201
|
Jung YH, Chae CW, Chang HS, Choi GE, Lee HJ, Han HJ. Silencing SIRT5 induces the senescence of UCB-MSCs exposed to TNF-α by reduction of fatty acid β-oxidation and anti-oxidation. Free Radic Biol Med 2022; 192:1-12. [PMID: 36096355 DOI: 10.1016/j.freeradbiomed.2022.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is an inflammatory cytokine involved in cell survival, apoptosis, and homeostasis. However, the regulatory effect of TNF-α on mesenchymal stem cell (MSC) redox regulation remains unknown. The process of delaying the senescence of MSCs and maintaining antioxidation mechanism is important in transplantation therapy to treat inflammatory diseases that result from restricted immunomodulatory effects of senescent MSCs. Thus, we examined the role of TNF-α-mediated signaling and its regulatory mechanisms on the senescence of umbilical cord blood-derived MSCs (UCB-MSCs) and identified its therapeutic efficacy in a collagen-induced arthritis (CIA) mouse model. We found that TNF-α increased fatty acid synthesis and lipid droplet (LD) formation through NF-κB/SREBP1-mediated FASN, SCD1, and DGAT2 expression, which protects UCB-MSCs from oxidative stress against accumulated toxic lipids. Additionally, DGAT2-mediated LD formation was regulated by TNF-α-activated TNF receptor (TNFR)1 signaling. We also found that storage of unsaturated FAs in LDs is regulated by SIRT5-dependent β-oxidation of FAs, which reduces mitochondrial ROS (mtROS) accumulation. Particularly, mtROS homeostasis was maintained by superoxide dismutase 2 (SOD2) upregulation through TNFR2-mediated SIRT5/Nrf2 signaling. In a CIA mouse model, UCB-MSCs transfected with SIRT5 siRNA exhibited reduced therapeutic effects compared with UCB-MSCs transfected with NT siRNA. Overall, the results indicated that SIRT5 plays a central role in protecting TNF-α-induced UCB-MSC senescence through FA β-oxidation and SOD2-mediated antioxidation.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Han Seung Chang
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243, South Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea; Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
202
|
Shaikh SB, Tung WC, Pang C, Lucas J, Li D, Rahman I. Flavor Classification/Categorization and Differential Toxicity of Oral Nicotine Pouches (ONPs) in Oral Gingival Epithelial Cells and Bronchial Epithelial Cells. TOXICS 2022; 10:660. [PMID: 36355951 PMCID: PMC9696007 DOI: 10.3390/toxics10110660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Oral nicotine pouches (ONPs) are a modern form of smokeless tobacco products sold by several brands in the U.S., which comprise a significant portion of non-combustible nicotine-containing product (NCNP) sales to date. ONPs are available in various flavors and may contain either tobacco-derived nicotine (TDN) or tobacco-free nicotine (TFN). The growth in popularity of these products has raised concerns that flavored ONPs may cause adverse oral health effects and promote systemic toxic effects due to nicotine and other ONP by-products being absorbed into the circulatory system through oral mucosa. We hypothesized that flavored ONPs are unsafe and likely to cause oral and pulmonary inflammation in oral and respiratory epithelial cells. Before analyzing the effects of ONPs, we first classified ONPs sold in the U.S. based on their flavor and the flavor category to which they belonged using a wheel diagram. Human gingival epithelial cells (HGEP) were treated with flavored ONP extracts of tobacco (original, smooth), menthol (wintergreen and cool cider), and fruit flavor (americana and citrus), each from the TDN and TFN groups. The levels of ONP-induced inflammatory cytokine release (TNF-α, IL-6, and IL-8) by ELISA, cellular reactive oxygen species (ROS) production by CellRox Green, and cytotoxicity by lactate dehydrogenase (LDH) release assay in HGEP cells were assessed. Flavored ONP extracts elicited differential toxicities in a dose- and extract-dependent manner in HGEP cells 24 h post-treatment. Both fruit TDN and TFN extracts resulted in the greatest cytotoxicity. Tobacco- and fruit-flavored, but not menthol-flavored, ONPs resulted in increased ROS production 4 h post-treatment. Flavored ONPs led to differential cytokine release (TNF-α, IL-6, and IL-8) which varied by flavor (menthol, tobacco, or fruit) and nicotine (TDN vs. TFN) 24 h post-treatment. Menthol-flavored ONPs led to the most significant TNF-α release; fruit TFN resulted in the most significant IL-6 release; and fruit TDN and tobacco TFN led to the highest release of IL-8. Subsequently, human bronchial epithelial cells (16-HBE and BEAS-2B) were also treated with flavored ONP extracts, and similar assays were evaluated. Here, the lowest concentration treatments displayed increased cytotoxicity. The most striking response was observed among cells treated with spearmint and tobacco flavored ONPs. Our data suggest that flavored ONPs are unsafe and likely to cause systemic and local toxicological responses during chronic usage.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wai Cheung Tung
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cortney Pang
