201
|
Lisi L, Lacal PM, Barbaccia ML, Graziani G. Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochem Pharmacol 2020; 180:114169. [PMID: 32710969 PMCID: PMC7375972 DOI: 10.1016/j.bcp.2020.114169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) declared the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) a global pandemic. As of July 2020, SARS-CoV-2 has infected more than 14 million people and provoked more than 590,000 deaths, worldwide. From the beginning, a variety of pharmacological treatments has been empirically used to cope with the life-threatening complications associated with Corona Virus Disease 2019 (COVID-19). Thus far, only a couple of them and not consistently across reports have been shown to further decrease mortality, respect to what can be achieved with supportive care. In most cases, and due to the urgency imposed by the number and severity of the patients' clinical conditions, the choice of treatment has been limited to repurposed drugs, approved for other indications, or investigational agents used for other viral infections often rendered available on a compassionate-use basis. The rationale for drug selection was mainly, though not exclusively, based either i) on the activity against other coronaviruses or RNA viruses in order to potentially hamper viral entry and replication in the epithelial cells of the airways, and/or ii) on the ability to modulate the excessive inflammatory reaction deriving from dysregulated host immune responses against the SARS-CoV-2. In several months, an exceptionally large number of clinical trials have been designed to evaluate the safety and efficacy of anti-COVID-19 therapies in different clinical settings (treatment or pre- and post-exposure prophylaxis) and levels of disease severity, but only few of them have been completed so far. This review focuses on the molecular mechanisms of action that have provided the scientific rationale for the empirical use and evaluation in clinical trials of structurally different and often functionally unrelated drugs during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Lucia Lisi
- Dipartimento di Bioetica e Sicurezza, Sezione di Farmacologia, Catholic University Medical School, 00168 Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
202
|
Sirimaturos M, Gotur DB, Patel SJ, Dreucean D, Jakowenko N, Cooper MH, Brahmbhatt N, Graviss EA, Nguyen DT, Pingali SR, Lin J, Musick WL. Clinical Outcomes Following Tocilizumab Administration in Mechanically Ventilated Coronavirus Disease 2019 Patients. Crit Care Explor 2020; 2:e0232. [PMID: 33063035 PMCID: PMC7531754 DOI: 10.1097/cce.0000000000000232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Effective treatments for the critically ill patient with novel coronavirus disease 2019 are desperately needed. Given the role of cytokine release syndrome in the pathogenesis of coronavirus disease 2019-associated respiratory distress, therapies aimed at mitigating cytokine release, such as the interleukin-6 receptor-inhibiting monoclonal antibody tocilizumab, represent potential treatment strategies. Therefore, we examined the outcomes of critically ill coronavirus disease 2019 patients treated with tocilizumab and factors associated with clinical improvement. DESIGN A retrospective cohort analysis of 21-day outcomes for consecutive mechanically ventilated patients treated with tocilizumab from March 24, 2020, to May 4, 2020. SETTING Nine ICUs at six hospitals within a hospital system in Houston, Texas, United States. PATIENTS The first 62 coronavirus disease 2019 patients on invasive mechanical ventilation who were treated with tocilizumab, which was considered for all patients with severe disease. INTERVENTIONS Tocilizumab was administered either at a weight-based dose of 4-8 mg/kg or at a flat dose of 400 mg, with repeat administration in some patients at the physician's discretion. MEASUREMENTS AND MAIN RESULTS The primary outcomes were mortality and clinical improvement, defined as extubation. By day 21 post-tocilizumab, clinical improvement occurred in 36 patients (58%) and 13 patients (21%) died. In both univariable and multivariable analyses, age less than 60 years was associated with clinical improvement. Transient transaminitis was the most common adverse reaction, occurring in 25 patients (40%). CONCLUSIONS Based on clinical outcomes and mortality rates seen in previous reports of mechanically ventilated patients, tocilizumab, as part of the management strategy for severe coronavirus disease 2019, represents a promising option. These findings support the need for evaluation of tocilizumab in a randomized controlled trial.
Collapse
Affiliation(s)
| | | | - Samir J Patel
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX
| | - Diane Dreucean
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX
| | | | - Megan H Cooper
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX
| | | | - Edward A Graviss
- Houston Methodist Academic Institute, Houston, TX
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | - Duc T Nguyen
- Houston Methodist Academic Institute, Houston, TX
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
| | - Sai Ravi Pingali
- Weill Cornell Medical College, New York, NY
- Houston Methodist Cancer Center, Houston, TX
| | - Jiejian Lin
- Infectious Diseases, Houston Methodist Hospital, Houston, TX
| | | |
Collapse
|
203
|
Cheng L, Li H, Li L, Liu C, Yan S, Chen H, Li Y. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal 2020; 34:e23618. [PMID: 33078400 PMCID: PMC7595919 DOI: 10.1002/jcla.23618] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The coronavirus disease 2019 (COVID-19) has rapidly developed into a pandemic. Increased levels of ferritin due to cytokine storm and secondary hemophagocytic lymphohistiocytosis were found in severe COVID-19 patients. Therefore, the aim of this study was to determine the role of ferritin in COVID-19. METHODS Studies investigating ferritin in COVID-19 were collected from PubMed, EMBASE, CNKI, SinoMed, and WANFANG. A meta-analysis was performed to compare the ferritin level between different patient groups: non-survivors versus survivors; more severe versus less severe; with comorbidity versus without comorbidity; ICU versus non-ICU; with mechanical ventilation versus without mechanical ventilation. RESULTS A total of 52 records involving 10 614 COVID-19-confirmed patients between December 25, 2019, and June 1, 2020, were included in this meta-analysis, and 18 studies were included in the qualitative synthesis. The ferritin level was significantly increased in severe patients compared with the level in non-severe patients [WMD 397.77 (95% CI 306.51-489.02), P < .001]. Non-survivors had a significantly higher ferritin level compared with the one in survivors [WMD 677.17 (95% CI 391.01-963.33), P < .001]. Patients with one or more comorbidities including diabetes, thrombotic complication, and cancer had significantly higher levels of ferritin than those without (P < .01). Severe acute liver injury was significantly associated with high levels of ferritin, and its level was associated with intensive supportive care, including ICU transfer and mechanical ventilation. CONCLUSIONS Ferritin was associated with poor prognosis and could predict the worsening of COVID-19 patients.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical LaboratoryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Haolong Li
