201
|
The Effect of Elasticity of Gelatin Nanoparticles on the Interaction with Macrophages. Pharmaceutics 2023; 15:pharmaceutics15010199. [PMID: 36678828 PMCID: PMC9861130 DOI: 10.3390/pharmaceutics15010199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Gelatin is a biocompatible, biodegradable, cheap, and nontoxic material, which is already used for pharmaceutical applications. Nanoparticles from gelatin (GNPs) are considered a promising delivery system for hydrophilic and macromolecular drugs. Mechanical properties of particles are recognized as an important parameter affecting drug carrier interaction with biological systems. GNPs offer the preparation of particles with different stiffness. GNPs were loaded with Fluorescein isothiocyanate-labeled 150 kDa dextran (FITC-dextran) yielding also different elastic properties. GNPs were visualized using atomic force microscopy (AFM), and force-distance curves from the center of the particles were evaluated for Young's modulus calculation. The prepared GNPs have Young's moduli from 4.12 MPa for soft to 9.8 MPa for stiff particles. Furthermore, cytokine release (IL-6 and TNF-α), cell viability, and cell uptake were determined on macrophage cell lines from mouse (RAW 264.7) and human (dTHP-1 cells, differentiated human monocytic THP-1 cells) origin for soft and stiff GNPs. Both particle types showed good cell compatibility and did not induce IL-6 and TNF-α release from RAW 264.7 and dTHP-1 cells. Stiffer GNPs were internalized into cells faster and to a larger extent.
Collapse
|
202
|
Niu Y, Xu G, Zhu S, Wei X, Wu C, Zhang R, Chen C, Yan L, Luo H, Deng S, Wu W, Li Y, Liu M, Jiang Y, Zhang X. NONO regulates multiple cytokine production in sepsis via the ERK1/2 signaling pathway. Mol Immunol 2023; 153:94-105. [PMID: 36459792 DOI: 10.1016/j.molimm.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
The massive release of pro-inflammatory cytokines is a crucial step in triggering the inflammatory cascade in sepsis. Exploring the key molecules regulating the expression and release of multiple cytokines has important value for revealing the mechanism of the cytokine storm in sepsis. This study aimed to investigate the role of multifunctional nuclear protein non-POU domain containing octamer-binding protein (NONO) in the sepsis cytokine storm and to elucidate the underlying mechanism. We found that NONO expression in tissues and cells of sepsis mice was significantly upregulated. Downregulation of NONO expression inhibited the mRNA expression of multiple cytokines, including IL-6, IL-1β, MCP-1, MIP-1α, and MIP-1β in inflammatory cells from mice and human leukemic monocyte-THP1 cells challenged with lipopolysaccharide (LPS), and significantly decreased the level of these cytokines and TNF-α in the supernatant of THP1 cells challenged by LPS. Nono knockout also reduced the levels of TNF-α, IL-6, MIP-1α, and MIP-1β in serum, alleviated hepatocyte edema, and improved the survival rate of sepsis mice. Reduced NONO expression decreased the phospho-ERK1/2 level in inflammatory cells from sepsis mice or THP1 cells challenged by LPS. Phospho-ERK1/2 inhibitor decreased the mRNA expression and concentration of cytokines in the culture supernatant of LPS-induced THP1 cells, similar to the effect of NONO knockdown. After LPS challenge, the levels of phospho-ERK1/2 and NONO were increased, with obvious colocalization in the nucleus and vesicular-like organelles in macrophages. NONO knockdown decreased nuclear translocation of phospho-ERK1/2 in LPS-challenged THP1 cells. These results suggest that NONO is a potentially critical molecule involved in multiple cytokine production in sepsis. Upregulated NONO in sepsis may promote the expression and release of multiple cytokines to participate in a sepsis cytokine storm by promoting ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Ya Niu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Guangyu Xu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Shaoping Zhu
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Xiurong Wei
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Changli Wu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Ruigang Zhang
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Chunling Chen
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Lvbin Yan
- Library, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China.
| | - Simin Deng
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Weijian Wu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Yaojing Li
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Ming Liu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China.
| | - Xiujuan Zhang
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
203
|
Establishment of Epithelial Inflammatory Injury Model Using Intestinal Organoid Cultures. Stem Cells Int 2023; 2023:3328655. [PMID: 36926182 PMCID: PMC10014157 DOI: 10.1155/2023/3328655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Intestinal epithelial dysfunction is critical in the development of inflammatory bowel disease (IBD). However, most cellular experiments related to epithelial barrier studies in IBD have been based on tumor cell line that lack a variety of intestinal epithelial cell types. Thus, intestinal organoids can present the three-dimensional structure and better simulate the physiological structure and function of the intestinal epithelium in vitro. Here, the crypts were isolated from the small intestine of mice; with the participation of major cytokines (EGF, Noggin, and R-Spondin 1 included), the intestinal organoids were established at a density of 100 crypts per well, containing intestinal stem cells (ISC), Paneth cells, goblet cells, and intestinal endocrine cells. We found that tumor necrosis factor-alpha (TNF-α) could induce the inflammatory response of intestinal organoids, and a dose of 10 ng/mL could maintain stable passaging of organoids for dynamic observation. After stimulation with TNF-α, the intestinal organoid cultures showed lower expression of the cell proliferation-related protein identified by monoclonal antibody Ki 67 (Ki67), the ISC marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5), and the intestinal tight junction proteins occludin (Ocln) and claudin-1 (Cldn1) while higher expression of the inflammatory cytokine interleukin- (IL-) 15 and the chemokines C-X-C motif ligand 2 (Cxcl2) and Cxcl10 significantly. In this study, we successfully established an epithelial inflammatory injury model of intestinal organoids, which provides an effective in vitro model for studying the pathogenesis and treatment of IBD.
Collapse
|
204
|
Metabolic changes after surgical fat removal: A dose-response meta-analysis. J Plast Reconstr Aesthet Surg 2023; 76:238-250. [PMID: 36527906 DOI: 10.1016/j.bjps.2022.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bariatric surgery averts obesity-induced insulin resistance and the metabolic syndrome. By contrast, surgical fat removal is considered merely an esthetic endeavor. The aim of this article was to establish whether surgical fat removal, similar to bariatric surgery, exerts measurable, lasting metabolic benefits. METHODS PubMed, Embase, and Scopus were searched using the Polyglot Search Translator to find studies examining quantitative expression of metabolic markers. Quality assessment was done using the MethodologicAl STandard for Epidemiological Research scale. The robust-error meta-regression model was employed for this synthesis. RESULTS Twenty-two studies with 493 participants were included. Insulin sensitivity improved gradually with a maximum reduction in fasting insulin and homeostatic model assessment for insulin resistance of 17 pmol/L and 1 point, respectively, at postoperative day 180. Peak metabolic benefits manifest as a reduction of 2 units in body mass index, 3 kg of fat mass, 5 cm of waist circumference, 15 µg/L of serum leptin, 0.75 pg/ml of tumor necrosis factor-alpha, 0.25 mmol/L of total cholesterol, and 3.5 mmHg of systolic and diastolic blood pressure that were observed at day 50 but were followed by a return to preoperative levels by day 180. Serum high-density lipoproteins peaked at 50 days post-surgery before falling below the baseline. No significant changes were observed in lean body mass, serum adiponectin, resistin, interleukin-6, C-reactive protein, triglyceride, low-density lipoproteins, free fatty acids, and fasting blood glucose. CONCLUSION Surgical fat removal exerts several metabolic benefits in the short term, but only improvements in insulin sensitivity last beyond 6 months.
Collapse
|
205
|
Hamed RS, Naser AI, Al-Allaf LI, Taqa GA. The impact of Lidocaine gel on TNF-α expression in surgically induced oral mucosal ulcers: an immunohistochemical analysis in rabbits. JOURNAL OF ORAL MEDICINE AND ORAL SURGERY 2023. [DOI: 10.1051/mbcb/2023001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Besides being a local anesthetic agent lidocaine is a promising anti-inflammatory agent with limited studies on its effect on the mucosa. Aim: Assess the anti-inflammatory effect of lidocaine following surgical induction wound in the oral mucosa as assessed by tumor necrosis factor-α (TNF-α) expression. Materials and methods: The study was conducted on 32 albino rabbits that were categorized into 2 equal groups of 16 rabbits: In the control group an oral wound was surgically induced and left without treatment and in the treatment group an oral wound was surgically induced and received topical Lidocaine gel. Euthanasia of animals was carried out on days 1, 3, 7, and 10, and sample sites were processed for histopathological and immunohistochemical staining for TNF-α. Results: In the histological observations, it was noticed that the healing process was more rapid and convenient in the test group compared to the control group. For Immunohistochemical assessment, the TNF-α started to express clearly at 1 day and gradually decreased and disappeared at 10 days with a superior effect of the lidocaine group over the control group. Conclusion: Lidocaine seems to have anti-inflammatory reactions by lowering TNF-α levels and preventing the production of pro-inflammatory cytokines.
Collapse
|
206
|
Amlexanox-loaded nanoliposomes showing enhanced anti-inflammatory activity in cultured macrophages: A potential formulation for treatment of oral aphthous stomatitis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
207
|
Rika Trismayanti NM, Kusworini, Dian H. In silico identification of natural compounds from virgin coconut oil as potential ligand peroxisome proliferator-activated receptor-gamma as preventive food leads against colitis: Is it really work? J Adv Pharm Technol Res 2023; 14:39-45. [PMID: 36950459 PMCID: PMC10026328 DOI: 10.4103/japtr.japtr_505_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 03/24/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammation of the large intestine characterized by diarrhea with blood. UC has a more extensive manifestation in children. Current therapy has not given satisfactory results. This is the basis for the need for preventive therapy to reduce the morbidity and mortality of UC in children. Virgin coconut oil (VCO) is a viable dietary supplement option due to its ability to act as a peroxisome proliferator-activated receptor (PPAR) ligand, inhibiting the release of pro-inflammatory cytokines. The aim of this study was to determine natural compounds from VCO that have the potential to prevent colitis using a docking-based virtual screening approach. Quantitative structure-activity relationship analysis was used to find out how similar the input compounds and the database were. Docking is done using AutoDockTools 1.5.6. The algorithm used is the Lamarckian Genetic Algorithm (4.2). PPAR-gamma (PPAR-γ) was used as the target protein in a complex with rosiglitazone (ID PDB: 7AWC). PyMol 2.5.1 was used to prepare and visualize three-dimensional data, and the amino acid interactions were visualized using Discovery Studio 2021 Clients. It was found that linoleic acid and oleic acid in VCO have anti-inflammatory effects with predictive values of 0.73 and 0.614, respectively, and that they stop tumor necrosis factor (TNF) expression with predictive values of 0.751 and 0.724. The result of molecular docking showed that the VCO compound was able to interact with the same residue as the control. VCO reduces inflammation by acting as a PPAR-γ and TNF expression inhibitor.
