistance but not liver damage in the offspring due to maternal and postnatal high-fat diet consumption. Am J Physiol Endocrinol Metab 2018. [PMID: 29533740 DOI: 10.1152/ajpendo.00472.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies indicate that sirtuin-1 (SIRT1), an important metabolic sensor and regulator of life span, plays a mechanistic role in maternal obesity-induced programming of metabolic disorders in the offspring. In this study we investigate whether SIRT1 activation in early childhood can mitigate metabolic disorders due to maternal and postnatal high-fat feeding in mice. Male offspring born to chow-fed (MC) or high fat diet-fed dams (MHF) were weaned onto postnatal chow or high-fat diet and treated with SRT1720 (25 mg/kg ip every 2 days) or vehicle control for 6 wk and examined for metabolic disorders. MHF exacerbated offspring body weight and insulin resistance in the offspring exposed to postnatal HFD (OHF). These metabolic changes were associated with reduced hepatic lipid droplet accumulation but increased plasma levels of alanine aminotransferase (ALT), a marker of liver damage. SRT1720 significantly decreased offspring body weight, adiposity, glucose intolerance, and hyperleptinemia due to OHF and reversed hyperinsulinemia and adipocyte hypertrophy due to the additive effects of MHF. Although SRT1720 suppresses liver lipogenesis, inflammation, and oxidative stress markers, it also reduces antioxidants and increased liver collagen deposition in OHF offspring independent of MHF. Hepatic steatosis was attenuated only in MC/OHF offspring in association with elevated plasma ALT levels. The study suggests that postnatal SRT1720 administration can mitigate obesity and insulin resistance in the offspring due to maternal and postnatal HFD exposure. However, the possibility of liver toxicity needs to be further examined.
Collapse
Affiliation(s)
- Long The Nguyen
- Renal Medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney , Sydney, New South Wales , Australia
| | - Hui Chen
- Renal Medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney , Sydney, New South Wales , Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney , Sydney, New South Wales , Australia
| | - Crystal Mak
- School of Life Sciences, Faculty of Science, University of Technology Sydney , Sydney, New South Wales , Australia
| | - Amgad Zaky
- Renal Medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney , Sydney, New South Wales , Australia
| | - Carol Pollock
- Renal Medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney , Sydney, New South Wales , Australia
| | - Sonia Saad
- Renal Medicine, Kolling Institute, Royal North Shore Hospital, University of Sydney , Sydney, New South Wales , Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney , Sydney, New South Wales , Australia
| |
Collapse
|
233
|
van Loon NM, Ottenhoff R, Kooijman S, Moeton M, Scheij S, Roscam Abbing RL, Gijbels MJ, Levels JH, Sorrentino V, Berbée JF, Rensen PC, Zelcer N. Inactivation of the E3 Ubiquitin Ligase IDOL Attenuates Diet-Induced Obesity and Metabolic Dysfunction in Mice. Arterioscler Thromb Vasc Biol 2018; 38:1785-1795. [PMID: 29903737 PMCID: PMC6092113 DOI: 10.1161/atvbaha.118.311168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
Objective- The E3 ubiquitin ligase IDOL (inducible degrader of the LDLR [LDL (low-density lipoprotein) receptor]) is a post-transcriptional regulator of LDLR abundance. Model systems and human genetics support a role for IDOL in regulating circulating LDL levels. Whether IDOL plays a broader metabolic role and affects development of metabolic syndrome-associated comorbidities is unknown. Approach and Results- We studied WT (wild type) and Idol(-/-) (Idol-KO) mice in 2 models: physiological aging and diet-induced obesity. In both models, deletion of Idol protected mice from metabolic dysfunction. On a Western-type diet, Idol loss resulted in decreased circulating levels of cholesterol, triglycerides, glucose, and insulin. This was accompanied by protection from weight gain in short- and long-term dietary challenges, which could be attributed to reduced hepatosteatosis and fat mass in Idol-KO mice. Although feeding and intestinal fat uptake were unchanged in Idol-KO mice, their brown adipose tissue was protected from lipid accumulation and had elevated expression of UCP1 (uncoupling protein 1) and TH (tyrosine hydroxylase). Indirect calorimetry indicated a marked increase in locomotion and suggested a trend toward increased cumulative energy expenditure and fat oxidation. An increase in in vivo clearance of reconstituted lipoprotein particles in Idol-KO mice may sustain this energetic demand. In the BXD mouse genetic reference population, hepatic Idol expression correlates with multiple metabolic parameters, thus providing support for findings in the Idol-KO mice. Conclusions- Our study uncovers an unrecognized role for Idol in regulation of whole body metabolism in physiological aging and on a Western-type diet. These findings support Idol inhibition as a therapeutic strategy to target multiple metabolic syndrome-associated comorbidities.