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joseph Lucas
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dongmei Li
- Department of Clinical and Translational Science Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
203
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Effectiveness of forest honey ( Apis dorsata) as therapy for ovarian failure causing malnutrition. F1000Res 2022; 11:512. [PMID: 37767071 PMCID: PMC10521050 DOI: 10.12688/f1000research.110660.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Malnutrition is the imbalance between intake and nutritional needs, resulting in a decrease in body weight, composition, and physical function. Malnutrition causes infertility due to intestinal and liver degeneration,which may progress to testicular and ovarian degeneration. Methods: An infertile female rat model with a degenerative ovary was induced with malnutrition through a 5-day food fasting but still had drinking water. The administration of (T1) 30% (v/v) and (T2) 50% (v/v) forest honey ( Apis dorsata) were performed for ten consecutive days, whereas the (T+) group was fasted and not administered forest honey and the (T-) group has not fasted and not administered forest honey. Superoxide dismutase, malondialdehyde, IL-13 and TNF-α cytokine expressions, and ovarian tissue regeneration were analyzed. Results: Superoxide dismutase was significantly different ( p<0.05) in T1 (65.24±7.53), T2 (74.16±12.3), and T- (65.09±6.56) compared with T+ (41.76±8.51). Malondialdehyde was significantly different ( p<0.05) in T1 (9.71±1.53), T2 (9.23±0.96), and T- (9.83±1.46) compared with T+ (15.28±1.61). Anti-inflammatory cytokine (IL-13) expression was significantly different ( p<0.05) in T1 (5.30±2.31), T2 (9.80±2.53), and T- (0.30±0.48) compared with T+ (2.70±1.57). Pro-inflammatory cytokine (TNF-α) expression was significantly different ( p<0.05) in T1 (4.40±3.02), T2 (2.50±1.65), and T- (0.30±0.48) compared with T+ (9.50±1.78). Ovarian tissue regeneration was significantly different ( p<0.05) in T- (8.6±0.69) and T2 (5.10±0.99) compared with T1 (0.7±0.95) and T+ (0.3±0.67). Conclusion: The 10-day administration of 50% (v/v) forest honey can be an effective therapy for ovarian failure that caused malnutrition in the female rat model.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
204
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Effectiveness of forest honey ( Apis dorsata) as therapy for ovarian failure causing malnutrition. F1000Res 2022; 11:512. [PMID: 37767071 PMCID: PMC10521050 DOI: 10.12688/f1000research.110660.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 08/27/2024] Open
Abstract
Background: Malnutrition is the imbalance between intake and nutritional needs, resulting in a decrease in body weight, composition, and physical function. Malnutrition causes infertility due to intestinal and liver degeneration,which may progress to testicular and ovarian degeneration. Methods: An infertile female rat model with a degenerative ovary was induced with malnutrition through a 5-day food fasting but still had drinking water. The administration of (T1) 30% (v/v) and (T2) 50% (v/v) forest honey ( Apis dorsata) were performed for ten consecutive days, whereas the (T+) group was fasted and not administered forest honey and the (T-) group has not fasted and not administered forest honey. Superoxide dismutase, malondialdehyde, IL-13 and TNF-α cytokine expressions, and ovarian tissue regeneration were analyzed. Results: Superoxide dismutase was significantly different ( p<0.05) in T1 (65.24±7.53), T2 (74.16±12.3), and T- (65.09±6.56) compared with T+ (41.76±8.51). Malondialdehyde was significantly different ( p<0.05) in T1 (9.71±1.53), T2 (9.23±0.96), and T- (9.83±1.46) compared with T+ (15.28±1.61). Anti-inflammatory cytokine (IL-13) expression was significantly different ( p<0.05) in T1 (5.30±2.31), T2 (9.80±2.53), and T- (0.30±0.48) compared with T+ (2.70±1.57). Pro-inflammatory cytokine (TNF-α) expression was significantly different ( p<0.05) in T1 (4.40±3.02), T2 (2.50±1.65), and T- (0.30±0.48) compared with T+ (9.50±1.78). Ovarian tissue regeneration was significantly different ( p<0.05) in T- (8.6±0.69) and T2 (5.10±0.99) compared with T1 (0.7±0.95) and T+ (0.3±0.67). Conclusion: The 10-day administration of 50% (v/v) forest honey can be an effective therapy for ovarian failure that caused malnutrition in the female rat model.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
205
|
Sitarek P, Kowalczyk T, Synowiec E, Merecz-Sadowska A, Bangay G, Princiotto S, Śliwiński T, Rijo P. An Evaluation of the Novel Biological Properties of Diterpenes Isolated from Plectranthus ornatus Codd. In Vitro and In Silico. Cells 2022; 11:cells11203243. [PMID: 36291112 PMCID: PMC9600095 DOI: 10.3390/cells11203243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6β-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II—Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
- Correspondence: (P.S.); (P.R.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Salvatore Princiotto
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Patricia Rijo
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: (P.S.); (P.R.)