Collapse
Affiliation(s)
- Ni Made Rika Trismayanti
- Department of Surgery, Division of Pediatric Surgery, Persahabatan General Hospital, Jakarta, Indonesia
| | - Kusworini
- Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Handayani Dian
- Nutrition Department, Faculty of Health Science, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
208
|
Su H, Yi J, Tsui CK, Li C, Zhu J, Li L, Zhang Q, Zhu Y, Xu J, Zhu M, Han J. HIF1-α upregulation induces proinflammatory factors to boost host killing capacity after Aspergillus fumigatus exposure. Future Microbiol 2023; 18:27-41. [PMID: 36472203 DOI: 10.2217/fmb-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: HIF1-α is an important transcription factor in the regulation of the immune response. The protective function of HIF1-α in the host epithelial immune response to Aspergillus fumigatus requires further clarification. Methods: In this study we demonstrated the effect of upregulation of HIF1-α expression in A549 cells and mouse airway cells exposed to A. fumigatus in vivo. Results: The killing capacity was enhanced by boosting proinflammatory factors both in vitro and in vivo. Moreover, airway inflammation was reduced in the HIF1-α-upregulated mice. Conclusion: We identified a protective role for HIF1-α in anti-A. fumigatus immunity. Modulation of HIF1-α might be a target for the development of aspergillosis therapy.
Collapse
Affiliation(s)
- Huilin Su
- Department of Dermatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiu Yi
- Department of Dermatology, Naval Medical Center of PLA, Shanghai, 200052, China
| | - Clement Km Tsui
- Faculty of Medicine, University of British Columbia, Vancouver, V6T1Z3, Canada.,National Center for Infectious Diseases, Tan Tock Seng hospital, 308442, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junhao Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiangqiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center of PLA, Shanghai, 200052, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Min Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiande Han
- Department of Dermatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, China
| |
Collapse
|
209
|
Lee JL, Zhang C, Westbrook R, Gabrawy MM, Nidadavolu L, Yang H, Marx R, Wu Y, Anders NM, Ma L, Bichara MD, Kwak MJ, Buta B, Khadeer M, Yenokyan G, Tian J, Xue QL, Siragy HM, Carey RM, de Cabo R, Ferrucci L, Moaddel R, Rudek MA, Le A, Walston JD, Abadir PM. Serum Concentrations of Losartan Metabolites Correlate With Improved Physical Function in a Pilot Study of Prefrail Older Adults. J Gerontol A Biol Sci Med Sci 2022; 77:2356-2366. [PMID: 35511890 PMCID: PMC9799219 DOI: 10.1093/gerona/glac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/20/2023] Open
Abstract
Losartan is an oral antihypertensive agent that is rapidly metabolized to EXP3174 (angiotensin-subtype-1-receptor blocker) and EXP3179 (peroxisome proliferator-activated receptor gamma [PPARγ] agonist), which was shown in animal studies to reduce inflammation, enhance mitochondrial energetics, and improve muscle repair and physical performance. We conducted an exploratory pilot study evaluating losartan treatment in prefrail older adults (age 70-90 years, N = 25). Participants were randomized to control (placebo) or treatment (daily oral losartan beginning at 25 mg per day and increasing every 8 weeks) for a total of 6 months. Fatigue, hyperkalemia, and hypotension were the most observed side effects of losartan treatment. Participants in the losartan group had an estimated 89% lower odds of frailty (95% confidence interval [CI]: 18% to 99% lower odds, p = .03), with a 0.3-point lower frailty score than the placebo group (95% CI: 0.01-0.5 lower odds, p = .04). Frailty score was also negatively associated with serum losartan and EXP3179 concentrations. For every one standard deviation increase in EXP3179 (ie, 0.0011 ng/μL, based on sample values above detection limit) and EXP3174 (ie, 0.27 ng/μL, based on sample values above detection limit), there was a 0.0035 N (95% CI: 0.0019-0.0051, p < .001) and a 0.0027 N (95% CI: 0.00054-0.0043, p = .007) increase in average knee strength, respectively.
Collapse
Affiliation(s)
- Jessica L Lee
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland,USA
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cissy Zhang
- Department of Oncology, Division of Cancer Chemical and Structural Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Reyhan Westbrook
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariann M Gabrawy
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lolita Nidadavolu
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huanle Yang
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruth Marx
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuqiong Wu
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole M Anders
- Department of Oncology, Division of Cancer Chemical and Structural Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Marcela-Dávalos Bichara
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Min-Ji Kwak
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Brian Buta
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohammed Khadeer
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Gayane Yenokyan
- Johns Hopkins Biostatistics Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jing Tian
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qian-Li Xue
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Helmy M Siragy
- Department of Medicine, Division of Endocrine and Metabolism, University of Virginia, Charlottesville, Virginia, USA
| | - Robert M Carey
- Department of Medicine, Division of Endocrine and Metabolism, University of Virginia, Charlottesville, Virginia, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ruin Moaddel
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Michelle A Rudek
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
- Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anne Le
- The Johns Hopkins Analytical Pharmacology Core Laboratory, Clinical Pharmacology, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy D Walston
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter M Abadir
- Department of Medicine, Division of Geriatric Medicine and Gerontology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
210
|
Ceban F, Xu J. The Evolution of TNF-α Blockade for the Treatment of Rheumatoid Arthritis. JOURNAL OF UNDERGRADUATE LIFE SCIENCES 2022. [DOI: 10.33137/juls.v16i1.39048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor (TNF)-α is a potent trimeric cytokine which plays a fundamental role in the host immuno-inflammatory response, as well as in homeostasis and development. Although critical for canonical immune function, TNF-α has great destructive potential and is implicated in the development of multiple immune-mediated disorders. Within the context of rheumatoid arthritis (RA), TNF-α acts as a primary pathogenic driver by precipitating a pro-inflammatory cytokine cascade and coordinating the attraction and activation of immune cells, all of which culminate in damage to the synovium. The discovery of the paramount role of TNF-α in the pathophysiology of RA motivated studies to understand the effects of TNF blockade in vitro and in vivo. Promising preclinical results provided the impetus for clinical trials, spearheaded in the 1980s and 90s by Marc Feldmann, which revealed significant improvements across RA symptom scores and finally led to FDA approval in 1998. As of 2021, five TNF-α blocking agents have been widely applied clinically, including infliximab (IFX), etanercept (ETN), adalimumab (ADA), golimumab (GLM) and certolizumab pegol (CZP). All of them successfully ameliorated symptoms of RA and the associated tissue damage, especially in patients not responding to traditional treatment methods. Anti-TNFs are most often administered in combination with methotrexate (MTX) as part of Phase II treatment (i.e., second line). Although the general availability of anti-TNFs has dramatically improved patient outcomes, sustained remission is rare and the mechanism of RA remains incompletely understood. Thus, additional basic and translational research is warranted, towards the aim of developing novel RA treatments.
Collapse
|
211
|
Görtz GE, Philipp S, Bruderek K, Jesenek C, Horstmann M, Henning Y, Oeverhaus M, Daser A, Bechrakis NE, Eckstein A, Brandau S, Berchner-Pfannschmidt U. Macrophage-Orbital Fibroblast Interaction and Hypoxia Promote Inflammation and Adipogenesis in Graves' Orbitopathy. Endocrinology 2022; 164:6881427. [PMID: 36477465 DOI: 10.1210/endocr/bqac203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The inflammatory eye disease Graves' orbitopathy (GO) is the main complication of autoimmune Graves' disease. In previous studies we have shown that hypoxia plays an important role for progression of GO. Hypoxia can maintain inflammation by attracting inflammatory cells such as macrophages (MQ). Herein, we investigated the interaction of MQ and orbital fibroblasts (OF) in context of inflammation and hypoxia. We detected elevated levels of the hypoxia marker HIF-1α, the MQ marker CD68, and inflammatory cytokines TNFα, CCL2, CCL5, and CCL20 in GO biopsies. Hypoxia stimulated GO tissues to release TNFα, CCL2, and CCL20 as measured by multiplex enzyme-linked immunosorbent assay (ELISA). Further, TNFα and hypoxia stimulated the expression of HIF-1α, CCL2, CCL5, and CCL20 in OF derived from GO tissues. Immunofluorescence confirmed that TNFα-positive MQ were present in the GO tissues. Thus, interaction of M1-MQ with OF under hypoxia also induced HIF-1α, CCL2, and CCL20 in OF. Inflammatory inhibitors etanercept or dexamethasone prevented the induction of HIF-1α and release of CCL2 and CCL20. Moreover, co-culture of M1-MQ/OF under hypoxia enhanced adipogenic differentiation and adiponectin secretion. Dexamethasone and HIF-1α inhibitor PX-478 reduced this effect. Our findings indicate that GO fat tissues are characterized by an inflammatory and hypoxic milieu where TNFα-positive MQ are present. Hypoxia and interaction of M1-MQ with OF led to enhanced secretion of chemokines, elevated hypoxic signaling, and adipogenesis. In consequence, M1-MQ/OF interaction results in constant inflammation and tissue remodeling. A combination of anti-inflammatory treatment and HIF-1α reduction could be an effective treatment option.
Collapse
Affiliation(s)
- Gina-Eva Görtz
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Svenja Philipp
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Jesenek
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Mareike Horstmann
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, 45147 Essen, Germany
| | - Michael Oeverhaus
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Anke Daser
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Nikolaos E Bechrakis
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Anja Eckstein
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Utta Berchner-Pfannschmidt
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
212
|
Orecchioni M, Wolf D, Suryawanshi V, Winkels H, Kobiyama K, Makings J, Kiosses WB, Ley K. Deleting interleukin-10 from myeloid cells exacerbates atherosclerosis in Apoe -/- mice. Cell Mol Life Sci 2022; 80:10. [PMID: 36496494 PMCID: PMC10141524 DOI: 10.1007/s00018-022-04649-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is initiated by subendothelial retention of lipoproteins and cholesterol, which triggers a non-resolving inflammatory process that over time leads to plaque progression in the artery wall. Myeloid cells and in particular macrophages are the primary drivers of the inflammatory response and plaque formation. Several immune cells including macrophages, T cells and B cells secrete the anti-inflammatory cytokine IL-10, known to be essential for the atherosclerosis protection. The cellular source of IL-10 in natural atherosclerosis progression is unknown. This study aimed to determine the main IL10-producing cell type in atherosclerosis. To do so, we crossed VertX mice, in which IRES-green fluorescent protein (eGFP) was placed downstream of exon 5 of the Il10 gene, with atherosclerosis-prone Apoe-/- mice. We found that myeloid cells express high levels of IL-10 in VertX Apoe-/- mice in both chow and western-diet fed mice. By single cell RNA sequencing and flow cytometry analysis, we identified resident and inflammatory macrophages in atherosclerotic plaques as the main IL-10 producers. To address whether IL-10 secreted by myeloid cells is essential for the protection, we utilized LyzMCre+Il10fl/fl mice crossed into the Apoe-/- background and confirmed that macrophages were unable to secrete IL-10. Chow and western diet-fed LyzMCre+Il10fl/fl Apoe-/- mice developed significantly larger atherosclerotic plaques as measured by en face morphometry than LyzMCre-Il10 fl/flApoe-/-. Flow cytometry and cytokine measurements suggest that the depletion of IL-10 in myeloid cells increases Th17 cells with elevated CCL2, and TNFα in blood plasma. We conclude that macrophage-derived IL-10 is critical for limiting atherosclerosis in mice.