Collapse
Affiliation(s)
- Nienke M. van Loon
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Roelof Ottenhoff
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Sander Kooijman
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Martina Moeton
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | - Saskia Scheij
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| | | | - Marion J.J. Gijbels
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
- Department of Molecular Genetics (M.J.J.G.)
| | | | - Vincenzo Sorrentino
- CARIM, Maastricht University, The Netherlands; and Laboratory for Integrative and Systems Physiology, EPFL, Lausanne, Switzerland (V.S.)
| | - Jimmy F.P. Berbée
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Patrick C.N. Rensen
- Academic Medical Center, University of Amsterdam, The Netherlands; Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, The Netherlands (S.K., J.F.P.B., P.C.N.R.)
| | - Noam Zelcer
- From the Department of Medical Biochemistry (N.M.v.L., R.O., M.M., S.S., M.J.J.G., N.Z.)
| |
Collapse
|
234
|
López P, Sánchez M, Perez-Cruz C, Velázquez-Villegas LA, Syeda T, Aguilar-López M, Rocha-Viggiano AK, Del Carmen Silva-Lucero M, Torre-Villalvazo I, Noriega LG, Torres N, Tovar AR. Long-Term Genistein Consumption Modifies Gut Microbiota, Improving Glucose Metabolism, Metabolic Endotoxemia, and Cognitive Function in Mice Fed a High-Fat Diet. Mol Nutr Food Res 2018; 62:e1800313. [PMID: 29979819 DOI: 10.1002/mnfr.201800313] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/18/2018] [Indexed: 12/19/2022]
Abstract
SCOPE The aim of this study is to assess whether the long-term addition of genistein to a high-fat diet can ameliorate the metabolic and the cognitive alterations and whether the changes can be associated with modifications to the gut microbiota. METHODS AND RESULTS C57/BL6 mice were fed either a control (C) diet, a high-fat (HF) diet, or a high-fat diet containing genistein (HFG) for 6 months. During the study, indirect calorimetry, IP glucose tolerance tests, and behavioral analyses were performed. At the end of the study, plasma, liver, brain, and fecal samples were collected. The results showed that mice fed the HFG diet gained less weight, had lower serum triglycerides, and an improvement in glucose tolerance than those fed an HF diet. Mice fed the HFG diet also modified the gut microbiota that was associated with lower circulating levels of lipopolysaccharide (LPS) and reduced expression of pro-inflammatory cytokines in the liver compared to those fed HF diet. The reduction in LPS by the consumption of genistein was accompanied by an improvement of the cognitive function. CONCLUSIONS Genistein is able to regulate the gut microbiota, reducing metabolic endotoxemia and decreasing the neuroinflammatory response despite the consumption of a HF diet.
Collapse
Affiliation(s)
- Patricia López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| | - Mónica Sánchez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| | - Claudia Perez-Cruz
- Departamento de Farmacología, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| | - Tauqeerunnisa Syeda
- Departamento de Farmacología, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Miriam Aguilar-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| | - Ana K Rocha-Viggiano
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| | - María Del Carmen Silva-Lucero
- Departamento de Farmacología, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Belisario Dominguez Sección XVI, 14080, Ciudad de México, México
| |
Collapse
|
235
|
Abstract
The size distribution of adipocytes in a suspension, after collagenase digestion of adipose tissue, can be determined by computerized image analysis. Free lipid, forming droplets, in such suspensions implicates a bias since droplets present in the images may be identified as adipocytes. This problem is not always adjusted for and some reports state that distinguishing droplets and cells is a considerable problem. In addition, if the droplets originate mainly from rupture of large adipocytes, as often described, this will also bias size analysis. We here confirm that our ordinary manual means of distinguishing droplets and adipocytes in the images ensure correct and rapid identification before exclusion of the droplets. Further, in our suspensions, prepared with focus on gentle handling of tissue and cells, we find no association between the amount of free lipid and mean adipocyte size or proportion of large adipocytes.