| |
Collapse
|
206
|
Li C, Liu S, Lu X, Tao F. TNFα Enhances Calcium Influx by Interacting with AMPA Receptors in the Spinal Dorsal Horn Neurons. Mol Neurobiol 2022; 60:18-25. [PMID: 36209268 DOI: 10.1007/s12035-022-03062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/03/2022] [Indexed: 10/10/2022]
Abstract
Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine and has been implicated in pain regulation. Neuronal activity in the spinal dorsal horn contributes to nociceptive transmission. However, it is not fully understood how TNFα affects the activity of spinal dorsal horn neurons. In the present study, we used calcium imaging to characterize the mechanism by which TNFα regulates calcium influx in the cultured spinal dorsal horn neurons. We observed that TNFα incubation caused an increase in fluorescent intensity of Fura-2, a specific intracellular calcium indicator, in the cultured spinal dorsal horn neurons, and such effect was significantly inhibited by co-incubation with R7050, a selective TNFα receptor antagonist, which suggests that TNFα can enhance calcium influx and increase neuronal activity via activating TNFα receptors in the spinal dorsal horn. Using double immunofluorescence staining, we showed that TNFα receptors were co-expressed with a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor subunit GluA1 in the spinal dorsal horn neurons. We further observed that treatment with 1-naphthyl acetyl spermine (NASPM), a specific calcium-permeable AMPA receptor blocker, completely blocked the effect of TNFα incubation on calcium influx in the cultured neurons. Moreover, lipopolysaccharide (LPS)-induced calcium influx was inhibited by co-incubation with R7050. Together, our results suggest that TNFα in the spinal dorsal horn can increase calcium-indicated neuronal activity through the interaction between its receptor and calcium-permeable AMPA receptors.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Xihua Lu
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
207
|
Reschke R, Shapiro JW, Yu J, Rouhani SJ, Olson DJ, Zha Y, Gajewski TF. Checkpoint Blockade-Induced Dermatitis and Colitis Are Dominated by Tissue-Resident Memory T Cells and Th1/Tc1 Cytokines. Cancer Immunol Res 2022; 10:1167-1174. [PMID: 35977003 PMCID: PMC9530647 DOI: 10.1158/2326-6066.cir-22-0362] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Immune checkpoint blockade is therapeutically successful for many patients across multiple cancer types. However, immune-related adverse events (irAE) frequently occur and can sometimes be life threatening. It is critical to understand the immunologic mechanisms of irAEs with the goal of finding novel treatment targets. Herein, we report our analysis of tissues from patients with irAE dermatitis using multiparameter immunofluorescence (IF), spatial transcriptomics, and RNA in situ hybridization (RISH). Skin psoriasis cases were studied as a comparison, as a known Th17-driven disease, and colitis was investigated as a comparison. IF analysis revealed that CD4+ and CD8+ tissue-resident memory T (TRM) cells were preferentially expanded in the inflamed portion of skin in cutaneous irAEs compared with healthy skin controls. Spatial transcriptomics allowed us to focus on areas containing TRM cells to discern functional phenotype and revealed expression of Th1-associated genes in irAEs, compared with Th17-asociated genes in psoriasis. Expression of PD-1, CTLA-4, LAG-3, and other inhibitory receptors was observed in irAE cases. RISH technology combined with IF confirmed expression of IFNγ, CXCL9, CXCL10, and TNFα in irAE dermatitis, as well as IFNγ within TRM cells specifically. The Th1-skewed phenotype was confirmed in irAE colitis cases compared with healthy colon.