Collapse
Affiliation(s)
- Marco Orecchioni
- La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA.
| | - Dennis Wolf
- Cardiology and Angiology I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vasantika Suryawanshi
- La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jeffrey Makings
- La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - William B Kiosses
- Histology and Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Immunology Center of Georgia (IMMCG), Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
213
|
Alkhattabi NA, Hussein SA, Tarbiah NI, Alzahri RY, Khalifa R. Thymoquinone Effect on Monocyte-Derived Macrophages, Cell-Surface Molecule Expression, and Phagocytosis. Nutrients 2022; 14:nu14245240. [PMID: 36558399 PMCID: PMC9783248 DOI: 10.3390/nu14245240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are one of the most important cells in the immune system. They act as links between innate and adaptive immunities. In this study, the aim was to examine thymoquinone effects on the immunological properties of different macrophages. Peripheral blood mononuclear cells were isolated from blood from healthy volunteers by negative selection of monocytes that had been cultured for seven days to differentiate into macrophages. Cells were cultured with or without the presence of thymoquinone (TQ), which was used in two different concentrations (50 μg/mL and 100 μg/mL. Cluster of differentiation 80 (CD80), cluster of differentiation 86 (CD86), and human leukocyte antigen DR isotype (HLA-DR) were measured by flow cytometry, and the secretion of interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α) was measured. Cells were also tested for their E. coli phagocytosis abilities. The data showed that the expression of HLA-DR was significantly higher in cells treated with 100 μL/mL TQ. In addition, IFN-γ concentration increased in the 100 μg/mL TQ-treated cells. The macrophage phagocytosis results showed a significant difference in 50 μg/mL TQ-treated cells compared to the controls. TQ may enhance the immunological properties of macrophages during the early stages of innate immunity by activating phagocytosis ability and by increasing the expression of HLA-DR and the secretion of IFN-γ, which may enhance the antigen-presentation capabilities of macrophages.
Collapse
Affiliation(s)
- Nuha A. Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-536665958
| | - Sowsan A. Hussein
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nesrin I. Tarbiah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem Y. Alzahri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Reham Khalifa
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
214
|
Protective Effect of High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) against Vascular Dysfunction in Hyperglycemic Rats. J Nutr Metab 2022; 2022:5631488. [PMID: 36510592 PMCID: PMC9741543 DOI: 10.1155/2022/5631488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperglycemia is a major risk factor for endothelial dysfunction. Endothelial dysfunction is associated with the inability of endothelial cells to maintain homeostasis of the cardiovascular system. Regular exercise may be considered as an effective and low-cost nonpharmacological tool for improving vascular function, though there is no agreement on the best type of exercise. Objectives To determine how high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) may prevent endothelial dysfunction under hyperglycemic conditions, and to compare these two interventions. Method Twenty-four eight-week-old male Wistar rats were randomly assigned into four groups: healthy nonexercising control (C), hyperglycemic control (HG-C), hyperglycemic + HIIT (HG-IT), and hyperglycemic + MICT (HG-CT). Hyperglycemia was induced by a single injection of streptozotocin. Hyperglycemic animals were subjected to HIIT or MICT protocols six days a week for six weeks. Decapitation was performed the day after the exercise protocols were completed. The ascending aorta (until the abdominal artery) was examined. An enzyme-linked immunosorbent assay (ELISA) was used to measure the glucagon-likepeptide-1 (GLP-1), endothelial nitric oxide synthase (eNOS), and tumor necrosis factor-alpha (TNFα) levels. A colorimetric assay was used to measure superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. Quantitative real-time polymerase chain reaction (PCR) was used to measure the expression of the receptor for advanced glycation end-products (RAGE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Hematoxylin and eosin (H&E) staining was used to histologically analyze the aortas. Results There was a significantly higher level of GLP-1 and lower expression of RAGE, NF-κB, and TNFα in the HG-IT and HG-CT group compared to the HG-C group. Microscopic examination of aortic tissue showed a better tissue arrangement in both treatment groups than in the HG-C group. Except for the MDA level, there were no significant differences in any of the measured parameters between the HG-IT and HG-CT groups. Conclusion Under hyperglycemic conditions, both HIIT and MICT have a protective role against endothelial dysfunction.
Collapse
|
215
|
Gao Y, Guo Z, Liu Y. Analysis of the potential molecular biology of triptolide in the treatment of diabetic nephropathy: A narrative review. Medicine (Baltimore) 2022; 101:e31941. [PMID: 36482625 PMCID: PMC9726356 DOI: 10.1097/md.0000000000031941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To explore the potential mechanism of triptolide in diabetic nephropathy (DN) treatment using network pharmacology. METHODS The main targets of triptolide were screened using the TCMSP, DrugBank, and NCBI databases, and gene targets of DN were searched using the DrugBank, DisGeNET, TTD, and OMIM databases. All of the above targets were normalized using the UniProt database to obtain the co-acting genes. The co-acting genes were uploaded to the STRING platform to build a protein-protein interaction network and screen the core acting targets. Gene ontology and Kyoto encyclopedia of genes and genomes analyses of the core targets were performed using Metascape. Molecular docking validation of triptolide with the co-acting genes was performed using the Swiss Dock platform. RESULTS We identified 76 potential target points for triptolide, 693 target points for DN-related diseases, and 24 co-acting genes. The main pathways and biological processes involved are lipids and atherosclerosis, IL-18 signaling pathway, TWEAK signaling pathway, response to oxidative stress, hematopoietic function, and negative regulation of cell differentiation. Both triptolide and the active site of the core target genes can form more than 2 hydrogen bonds, and the bond energy is less than -5kJ/mol. Bioinformatics analysis showed that triptolide had a regulatory effect on most of the core target genes that are aberrantly expressed in DKD. CONCLUSION Triptolide may regulate the body's response to cytokines, hormones, oxidative stress, and apoptosis signaling pathways in DN treatment by down-regulating Casp3, Casp8, PTEN, GSA3B and up-regulating ESR1, and so forth.
Collapse
Affiliation(s)
- Ying Gao
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Lixia District, Jinan City, Shandong Province, China
| | - Zhaoan Guo
- Department of Nephrology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- * Correspondence: Zhaoan Guo, Department of Nephrology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Lixia District, Jinan, Shandong 250014, China (e-mail: )
| | - Yingying Liu
- Department of Nephrology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Lixia District, Jinan City, Shandong Province, China
| |
Collapse
|
216
|
Yuan H, Zhang W, Jin S, Jiang S, Xiong Y, Chen T, Gong Y, Qiao H, Fu H. Transcriptome analysis provides novel insights into the immune mechanisms of Macrobrachium nipponense during molting. FISH & SHELLFISH IMMUNOLOGY 2022; 131:454-469. [PMID: 36257556 DOI: 10.1016/j.fsi.2022.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Molting is a basic physiological behavior of the Oriental river prawn (Macrobrachium nipponense), however, the gene expression patterns and immune mechanisms during the molting process of Oriental river prawn are unclear. In the current study, the gene expression levels of the hepatopancreas of the Oriental river prawn at different molting stages (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom) were detected by mRNA sequencing. A total of 1721, 551, and 1054 differentially expressed genes (DEGs) were identified between the Prm hepatopancreas (PrmHe) and Mm hepatopancreas (MmHe), MmHe and Pom hepatopancreas (PomHe) and PrmHe and PomHe, respectively. The results showed that a total of 1151 DEGs were annotated into 316 signaling pathways, and the significantly enriched immune-related pathways were "Lysosome", "Hippo signaling pathway", "Apoptosis", "Autophagy-animal", and "Endocytosis". The qRT-PCR verification results of 30 randomly selected DEGs were consistent with RNA-seq. The expression patterns of eight immune related genes in different molting stages of the Oriental river prawn were analyzed by qRT-PCR. The function of Caspase-1 (CASP1) was further investigated by bioinformatics, qRT-PCR, and RNAi analysis. CASP1 has two identical conserved domains: histidine active site and pentapeptide motif, and the expression of CASP1 is the highest in ovary. The expression levels of triosephosphate isomerase (TPI), Cathepsin B (CTSB) and Hexokinase (HXK) were evaluated after knockdown of CASP1. This research provides a valuable basis to improve our understanding the immune mechanisms of Oriental river prawns at different molting stages. The identification of immune-related genes is of great significance for enhancing the immunity of the Oriental river prawn, or other crustaceans, by transgenic methods in the future.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Tianyong Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
217
|
Liu G, Jarnicki AG, Paudel KR, Lu W, Wadhwa R, Philp AM, Van Eeckhoutte H, Marshall JE, Malyla V, Katsifis A, Fricker M, Hansbro NG, Dua K, Kermani NZ, Eapen MS, Tiotiu A, Chung KF, Caramori G, Bracke K, Adcock IM, Sohal SS, Wark PA, Oliver BG, Hansbro PM. Adverse roles of mast cell chymase-1 in COPD. Eur Respir J 2022; 60:2101431. [PMID: 35777766 DOI: 10.1183/13993003.01431-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Andrew G Jarnicki
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- St Vincent's Medical School, University of New South Wales Medicine, University of New South Wales, Sydney, Australia
| | - Hannelore Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Angelica Katsifis
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Nazanin Z Kermani
- Data Science Institute, Department of Computing, Imperial College London, London, UK
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Angelica Tiotiu
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Pulmonology, University Hospital of Nancy, Nancy, France
| | - K Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ken Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Brian G Oliver
- Woolcock Institute and School of Life Science, Faculty of Science Life Science, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
218
|
Opolski MM, Maito VT, Kawassaki ACB, da Silva JC, Kern R, Rech D, de Oliveira ST, Lonardoni Micheletti P, Panis C, Grassiolli S. Salivary and plasmatic levels of
tumor necrosis factor‐alpha
do not correlate with the clinicopathological profile in breast cancer patients. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Marcelo Marcos Opolski
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Vitor Teixeira Maito
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Aedra Carla Bufalo Kawassaki
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Janaína Carla da Silva
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Rodrigo Kern
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Daniel Rech
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Stefania Tagliari de Oliveira
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Pâmela Lonardoni Micheletti
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | - Carolina Panis
- Post‐Graduation Program of Health‐Applied Sciences. Laboratory of Tumor Biology Universidade Estadual do Oeste do Paraná Francisco Beltrão Brazil
| | | |
Collapse
|
219
|
Boehncke WH, Brembilla NC. Pathogenesis-oriented therapy of psoriasis using biologics. Expert Opin Biol Ther 2022; 22:1463-1473. [PMID: 35815360 DOI: 10.1080/14712598.2022.2100219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Psoriasis is currently regarded an immune-mediated inflammatory disease. The central pathogenic axis comprises interleukin-23, TH17-lymphocytes differentiating under its influence, and interleukin-17A as a key effector cytokine of these T-lymphocytes. All of these can selectively be targeted using biological therapies, thus potentially increasing efficacy and reducing adverse events when compared to conventional systemic therapeutics. AREAS COVERED We review the current concept of psoriasis as an immune-mediated inflammatory disease, assessing the evidence for a role of elements of the innate and adaptive immune system. We then correlate the pharmacological effects of biologics in psoriasis in light of the known physiologic as well as pathophysiological role of the respective targets. This is done on the basis of an extensive literature search of publications since 2018 which describe the role of the above-mentioned elements in health and disease or the effects of blocking these as an attempt to treat psoriasis. EXPERT OPINION Biologics targeting the above-mentioned central pathogenic axis provide a particularly effective and safe way to treat psoriasis. Given the impact of comorbidities on therapeutic decision-making, and the efficacy of some biologics also on certain comorbidities, these drugs represent a first step toward personalized medicine in the management of psoriasis.