Collapse
Affiliation(s)
- Henrik Svensson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Olausson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Holmäng
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Edén
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Lönn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
236
|
Nicu C, Pople J, Bonsell L, Bhogal R, Ansell DM, Paus R. A guide to studying human dermal adipocytes in situ. Exp Dermatol 2018; 27:589-602. [DOI: 10.1111/exd.13549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Carina Nicu
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | | | - Laura Bonsell
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | | | - David M. Ansell
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | - Ralf Paus
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
- Department of Dermatology and Cutaneous Surgery; Miller School of Medicine; University of Miami; Miami FL USA
| |
Collapse
|
237
|
Podyma B, Sun H, Wilson EA, Carlson B, Pritikin E, Gavrilova O, Weinstein LS, Chen M. The stimulatory G protein G sα is required in melanocortin 4 receptor-expressing cells for normal energy balance, thermogenesis, and glucose metabolism. J Biol Chem 2018; 293:10993-11005. [PMID: 29794140 DOI: 10.1074/jbc.ra118.003450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/21/2018] [Indexed: 01/05/2023] Open
Abstract
Central melanocortin 4 receptors (MC4Rs) stimulate energy expenditure and inhibit food intake. MC4Rs activate the G protein Gsα, but whether Gsα mediates all MC4R actions has not been established. Individuals with Albright hereditary osteodystrophy (AHO), who have heterozygous Gsα-inactivating mutations, only develop obesity when the Gsα mutation is present on the maternal allele because of tissue-specific genomic imprinting. Furthermore, evidence in mice implicates Gsα imprinting within the central nervous system (CNS) in this disorder. In this study, we examined the effects of Gsα in MC4R-expressing cells on metabolic regulation. Mice with homozygous Gsα deficiency in MC4R-expressing cells (MC4RGsKO) developed significant obesity with increased food intake and decreased energy expenditure, along with impaired insulin sensitivity and cold-induced thermogenesis. Moreover, the ability of the MC4R agonist melanotan-II (MTII) to stimulate energy expenditure and to inhibit food intake was impaired in MC4RGsKO mice. MTII failed to stimulate the secretion of the anorexigenic hormone peptide YY (PYY) from enteroendocrine L cells, a physiological response mediated by MC4R-Gsα signaling, even though baseline PYY levels were elevated in these mice. In Gsα heterozygotes, mild obesity and reduced energy expenditure were present only in mice with a Gsα deletion on the maternal allele in MC4R-expressing cells, whereas food intake was unaffected. These results demonstrate that Gsα signaling in MC4R-expressing cells is required for controlling energy balance, thermogenesis, and peripheral glucose metabolism. They further indicate that Gsα imprinting in MC4R-expressing cells contributes to obesity in Gsα knockout mice and probably in individuals with Albright hereditary osteodystrophy as well.