Collapse
Affiliation(s)
- Robin Reschke
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jason W. Shapiro
- Center for Research Informatics, University of Chicago, Chicago, Illinois
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Sherin J. Rouhani
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Daniel J. Olson
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Yuanyuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, Illinois
| | - Thomas F. Gajewski
- Department of Pathology, University of Chicago, Chicago, Illinois
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| |
Collapse
|
208
|
Manfi Ahmed S, Hashim Yaseen K, Mohammed Mahmood M. Immunological Evaluation of Individuals Infected with Acinetobacter baumannii. ARCHIVES OF RAZI INSTITUTE 2022; 77:1813-1819. [PMID: 37123129 PMCID: PMC10133591 DOI: 10.22092/ari.2022.357980.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/21/2022] [Indexed: 05/02/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is a spherical rod-shaped Gram-negative non-lactose fermenting (Coccobacilli, Aerobic bacteria) bacteria. It is a member of the Moraxellacea family. A. baumannii is a pathogenic, opportunistic organism that infects humans in society and hospitals. In particular, patients with immune system defects are at risk, especially those with burn infections and those hospitalized in intensive care (ICU). It plays a vital role in many illnesses, including septicemia, pneumonia, meningitis, soft tissues, skin infection, endocarditis, and urinary tract infection (UTI). The current study included immunological evaluation of infection with A. baumannii. In the current study, 150 blood samples were obtained as follows: 100 blood samples were collected from infected individuals with A. baumannii admitted to hospitals in Baghdad. Fifty blood samples were obtained from healthy individuals and considered as the control. 10 ml of blood samples were collected from the venous blood of the participants. A. baumannii was collected and isolated from infected patients and diagnosed by traditional methods, using different culture media (MacConkey agar, blood agar, and Chromogenetic agar) and by biochemical assays, then the bacteria diagnosis was confirmed using the VITEK 2 ID-GN cards. Microscopic examination and culture diagnosis of bacteria were conducted, and the diagnosis was confirmed by complete biochemical examinations using VITEK2 Compact System. Assessments included the serum level of IL-17A and TNF-α for hospitalized patients infected with A. baumannii. The study recorded a significant increase in the serum level of IL-17A for patients infected with A. baumannii (479.83±26.21 pg/ml) compared to control subjects (69.32±4.53 pg/ml). The recorded data showed a significant increase in the serum level of TNF-α for patients infected with A. baumannii (98.05±28.89 pg/ml) compared to control (1.40±25.12 pg/ml).
Collapse
Affiliation(s)
- S Manfi Ahmed
- Department of Dentist, Al-Rafidain University College, Baghdad, Iraq
| | - K Hashim Yaseen
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - M Mohammed Mahmood
- Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
209
|
Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Activity of a Novel Anti-Inflammatory Agent F-3,6'-dithiopomalidomide as a Treatment for Traumatic Brain Injury. Biomedicines 2022; 10:2449. [PMID: 36289711 PMCID: PMC9598880 DOI: 10.3390/biomedicines10102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD 20878, USA
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | - Sun Kim
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
210
|
Irisin Preserves Cardiac Performance and Insulin Sensitivity in Response to Hemorrhage. Pharmaceuticals (Basel) 2022; 15:ph15101193. [PMID: 36297305 PMCID: PMC9609404 DOI: 10.3390/ph15101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Irisin, a cleaved product of the fibronectin type III domain containing protein-5, is produced in the muscle tissue, which plays an important role in modulating insulin resistance. However, it remains unknown if irisin provides a protective effect against the detrimental outcomes of hemorrhage. Hemorrhages were simulated in male CD-1 mice to achieve a mean arterial blood pressure of 35–45 mmHg, followed by resuscitation. Irisin (50 ng/kg) and the vehicle (saline) were administrated at the start of resuscitation. Cardiac function was assessed by echocardiography, and hemodynamics were measured through femoral artery catheterization. A glucose tolerance test was used to evaluate insulin sensitivity. An enzyme-linked immunosorbent assay was performed to detect inflammatory factors in the muscles and blood serum. Western blot was carried out to assess the irisin production in skeletal muscles. Histological analyses were used to determine tissue damage and active-caspase 3 apoptotic signals. The hemorrhage suppressed cardiac performance, as indicated by a reduced ejection fraction and fractional shortening, which was accompanied by enhanced insulin resistance and hyperinsulinemia. Furthermore, the hemorrhage resulted in a marked decrease in irisin and an increase in the production of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1). Additionally, the hemorrhage caused marked edema, inflammatory cell infiltration and active-caspase 3 positive signals in skeletal muscles and cardiac muscles. Irisin treatment led to a significant improvement in the cardiac function of animals exposed to a hemorrhage. In addition, irisin treatment improved insulin sensitivity, which is consistent with the suppressed inflammatory cytokine secretion elicited by hemorrhages. Furthermore, hemorrhage-induced tissue edema, inflammatory cell infiltration, and active-caspase 3 positive signaling were attenuated by irisin treatment. The results suggest that irisin protects against damage from a hemorrhage through the modulation of insulin sensitivity.