Collapse
Affiliation(s)
- Wolf-Henning Boehncke
- Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
220
|
Vargas-Cortez T, Jacobo-Velázquez DA, Benavides J. Therapeutic Plants with Immunoregulatory Activity and Their Applications: A Scientific Vision of Traditional Medicine in Times of COVID-19. J Med Food 2022; 25:1074-1085. [PMID: 36067145 DOI: 10.1089/jmf.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The progression of SARS-CoV-2 (COVID-19) in humans heavily depends on the patient's overall health status, especially on its immunoregulatory capacity. Different plants and plant-derived preparations (infusions, encapsulated, etc.) have been used as immunoregulators, several of them with scientific support. Nevertheless, due to the composition complexity of such plant-derived preparations, the molecular and physiological mechanisms involved in their beneficial effects remain, in some cases, unclear. In this review article, the most reported plants used in traditional medicine to enhance immunoregulatory capacity are presented, and their effect on the innate immune response is discussed and correlated with their respective phytochemical profile. Understanding how the plant phytochemical profile relates to the observed impact on the innate and adaptative immune response is fundamental to designing plant-derived co-treatments to lessen the symptoms and favor the recovery of COVID-19 patients. In this regard, we propose a prospective guideline for using plants and plant-derived preparations as co-treatments for COVID-19 (and similar viral infections), which could be helpful in the context of the worldwide effort to end the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Teresa Vargas-Cortez
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, México
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, The Institute for Obesity Research, Zapopan, México
- Tecnologico de Monterrey, School of Engineering and Sciences, Zapopan, México
| | - Jorge Benavides
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, México
| |
Collapse
|
221
|
Li X, Guo D, Zhou W, Hu Y, Zhou H, Chen Y. The Potential Prognostic, Diagnostic and Therapeutic Targets for Recurrent Arrhythmias in Patients with Coronary Restenosis and Reocclusions After Coronary Stenting. Curr Pharm Des 2022; 28:3500-3512. [PMID: 36424794 DOI: 10.2174/1381612829666221124110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The interplay of oxidative stress, proinflammatory microparticles, and proinflammatory cytokines in recurrent arrhythmias is unknown in elderly patients with coronary restenosis and reocclusions after coronary stenting. OBJECTIVE This research sought to investigate the potential diagnostic and therapeutic targets for recurrent arrhythmias in patients with coronary restenosis and reocclusions after coronary stenting. METHODS We examined whether oxidative stress, proinflammatory microparticles, and proinflammatory cytokines could have effects that lead to recurrent arrhythmias in elderly patients with coronary restenosis and reocclusions. We measured the levels of malondialdehyde (MDA), CD31 + endothelial microparticle (CD31 EMP), CD62E + endothelial microparticle (CD62E + EMP), high-sensitivity C-reactive protein (hs-CRP), interleukin- 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), as well as oxidized low-density lipoprotein (OX-LDL), and assessed the effects of relationship between oxidative stress, proinflammatory microparticles, and proinflammatory cytokines on recurrent atrial and ventricular arrhythmias in elderly patients with coronary restenosis and reocclusions after coronary stenting. RESULTS The levels of CD31 + EMP, CD62E + EMP, MDA, hs-CRP, IL-1β, IL-6, IL-8, TNF-α and OX-LDL were found to be increased significantly in coronary restenosis + recurrent atrial arrhythmia group compared to without coronary restenosis and coronary restenosis + without recurrent atrial arrhythmia groups, respectively (P < 0.001). Patients in the coronary reocclusion + recurrent ventricular arrhythmia group also exhibited significantly increased levels of CD31 + EMP, CD62E + EMP, MDA, hs-CRP, IL-1β, IL-6, IL-8, TNF-α and OXLDL compared to without coronary reocclusion and coronary reocclusion + without recurrent ventricular arrhythmia groups, respectively (P < 0.001). CONCLUSION Proinflammatory microparticles, proinflammatory cytokines, and oxidative stress might act as potential targets for recurrent arrhythmias in patients with coronary restenosis and reocclusions after coronary stenting.
Collapse
Affiliation(s)
- Xia Li
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Dianxuan Guo
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Wenhang Zhou
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Youdong Hu
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Hualan Zhou
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| | - Ying Chen
- Department of Geriatrics, Second People's Hospital of Huai'an, Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an 223002, China
| |
Collapse
|
222
|
Dysregulated haemostasis in thrombo-inflammatory disease. Clin Sci (Lond) 2022; 136:1809-1829. [PMID: 36524413 PMCID: PMC9760580 DOI: 10.1042/cs20220208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory disease is often associated with an increased incidence of venous thromboembolism in affected patients, although in most instances, the mechanistic basis for this increased thrombogenicity remains poorly understood. Acute infection, as exemplified by sepsis, malaria and most recently, COVID-19, drives 'immunothrombosis', where the immune defence response to capture and neutralise invading pathogens causes concurrent activation of deleterious prothrombotic cellular and biological responses. Moreover, dysregulated innate and adaptive immune responses in patients with chronic inflammatory conditions, such as inflammatory bowel disease, allergies, and neurodegenerative disorders, are now recognised to occur in parallel with activation of coagulation. In this review, we describe the detailed cellular and biochemical mechanisms that cause inflammation-driven haemostatic dysregulation, including aberrant contact pathway activation, increased tissue factor activity and release, innate immune cell activation and programmed cell death, and T cell-mediated changes in thrombus resolution. In addition, we consider how lifestyle changes increasingly associated with modern life, such as circadian rhythm disruption, chronic stress and old age, are increasingly implicated in unbalancing haemostasis. Finally, we describe the emergence of potential therapies with broad-ranging immunothrombotic functions, and how drug development in this area is challenged by our nascent understanding of the key molecular and cellular parameters that control the shared nodes of proinflammatory and procoagulant pathways. Despite the increasing recognition and understanding of the prothrombotic nature of inflammatory disease, significant challenges remain in effectively managing affected patients, and new therapeutic approaches to curtail the key pathogenic steps in immune response-driven thrombosis are urgently required.
Collapse
|
223
|
O'Toole AD, Mohamed FM, Zhang J, Brown CC. Early pathogenesis in rabbit hemorrhagic disease virus 2. Microb Pathog 2022; 173:105814. [DOI: 10.1016/j.micpath.2022.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
224
|
Silva LP, Santos IP, Silva DKC, dos Reis BPZC, Meira CS, Castro MVBDS, dos Santos Filho JM, de Araujo-Neto JH, Ellena JA, da Silveira RG, Soares MBP. Molecular Hybridization Strategy on the Design, Synthesis, and Structural Characterization of Ferrocene- N-acyl Hydrazones as Immunomodulatory Agents. Molecules 2022; 27:molecules27238343. [PMID: 36500436 PMCID: PMC9737981 DOI: 10.3390/molecules27238343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Immunomodulatory agents are widely used for the treatment of immune-mediated diseases, but the range of side effects of the available drugs makes necessary the search for new immunomodulatory drugs. Here, we investigated the immunomodulatory activity of new ferrocenyl-N-acyl hydrazones derivatives (SintMed(141−156). The evaluated N-acyl hydrazones did not show cytotoxicity at the tested concentrations, presenting CC50 values greater than 50 µM. In addition, all ferrocenyl-N-acyl hydrazones modulated nitrite production in immortalized macrophages, showing inhibition values between 14.4% and 74.2%. By presenting a better activity profile, the ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150 also had their cytotoxicity and anti-inflammatory effect evaluated in cultures of peritoneal macrophages. The molecules were not cytotoxic at any of the concentrations tested in peritoneal macrophages and were able to significantly reduce (p < 0.05) the production of nitrite, TNF-α, and IL-1β. Interestingly, both molecules significantly reduced the production of IL-2 and IFN-γ in cultured splenocytes activated with concanavalin A. Moreover, SintMed150 did not show signs of acute toxicity in animals treated with 50 or 100 mg/kg. Finally, we observed that ferrocenyl-N-acyl hydrazone SintMed150 at 100 mg/kg reduced the migration of neutrophils (44.6%) in an acute peritonitis model and increased animal survival by 20% in an LPS-induced endotoxic shock model. These findings suggest that such compounds have therapeutic potential to be used to treat diseases of inflammatory origin.
Collapse
Affiliation(s)
- Laís Peres Silva
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil
| | - Ivanilson Pimenta Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | | | | | - Cássio Santana Meira
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS—University Center SENAI/CIMATEC), Salvador 41650-010, BA, Brazil
| | - Marcos Venícius Batista de Souza Castro
- Laboratory of Design and Synthesis Applied to Medicinal Chemistry-SintMed®, Center for Technology and Geosciences, Federal University of Pernambuco, Recife 50740-521, PE, Brazil
| | - José Maurício dos Santos Filho
- Laboratory of Design and Synthesis Applied to Medicinal Chemistry-SintMed®, Center for Technology and Geosciences, Federal University of Pernambuco, Recife 50740-521, PE, Brazil
| | - João Honorato de Araujo-Neto
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
| | - Javier Alcides Ellena
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
| | - Rafael Gomes da Silveira
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
- Department of Chemistry, Federal Institute of Goiás, Campus Ceres, Ceres 76300-000, GO, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS—University Center SENAI/CIMATEC), Salvador 41650-010, BA, Brazil
- Correspondence:
| |
Collapse
|
225
|
IL6 supports long-term expansion of hepatocytes in vitro. Nat Commun 2022; 13:7345. [PMID: 36446858 PMCID: PMC9708838 DOI: 10.1038/s41467-022-35167-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocytes are very difficult to expand in vitro. A few studies have demonstrated that chemical cocktails with growth factors or Wnt ligands can support long-term expansion of hepatocytes via dedifferentiation. However, the culture conditions are complex, and clonal expansion of hepatic progenitors with full differentiation capacity are rarely reported. Here, we discover IL6, combined with EGF and HGF, promotes long-term expansion (>30 passages in ~150 days with theoretical expansion of ~1035 times) of primary mouse hepatocytes in vitro in simple 2D culture, by converting hepatocytes into induced hepatic progenitor cells (iHPCs), which maintain the capacity of differentiation into hepatocytes. IL6 also supports the establishment of single hepatocyte-derived iHPC clones. The summation of the downstream STAT3, ERK and AKT pathways induces a number of transcription factors which support rapid growth. This physiological and simple way may provide ideas for culturing previously difficult-to-culture cell types and support their future applications.