Collapse
Affiliation(s)
| | - Hui Sun
- From the Metabolic Diseases Branch and
| | | | | | | | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Min Chen
- From the Metabolic Diseases Branch and
| |
Collapse
|
238
|
An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med 2018; 24:814-822. [PMID: 29785025 PMCID: PMC5992032 DOI: 10.1038/s41591-018-0032-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 02/15/2018] [Indexed: 01/16/2023]
Abstract
Beige adipocytes have been recently shown to regulate energy dissipation when activated, and help organisms defend against hypothermia and obesity. Prior reports indicate beige-like adipocytes exist in adult humans and may present novel opportunities to curb the global epidemic in obesity and metabolic illnesses. In an effort to identify unique features of activated beige adipocytes, we uncovered that the cholinergic receptor nicotinic alpha 2 subunit (Chrna2) is induced in subcutaneous fat during the activation of these cells, and that acetylcholine-producing immune cells within this tissue regulate this signaling pathway via paracrine mechanisms. CHRNA2 functions selectively in uncoupling protein 1 (Ucp1)+ beige adipocytes, increasing thermogenesis through a cAMP and PKA pathway. Furthermore, this signaling via CHRNA2 is conserved and present in human subcutaneous adipocytes. Inactivation of Chrna2 in mice compromises the cold-induced thermogenic response selectively in subcutaneous fat and exacerbates high-fat diet-induced obesity and associated metabolic disorders, indicating that even partial loss of beige fat regulation in vivo leads to detrimental consequences. Our results reveal a beige-selective immune-adipose interaction mediated through CHRNA2 and identify a novel function of nicotinic acetylcholine receptors (nAChRs) in energy metabolism. These findings may lead to identification of therapeutic targets to counteract human obesity.
Collapse
|
239
|
Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, Heikkinen S, Norton L. The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function. Diabetes 2018; 67:554-568. [PMID: 29317436 PMCID: PMC5860863 DOI: 10.2337/db17-0318] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
The gene encoding for transcription factor 7-like 2 (TCF7L2) is the strongest type 2 diabetes mellitus (T2DM) candidate gene discovered to date. The TCF7L2 protein is a key transcriptional effector of the Wnt/β-catenin signaling pathway, which is an important developmental pathway that negatively regulates adipogenesis. However, the precise role that TCF7L2 plays in the development and function of adipocytes remains largely unknown. Using a combination of in vitro approaches, we first show that TCF7L2 protein is increased during adipogenesis in 3T3-L1 cells and primary adipocyte stem cells and that TCF7L2 expression is required for the regulation of Wnt signaling during adipogenesis. Inactivation of TCF7L2 protein by removing the high-mobility group (HMG)-box DNA binding domain in mature adipocytes in vivo leads to whole-body glucose intolerance and hepatic insulin resistance. This phenotype is associated with increased subcutaneous adipose tissue mass, adipocyte hypertrophy, and inflammation. Finally, we demonstrate that TCF7L2 mRNA expression is downregulated in humans with impaired glucose tolerance and adipocyte insulin resistance, highlighting the translational potential of these findings. In summary, our data indicate that TCF7L2 has key roles in adipose tissue development and function that may reveal, at least in part, how TCF7L2 contributes to the pathophysiology of T2DM.
Collapse
Affiliation(s)
- Xi Chen
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Iriscilla Ayala
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Chris Shannon
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Marcel Fourcaudot
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Nikhil K Acharya
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Christopher P Jenkinson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Harlingen, TX
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Luke Norton
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
240
|
Ryan GE, Malik S, Mellon PL. Antiandrogen Treatment Ameliorates Reproductive and Metabolic Phenotypes in the Letrozole-Induced Mouse Model of PCOS. Endocrinology 2018; 159:1734-1747. [PMID: 29471436 PMCID: PMC6097580 DOI: 10.1210/en.2017-03218] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/03/2018] [Indexed: 12/31/2022]
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrinopathy in women of reproductive age, is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Although its etiology is unknown, excess androgens are thought to be a critical factor driving the pathology of PCOS. We previously demonstrated that continuous exposure to the aromatase inhibitor letrozole (LET) in mice produces many hallmarks of PCOS, including elevated testosterone (T) and luteinizing hormone, anovulation, and obesity. In the current study, we sought to determine whether androgen receptor (AR) actions are responsible for any of the phenotypes observed in LET mice. C57BL/6 female mice were subcutaneously implanted with LET or placebo control and subsequently treated with the nonsteroidal AR antagonist flutamide or vehicle control. Flutamide treatment in LET females reversed elevated T levels and restored ovarian expression of Cyp17a1 (critical for androgen synthesis) to normal levels. Pituitary expression of Lhb was decreased in LET females that received flutamide treatment, with no changes in expression of Fshb or Gnrhr. Flutamide treatment also restored estrous cycling and reduced the number of ovarian cyst-like follicles in LET females. Furthermore, body weight and adipocyte size were decreased in flutamide-treated LET females. Altogether, our findings provide strong evidence that AR signaling is responsible for many key reproductive and metabolic PCOS phenotypes and further establish the LET mouse model as an important tool for the study of androgen excess.