- Department of Clinical LaboratoryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Liubing Li
- Department of Clinical LaboratoryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Chenxi Liu
- Department of Clinical LaboratoryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Songxin Yan
- Department of Clinical LaboratoryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Haizhen Chen
- Department of Clinical LaboratoryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Department of Clinical LaboratoryThe First Hospital of Jilin UniversityJilinChina
| | - Yongzhe Li
- Department of Clinical LaboratoryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
204
|
Tocilizumab combined with favipiravir in the treatment of COVID-19: A multicenter trial in a small sample size. Biomed Pharmacother 2020; 133:110825. [PMID: 33378989 PMCID: PMC7524677 DOI: 10.1016/j.biopha.2020.110825] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Since December 2019, COVID-19 has spread to almost every corner of the world. In theory, tocilizumab and favipiravir are considered to be reliable drugs for the treatment of COVID-19 with elevated IL-6. We aimed to assess the efficacy and safety of tocilizumab combined with favipiravir in patients with COVID-19. METHODS This was a multicenter trial in adults with COVID-19. Patients were randomly assigned (3:1:1) to a 14-day combination of favipiravir combined with tocilizumab (combination group), favipiravir, and tocilizumab. The primary outcome was the cumulative lung lesion remission rate (lung CT examination indicated absorption of lung inflammation). RESULTS Between Feb 2 and March 15, 2020, 26 patients were recruited; 14 were randomly assigned to the combination group, 7 were assigned to the favipiravir group and 5 were assigned to the tocilizumab group. The cumulative lung lesion remission rate at day 14 was significantly higher in combination group as compared with favipiravir group (P = 0.019, HR 2.66 95 % CI [1.08-6.53]). And there was also a significant difference between tocilizumab and favipivavir (P = 0.034, HR 3.16, 95 % CI 0.62-16.10). In addition, there was no significant difference between the combination group and the tocilizumab group (P = 0.575, HR 1.28 95 %CI 0.39-4.23). Furthermore, combined therapy can also significantly relieve clinical symptoms and help blood routine to return to normal. No serious adverse events were reported. CONCLUSION Tocilizumab combined with or without favipiravir can effectively improve the pulmonary inflammation of COVID-19 patients and inhibit the deterioration of the disease.
Collapse
|
205
|
Guloyan V, Oganesian B, Baghdasaryan N, Yeh C, Singh M, Guilford F, Ting YS, Venketaraman V. Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants (Basel) 2020; 9:antiox9100914. [PMID: 32992775 PMCID: PMC7601802 DOI: 10.3390/antiox9100914] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 01/08/2023] Open
Abstract
Morbidity and mortality of coronavirus disease 2019 (COVID-19) are due in large part to severe cytokine storm and hypercoagulable state brought on by dysregulated host-inflammatory immune response, ultimately leading to multi-organ failure. Exacerbated oxidative stress caused by increased levels of interleukin (IL)-6 and tumor necrosis factor α (TNF-α) along with decreased levels of interferon α and interferon β (IFN-α, IFN-β) are mainly believed to drive the disease process. Based on the evidence attesting to the ability of glutathione (GSH) to inhibit viral replication and decrease levels of IL-6 in human immunodeficiency virus (HIV) and tuberculosis (TB) patients, as well as beneficial effects of GSH on other pulmonary diseases processes, we believe the use of liposomal GSH could be beneficial in COVID-19 patients. This review discusses the epidemiology, transmission, and clinical presentation of COVID-19 with a focus on its pathogenesis and the possible use of liposomal GSH as an adjunctive treatment to the current treatment modalities in COVID-19 patients.
Collapse
Affiliation(s)
- Vika Guloyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Buzand Oganesian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Nicole Baghdasaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Christopher Yeh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Manpreet Singh
- Department of Emergency Medicine, St Barnabas Hospital, Bronx, NY 10457, USA;
| | | | - Yu-Sam Ting
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (V.G.); (B.O.); (N.B.); (C.Y.); (Y.-S.T.)
- Correspondence: ; Tel.: +1-909-706-3736; Fax: +1-909-469-5698
| |
Collapse
|
206
|
Chamekh M, Casimir G. Understanding Gender-Bias in Critically Ill Patients With COVID-19. Front Med (Lausanne) 2020; 7:564117. [PMID: 33102501 PMCID: PMC7546272 DOI: 10.3389/fmed.2020.564117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mustapha Chamekh
- Inflammation Unit, Laboratory of Pediatric Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Georges Casimir
- Inflammation Unit, Laboratory of Pediatric Research, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Pulmonology, Faculty of Medicine, Queen Fabiola University Children's Hospital (HUDERF), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
207
|
Zhang R, Chen X, Huang Y, Zhang Q, Cheng Y, Zhang N, Zhang H, Yang B, Liu F, Liu Y, Lan K. A Study of Two Cases Co-Infected with SARS-CoV-2 and Human Immunodeficiency Virus. Virol Sin 2020; 35:849-852. [PMID: 32894406 PMCID: PMC7475944 DOI: 10.1007/s12250-020-00280-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/13/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rong Zhang
- Department of Clinical Laboratory, General Hospital of Southern Theater Command, PLA, Guangzhou, 510000, China
| | - Xiaohua Chen
- Department of Clinical Laboratory, General Hospital of Central Theater Command, PLA, Wuhan, 430000, China
| | - Yuqing Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430000, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430000, China
| | - Yan Cheng
- Department of Clinical Laboratory, The 980st Hospital of the PLA Joint Logistics Support Force/Bethune International Peace Hospital, Shijiazhuang, 050000, China
| | - Nan Zhang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Haibo Zhang
- Department of Information, General Hospital of Southern Theater Command, PLA, Guangzhou, 510000, China
| | - Bo Yang
- Department of Radiology, General Hospital of Central Theater Command, PLA, Wuhan, 430000, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430000, China.