Collapse
|
226
|
Kim HI, Kim DS, Jung Y, Sung NY, Kim M, Han IJ, Nho EY, Hong JH, Lee JK, Boo M, Kim HL, Baik S, Jung KO, Lee S, Kim CS, Park J. Immune-Enhancing Effect of Sargassum horneri on Cyclophosphamide-Induced Immunosuppression in BALB/c Mice and Primary Cultured Splenocytes. Molecules 2022; 27:8253. [PMID: 36500343 PMCID: PMC9738764 DOI: 10.3390/molecules27238253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Sargassum horneri (SH) is a seaweed that has several features that benefit health. In this study, we investigated the immune-enhancing effect of SH, focusing on the role of spleen-mediated immune functions. Chromatographic analysis of SH identified six types of monosaccharide contents, including mannose, rhamnose glucose, galactose xylose and fucose. SH increased cell proliferation of primary cultured naïve splenocytes treated with or without cyclophosphamide (CPA), an immunosuppression agent. SH also reversed the CPA-induced decrease in Th1 cytokines. In vivo investigation revealed that SH administration can increase the tissue weight of major immune organs, such as the spleen and thymus. A similar effect was observed in CPA-injected immunosuppressed BALB/c mice. SH treatment increased the weight of the spleen and thymus, blood immune cell count and Th1 cytokine expression. Additionally, the YAC-1-targeting activities of natural killer cells, which are important in innate immunity, were upregulated upon SH treatment. Overall, our study demonstrates the immune-enhancing effect of SH, suggesting its potential as a medicinal or therapeutic agent for pathologic conditions involving immunosuppression.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Yunu Jung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Nak-Yun Sung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Minjee Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - In-Jun Han
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Eun Yeong Nho
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Joon Ho Hong
- Nano Bio Research Center, Jeonnam Bioindustry Foundation, Jangsung 57248, Republic of Korea
| | - Jin-Kyu Lee
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Mina Boo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye-Lin Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sangyul Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
227
|
Snedden M, Singh L, Kyathanahalli C, Hirsch E. Toxic effects of trace phenol/guanidine isothiocyanate (P/GI) on cells cultured nearby in covered 96-well plates. BMC Biotechnol 2022; 22:35. [PMID: 36434619 PMCID: PMC9700959 DOI: 10.1186/s12896-022-00766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND A mixture of phenol and guanidine isothiocyanate ("P/GI", the principal components of TRIzol™ and similar products) is routinely used to isolate RNA, DNA, and proteins from a single specimen. In time-course experiments of cells grown in tissue culture, replicate wells are often harvested sequentially and compared, with the assumption that in-well lysis and complete aspiration of P/GI has no effect on continuing cultures in nearby wells. METHODS To test this assumption, we investigated morphology and function of RAW 264.7 cells (an immortalized mouse macrophage cell line) cultured in covered 96-well plates for 4, 8, or 24 h at varying distances from a single control well or a well into which P/GI had been deposited and immediately aspirated completely. RESULTS Time- and distance-dependent disruptions resulting from proximity to a single well containing trace residual P/GI were seen in cell morphology (blebbing, cytoplasmic disruption, and accumulation of intracellular vesicles), cell function (pH of culture medium), and expression of genes related to inflammation (Tnfα) and autophagy (Lc3b). There was no transcriptional change in the anti-apoptotic gene Mcl1, nor the pro-apoptotic gene Hrk, nor in P/GI-unexposed control cultures. LPS-stimulated cells incubated near P/GI had lower expression of the cytokine Il6. These effects were seen as early as 4 h of exposure and at a distance of up to 3 well units from the P/GI-exposed well. CONCLUSIONS Exposure to trace residual quantities of P/GI in covered tissue culture plates leads to substantial disruption of cell morphology and function in as little as 4 h, possibly through induction of autophagy but not apoptosis. This phenomenon should be considered when planning time-course experiments in multi-well covered tissue culture plates.
Collapse
Affiliation(s)
- Madeline Snedden
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, 2650 Ridge Ave, Suite 1538, Evanston, IL 60201 USA
| | - Lavisha Singh
- Department of Statistics, NorthShore University HealthSystem, Evanston, IL USA
| | - Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, 2650 Ridge Ave, Suite 1538, Evanston, IL 60201 USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, 2650 Ridge Ave, Suite 1538, Evanston, IL 60201 USA
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL USA
| |
Collapse
|
228
|
Cyclosorus terminans Extract Ameliorates Insulin Resistance and Non-Alcoholic Fatty Liver Disease (NAFLD) in High-Fat Diet (HFD)-Induced Obese Rats. Nutrients 2022; 14:nu14224895. [PMID: 36432581 PMCID: PMC9693870 DOI: 10.3390/nu14224895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Interruptins A and B exhibited anti-diabetic, anti-inflammatory, and anti-oxidative effects. This study aimed to investigate the therapeutic ability of extract enriched by interruptins A and B (EEI) from an edible fern Cyclosorus terminans on insulin resistance and non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-induced obese rats and elucidate their possible mechanisms. HFD-induced obese rats were treated with EEI for 2 weeks. Real-time polymerase chain reaction (PCR) was used to examine the molecular basis. We found that EEI supplementation significantly attenuated body and liver weight gain, glucose intolerance, and insulin resistance. Concurrently, EEI increased liver and soleus muscle glycogen storage and serum high-density lipoprotein (HDL) levels. EEI also attenuated NAFLD, as indicated by improving liver function. These effects were associated with enhanced expression of insulin signaling genes (Slc2a2, Slc2a4, Irs1 and Irs2) along with diminished expression of inflammatory genes (Il6 and Tnf). Furthermore, EEI led to the suppression of lipogenesis genes, Srebf1 and Fasn, together with an increase in fatty acid oxidation genes, Ppara and Cpt2, in the liver. These findings suggest that EEI could ameliorate HFD-induced insulin resistance and NAFLD via improving insulin signaling pathways, inflammatory response, lipogenesis, and fatty acid oxidation.
Collapse
|
229
|
Wei W, Wang S, Xu C, Zhou X, Lian X, He L, Li K. Gut microbiota, pathogenic proteins and neurodegenerative diseases. Front Microbiol 2022; 13:959856. [PMID: 36466655 PMCID: PMC9715766 DOI: 10.3389/fmicb.2022.959856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/20/2023] Open
Abstract
As the world's population ages, neurodegenerative diseases (NDs) have brought a great burden to the world. However, effective treatment measures have not been found to alleviate the occurrence and development of NDs. Abnormal accumulation of pathogenic proteins is an important cause of NDs. Therefore, effective inhibition of the accumulation of pathogenic proteins has become a priority. As the second brain of human, the gut plays an important role in regulate emotion and cognition functions. Recent studies have reported that the disturbance of gut microbiota (GM) is closely related to accumulation of pathogenic proteins in NDs. On the one hand, pathogenic proteins directly produced by GM are transmitted from the gut to the central center via vagus nerve. On the other hand, The harmful substances produced by GM enter the peripheral circulation through intestinal barrier and cause inflammation, or cross the blood-brain barrier into the central center to cause inflammation, and cytokines produced by the central center cause the production of pathogenic proteins. These pathogenic proteins can produced by the above two aspects can cause the activation of central microglia and further lead to NDs development. In addition, certain GM and metabolites have been shown to have neuroprotective effects. Therefore, modulating GM may be a potential clinical therapeutic approach for NDs. In this review, we summarized the possible mechanism of NDs caused by abnormal accumulation of pathogenic proteins mediated by GM to induce the activation of central microglia, cause central inflammation and explore the therapeutic potential of dietary therapy and fecal microbiota transplantation (FMT) in NDs.
Collapse
Affiliation(s)
- Wei Wei
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center Affiliated to Kunming Medical University, Kunming, China
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
230
|
Zinc and selenium mitigated heavy metals mixture (Pb, Al, Hg and Mn) mediated hepatic-nephropathy via modulation of oxido-inflammatory status and NF‑kB signaling in female albino rats. Toxicology 2022; 481:153350. [DOI: 10.1016/j.tox.2022.153350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
|
231
|
Hibender S, Li S, Postma AV, Hoogeland ME, Klaver D, Pouw RB, Niessen HW, Driessen AHG, Koolbergen DR, de Vries CJM, Baars MJH, Houweling AC, Krijnen PA, de Waard V. No prominent role for complement C1-esterase inhibitor in Marfan syndrome mice. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:40-49. [PMID: 36279189 PMCID: PMC9782404 DOI: 10.1530/vb-22-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder causing aortic aneurysm formation. Currently, only prophylactic aortic surgery and blood pressure-lowering drugs are available to reduce the risk of aortic rupture. Upon whole genome sequencing of a Marfan family, we identified a complement gene C1R variant (p.Ser152Leu), which is associated with severe aortic patients. Therefore, we assessed the role of complement activation in MFS aortic tissue. Expression of various complement genes and proteins was detected in human and murine MFS aneurysm tissue, which prompted us to study complement inhibition in MFS mice. Treatment of the Fbn1C1041G/+ MFS mice with human plasma-derived C1-esterase inhibitor Cetor® resulted in reduced complement deposition, decreased macrophage influx in the aorta, and lower circulating TNFα levels. However, in line with previous anti-inflammatory treatments, complement inhibition did not change the aortic dilatation rate in this MFS mouse model. Thus, while complement factors/component 3 activation were detected in human/murine MFS aorta, Cetor® had no effect on aortic dilatation in MFS mice, indicating that complement inhibition is not a suitable treatment strategy in MFS.