Collapse
Affiliation(s)
- Genevieve E Ryan
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
| | - Shaddy Malik
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
| | - Pamela L Mellon
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California
- Correspondence: Pamela L. Mellon, PhD, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
241
|
Torre‐Villalvazo I, Bunt AE, Alemán G, Marquez‐Mota CC, Diaz‐Villaseñor A, Noriega LG, Estrada I, Figueroa‐Juárez E, Tovar‐Palacio C, Rodriguez‐López LA, López‐Romero P, Torres N, Tovar AR. Adiponectin synthesis and secretion by subcutaneous adipose tissue is impaired during obesity by endoplasmic reticulum stress. J Cell Biochem 2018; 119:5970-5984. [DOI: 10.1002/jcb.26794] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Ivan Torre‐Villalvazo
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Ana E. Bunt
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Gabriela Alemán
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Claudia C. Marquez‐Mota
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
- Departamento de Nutrición Animal y BioquímicaFMVZ‐UNAMMéxico CityMéxico
| | - Andrea Diaz‐Villaseñor
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
- Instituto de Investigaciones BiomédicasIIB‐UNAMMéxico CityMéxico
| | - Lilia G. Noriega
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Isabela Estrada
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Elizabeth Figueroa‐Juárez
- Departamento de Nefrología y Metabolismo MineralInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Claudia Tovar‐Palacio
- Departamento de Nefrología y Metabolismo MineralInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Leonardo A. Rodriguez‐López
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Patricia López‐Romero
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Nimbe Torres
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| | - Armando R. Tovar
- Departamento de Fisiología de la NutriciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico CityMéxico
| |
Collapse
|
242
|
Balan D, Chan KL, Murugan D, AbuBakar S, Wong PF. Antiadipogenic effects of a standardized quassinoids-enriched fraction and eurycomanone fromEurycoma longifolia. Phytother Res 2018. [DOI: 10.1002/ptr.6065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- D. Balan
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Kit-Lam Chan
- School of Pharmaceutical Sciences; University of Science Malaysia; 11800 Penang Malaysia
| | - D. Murugan
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
243
|
Macdougall CE, Wood EG, Loschko J, Scagliotti V, Cassidy FC, Robinson ME, Feldhahn N, Castellano L, Voisin MB, Marelli-Berg F, Gaston-Massuet C, Charalambous M, Longhi MP. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab 2018; 27. [PMID: 29514067 PMCID: PMC5846800 DOI: 10.1016/j.cmet.2018.02.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Visceral adipose tissue (VAT) has multiple roles in orchestrating whole-body energy homeostasis. In addition, VAT is now considered an immune site harboring an array of innate and adaptive immune cells with a direct role in immune surveillance and host defense. We report that conventional dendritic cells (cDCs) in VAT acquire a tolerogenic phenotype through upregulation of pathways involved in adipocyte differentiation. While activation of the Wnt/β-catenin pathway in cDC1 DCs induces IL-10 production, upregulation of the PPARγ pathway in cDC2 DCs directly suppresses their activation. Combined, they promote an anti-inflammatory milieu in vivo delaying the onset of obesity-induced chronic inflammation and insulin resistance. Under long-term over-nutrition, changes in adipocyte biology curtail β-catenin and PPARγ activation, contributing to VAT inflammation.