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430000, China.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
208
|
Carlisle JW, Jansen CS, Bilen MA, Kissick H. Considerations for cancer immunotherapy biomarker research during COVID-19. Endocr Relat Cancer 2020; 27:C1-C8. [PMID: 32508308 PMCID: PMC7385701 DOI: 10.1530/erc-20-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jennifer W Carlisle
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Caroline S Jansen
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Haydn Kissick
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
209
|
Hoang T, Anh TTT. Treatment Options for Severe Acute Respiratory Syndrome, Middle East Respiratory Syndrome, and Coronavirus Disease 2019: a Review of Clinical Evidence. Infect Chemother 2020; 52:317-334. [PMID: 32869558 PMCID: PMC7533202 DOI: 10.3947/ic.2020.52.3.317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses have caused serious Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus Disease 2019 (COVID-19) outbreaks, and only remdesivir has been recently indicated for the treatment of COVID-19. In the line of therapeutic options for SARS and MERS, this study aims to summarize the current clinical evidence of treatment options for COVID-19. In general, the combination of antibiotics, ribavirin, and corticosteroids was considered as a standard treatment for patients with SARS. The addition of this conventional treatment with lopinavir/ritonavir, interferon, and convalescent plasma showed potential clinical improvement. For patients with MERS, ribavirin, lopinavir/ritonavir, interferon, and convalescent plasma were continuously recommended. However, a high-dose of corticosteroid was suggested for severe cases only. The use of lopinavir/ritonavir and convalescent plasma was commonly reported. There was limited evidence for the effect of corticosteroids, other antiviral drugs like ribavirin, and favipiravir. Monoclonal antibody of tocilizumab and antimalarial agents of chloroquine and hydroxychloroquine were also introduced. Among antibiotics for infection therapy, azithromycin was suggested. In conclusion, this study showed the up-to-date evidence of treatment options for COVID-19 that is helpful for the therapy selection and the development of further guidelines and recommendations. Updates of on-going clinical trials and observational studies may confirm the current findings.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| | - Tho Tran Thi Anh
- Department of Gastroenterology and Hepatology, Nghe An Oncology Hospital, Nghe An, Vietnam.
| |
Collapse
|
210
|
Shlomai A, Ben-Zvi H, Glusman Bendersky A, Shafran N, Goldberg E, Sklan EH. Nasopharyngeal viral load predicts hypoxemia and disease outcome in admitted COVID-19 patients. Crit Care 2020; 24:539. [PMID: 32873316 PMCID: PMC7459243 DOI: 10.1186/s13054-020-03244-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Amir Shlomai
- Department of Medicine D, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haim Ben-Zvi
- Microbiology Laboratory, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Ahinoam Glusman Bendersky
- Department of Medicine D, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Shafran
- Department of Medicine D, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Goldberg
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
211
|
Melenotte C, Silvin A, Goubet AG, Lahmar I, Dubuisson A, Zumla A, Raoult D, Merad M, Gachot B, Hénon C, Solary E, Fontenay M, André F, Maeurer M, Ippolito G, Piacentini M, Wang FS, Ginhoux F, Marabelle A, Kroemer G, Derosa L, Zitvogel L. Immune responses during COVID-19 infection. Oncoimmunology 2020; 9:1807836. [PMID: 32939324 PMCID: PMC7480812 DOI: 10.1080/2162402x.2020.1807836] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/09/2023] Open
Abstract
Over the past 16 years, three coronaviruses (CoVs), severe acute respiratory syndrome CoV (SARS-CoV) in 2002, Middle East respiratory syndrome CoV (MERS-CoV) in 2012 and 2015, and SARS-CoV-2 in 2020, have been causing severe and fatal human epidemics. The unpredictability of coronavirus disease-19 (COVID-19) poses a major burden on health care and economic systems across the world. This is caused by the paucity of in-depth knowledge of the risk factors for severe COVID-19, insufficient diagnostic tools for the detection of SARS-CoV-2, as well as the absence of specific and effective drug treatments. While protective humoral and cellular immune responses are usually mounted against these betacoronaviruses, immune responses to SARS-CoV2 sometimes derail towards inflammatory tissue damage, leading to rapid admissions to intensive care units. The lack of knowledge on mechanisms that tilt the balance between these two opposite outcomes poses major threats to many ongoing clinical trials dealing with immunostimulatory or immunoregulatory therapeutics. This review will discuss innate and cognate immune responses underlying protective or deleterious immune reactions against these pathogenic coronaviruses.
Collapse
Affiliation(s)
- Cléa Melenotte
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
- Infectious Diseases, IHU-Méditerranée Infection, Marseille, France
| | | | - Anne-Gaëlle Goubet
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Imran Lahmar
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Agathe Dubuisson
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Didier Raoult
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Mansouria Merad
- Service de Urgences et de Permanence des Soins, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | | | | | - Eric Solary
- Immunology, Gustave Roussy, Villejuif, France
| | - Michaela Fontenay
- INSERM U1016, Centre National Recherche Scientifique (CNRS) UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Markus Maeurer
- Immunosurgery, Immunotherapy Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Med Clinic, University of Mainz, Mayence, Germany
| | - Giuseppe Ippolito
- Dipartimento di Epidemiologia Ricerca Pre-Clinica e Diagnostica Avanzata, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Infectious Diseases Department, National Institute for Infectious Disease IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Fu-Sheng Wang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Aurélien Marabelle
- Infectious Diseases, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie,Pathologie – PUI – Hygiène, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Lisa Derosa
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Laurence Zitvogel
- Immunology, Gustave Roussy, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Immunology, Institut National de la Santé Et de la Recherche Médicale (INSERM), U1015 Equipe Labellisée—Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
212
|
Giorgi M, Cardarelli S, Ragusa F, Saliola M, Biagioni S, Poiana G, Naro F, Massimi M. Phosphodiesterase Inhibitors: Could They Be Beneficial for the Treatment of COVID-19? Int J Mol Sci 2020; 21:ijms21155338. [PMID: 32727145 PMCID: PMC7432892 DOI: 10.3390/ijms21155338] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
In March 2020, the World Health Organization declared the severe acute respiratory syndrome corona virus 2 (SARS-CoV2) infection to be a pandemic disease. SARS-CoV2 was first identified in China and, despite the restrictive measures adopted, the epidemic has spread globally, becoming a pandemic in a very short time. Though there is growing knowledge of the SARS-CoV2 infection and its clinical manifestations, an effective cure to limit its acute symptoms and its severe complications has not yet been found. Given the worldwide health and economic emergency issues accompanying this pandemic, there is an absolute urgency to identify effective treatments and reduce the post infection outcomes. In this context, phosphodiesterases (PDEs), evolutionarily conserved cyclic nucleotide (cAMP/cGMP) hydrolyzing enzymes, could emerge as new potential targets. Given their extended distribution and modulating role in nearly all organs and cellular environments, a large number of drugs (PDE inhibitors) have been developed to control the specific functions of each PDE family. These PDE inhibitors have already been used in the treatment of pathologies that show clinical signs and symptoms completely or partially overlapping with post-COVID-19 conditions (e.g., thrombosis, inflammation, fibrosis), while new PDE-selective or pan-selective inhibitors are currently under study. This review discusses the state of the art of the different pathologies currently treated with phosphodiesterase inhibitors, highlighting the numerous similarities with the disorders linked to SARS-CoV2 infection, to support the hypothesis that PDE inhibitors, alone or in combination with other drugs, could be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mauro Giorgi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
- Correspondence: (M.G.); (M.M.)