Collapse
|
211
|
Duan Z, Xie H, Yu S, Wang S, Yang H. Piperine Derived from Piper nigrum L. Inhibits LPS-Induced Inflammatory through the MAPK and NF-κB Signalling Pathways in RAW264.7 Cells. Foods 2022; 11:foods11192990. [PMID: 36230067 PMCID: PMC9563280 DOI: 10.3390/foods11192990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/28/2022] Open
Abstract
Piperine, an important natural product, has a good anti-inflammatory effect. However, few researchers have studied its mechanism in these pathways. The objective of this research was to evaluate the molecular mechanism underlying the anti-inflammatory responses of piperine in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The purification and characterization of piperine from Piper nigrum L. were determined by HPLC, UPLC-Q-TOF-MS and 1H NMR. Then, the anti-inflammatory activity was evaluated by a reagent test kit, ELISA kits, RT-PCR and Western blot experiments. The results suggested that piperine (90.65 ± 0.46% purity) at a concentration of 10–20 mg/L attenuated the production of NO and ROS, downregulated the protein and mRNA expression levels of TNF-α, IL-1β and IL-6, and upregulated the protein and mRNA transcription levels of IL-10. Meanwhile, the Western blot results indicated that piperine could inhibit the phosphorylation levels of the ERK, JNK, p38 and p65 proteins. Our findings suggest that piperine is a potential anti-inflammatory substance, whose molecular mechanism may be to regulate the key factors of the NF-κB and MAPK signalling pathways.
Collapse
Affiliation(s)
- Zhouwei Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Hui Xie
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Shasha Yu
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Shiping Wang
- Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
212
|
Chiocchetti R, Salamanca G, De Silva M, Gobbo F, Aspidi F, Cunha RZ, Galiazzo G, Tagliavia C, Sarli G, Morini M. Cannabinoid receptors in the inflammatory cells of canine atopic dermatitis. Front Vet Sci 2022; 9:987132. [PMID: 36187821 PMCID: PMC9521433 DOI: 10.3389/fvets.2022.987132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Atopic dermatitis (AD) is one of the most common cutaneous inflammatory and pruritic diseases in dogs. Considering its multifactorial nature, AD can be a challenging disease to manage, and the therapeutic strategy must often be multimodal. In recent years, research has been moving toward the use of natural products which have beneficial effects on inflammation and itching, and no side effects. Cannabinoid receptors have been demonstrated to be expressed in healthy and diseased skin; therefore, one of the potential alternative therapeutic targets for investigating AD is the endocannabinoid system (ECS). Objective To immunohistochemically investigate the expression of the cannabinoid receptor type 2 (CB2R), and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in mast cells (MCs), macrophages, dendritic cells (DCs), T cells, and neutrophils of the skin of dogs with AD. Animals Samples of skin tissues were collected from eight dogs with AD (AD-dogs). Materials and methods The immunofluorescent stained cryosections of the skins of 8 dogs with AD having antibodies against CB2R, GPR55, TRPV1, TRPA1 were semiquantitatively evaluated. The inflammatory cells were identified using antibodies against tryptase (mast cells), ionized calcium binding adaptor molecule 1 (IBA1) (macrophages/DCs), CD3 (T cells), and calprotectin (neutrophils). The proportions of MCs, macrophages/DCs, T cells, and neutrophils expressing CB2R, GPR55, TRPV1 and TRPA1 were evaluated. Results The cells of the inflammatory infiltrate showed immunoreactivity (IR) for all or for some of the cannabinoid and cannabinoid-related receptors studied. In particular, MCs and macrophages/DCs showed CB2R-, GPR55-, TRPA1-, and TRPV1-IR; T cells showed CB2R-, GPR55- and TRPA1-IR, and neutrophils expressed GPR55-IR. Co-localization studies indicated that CB2R-IR was co-expressed with TRPV1-, TRPA1-, and GPR55-IR in different cellular elements of the dermis of the AD-dogs. Conclusions and clinical importance Cannabinoid receptor 2, and cannabinoid-related receptors GPR55, TRPV1 and TRPA1 were widely expressed in the inflammatory infiltrate of the AD-dogs. Based on the present findings, the ECS could be considered to be a potential therapeutic target for dogs with AD, and may mitigate itch and inflammation.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesca Aspidi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, Teramo, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| |
Collapse
|
213
|
Ma J, Luo J, Sun Y, Zhao Z. Cytokines associated with immune response in atherosclerosis. Am J Transl Res 2022; 14:6424-6444. [PMID: 36247305 PMCID: PMC9556506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Inflammation is an essential mechanism of immune response that involves a large number of different immune cells. Atherosclerosis is essentially an inflammatory disease caused by inappropriate activities of immune cells. During this process, various cytokines activate immune cells, regulate and transmit immune cell signals, and stimulate a local inflammatory environment. In this study, we reviewed the cytokines associated with immune activity in atherosclerosis, including their roles in immune cell activation and mediating immune cell chemotaxis. The findings give important insights into inflammatory immune microenvironment, including basic mechanisms and interactions, providing new ideas and options for clinical detection and treatment of this disease.