Collapse
Affiliation(s)
- Claire E Macdougall
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Elizabeth G Wood
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jakob Loschko
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Valeria Scagliotti
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Féaron C Cassidy
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mark E Robinson
- Centre for Haematology, Department of Medicine, Imperial College London, W12 0NN London, UK; Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Niklas Feldhahn
- Centre for Haematology, Department of Medicine, Imperial College London, W12 0NN London, UK
| | - Leandro Castellano
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London W12 0NN, UK
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Carles Gaston-Massuet
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Marika Charalambous
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
244
|
Carli JFM, LeDuc CA, Zhang Y, Stratigopoulos G, Leibel RL. The role of Rpgrip1l, a component of the primary cilium, in adipocyte development and function. FASEB J 2018; 32:3946-3956. [PMID: 29466054 DOI: 10.1096/fj.201701216r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic variants within the FTO (α-ketoglutarate-dependent dioxygenase) gene have been strongly associated with a modest increase in adiposity as a result of increased food intake. These risk alleles are associated with decreased expression of both FTO and neighboring RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein 1 like). RPGRIP1L encodes a protein that is critical to the function of the primary cilium, which conveys extracellular information to the cell. Rpgrip1l+/- mice exhibit increased adiposity, in part, as a result of hyperphagia. Here, we describe the effects of Rpgrip1l in adipocytes that may contribute to the adiposity phenotype observed in these animals and possibly in humans who segregate for FTO risk alleles. Loss of Rpgrip1l in 3T3-L1 preadipocytes increased the number of cells that are capable of differentiating into mature adipocytes. Knockout of Rpgrip1l in mature adipocytes using Adipoq-Cre did not increase adiposity in mice that were fed chow or a high-fat diet. We also did not observe any effects of Rpgrip1l knockdown in mature 3T3-L1 adipocytes. Thus, to the extent that Rpgrip1l affects cell-autonomous adipose tissue function, it may do so as a result of the effects conveyed in preadipocytes in which the primary cilium is functionally important. We propose that decreased RPGRIP1L expression in preadipocytes in humans who segregate for FTO obesity risk alleles may increase the storage capacity of adipose tissue.-Martin Carli, J. F., LeDuc, C. A., Zhang, Y., Stratigopoulos, G., Leibel, R. L. The role of Rpgrip1l, a component of the primary cilium, in adipocyte development and function.
Collapse
Affiliation(s)
- Jayne F Martin Carli
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Charles A LeDuc
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Yiying Zhang
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
245
|
Abstract
Obesity has spread worldwide and become a common health problem in modern society. One typical feature of obesity is the excessive accumulation of fat in adipocytes, which occurs through the following two physiological phenomena: hyperplasia (increase in quantity) and hypertrophy (increase in size) of adipocytes. In clinical and scientific research, the accurate quantification of the number and diameter of adipocytes is necessary for assessing obesity. In this study, we present a new automatic adipocyte counting system, AdipoCount, which is based on image processing algorithms. Comparing with other existing adipocyte counting tools, AdipoCount is more accurate and supports further manual correction. AdipoCount counts adipose cells by the following three-step process: (1) It detects the image edges, which are used to segment the membrane of adipose cells; (2) It uses a watershed-based algorithm to re-segment the missing dyed membrane; and (3) It applies a domain connectivity analysis to count the cells. The outputs of this system are the labels and the statistical data of all adipose cells in the image. The AdipoCount software is freely available for academic use at: http://www.csbio.sjtu.edu.cn/bioinf/AdipoCount/.
Collapse
Affiliation(s)
- Xuhao Zhi
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Lu
- Laboratory of Endocrinology and Metabolism, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jue Jia
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
246
|
Insulin-like growth factor binding protein-3 links obesity and breast cancer progression. Oncotarget 2018; 7:55491-55505. [PMID: 27448965 PMCID: PMC5342431 DOI: 10.18632/oncotarget.10675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022] Open
Abstract
Obesity is associated epidemiologically with poor breast cancer prognosis, but the mechanisms remain unclear. Since IGF binding protein-3 (IGFBP-3) influences both breast cancer growth and adipocyte maturation, it may impact on how obesity promotes breast oncogenesis. This study investigated the role of endogenous IGFBP-3 on the development of obesity and subsequently on breast tumor growth. Wild-type (WT) C57BL/6 or IGFBP-3-null (BP3KO) mice were fed a high-fat diet (HFD) or control chow-diet for 15 weeks before orthotopic injection with syngeneic EO771 murine breast cancer cells. When the largest tumor reached 1000 mm3, tissues and tumors were excised for analysis. Compared to WT, BP3KO mice showed significantly reduced weight gain and mammary fat pad mass (contralateral to tumor) in response to HFD, despite similar food intake. EO771 tumor weight and volume were increased by HFD and decreased by BP3KO. Despite differences in tumor size, tumors in BP3KO mice showed no differences from WT in the number of mitotically active (Ki67+) and apoptotic (cleaved caspase-3+) cells, but had greater infiltration of CD3+ T-cells. These data suggest that endogenous (circulating and/or stromal) IGFBP-3 is stimulatory to adipose tissue expansion and enhances mammary tumor growth in immune-competent mice, potentially by suppressing T-cell infiltration into tumors.