| | - Silvia Cardarelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00185 Rome, Italy; (S.C.); (F.N.)
| | - Federica Ragusa
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Michele Saliola
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Stefano Biagioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Giancarlo Poiana
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00185 Rome, Italy; (S.C.); (F.N.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Correspondence: (M.G.); (M.M.)
| |
Collapse
|
213
|
Sinha P, Mostaghim A, Bielick CG, McLaughlin A, Hamer DH, Wetzler LM, Bhadelia N, Fagan MA, Linas BP, Assoumou SA, Ieong MH, Lin NH, Cooper ER, Brade KD, White LF, Barlam TF, Sagar M. Early administration of interleukin-6 inhibitors for patients with severe COVID-19 disease is associated with decreased intubation, reduced mortality, and increased discharge. Int J Infect Dis 2020; 99:28-33. [PMID: 32721528 PMCID: PMC7591937 DOI: 10.1016/j.ijid.2020.07.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/13/2022] Open
Abstract
Observational data on interleukin-6 receptor inhibitors (IL6ri) for COVID-19 disease are reported. IL6ri therapy was found to be associated with improved COVID-19 outcomes. The treatment benefit was greatest when therapy was initiated early during the disease course. IL6ri therapy appears to be superior to remdesivir and dexamethasone.
Objective The aim of this observational study was to determine the optimal timing of interleukin-6 receptor inhibitor (IL6ri) administration for coronavirus disease 2019 (COVID-19). Methods Patients with COVID-19 were given an IL6ri (sarilumab or tocilizumab) based on iteratively reviewed guidelines. IL6ri were initially reserved for critically ill patients, but after review, treatment was liberalized to patients with lower oxygen requirements. Patients were divided into two groups: those requiring ≤45% fraction of inspired oxygen (FiO2) (termed stage IIB) and those requiring >45% FiO2 (termed stage III) at the time of IL6ri administration. The main outcomes were all-cause mortality, discharge alive from hospital, and extubation. Results A total of 255 COVID-19 patients were treated with IL6ri (149 stage IIB and 106 stage III). Patients treated in stage IIB had lower mortality than those treated in stage III (adjusted hazard ratio (aHR) 0.24, 95% confidence interval (CI) 0.08–0.74). Overall, 218 (85.5%) patients were discharged alive. Patients treated in stage IIB were more likely to be discharged (aHR 1.43, 95% CI 1.06–1.93) and were less likely to be intubated (aHR 0.43, 95% CI 0.24–0.79). Conclusions IL6ri administration prior to >45% FiO2 requirement was associated with improved COVID-19 outcomes. This can guide clinical management pending results from randomized controlled trials.
Collapse
Affiliation(s)
- Pranay Sinha
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anahita Mostaghim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Catherine G Bielick
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Angela McLaughlin
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Davidson H Hamer
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Lee M Wetzler
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nahid Bhadelia
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Disease Laboratory, Boston, MA, USA
| | - Maura A Fagan
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin P Linas
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sabrina A Assoumou
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Michael H Ieong
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Nina H Lin
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ellen R Cooper
- Section of Pediatric Infectious Diseases, Boston Medical Center, Boston, MA, USA
| | - Karrine D Brade
- Department of Pharmacy, Boston Medical Center, Boston, MA, USA
| | - Laura F White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tamar F Barlam
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
214
|
Wei Y, Shah R. Substance Use Disorder in the COVID-19 Pandemic: A Systematic Review of Vulnerabilities and Complications. Pharmaceuticals (Basel) 2020; 13:E155. [PMID: 32708495 PMCID: PMC7407364 DOI: 10.3390/ph13070155] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/18/2023] Open
Abstract
As the world endures the coronavirus disease 2019 (COVID-19) pandemic, the conditions of 35 million vulnerable individuals struggling with substance use disorders (SUDs) worldwide have not received sufficient attention for their special health and medical needs. Many of these individuals are complicated by underlying health conditions, such as cardiovascular and lung diseases and undermined immune systems. During the pandemic, access to the healthcare systems and support groups is greatly diminished. Current research on COVID-19 has not addressed the unique challenges facing individuals with SUDs, including the heightened vulnerability and susceptibility to the disease. In this systematic review, we will discuss the pathogenesis and pathology of COVID-19, and highlight potential risk factors and complications to these individuals. We will also provide insights and considerations for COVID-19 treatment and prevention in patients with SUDs.