Collapse
Affiliation(s)
- Jiqing Ma
- Department of Vascular Surgery, Changhai Hospital, Naval Medical UniversityShanghai 200433, China
| | - Jianhua Luo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yudong Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, China
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Naval Medical UniversityShanghai 200433, China
| |
Collapse
|
214
|
Xu Y, Zhang Z, He J, Chen Z. Immune Effects of Macrophages in Rheumatoid Arthritis: A Bibliometric Analysis From 2000 to 2021. Front Immunol 2022; 13:903771. [PMID: 36172378 PMCID: PMC9510364 DOI: 10.3389/fimmu.2022.903771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/11/2022] [Indexed: 01/03/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by macrophage activation. The current characteristics, hotspots, and research frontiers of macrophage-related RA were analyzed using bibliometric analysis. Relatedpapers published from 2000 to 2021 in the Web of Science database were retrieved. The diagrams were generated and analyzed using the bibliometric software package. VOSviewer and CiteSpace were used to evaluate and visualize the research trends and hotspots in macrophage-related RA. A total of 7253 original articles were obtained. Global research on macrophage-related RA is in an advanced stage of development, with core authors, teams and research institutions emerging. United States has published the most papers, received the most citations, and had the highest H-index over the last 22 years. The University of Amsterdam and the journal of Arthritis and Rheumatism are the most productive research institutions and journals. Tak PP's (St Vincent's Hospital) paper has the highest publication and citation scores. The keywords "bone loss" and "polarization" have the highest frequency. Additionally, the study of macrophage polarization in RA has been research focus in recent years. This study demonstrates that research on macrophages in RA will continue. China is a significant producer, whereas the United States is an influential nation in this regard. In the last decade, most studies have concentrated on fundamental research. Recent studies have shown how macrophages play a role in controlling and weakening inflammation, and drug delivery and mechanism have come to the fore.
Collapse
Affiliation(s)
- YunLing Xu
- Department of Basic Medical, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Zhongmin Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaolong He
- Department of Intensive Care, First Affiliated Hospital of Jishou University, Jishou, China
| | - Zhenxing Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
215
|
Pinilla-Gonzalez A, Lara-Cantón I, Torrejón-Rodríguez L, Parra-Llorca A, Aguar M, Kuligowski J, Piñeiro-Ramos JD, Sánchez-Illana Á, Navarro AG, Vento M, Cernada M. Early molecular markers of ventilator-associated pneumonia in bronchoalveolar lavage in preterm infants. Pediatr Res 2022; 93:1559-1565. [PMID: 36071239 PMCID: PMC9451119 DOI: 10.1038/s41390-022-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Ventilator-associated pneumonia (VAP) constitutes a serious nosocomial infection. Our aim was to evaluate the reliability of cytokines and oxidative stress/inflammation biomarkers in bronchoalveolar lavage fluid (BALF) and tracheal aspirates (TA) as early biomarkers of VAP in preterm infants. METHODS Two cohorts were enrolled, one to select candidates and the other for validation. In both, we included preterms with suspected VAP, according to BALF culture, they were classified into confirmed VAP and no VAP. Concentration of 16 cytokines and 8 oxidative stress/inflammation biomarkers in BALF and TA was determined in all patients. RESULTS In the first batch, IL-17A and TNF-α in BALF, and in the second one IL-10, IL-6, and TNF-α in BALF were significantly higher in VAP patients. BALF TNF-α AUC in both cohorts was 0.86 (sensitivity 0.83, specificity 0.88). No cytokine was shown to be predictive of VAP in TA. A statistically significant increase in the VAP group was found for glutathione sulfonamide (GSA) in BALF and TA. CONCLUSIONS TNF-α in BALF and GSA in BALF and TA were associated with VAP in preterm newborns; thus, they could be used as early biomarkers of VAP. Further studies with an increased number of patients are needed to confirm these results. IMPACT We found that TNF-α BALF and GSA in both BALF and TA are capable of discriminating preterm infants with VAP from those with pulmonary pathology without infection. This is the first study in preterm infants aiming to evaluate the reliability of cytokines and oxidative stress/inflammation biomarkers in BALF and TA as early diagnostic markers of VAP. We have validated these results in two independent cohorts of patients. Previously studies have focused on full-term neonates and toddlers and determined biomarkers mostly in TA, but none was exclusively conducted in preterm infants.