Collapse
|
247
|
Adipocyte size variability in benign and malignant lipomatous tumors and morphologic mimics: a quantitative definition using digital pathology. Hum Pathol 2018; 72:52-58. [DOI: 10.1016/j.humpath.2017.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023]
|
248
|
TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun 2018; 9:245. [PMID: 29339725 PMCID: PMC5770450 DOI: 10.1038/s41467-017-02068-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023] Open
Abstract
Remodelling of energy storing white fat into energy expending beige fat could be a promising strategy to reduce adiposity. Here, we show that the bile acid-responsive membrane receptor TGR5 mediates beiging of the subcutaneous white adipose tissue (scWAT) under multiple environmental cues including cold exposure and prolonged high-fat diet feeding. Moreover, administration of TGR5-selective bile acid mimetics to thermoneutral housed mice leads to the appearance of beige adipocyte markers and increases mitochondrial content in the scWAT of Tgr5+/+ mice but not in their Tgr5−/− littermates. This phenotype is recapitulated in vitro in differentiated adipocytes, in which TGR5 activation increases free fatty acid availability through lipolysis, hence fuelling β-oxidation and thermogenic activity. TGR5 signalling also induces mitochondrial fission through the ERK/DRP1 pathway, further improving mitochondrial respiration. Taken together, these data identify TGR5 as a druggable target to promote beiging with potential applications in the management of metabolic disorders. White adipose tissue can undergo a process of beiging and acquire functional characteristics similar to brown adipose tissue, including the ability to dissipate energy via uncoupled respiration. Here, Velazquez-Villegas et al. show that activation of the bile acid membrane receptor, TGR5, leads to white adipocyte beiging by promoting mitochondrial fission.
Collapse
|
249
|
Neelakantan H, Vance V, Wetzel MD, Wang HYL, McHardy SF, Finnerty CC, Hommel JD, Watowich SJ. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice. Biochem Pharmacol 2018; 147:141-152. [PMID: 29155147 PMCID: PMC5826726 DOI: 10.1016/j.bcp.2017.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
Abstract
There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD+) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD+ salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD+ and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to reverse diet-induced obesity and validate NNMT as a viable target to treat obesity and related metabolic conditions. Increased flux of key cellular energy regulators, including NAD+ and SAM, may potentially define the therapeutic mechanism-of-action of NNMT inhibitors.
Collapse
Affiliation(s)
- Harshini Neelakantan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Virginia Vance
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Michael D Wetzel
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77550 USA; Shriners Hospitals for Children-Galveston, Galveston, TX 77550, USA
| | - Hua-Yu Leo Wang
- Department of Chemistry and Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Stanton F McHardy
- Department of Chemistry and Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77550 USA; Shriners Hospitals for Children-Galveston, Galveston, TX 77550, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
250
|
Torre-Villalvazo I, Cervantes-Pérez LG, Noriega LG, Jiménez JV, Uribe N, Chávez-Canales M, Tovar-Palacio C, Marfil-Garza BA, Torres N, Bobadilla NA, Tovar AR, Gamba G. Inactivation of SPAK kinase reduces body weight gain in mice fed a high-fat diet by improving energy expenditure and insulin sensitivity. Am J Physiol Endocrinol Metab 2018; 314:E53-E65. [PMID: 29066461 DOI: 10.1152/ajpendo.00108.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl-]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Ivan Torre-Villalvazo
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | | | - Lilia G Noriega
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Jose V Jiménez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Norma Uribe
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , México City, Mexico
| | - María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Claudia Tovar-Palacio
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Braulio A Marfil-Garza
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Nimbe Torres
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Norma A Bobadilla
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Armando R Tovar
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y de Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|