Collapse
Affiliation(s)
- Yufeng Wei
- Department of Chemistry, New Jersey City University, Jersey City, NJ 07305, USA;
| | | |
Collapse
|
215
|
Franco R, Rivas-Santisteban R, Serrano-Marín J, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G. SARS-CoV-2 as a Factor to Disbalance the Renin–Angiotensin System: A Suspect in the Case of Exacerbated IL-6 Production. THE JOURNAL OF IMMUNOLOGY 2020; 205:1198-1206. [DOI: 10.4049/jimmunol.2000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
|
216
|
Bonaventura A, Vecchié A, Wang TS, Lee E, Cremer PC, Carey B, Rajendram P, Hudock KM, Korbee L, Van Tassell BW, Dagna L, Abbate A. Targeting GM-CSF in COVID-19 Pneumonia: Rationale and Strategies. Front Immunol 2020; 11:1625. [PMID: 32719685 PMCID: PMC7348297 DOI: 10.3389/fimmu.2020.01625] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a clinical syndrome ranging from mild symptoms to severe pneumonia that often leads to respiratory failure, need for mechanical ventilation, and death. Most of the lung damage is driven by a surge in inflammatory cytokines [interleukin-6, interferon-γ, and granulocyte-monocyte stimulating factor (GM-CSF)]. Blunting this hyperinflammation with immunomodulation may lead to clinical improvement. GM-CSF is produced by many cells, including macrophages and T-cells. GM-CSF-derived signals are involved in differentiation of macrophages, including alveolar macrophages (AMs). In animal models of respiratory infections, the intranasal administration of GM-CSF increased the proliferation of AMs and improved outcomes. Increased levels of GM-CSF have been recently described in patients with COVID-19 compared to healthy controls. While GM-CSF might be beneficial in some circumstances as an appropriate response, in this case the inflammatory response is maladaptive by virtue of being later and disproportionate. The inhibition of GM-CSF signaling may be beneficial in improving the hyperinflammation-related lung damage in the most severe cases of COVID-19. This blockade can be achieved through antagonism of the GM-CSF receptor or the direct binding of circulating GM-CSF. Initial findings from patients with COVID-19 treated with a single intravenous dose of mavrilimumab, a monoclonal antibody binding GM-CSF receptor α, showed oxygenation improvement and shorter hospitalization. Prospective, randomized, placebo-controlled trials are ongoing. Anti-GM-CSF monoclonal antibodies, TJ003234 and gimsilumab, will be tested in clinical trials in patients with COVID-19, while lenzilumab received FDA approval for compassionate use. These trials will help inform whether blunting the inflammatory signaling provided by the GM-CSF axis in COVID-19 is beneficial.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Betacoronavirus/immunology
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Disease Models, Animal
- Drug Delivery Systems
- Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Humans
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/pathology
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- SARS-CoV-2
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Aldo Bonaventura
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alessandra Vecchié
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Tisha S. Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Paul C. Cremer
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brenna Carey
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | | | - Kristin M. Hudock
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, United States
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Leslie Korbee
- Academic Regulatory & Monitoring Services, LLC, Cincinnati, OH, United States
| | - Benjamin W. Van Tassell
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Abbate
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
217
|
Groß S, Jahn C, Cushman S, Bär C, Thum T. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J Mol Cell Cardiol 2020; 144:47-53. [PMID: 32360703 PMCID: PMC7191280 DOI: 10.1016/j.yjmcc.2020.04.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/21/2020] [Indexed: 12/16/2022]
Abstract
The current COVID-19 pandemic started several months ago and is still exponentially growing in most parts of the world - this is the most recent and alarming update. COVID-19 requires the collaboration of nearly 200 countries to curb the spread of SARS-CoV-2 while gaining time to explore and improve treatment options especially for cardiovascular disease (CVD) and immunocompromised patients, who appear to be at high-risk to die from cardiopulmonary failure. Currently unanswered questions are why elderly people, particularly those with pre-existing comorbidities seem to exhibit higher mortality rates after SARS-CoV-2 infection and whether intensive care becomes indispensable for these patients to prevent multi-organ failure and sudden death. To face these challenges, we here summarize the molecular insights into viral infection mechanisms and implications for cardiovascular disease. Since the infection starts in the upper respiratory system, first flu-like symptoms develop that spread throughout the body. The wide range of affected organs is presumably based on the common expression of the major SARS-CoV-2 entry-receptor angiotensin-converting enzyme 2 (ACE2). Physiologically, ACE2 degrades angiotensin II, the master regulator of the renin-angiotensin-aldosterone system (RAAS), thereby converting it into vasodilatory molecules, which have well-documented cardio-protective effects. Thus, RAAS inhibitors, which may increase the expression levels of ACE2, are commonly used for the treatment of hypertension and CVD. This, and the fact that SARS-CoV-2 hijacks ACE2 for cell-entry, have spurred controversial discussions on the role of ACE2 in COVID-19 patients. In this review, we highlight the state-of-the-art knowledge on SARS-CoV-2-dependent mechanisms and the potential interaction with ACE2 expression and cell surface localization. We aim to provide a list of potential treatment options and a better understanding of why CVD is a high risk factor for COVID-19 susceptibility and further discuss the acute as well as long-term cardiac consequences.
Collapse
Affiliation(s)
- Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christopher Jahn
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
218
|
Cevik M, Bamford CGG, Ho A. COVID-19 pandemic-a focused review for clinicians. Clin Microbiol Infect 2020; 26:842-847. [PMID: 32344166 PMCID: PMC7182753 DOI: 10.1016/j.cmi.2020.04.023] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 remains a significant issue for global health, economics and society. A wealth of data has been generated since its emergence in December 2019, and it is vital for clinicians to keep up with this data from across the world at a time of uncertainty and constantly evolving guidelines and clinical practice. OBJECTIVES Here we provide an update for clinicians on the recent developments in the virology, diagnostics, clinical presentation, viral shedding, and treatment options for COVID-19 based on current literature. SOURCES We considered published peer-reviewed papers and non-peer-reviewed pre-print manuscripts on COVID19 and related aspects with an emphasis on clinical management aspects. CONTENT We describe the virological characteristics of SARS-CoV-2 and the clinical course of COVID-19 with an emphasis on diagnostic challenges, duration of viral shedding, severity markers and current treatment options. IMPLICATIONS The key challenge in managing COVID-19 remains patient density. However, accurate diagnosis as well as early identification and management of high-risk severe cases are important for many clinicians. For improved management of cases, there is a need to understand test probability of serology, qRT-PCR and radiological testing, and the efficacy of available treatment options that could be used in severe cases with a high risk of mortality.
Collapse
Affiliation(s)
- M Cevik
- Division of Infection and Global Health Research, School of Medicine, University of St Andrews, UK.