Collapse
Affiliation(s)
- Stijntje Hibender
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Siyu Li
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Alex V Postma
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Human Genetics, Meibergdreef, Amsterdam, The Netherlands
| | - Myrthe E Hoogeland
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
| | - Denise Klaver
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
| | - Richard B Pouw
- Sanquin Research, Department of Immunopathology, Plesmanlaan, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Landsteiner Laboratory, Meibergdreef, Amsterdam, The Netherlands
| | - Hans W Niessen
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Meibergdreef, Amsterdam, The Netherlands
| | - Antoine HG Driessen
- Amsterdam UMC Location University of Amsterdam, Heart Center, Department of Cardiothoracic Surgery, Meibergdreef, Amsterdam, The Netherlands
| | - David R Koolbergen
- Amsterdam UMC Location University of Amsterdam, Heart Center, Department of Cardiothoracic Surgery, Meibergdreef, Amsterdam, The Netherlands
| | - Carlie JM de Vries
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Marieke JH Baars
- Amsterdam UMC Location University of Amsterdam, Department of Human Genetics, Meibergdreef, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Human Genetics, Meibergdreef, Amsterdam, The Netherlands
| | - Paul A Krijnen
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Meibergdreef, Amsterdam, The Netherlands
| | - Vivian de Waard
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biochemistry, Meibergdreef, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| |
Collapse
|
232
|
Jung YH, Chae CW, Chang HS, Choi GE, Lee HJ, Han HJ. Silencing SIRT5 induces the senescence of UCB-MSCs exposed to TNF-α by reduction of fatty acid β-oxidation and anti-oxidation. Free Radic Biol Med 2022; 192:1-12. [PMID: 36096355 DOI: 10.1016/j.freeradbiomed.2022.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is an inflammatory cytokine involved in cell survival, apoptosis, and homeostasis. However, the regulatory effect of TNF-α on mesenchymal stem cell (MSC) redox regulation remains unknown. The process of delaying the senescence of MSCs and maintaining antioxidation mechanism is important in transplantation therapy to treat inflammatory diseases that result from restricted immunomodulatory effects of senescent MSCs. Thus, we examined the role of TNF-α-mediated signaling and its regulatory mechanisms on the senescence of umbilical cord blood-derived MSCs (UCB-MSCs) and identified its therapeutic efficacy in a collagen-induced arthritis (CIA) mouse model. We found that TNF-α increased fatty acid synthesis and lipid droplet (LD) formation through NF-κB/SREBP1-mediated FASN, SCD1, and DGAT2 expression, which protects UCB-MSCs from oxidative stress against accumulated toxic lipids. Additionally, DGAT2-mediated LD formation was regulated by TNF-α-activated TNF receptor (TNFR)1 signaling. We also found that storage of unsaturated FAs in LDs is regulated by SIRT5-dependent β-oxidation of FAs, which reduces mitochondrial ROS (mtROS) accumulation. Particularly, mtROS homeostasis was maintained by superoxide dismutase 2 (SOD2) upregulation through TNFR2-mediated SIRT5/Nrf2 signaling. In a CIA mouse model, UCB-MSCs transfected with SIRT5 siRNA exhibited reduced therapeutic effects compared with UCB-MSCs transfected with NT siRNA. Overall, the results indicated that SIRT5 plays a central role in protecting TNF-α-induced UCB-MSC senescence through FA β-oxidation and SOD2-mediated antioxidation.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Han Seung Chang
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243, South Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea; Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
233
|
Shaikh SB, Tung WC, Pang C, Lucas J, Li D, Rahman I. Flavor Classification/Categorization and Differential Toxicity of Oral Nicotine Pouches (ONPs) in Oral Gingival Epithelial Cells and Bronchial Epithelial Cells. TOXICS 2022; 10:660. [PMID: 36355951 PMCID: PMC9696007 DOI: 10.3390/toxics10110660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Oral nicotine pouches (ONPs) are a modern form of smokeless tobacco products sold by several brands in the U.S., which comprise a significant portion of non-combustible nicotine-containing product (NCNP) sales to date. ONPs are available in various flavors and may contain either tobacco-derived nicotine (TDN) or tobacco-free nicotine (TFN). The growth in popularity of these products has raised concerns that flavored ONPs may cause adverse oral health effects and promote systemic toxic effects due to nicotine and other ONP by-products being absorbed into the circulatory system through oral mucosa. We hypothesized that flavored ONPs are unsafe and likely to cause oral and pulmonary inflammation in oral and respiratory epithelial cells. Before analyzing the effects of ONPs, we first classified ONPs sold in the U.S. based on their flavor and the flavor category to which they belonged using a wheel diagram. Human gingival epithelial cells (HGEP) were treated with flavored ONP extracts of tobacco (original, smooth), menthol (wintergreen and cool cider), and fruit flavor (americana and citrus), each from the TDN and TFN groups. The levels of ONP-induced inflammatory cytokine release (TNF-α, IL-6, and IL-8) by ELISA, cellular reactive oxygen species (ROS) production by CellRox Green, and cytotoxicity by lactate dehydrogenase (LDH) release assay in HGEP cells were assessed. Flavored ONP extracts elicited differential toxicities in a dose- and extract-dependent manner in HGEP cells 24 h post-treatment. Both fruit TDN and TFN extracts resulted in the greatest cytotoxicity. Tobacco- and fruit-flavored, but not menthol-flavored, ONPs resulted in increased ROS production 4 h post-treatment. Flavored ONPs led to differential cytokine release (TNF-α, IL-6, and IL-8) which varied by flavor (menthol, tobacco, or fruit) and nicotine (TDN vs. TFN) 24 h post-treatment. Menthol-flavored ONPs led to the most significant TNF-α release; fruit TFN resulted in the most significant IL-6 release; and fruit TDN and tobacco TFN led to the highest release of IL-8. Subsequently, human bronchial epithelial cells (16-HBE and BEAS-2B) were also treated with flavored ONP extracts, and similar assays were evaluated. Here, the lowest concentration treatments displayed increased cytotoxicity. The most striking response was observed among cells treated with spearmint and tobacco flavored ONPs. Our data suggest that flavored ONPs are unsafe and likely to cause systemic and local toxicological responses during chronic usage.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wai Cheung Tung
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cortney Pang
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph Lucas
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dongmei Li
- Department of Clinical and Translational Science Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
234
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Effectiveness of forest honey ( Apis dorsata) as therapy for ovarian failure causing malnutrition. F1000Res 2022; 11:512. [PMID: 37767071 PMCID: PMC10521050 DOI: 10.12688/f1000research.110660.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Malnutrition is the imbalance between intake and nutritional needs, resulting in a decrease in body weight, composition, and physical function. Malnutrition causes infertility due to intestinal and liver degeneration,which may progress to testicular and ovarian degeneration. Methods: An infertile female rat model with a degenerative ovary was induced with malnutrition through a 5-day food fasting but still had drinking water. The administration of (T1) 30% (v/v) and (T2) 50% (v/v) forest honey ( Apis dorsata) were performed for ten consecutive days, whereas the (T+) group was fasted and not administered forest honey and the (T-) group has not fasted and not administered forest honey. Superoxide dismutase, malondialdehyde, IL-13 and TNF-α cytokine expressions, and ovarian tissue regeneration were analyzed. Results: Superoxide dismutase was significantly different ( p<0.05) in T1 (65.24±7.53), T2 (74.16±12.3), and T- (65.09±6.56) compared with T+ (41.76±8.51). Malondialdehyde was significantly different ( p<0.05) in T1 (9.71±1.53), T2 (9.23±0.96), and T- (9.83±1.46) compared with T+ (15.28±1.61). Anti-inflammatory cytokine (IL-13) expression was significantly different ( p<0.05) in T1 (5.30±2.31), T2 (9.80±2.53), and T- (0.30±0.48) compared with T+ (2.70±1.57). Pro-inflammatory cytokine (TNF-α) expression was significantly different ( p<0.05) in T1 (4.40±3.02), T2 (2.50±1.65), and T- (0.30±0.48) compared with T+ (9.50±1.78). Ovarian tissue regeneration was significantly different ( p<0.05) in T- (8.6±0.69) and T2 (5.10±0.99) compared with T1 (0.7±0.95) and T+ (0.3±0.67). Conclusion: The 10-day administration of 50% (v/v) forest honey can be an effective therapy for ovarian failure that caused malnutrition in the female rat model.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
235
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Effectiveness of forest honey ( Apis dorsata) as therapy for ovarian failure causing malnutrition. F1000Res 2022; 11:512. [PMID: 37767071 PMCID: PMC10521050 DOI: 10.12688/f1000research.110660.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 08/27/2024] Open
Abstract
Background: Malnutrition is the imbalance between intake and nutritional needs, resulting in a decrease in body weight, composition, and physical function. Malnutrition causes infertility due to intestinal and liver degeneration,which may progress to testicular and ovarian degeneration. Methods: An infertile female rat model with a degenerative ovary was induced with malnutrition through a 5-day food fasting but still had drinking water. The administration of (T1) 30% (v/v) and (T2) 50% (v/v) forest honey ( Apis dorsata) were performed for ten consecutive days, whereas the (T+) group was fasted and not administered forest honey and the (T-) group has not fasted and not administered forest honey. Superoxide dismutase, malondialdehyde, IL-13 and TNF-α cytokine expressions, and ovarian tissue regeneration were analyzed. Results: Superoxide dismutase was significantly different ( p<0.05) in T1 (65.24±7.53), T2 (74.16±12.3), and T- (65.09±6.56) compared with T+ (41.76±8.51). Malondialdehyde was significantly different ( p<0.05) in T1 (9.71±1.53), T2 (9.23±0.96), and T- (9.83±1.46) compared with T+ (15.28±1.61). Anti-inflammatory cytokine (IL-13) expression was significantly different ( p<0.05) in T1 (5.30±2.31), T2 (9.80±2.53), and T- (0.30±0.48) compared with T+ (2.70±1.57). Pro-inflammatory cytokine (TNF-α) expression was significantly different ( p<0.05) in T1 (4.40±3.02), T2 (2.50±1.65), and T- (0.30±0.48) compared with T+ (9.50±1.78). Ovarian tissue regeneration was significantly different ( p<0.05) in T- (8.6±0.69) and T2 (5.10±0.99) compared with T1 (0.7±0.95) and T+ (0.3±0.67). Conclusion: The 10-day administration of 50% (v/v) forest honey can be an effective therapy for ovarian failure that caused malnutrition in the female rat model.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
236
|
Sitarek P, Kowalczyk T, Synowiec E, Merecz-Sadowska A, Bangay G, Princiotto S, Śliwiński T, Rijo P. An Evaluation of the Novel Biological Properties of Diterpenes Isolated from Plectranthus ornatus Codd. In Vitro and In Silico. Cells 2022; 11:cells11203243. [PMID: 36291112 PMCID: PMC9600095 DOI: 10.3390/cells11203243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6β-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II—Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
- Correspondence: (P.S.); (P.R.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Salvatore Princiotto
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Patricia Rijo
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: (P.S.); (P.R.)