Collapse
Affiliation(s)
- Alejandro Pinilla-Gonzalez
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Inmaculada Lara-Cantón
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Laura Torrejón-Rodríguez
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Anna Parra-Llorca
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Marta Aguar
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Julia Kuligowski
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - José David Piñeiro-Ramos
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Ángel Sánchez-Illana
- grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain ,grid.5338.d0000 0001 2173 938XPresent Address: Analytical Chemistry Department, University of Valencia, Burjassot, Spain
| | - Ana Gimeno Navarro
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Máximo Vento
- grid.84393.350000 0001 0360 9602Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain ,grid.84393.350000 0001 0360 9602Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain ,National Coordinator of the Spanish Maternal and Infant Health and Development Network, Health Research Institute Carlos III, Spanish Ministry of Economy and Competitiveness (RD12/0026), Valencia, Spain
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe (HULAFE), Valencia, Spain. .,Neonatal Research Group, Health Research Institute La Fe (IISLAFE), Valencia, Spain.
| |
Collapse
|
216
|
Deng J, Zhang J, Chang Y, Wang S, Shi M, Miao Z. Effects of Chinese yam polysaccharides on the immune function and serum biochemical indexes of broilers. Front Vet Sci 2022; 9:1013888. [PMID: 36148469 PMCID: PMC9485930 DOI: 10.3389/fvets.2022.1013888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this experiment was to investigate the effects of Chinese yam polysaccharides (CYP) in diets on the immune function of broilers. A total of 360 (1-day-old, sex balance) healthy growing broilers with similar body weight (39.54 ± 0.51 g) were randomly divided into control (0.00 g/kg), CYP I (0.25 g/kg), CYP II (0.50 g/kg), and CYP III (1.00 g/kg) groups. Each group contains 3 replicates with 30 broilers in each replicate, and the feeding trial lasted 48 d. The results showed that compared with the control group, the CYP II group had higher thymus index, serum IgA, complement C3, C4, IGF-I, T3, T4, INS, GH, IL-2, IL-4, IL-6, and TNF-α levels (P < 0.05) at 28, 48 d, respectively. In addition, the spleen index, serum IgM and IgG concentrations in CYP II group were higher than those in the control group at 28 d (P < 0.05). Results indicated that 0.50 g/kg CYP supplementation improved the immune function of broilers, and the CYP has a potential biological function as a green additive in broilers.
Collapse
Affiliation(s)
- Jiahua Deng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yadi Chang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Suli Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiguo Miao
| |
Collapse
|
217
|
Wang V, Heffer A, Roztocil E, Feldon SE, Libby RT, Woeller CF, Kuriyan AE. TNF-α and NF-κB signaling play a critical role in cigarette smoke-induced epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PLoS One 2022; 17:e0271950. [PMID: 36048826 PMCID: PMC9436090 DOI: 10.1371/journal.pone.0271950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is characterized by the growth and contraction of cellular membranes within the vitreous cavity and on both surfaces of the retina, resulting in recurrent retinal detachments and poor visual outcomes. Proinflammatory cytokines like tumor necrosis factor alpha (TNFα) have been associated with PVR and the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. Cigarette smoke is the only known modifiable risk factor for PVR, but the mechanisms are unclear. The purpose of this study was to examine the impact of cigarette smoke on the proinflammatory TNFα/NF-κB/Snail pathway in RPE cells to better understand the mechanisms through which cigarette smoke increases the risk of PVR. Human ARPE-19 cells were exposed to cigarette smoke extract (CSE), for 4 to 24-hours and TNFα, Snail, IL-6, IL-8, and α-SMA levels were analyzed by qPCR and/or Western blot. The severity of PVR formation was assessed in a murine model of PVR after intravitreal injection of ARPE-19 cells pre-treated with CSE or not. Fundus imaging, OCT imaging, and histologic analysis 4 weeks after injection were used to examine PVR severity. ARPE-19 cells exposed to CSE expressed higher levels of TNFα, SNAIL, IL6 and IL8 mRNA as well as SNAIL, Vimentin and α-SMA protein. Inhibition of TNFα and NF-κB pathways blocked the effect of CSE. In vivo, intravitreal injection of ARPE-19 cells treated with CSE resulted in more severe PVR compared to mice injected with untreated RPE cells. These studies suggest that the TNFα pathway is involved in the mechanism whereby cigarette smoke increases PVR. Further investigation into the role of TNFα/NF-κB/Snail in driving PVR and pharmacological targeting of these pathways in disease are warranted.