| | - C G G Bamford
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - A Ho
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
219
|
Vijayvargiya P, Esquer Garrigos Z, Castillo Almeida NE, Gurram PR, Stevens RW, Razonable RR. Treatment Considerations for COVID-19: A Critical Review of the Evidence (or Lack Thereof). Mayo Clin Proc 2020; 95:1454-1466. [PMID: 32561148 PMCID: PMC7190528 DOI: 10.1016/j.mayocp.2020.04.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 is causing a worldwide pandemic that may lead to a highly morbid and potentially fatal coronavirus disease 2019 (COVID-19). There is currently no drug that has been proven as an effective therapy for COVID-19. Several candidate drugs are being considered and evaluated for treatment. This includes clinically available drugs, such as chloroquine, hydroxychloroquine, and lopinavir/ritonavir, which are being repurposed for the treatment of COVID-19. Novel experimental therapies, such as remdesivir and favipiravir, are also actively being investigated for antiviral efficacy. Clinically available and investigational immunomodulators, such as the interleukin 6 inhibitors tocilizumab and sarilumab and the anti-granulocyte-macrophage colony-stimulating factor lenzilumab, are being tested for their anticipated effect in counteracting the pro-inflammatory cytokine environment that characterizes severe and critical COVID-19. This review article examines the evidence behind the potential use of these leading drug candidates for the treatment of COVID-19. The authors conclude, based on this review, that there is still no high-quality evidence to support any of these proposed drug therapies. The authors, therefore, encourage the enrollment of eligible patients to multiple ongoing clinical trials that assess the efficacy and safety of these candidate therapies. Until the results of controlled trials are available, none of the suggested therapeutics is clinically proven as an effective therapy for COVID-19.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- ards, acute respiratory distress syndrome
- cc, 50% cytotoxic concentration
- covid-19, coronavirus disease 2019
- crp, c-reactive protein
- ec50, half-maximal effective concentration
- fda, us food and drug administration
- gm-csf, granulocyte-macrophage colony-stimulating factor
- hiv, human immunodeficiency viruses
- ifn-α, interferon-alpha
- ifn-β, interferon-beta
- il-6, interleukin 6
- lpv, lopinavir
- lpv/r, lopinavir/ritonavir
- mers-cov, middle east respiratory syndrome–related coronavirus
- sars, severe acute respiratory syndrome
- sars-cov, severe acute respiratory syndrome coronavirus
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
Collapse
Affiliation(s)
- Prakhar Vijayvargiya
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Zerelda Esquer Garrigos
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Natalia E Castillo Almeida
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Pooja R Gurram
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Ryan W Stevens
- Department of Pharmacy Services, Mayo Clinic, Rochester, MN
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN.
| |
Collapse
|
220
|
Arastehfar A, Carvalho A, van de Veerdonk FL, Jenks JD, Koehler P, Krause R, Cornely OA, S. Perlin D, Lass-Flörl C, Hoenigl M. COVID-19 Associated Pulmonary Aspergillosis (CAPA)-From Immunology to Treatment. J Fungi (Basel) 2020; 6:E91. [PMID: 32599813 PMCID: PMC7346000 DOI: 10.3390/jof6020091] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Like severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA) published until June 2020. The release of danger-associated molecular patterns during severe COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition pathways required for the activation of antiviral immunity may, paradoxically, contribute to a highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture, which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission. Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence of CAPA. Finally, the treatment of CAPA is complicated by drug-drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality creates an urgency for new antifungal drugs currently in advanced clinical development with more promising pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6525Nijmegen, The Netherlands
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA
| | - Philipp Koehler
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.K.); (O.A.C.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937Cologne, Germany
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Oliver A. Cornely
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (P.K.); (O.A.C.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937Cologne, Germany
- Zentrum fuer klinische Studien (ZKS) Köln, Clinical Trials Centre Cologne, 50937 Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
221
|
The "Three Italy" of the COVID-19 epidemic and the possible involvement of SARS-CoV-2 in triggering complications other than pneumonia. J Neurovirol 2020; 26:311-323. [PMID: 32548750 PMCID: PMC7297137 DOI: 10.1007/s13365-020-00862-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), first reported in Wuhan, the capital of Hubei, China, has been associated to a novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In March 2020, the World Health Organization declared the SARS-CoV-2 infection a global pandemic. Soon after, the number of cases soared dramatically, spreading across China and worldwide. Italy has had 12,462 confirmed cases according to the Italian National Institute of Health (ISS) as of March 11, and after the “lockdown” of the entire territory, by May 4, 209,254 cases of COVID-19 and 26,892 associated deaths have been reported. We performed a review to describe, in particular, the origin and the diffusion of COVID-19 in Italy, underlying how the geographical circulation has been heterogeneous and the importance of pathophysiology in the involvement of cardiovascular and neurological clinical manifestations.
Collapse
|
222
|
Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM. Immunology of COVID-19: Current State of the Science. Immunity 2020; 52:910-941. [PMID: 32505227 PMCID: PMC7200337 DOI: 10.1016/j.immuni.2020.05.002] [Citation(s) in RCA: 1154] [Impact Index Per Article: 230.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Graham J Britton
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conor Gruber
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Kim
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Kuksin
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Levantovsky
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Malle
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Moreira
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luisanna Pia
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Risson
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Saffern
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bérengère Salomé
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myvizhi Esai Selvan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew P Spindler
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Tan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Verena van der Heide
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill K Gregory
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nina Bhardwaj
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Greenbaum
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dirk Homann
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Saurabh Mehandru
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Samstein
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
223
|
García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol 2020; 11:1441. [PMID: 32612615 PMCID: PMC7308593 DOI: 10.3389/fimmu.2020.01441] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic began in December 2019 in Wuhan (China) and rapidly extended to become a global sanitary and economic emergency. Its etiological agent is the coronavirus SARS-CoV-2. COVID-19 presents a wide spectrum of clinical manifestations, which ranges from an asymptomatic infection to a severe pneumonia accompanied by multisystemic failure that can lead to a patient's death. The immune response to SARS-CoV-2 is known to involve all the components of the immune system that together appear responsible for viral elimination and recovery from the infection. Nonetheless, such immune responses are implicated in the disease's progression to a more severe and lethal process. This review describes the general aspects of both COVID-19 and its etiological agent SARS-CoV-2, stressing the similarities with other severe coronavirus infections, such as SARS and MERS, but more importantly, pointing toward the evidence supporting the hypothesis that the clinical spectrum of COVID-19 is a consequence of the corresponding variable spectrum of the immune responses to the virus. The critical point where progression of the disease ensues appears to center on loss of the immune regulation between protective and altered responses due to exacerbation of the inflammatory components. Finally, it appears possible to delineate certain major challenges deserving of exhaustive investigation to further understand COVID-19 immunopathogenesis, thus helping to design more effective diagnostic, therapeutic, and prophylactic strategies.