| |
Collapse
|
237
|
Li C, Liu S, Lu X, Tao F. TNFα Enhances Calcium Influx by Interacting with AMPA Receptors in the Spinal Dorsal Horn Neurons. Mol Neurobiol 2022; 60:18-25. [PMID: 36209268 DOI: 10.1007/s12035-022-03062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 10/10/2022]
Abstract
Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine and has been implicated in pain regulation. Neuronal activity in the spinal dorsal horn contributes to nociceptive transmission. However, it is not fully understood how TNFα affects the activity of spinal dorsal horn neurons. In the present study, we used calcium imaging to characterize the mechanism by which TNFα regulates calcium influx in the cultured spinal dorsal horn neurons. We observed that TNFα incubation caused an increase in fluorescent intensity of Fura-2, a specific intracellular calcium indicator, in the cultured spinal dorsal horn neurons, and such effect was significantly inhibited by co-incubation with R7050, a selective TNFα receptor antagonist, which suggests that TNFα can enhance calcium influx and increase neuronal activity via activating TNFα receptors in the spinal dorsal horn. Using double immunofluorescence staining, we showed that TNFα receptors were co-expressed with a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor subunit GluA1 in the spinal dorsal horn neurons. We further observed that treatment with 1-naphthyl acetyl spermine (NASPM), a specific calcium-permeable AMPA receptor blocker, completely blocked the effect of TNFα incubation on calcium influx in the cultured neurons. Moreover, lipopolysaccharide (LPS)-induced calcium influx was inhibited by co-incubation with R7050. Together, our results suggest that TNFα in the spinal dorsal horn can increase calcium-indicated neuronal activity through the interaction between its receptor and calcium-permeable AMPA receptors.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Xihua Lu
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
238
|
Reschke R, Shapiro JW, Yu J, Rouhani SJ, Olson DJ, Zha Y, Gajewski TF. Checkpoint Blockade-Induced Dermatitis and Colitis Are Dominated by Tissue-Resident Memory T Cells and Th1/Tc1 Cytokines. Cancer Immunol Res 2022; 10:1167-1174. [PMID: 35977003 PMCID: PMC9530647 DOI: 10.1158/2326-6066.cir-22-0362] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Immune checkpoint blockade is therapeutically successful for many patients across multiple cancer types. However, immune-related adverse events (irAE) frequently occur and can sometimes be life threatening. It is critical to understand the immunologic mechanisms of irAEs with the goal of finding novel treatment targets. Herein, we report our analysis of tissues from patients with irAE dermatitis using multiparameter immunofluorescence (IF), spatial transcriptomics, and RNA in situ hybridization (RISH). Skin psoriasis cases were studied as a comparison, as a known Th17-driven disease, and colitis was investigated as a comparison. IF analysis revealed that CD4+ and CD8+ tissue-resident memory T (TRM) cells were preferentially expanded in the inflamed portion of skin in cutaneous irAEs compared with healthy skin controls. Spatial transcriptomics allowed us to focus on areas containing TRM cells to discern functional phenotype and revealed expression of Th1-associated genes in irAEs, compared with Th17-asociated genes in psoriasis. Expression of PD-1, CTLA-4, LAG-3, and other inhibitory receptors was observed in irAE cases. RISH technology combined with IF confirmed expression of IFNγ, CXCL9, CXCL10, and TNFα in irAE dermatitis, as well as IFNγ within TRM cells specifically. The Th1-skewed phenotype was confirmed in irAE colitis cases compared with healthy colon.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jason W. Shapiro
- Center for Research Informatics, University of Chicago, Chicago, Illinois
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Sherin J. Rouhani
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Daniel J. Olson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Yuanyuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, Illinois
| | - Thomas F. Gajewski
- Department of Pathology, University of Chicago, Chicago, Illinois
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| |
Collapse
|
239
|
Manfi Ahmed S, Hashim Yaseen K, Mohammed Mahmood M. Immunological Evaluation of Individuals Infected with Acinetobacter baumannii. ARCHIVES OF RAZI INSTITUTE 2022; 77:1813-1819. [PMID: 37123129 PMCID: PMC10133591 DOI: 10.22092/ari.2022.357980.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/21/2022] [Indexed: 05/02/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is a spherical rod-shaped Gram-negative non-lactose fermenting (Coccobacilli, Aerobic bacteria) bacteria. It is a member of the Moraxellacea family. A. baumannii is a pathogenic, opportunistic organism that infects humans in society and hospitals. In particular, patients with immune system defects are at risk, especially those with burn infections and those hospitalized in intensive care (ICU). It plays a vital role in many illnesses, including septicemia, pneumonia, meningitis, soft tissues, skin infection, endocarditis, and urinary tract infection (UTI). The current study included immunological evaluation of infection with A. baumannii. In the current study, 150 blood samples were obtained as follows: 100 blood samples were collected from infected individuals with A. baumannii admitted to hospitals in Baghdad. Fifty blood samples were obtained from healthy individuals and considered as the control. 10 ml of blood samples were collected from the venous blood of the participants. A. baumannii was collected and isolated from infected patients and diagnosed by traditional methods, using different culture media (MacConkey agar, blood agar, and Chromogenetic agar) and by biochemical assays, then the bacteria diagnosis was confirmed using the VITEK 2 ID-GN cards. Microscopic examination and culture diagnosis of bacteria were conducted, and the diagnosis was confirmed by complete biochemical examinations using VITEK2 Compact System. Assessments included the serum level of IL-17A and TNF-α for hospitalized patients infected with A. baumannii. The study recorded a significant increase in the serum level of IL-17A for patients infected with A. baumannii (479.83±26.21 pg/ml) compared to control subjects (69.32±4.53 pg/ml). The recorded data showed a significant increase in the serum level of TNF-α for patients infected with A. baumannii (98.05±28.89 pg/ml) compared to control (1.40±25.12 pg/ml).
Collapse
Affiliation(s)
- S Manfi Ahmed
- Department of Dentist, Al-Rafidain University College, Baghdad, Iraq
| | - K Hashim Yaseen
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - M Mohammed Mahmood
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
240
|
Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Activity of a Novel Anti-Inflammatory Agent F-3,6'-dithiopomalidomide as a Treatment for Traumatic Brain Injury. Biomedicines 2022; 10:2449. [PMID: 36289711 PMCID: PMC9598880 DOI: 10.3390/biomedicines10102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD 20878, USA
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | - Sun Kim
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
241
|
Irisin Preserves Cardiac Performance and Insulin Sensitivity in Response to Hemorrhage. Pharmaceuticals (Basel) 2022; 15:ph15101193. [PMID: 36297305 PMCID: PMC9609404 DOI: 10.3390/ph15101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Irisin, a cleaved product of the fibronectin type III domain containing protein-5, is produced in the muscle tissue, which plays an important role in modulating insulin resistance. However, it remains unknown if irisin provides a protective effect against the detrimental outcomes of hemorrhage. Hemorrhages were simulated in male CD-1 mice to achieve a mean arterial blood pressure of 35–45 mmHg, followed by resuscitation. Irisin (50 ng/kg) and the vehicle (saline) were administrated at the start of resuscitation. Cardiac function was assessed by echocardiography, and hemodynamics were measured through femoral artery catheterization. A glucose tolerance test was used to evaluate insulin sensitivity. An enzyme-linked immunosorbent assay was performed to detect inflammatory factors in the muscles and blood serum. Western blot was carried out to assess the irisin production in skeletal muscles. Histological analyses were used to determine tissue damage and active-caspase 3 apoptotic signals. The hemorrhage suppressed cardiac performance, as indicated by a reduced ejection fraction and fractional shortening, which was accompanied by enhanced insulin resistance and hyperinsulinemia. Furthermore, the hemorrhage resulted in a marked decrease in irisin and an increase in the production of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1). Additionally, the hemorrhage caused marked edema, inflammatory cell infiltration and active-caspase 3 positive signals in skeletal muscles and cardiac muscles. Irisin treatment led to a significant improvement in the cardiac function of animals exposed to a hemorrhage. In addition, irisin treatment improved insulin sensitivity, which is consistent with the suppressed inflammatory cytokine secretion elicited by hemorrhages. Furthermore, hemorrhage-induced tissue edema, inflammatory cell infiltration, and active-caspase 3 positive signaling were attenuated by irisin treatment. The results suggest that irisin protects against damage from a hemorrhage through the modulation of insulin sensitivity.
Collapse
|
242
|
Duan Z, Xie H, Yu S, Wang S, Yang H. Piperine Derived from Piper nigrum L. Inhibits LPS-Induced Inflammatory through the MAPK and NF-κB Signalling Pathways in RAW264.7 Cells. Foods 2022; 11:foods11192990. [PMID: 36230067 PMCID: PMC9563280 DOI: 10.3390/foods11192990] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/28/2022] Open
Abstract
Piperine, an important natural product, has a good anti-inflammatory effect. However, few researchers have studied its mechanism in these pathways. The objective of this research was to evaluate the molecular mechanism underlying the anti-inflammatory responses of piperine in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The purification and characterization of piperine from Piper nigrum L. were determined by HPLC, UPLC-Q-TOF-MS and 1H NMR. Then, the anti-inflammatory activity was evaluated by a reagent test kit, ELISA kits, RT-PCR and Western blot experiments. The results suggested that piperine (90.65 ± 0.46% purity) at a concentration of 10–20 mg/L attenuated the production of NO and ROS, downregulated the protein and mRNA expression levels of TNF-α, IL-1β and IL-6, and upregulated the protein and mRNA transcription levels of IL-10. Meanwhile, the Western blot results indicated that piperine could inhibit the phosphorylation levels of the ERK, JNK, p38 and p65 proteins. Our findings suggest that piperine is a potential anti-inflammatory substance, whose molecular mechanism may be to regulate the key factors of the NF-κB and MAPK signalling pathways.
Collapse
Affiliation(s)
- Zhouwei Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Hui Xie
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Shasha Yu
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Shiping Wang
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
243
|
Chiocchetti R, Salamanca G, De Silva M, Gobbo F, Aspidi F, Cunha RZ, Galiazzo G, Tagliavia C, Sarli G, Morini M. Cannabinoid receptors in the inflammatory cells of canine atopic dermatitis. Front Vet Sci 2022; 9:987132. [PMID: 36187821 PMCID: PMC9521433 DOI: 10.3389/fvets.2022.987132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atopic dermatitis (AD) is one of the most common cutaneous inflammatory and pruritic diseases in dogs. Considering its multifactorial nature, AD can be a challenging disease to manage, and the therapeutic strategy must often be multimodal. In recent years, research has been moving toward the use of natural products which have beneficial effects on inflammation and itching, and no side effects. Cannabinoid receptors have been demonstrated to be expressed in healthy and diseased skin; therefore, one of the potential alternative therapeutic targets for investigating AD is the endocannabinoid system (ECS). Objective To immunohistochemically investigate the expression of the cannabinoid receptor type 2 (CB2R), and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in mast cells (MCs), macrophages, dendritic cells (DCs), T cells, and neutrophils of the skin of dogs with AD. Animals Samples of skin tissues were collected from eight dogs with AD (AD-dogs). Materials and methods The immunofluorescent stained cryosections of the skins of 8 dogs with AD having antibodies against CB2R, GPR55, TRPV1, TRPA1 were semiquantitatively evaluated. The inflammatory cells were identified using antibodies against tryptase (mast cells), ionized calcium binding adaptor molecule 1 (IBA1) (macrophages/DCs), CD3 (T cells), and calprotectin (neutrophils). The proportions of MCs, macrophages/DCs, T cells, and neutrophils expressing CB2R, GPR55, TRPV1 and TRPA1 were evaluated. Results The cells of the inflammatory infiltrate showed immunoreactivity (IR) for all or for some of the cannabinoid and cannabinoid-related receptors studied. In particular, MCs and macrophages/DCs showed CB2R-, GPR55-, TRPA1-, and TRPV1-IR; T cells showed CB2R-, GPR55- and TRPA1-IR, and neutrophils expressed GPR55-IR. Co-localization studies indicated that CB2R-IR was co-expressed with TRPV1-, TRPA1-, and GPR55-IR in different cellular elements of the dermis of the AD-dogs. Conclusions and clinical importance Cannabinoid receptor 2, and cannabinoid-related receptors GPR55, TRPV1 and TRPA1 were widely expressed in the inflammatory infiltrate of the AD-dogs. Based on the present findings, the ECS could be considered to be a potential therapeutic target for dogs with AD, and may mitigate itch and inflammation.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Aspidi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, Teramo, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| |
Collapse
|
244
|
Ma J, Luo J, Sun Y, Zhao Z. Cytokines associated with immune response in atherosclerosis. Am J Transl Res 2022; 14:6424-6444. [PMID: 36247305 PMCID: PMC9556506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Inflammation is an essential mechanism of immune response that involves a large number of different immune cells. Atherosclerosis is essentially an inflammatory disease caused by inappropriate activities of immune cells. During this process, various cytokines activate immune cells, regulate and transmit immune cell signals, and stimulate a local inflammatory environment. In this study, we reviewed the cytokines associated with immune activity in atherosclerosis, including their roles in immune cell activation and mediating immune cell chemotaxis. The findings give important insights into inflammatory immune microenvironment, including basic mechanisms and interactions, providing new ideas and options for clinical detection and treatment of this disease.