Collapse
Affiliation(s)
- Luis F. García
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
224
|
Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol 2020; 108:17-41. [PMID: 32534467 PMCID: PMC7323250 DOI: 10.1002/jlb.3covr0520-272r] [Citation(s) in RCA: 513] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
Clinical evidence indicates that the fatal outcome observed with severe acute respiratory syndrome‐coronavirus‐2 infection often results from alveolar injury that impedes airway capacity and multi‐organ failure—both of which are associated with the hyperproduction of cytokines, also known as a cytokine storm or cytokine release syndrome. Clinical reports show that both mild and severe forms of disease result in changes in circulating leukocyte subsets and cytokine secretion, particularly IL‐6, IL‐1β, IL‐10, TNF, GM‐CSF, IP‐10 (IFN‐induced protein 10), IL‐17, MCP‐3, and IL‐1ra. Not surprising, therapies that target the immune response and curtail the cytokine storm in coronavirus 2019 (COVID‐19) patients have become a focus of recent clinical trials. Here we review reports on leukocyte and cytokine data associated with COVID‐19 disease in 3939 patients in China and describe emerging data on immunopathology. With an emphasis on immune modulation, we also look at ongoing clinical studies aimed at blocking proinflammatory cytokines; transfer of immunosuppressive mesenchymal stem cells; use of convalescent plasma transfusion; as well as immunoregulatory therapy and traditional Chinese medicine regimes. In examining leukocyte and cytokine activity in COVID‐19, we focus in particular on how these levels are altered as the disease progresses (neutrophil NETosis, macrophage, T cell response, etc.) and proposed consequences to organ pathology (coagulopathy, etc.). Viral and host interactions are described to gain further insight into leukocyte biology and how dysregulated cytokine responses lead to disease and/or organ damage. By better understanding the mechanisms that drive the intensity of a cytokine storm, we can tailor treatment strategies at specific disease stages and improve our response to this worldwide public health threat.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Mengmeng Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
225
|
Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J, Cheng J, Zhang X, Zhao Y, Xia Z, Zhang L, Wu G, Yi J. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med 2020; 12:e12421. [PMID: 32428990 PMCID: PMC7280589 DOI: 10.15252/emmm.202012421] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Progression to severe disease is a difficult problem in treating coronavirus disease 2019 (COVID‐19). The purpose of this study is to explore changes in markers of severe disease in COVID‐19 patients. Sixty‐nine severe COVID‐19 patients were included. Patients with severe disease showed significant lymphocytopenia. Elevated level of lactate dehydrogenase (LDH), C‐reactive protein (CRP), ferritin, and D‐dimer was found in most severe cases. Baseline interleukin‐6 (IL‐6) was found to be associated with COVID‐19 severity. Indeed, the significant increase of baseline IL‐6 was positively correlated with the maximal body temperature during hospitalization and with the increased baseline of CRP, LDH, ferritin, and D‐dimer. High baseline IL‐6 was also associated with more progressed chest computed tomography (CT) findings. Significant decrease in IL‐6 and improved CT assessment was found in patients during recovery, while IL‐6 was further increased in exacerbated patients. Collectively, our results suggest that the dynamic change in IL‐6 can be used as a marker for disease monitoring in patients with severe COVID‐19.
Collapse
Affiliation(s)
- Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieying Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Zhang
- Liver intensive care unit, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihan Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Yi
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
226
|
Jindal C, Kumar S, Sharma S, Choi YM, Efird JT. The Prevention and Management of COVID-19: Seeking a Practical and Timely Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3986. [PMID: 32512826 PMCID: PMC7312104 DOI: 10.3390/ijerph17113986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
We read with interest several manuscripts recently published in the International Journal of Environmental Research and Public Health (IJERPH) on the ongoing coronavirus pandemic. While these articles provide a well-rounded overview on the risk and current status of this virus, we herein add some relevant information on its etiology, prevention and management, especially for resource-limited healthcare systems. The use of protective actions is both complex and expensive. Affordable options are essential to respond to this and future viral outbreaks.
Collapse
Affiliation(s)
- Charulata Jindal
- Faculty of Science, University of Newcastle, Newcastle 2308, Australia;
| | - Sandeep Kumar
- Department of Surgery, King George Medical University, Lucknow 226003, India;
| | - Sunil Sharma
- Department of Medicine, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA;
| | | | - Jimmy T. Efird
- Cooperative Studies Program Epidemiology Center, Health Services Research and Development (DVAHCS/Duke Affiliated Center), Durham, NC 27705, USA
| |
Collapse
|
227
|
Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, Gao G. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis 2020; 95:332-339. [PMID: 32334118 PMCID: PMC7195003 DOI: 10.1016/j.ijid.2020.04.041] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To explore the clinical value of immune-inflammatory markers to assess the severity of coronavirus disease 2019 (COVID-19). METHODS 127 consecutive hospitalized patients with confirmed COVID-19 were enrolled in this study, and classified into non-severe and severe groups. Demographics, symptoms, underlying diseases and laboratory data were collected and assessed for predictive value. RESULTS Of 127 COVID-19 patients, 16 cases (12.60%) were classified into the severe group. High level of interleukin-6 (IL-6), C-reaction protein (CRP) and hypertension were independent risk factors for the severity of COVID-19. The risk model based on IL-6, CRP and hypertension had the highest area under the receiver operator characteristic curve (AUROC). Additionally, the baseline IL-6 was positively correlated with other immune-inflammatory parameters and the dynamic change of IL-6 in the severe cases were parallel to the amelioration of the disease. CONCLUSION Our study showed that high level of IL-6, CRP and hypertension were independent risk factors for assessing the severity of COVID-19. The risk model established upon IL-6, CRP and hypertension had the highest predictability in this study. Besides, IL-6 played a pivotal role in the severity of COVID-19 and had a potential value for monitoring the process of severe cases.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Blood Transfusion, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, PR China.
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, PR China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, PR China.
| | - Lingyan Fan
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, PR China; Department of Acute Infectious Diseases. HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China.
| | - Kehong Lou
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, PR China; Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China.
| | - Xin Hua
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, PR China; Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China.
| | - Zuoan Huang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, PR China; Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China.
| | - Guosheng Gao
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, PR China; Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China.