Collapse
Affiliation(s)
- Jiqing Ma
- Department of Vascular Surgery, Changhai Hospital, Naval Medical UniversityShanghai 200433, China
| | - Jianhua Luo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yudong Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, China
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Naval Medical UniversityShanghai 200433, China
| |
Collapse
|
245
|
Xu Y, Zhang Z, He J, Chen Z. Immune Effects of Macrophages in Rheumatoid Arthritis: A Bibliometric Analysis From 2000 to 2021. Front Immunol 2022; 13:903771. [PMID: 36172378 PMCID: PMC9510364 DOI: 10.3389/fimmu.2022.903771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/11/2022] [Indexed: 01/03/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by macrophage activation. The current characteristics, hotspots, and research frontiers of macrophage-related RA were analyzed using bibliometric analysis. Relatedpapers published from 2000 to 2021 in the Web of Science database were retrieved. The diagrams were generated and analyzed using the bibliometric software package. VOSviewer and CiteSpace were used to evaluate and visualize the research trends and hotspots in macrophage-related RA. A total of 7253 original articles were obtained. Global research on macrophage-related RA is in an advanced stage of development, with core authors, teams and research institutions emerging. United States has published the most papers, received the most citations, and had the highest H-index over the last 22 years. The University of Amsterdam and the journal of Arthritis and Rheumatism are the most productive research institutions and journals. Tak PP's (St Vincent's Hospital) paper has the highest publication and citation scores. The keywords "bone loss" and "polarization" have the highest frequency. Additionally, the study of macrophage polarization in RA has been research focus in recent years. This study demonstrates that research on macrophages in RA will continue. China is a significant producer, whereas the United States is an influential nation in this regard. In the last decade, most studies have concentrated on fundamental research. Recent studies have shown how macrophages play a role in controlling and weakening inflammation, and drug delivery and mechanism have come to the fore.
Collapse
Affiliation(s)
- YunLing Xu
- Department of Basic Medical, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Zhongmin Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaolong He
- Department of Intensive Care, First Affiliated Hospital of Jishou University, Jishou, China
| | - Zhenxing Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
246
|
Pinilla-Gonzalez A, Lara-Cantón I, Torrejón-Rodríguez L, Parra-Llorca A, Aguar M, Kuligowski J, Piñeiro-Ramos JD, Sánchez-Illana Á, Navarro AG, Vento M, Cernada M. Early molecular markers of ventilator-associated pneumonia in bronchoalveolar lavage in preterm infants. Pediatr Res 2022; 93:1559-1565. [PMID: 36071239 PMCID: PMC9451119 DOI: 10.1038/s41390-022-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Ventilator-associated pneumonia (VAP) constitutes a serious nosocomial infection. Our aim was to evaluate the reliability of cytokines and oxidative stress/inflammation biomarkers in bronchoalveolar lavage fluid (BALF) and tracheal aspirates (TA) as early biomarkers of VAP in preterm infants. METHODS Two cohorts were enrolled, one to select candidates and the other for validation. In both, we included preterms with suspected VAP, according to BALF culture, they were classified into confirmed VAP and no VAP. Concentration of 16 cytokines and 8 oxidative stress/inflammation biomarkers in BALF and TA was determined in all patients. RESULTS In the first batch, IL-17A and TNF-α in BALF, and in the second one IL-10, IL-6, and TNF-α in BALF were significantly higher in VAP patients. BALF TNF-α AUC in both cohorts was 0.86 (sensitivity 0.83, specificity 0.88). No cytokine was shown to be predictive of VAP in TA. A statistically significant increase in the VAP group was found for glutathione sulfonamide (GSA) in BALF and TA. CONCLUSIONS TNF-α in BALF and GSA in BALF and TA were associated with VAP in preterm newborns; thus, they could be used as early biomarkers of VAP. Further studies with an increased number of patients are needed to confirm these results. IMPACT We found that TNF-α BALF and GSA in both BALF and TA are capable of discriminating preterm infants with VAP from those with pulmonary pathology without infection. This is the first study in preterm infants aiming to evaluate the reliability of cytokines and oxidative stress/inflammation biomarkers in BALF and TA as early diagnostic markers of VAP. We have validated these results in two independent cohorts of patients. Previously studies have focused on full-term neonates and toddlers and determined biomarkers mostly in TA, but none was exclusively conducted in preterm infants.
Collapse
Affiliation(s)
- Alejandro Pinilla-Gonzalez
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Inmaculada Lara-Cantón
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Laura Torrejón-Rodríguez
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Anna Parra-Llorca
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Marta Aguar
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Julia Kuligowski
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - José David Piñeiro-Ramos
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Ángel Sánchez-Illana
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain ,grid.5338.d0000 0001 2173 938XPresent Address: Analytical Chemistry Department, University of Valencia, Burjassot, Spain
| | - Ana Gimeno Navarro
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Máximo Vento
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain ,National Coordinator of the Spanish Maternal and Infant Health and Development Network, Health Research Institute Carlos III, Spanish Ministry of Economy and Competitiveness (RD12/0026), Valencia, Spain
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain. .,Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
| |
Collapse
|
247
|
Deng J, Zhang J, Chang Y, Wang S, Shi M, Miao Z. Effects of Chinese yam polysaccharides on the immune function and serum biochemical indexes of broilers. Front Vet Sci 2022; 9:1013888. [PMID: 36148469 PMCID: PMC9485930 DOI: 10.3389/fvets.2022.1013888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this experiment was to investigate the effects of Chinese yam polysaccharides (CYP) in diets on the immune function of broilers. A total of 360 (1-day-old, sex balance) healthy growing broilers with similar body weight (39.54 ± 0.51 g) were randomly divided into control (0.00 g/kg), CYP I (0.25 g/kg), CYP II (0.50 g/kg), and CYP III (1.00 g/kg) groups. Each group contains 3 replicates with 30 broilers in each replicate, and the feeding trial lasted 48 d. The results showed that compared with the control group, the CYP II group had higher thymus index, serum IgA, complement C3, C4, IGF-I, T3, T4, INS, GH, IL-2, IL-4, IL-6, and TNF-α levels (P < 0.05) at 28, 48 d, respectively. In addition, the spleen index, serum IgM and IgG concentrations in CYP II group were higher than those in the control group at 28 d (P < 0.05). Results indicated that 0.50 g/kg CYP supplementation improved the immune function of broilers, and the CYP has a potential biological function as a green additive in broilers.
Collapse
Affiliation(s)
- Jiahua Deng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yadi Chang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Suli Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiguo Miao
| |
Collapse
|
248
|
Wang V, Heffer A, Roztocil E, Feldon SE, Libby RT, Woeller CF, Kuriyan AE. TNF-α and NF-κB signaling play a critical role in cigarette smoke-induced epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PLoS One 2022; 17:e0271950. [PMID: 36048826 PMCID: PMC9436090 DOI: 10.1371/journal.pone.0271950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is characterized by the growth and contraction of cellular membranes within the vitreous cavity and on both surfaces of the retina, resulting in recurrent retinal detachments and poor visual outcomes. Proinflammatory cytokines like tumor necrosis factor alpha (TNFα) have been associated with PVR and the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. Cigarette smoke is the only known modifiable risk factor for PVR, but the mechanisms are unclear. The purpose of this study was to examine the impact of cigarette smoke on the proinflammatory TNFα/NF-κB/Snail pathway in RPE cells to better understand the mechanisms through which cigarette smoke increases the risk of PVR. Human ARPE-19 cells were exposed to cigarette smoke extract (CSE), for 4 to 24-hours and TNFα, Snail, IL-6, IL-8, and α-SMA levels were analyzed by qPCR and/or Western blot. The severity of PVR formation was assessed in a murine model of PVR after intravitreal injection of ARPE-19 cells pre-treated with CSE or not. Fundus imaging, OCT imaging, and histologic analysis 4 weeks after injection were used to examine PVR severity. ARPE-19 cells exposed to CSE expressed higher levels of TNFα, SNAIL, IL6 and IL8 mRNA as well as SNAIL, Vimentin and α-SMA protein. Inhibition of TNFα and NF-κB pathways blocked the effect of CSE. In vivo, intravitreal injection of ARPE-19 cells treated with CSE resulted in more severe PVR compared to mice injected with untreated RPE cells. These studies suggest that the TNFα pathway is involved in the mechanism whereby cigarette smoke increases PVR. Further investigation into the role of TNFα/NF-κB/Snail in driving PVR and pharmacological targeting of these pathways in disease are warranted.
Collapse
Affiliation(s)
- Victor Wang
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Alison Heffer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- Retina Service/Mid Atlantic Retina, Wills Eye Hospital, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
249
|
Kim BS, Shin M, Kim KW, Ha KT, Bae SJ. NRF2 activation by 2-methoxycinnamaldehyde attenuates inflammatory responses in macrophages via enhancing autophagy flux. BMB Rep 2022. [PMID: 35725014 PMCID: PMC9442350 DOI: 10.5483/bmbrep.2022.55.8.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Korea
| |
Collapse
|
250
|
Donnelly EL, Céspedes N, Hansten G, Wagers D, Briggs AM, Lowder C, Schauer J, Garrison SM, Haapanen L, Van de Water J, Luckhart S. Basophil Depletion Alters Host Immunity, Intestinal Permeability, and Mammalian Host-to-Mosquito Transmission in Malaria. Immunohorizons 2022; 6:581-599. [PMID: 35970557 PMCID: PMC9977168 DOI: 10.4049/immunohorizons.2200055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023] Open
Abstract
Malaria-induced bacteremia has been shown to result from intestinal mast cell (MC) activation. The appearance of MCs in the ileum and increased intestinal permeability to enteric bacteria are preceded by an early Th2-biased host immune response to infection, characterized by the appearance of IL-4, IL-10, mast cell protease (Mcpt)1 and Mcpt4, and increased circulating basophils and eosinophils. Given the functional similarities of basophils and MCs in the context of allergic inflammation and the capacity of basophils to produce large amounts of IL-4, we sought to define the role of basophils in increased intestinal permeability, in MC influx, and in the development of bacteremia in the context of malaria. Upon infection with nonlethal Plasmodium yoelii yoelii 17XNL, Basoph8 × ROSA-DTα mice or baso (-) mice that lack basophils exhibited increased intestinal permeability and increased ileal MC numbers, without any increase in bacterial 16S ribosomal DNA copy numbers in the blood, relative to baso (+) mice. Analysis of cytokines, chemokines, and MC-associated factors in the ileum revealed significantly increased TNF-α and IL-13 at day 6 postinfection in baso (-) mice compared with baso (+) mice. Moreover, network analysis of significantly correlated host immune factors revealed profound differences between baso (-) and baso (+) mice following infection in both systemic and ileal responses to parasites and translocated bacteria. Finally, basophil depletion was associated with significantly increased gametocytemia and parasite transmission to Anopheles mosquitoes, suggesting that basophils play a previously undescribed role in controlling gametocytemia and, in turn, mammalian host-to-mosquito parasite transmission.
Collapse
Affiliation(s)
- Erinn L Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Delaney Wagers
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Anna M Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Sarah M Garrison
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID; .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| |
Collapse
|