| |
Collapse
|
228
|
Capra R, De Rossi N, Mattioli F, Romanelli G, Scarpazza C, Sormani MP, Cossi S. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med 2020; 76:31-35. [PMID: 32405160 PMCID: PMC7219361 DOI: 10.1016/j.ejim.2020.05.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pneumonia with respiratory failure represents the main cause of death in COVID-19, where hyper inflammation plays an important role in lung damage. This study aims to evaluate if tocilizumab, an anti-soluble IL-6 receptor monoclonal antibody, reduces patients' mortality. METHODS 85 consecutive patients admitted to the Montichiari Hospital (Italy) with COVID-19 related pneumonia and respiratory failure, not needing mechanical ventilation, were included if satisfying at least one among: respiratory rate ≥ 30 breaths/min, peripheral capillary oxygen saturation ≤ 93% or PaO2/FiO2<=300 mmHg. Patients admitted before March 13th (n=23) were prescribed the standard therapy (hydroxychloroquine, lopinavir and ritonavir) and were considered controls. On March 13th tocilizumab was available and patients admitted thereafter (n=62) received tocilizumab once within 4 days from admission, plus the standard care. RESULTS Patients receiving tocilizumab showed significantly greater survival rate as compared to control patients (hazard ratio for death, 0.035; 95% confidence interval [CI], 0.004 to 0.347; p = 0.004), adjusting for baseline clinical characteristics. Two out of 62 patients of the tocilizumab group and 11 out of 23 in the control group died. 92% and 42.1% of the discharged patients in the tocilizumab and control group respectively, recovered. The respiratory function resulted improved in 64.8% of the observations in tocilizumab patients who were still hospitalized, whereas 100% of controls worsened and needed mechanical ventilation. No infections were reported. CONCLUSIONS Tocilizumab results to have a positive impact if used early during Covid-19 pneumonia with severe respiratory syndrome in terms of increased survival and favorable clinical course.
Collapse
MESH Headings
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antiviral Agents/adverse effects
- Betacoronavirus/drug effects
- Betacoronavirus/isolation & purification
- COVID-19
- Coronavirus Infections/mortality
- Coronavirus Infections/therapy
- Dose-Response Relationship, Drug
- Early Medical Intervention/methods
- Female
- Humans
- Italy/epidemiology
- Male
- Middle Aged
- Outcome and Process Assessment, Health Care
- Pandemics
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/etiology
- Pneumonia, Viral/mortality
- Pneumonia, Viral/therapy
- Receptors, Interleukin-6/antagonists & inhibitors
- Respiration, Artificial/methods
- Respiratory Function Tests/methods
- Respiratory Insufficiency/etiology
- Respiratory Insufficiency/mortality
- Respiratory Insufficiency/therapy
- Retrospective Studies
- SARS-CoV-2
Collapse
Affiliation(s)
- Ruggero Capra
- Covid 19 Unit, Montichiari Hospital via Don Ciotti Montichiari (Brescia) Italy.
| | - Nicola De Rossi
- Covid 19 Unit, Montichiari Hospital via Don Ciotti Montichiari (Brescia) Italy
| | | | | | | | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Italy, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Cossi
- Covid 19 Unit, Montichiari Hospital via Don Ciotti Montichiari (Brescia) Italy
| |
Collapse
|
229
|
Bonam SR, Kaveri SV, Sakuntabhai A, Gilardin L, Bayry J. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients. Cell Rep Med 2020; 1:100016. [PMID: 32562483 PMCID: PMC7190525 DOI: 10.1016/j.xcrm.2020.100016] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has infected millions, with more than 275,000 fatal cases as of May 8, 2020. Currently, there are no specific COVID-19 therapies. Most patients depend on mechanical ventilation. Current COVID-19 data clearly highlight that cytokine storm and activated immune cell migration to the lungs characterize the early immune response to COVID-19 that causes severe lung damage and development of acute respiratory distress syndrome. In view of uncertainty associated with immunosuppressive treatments, such as corticosteroids and their possible secondary effects, including risks of secondary infections, we suggest immunotherapies as an adjunct therapy in severe COVID-19 cases. Such immunotherapies based on inflammatory cytokine neutralization, immunomodulation, and passive viral neutralization not only reduce inflammation, inflammation-associated lung damage, or viral load but could also prevent intensive care unit hospitalization and dependency on mechanical ventilation, both of which are limited resources.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe - Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Srini V. Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe - Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, CNRS UMR2000 Génomique Évolutive, Modélisation et Santé, Institut Pasteur, Paris 75015, France
| | | | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe - Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris 75006, France
| |
Collapse
|
230
|
The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life Sci 2020; 254:117788. [PMID: 32475810 PMCID: PMC7219356 DOI: 10.1016/j.lfs.2020.117788] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Aims As of the 28th April 2020, the COVID-19 pandemic has infiltrated over 200 countries and affected over three million confirmed people. We review different biomarkers to evaluate if they are able to predict clinical outcomes and correlate with the severity of COVID-19 disease. Methods A systematic review of the literature was carried out to identify relevant articles using six different databases. Keywords to refine the search included ‘COVID-19’, ‘SARS-CoV2’, ‘Biomarkers’, among others. Only studies which reported data on pre-defined outcomes were included. Key findings Thirty-four relevant articles were identified which reviewed the following biomarkers: C-reactive protein, serum amyloid A, interleukin-6, lactate dehydrogenase, neutrophil-to-lymphocyte ratio, D-dimer, cardiac troponin, renal biomarkers, lymphocytes and platelet count. Of these, all but two, showed significantly higher levels in patients with severe complications of COVID-19 infection compared to their non-severe counterparts. Lymphocytes and platelet count showed significantly lower levels in severe patients compared to non-severe patients. Significance Although research is still in its early stages, the discovery of how different biomarkers behave during the course of the disease could help clinicians in identifying severe disease earlier and subsequently improve prognosis. Nevertheless, we urge for more research across the globe to corroborate these findings.
Collapse
|
231
|
Zhou G, Chen S, Chen Z. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front Med 2020; 14:117-125. [PMID: 32318975 PMCID: PMC7171433 DOI: 10.1007/s11684-020-0773-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Since the outbreak of the COVID-19 pandemic in early December 2019, 81 174 confirmed cases and 3242 deaths have been reported in China as of March 19, 2020. The Chinese people and government have contributed huge efforts to combat this disease, resulting in significant improvement of the situation, with 58 new cases (34 were imported cases) and 11 new deaths reported on March 19, 2020. However, as of March 19, 2020, the COVID-19 pandemic continues to develop in 167 countries/territories outside of China, and 128 665 confirmed cases and 5536 deaths have been reported, with 16 498 new cases and 817 new deaths occurring in last 24 hours. Therefore, the world should work together to fight against this pandemic. Here, we review the recent advances in COVID-19, including the insights in the virus, the responses of the host cells, the cytokine release syndrome, and the therapeutic approaches to inhibit the virus and alleviate the cytokine storm. By sharing knowledge and deepening our understanding of the virus and the disease pathogenesis, we believe that the community can efficiently develop effective vaccines and drugs, and the mankind will eventually win this battle against this pandemic.
Collapse
Affiliation(s)
- Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|