Collapse
Affiliation(s)
- Victor Wang
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Alison Heffer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- Retina Service/Mid Atlantic Retina, Wills Eye Hospital, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
218
|
Kim BS, Shin M, Kim KW, Ha KT, Bae SJ. NRF2 activation by 2-methoxycinnamaldehyde attenuates inflammatory responses in macrophages via enhancing autophagy flux. BMB Rep 2022. [PMID: 35725014 PMCID: PMC9442350 DOI: 10.5483/bmbrep.2022.55.8.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Korea
| |
Collapse
|
219
|
Donnelly EL, Céspedes N, Hansten G, Wagers D, Briggs AM, Lowder C, Schauer J, Garrison SM, Haapanen L, Van de Water J, Luckhart S. Basophil Depletion Alters Host Immunity, Intestinal Permeability, and Mammalian Host-to-Mosquito Transmission in Malaria. Immunohorizons 2022; 6:581-599. [PMID: 35970557 PMCID: PMC9977168 DOI: 10.4049/immunohorizons.2200055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023] Open
Abstract
Malaria-induced bacteremia has been shown to result from intestinal mast cell (MC) activation. The appearance of MCs in the ileum and increased intestinal permeability to enteric bacteria are preceded by an early Th2-biased host immune response to infection, characterized by the appearance of IL-4, IL-10, mast cell protease (Mcpt)1 and Mcpt4, and increased circulating basophils and eosinophils. Given the functional similarities of basophils and MCs in the context of allergic inflammation and the capacity of basophils to produce large amounts of IL-4, we sought to define the role of basophils in increased intestinal permeability, in MC influx, and in the development of bacteremia in the context of malaria. Upon infection with nonlethal Plasmodium yoelii yoelii 17XNL, Basoph8 × ROSA-DTα mice or baso (-) mice that lack basophils exhibited increased intestinal permeability and increased ileal MC numbers, without any increase in bacterial 16S ribosomal DNA copy numbers in the blood, relative to baso (+) mice. Analysis of cytokines, chemokines, and MC-associated factors in the ileum revealed significantly increased TNF-α and IL-13 at day 6 postinfection in baso (-) mice compared with baso (+) mice. Moreover, network analysis of significantly correlated host immune factors revealed profound differences between baso (-) and baso (+) mice following infection in both systemic and ileal responses to parasites and translocated bacteria. Finally, basophil depletion was associated with significantly increased gametocytemia and parasite transmission to Anopheles mosquitoes, suggesting that basophils play a previously undescribed role in controlling gametocytemia and, in turn, mammalian host-to-mosquito parasite transmission.
Collapse
Affiliation(s)
- Erinn L Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Delaney Wagers
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Anna M Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Sarah M Garrison
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID; .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID; and
| |
Collapse
|
220
|
Yang CM, Yang CC, Hsu WH, Hsiao LD, Tseng HC, Shih YF. Tumor Necrosis Factor-α-Induced C-C Motif Chemokine Ligand 20 Expression through TNF Receptor 1-Dependent Activation of EGFR/p38 MAPK and JNK1/2/FoxO1 or the NF-κB Pathway in Human Cardiac Fibroblasts. Int J Mol Sci 2022; 23:ijms23169086. [PMID: 36012347 PMCID: PMC9409325 DOI: 10.3390/ijms23169086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor (TNF)-α is involved in the pathogenesis of cardiac injury, inflammation, and apoptosis. It is a crucial pro-inflammatory cytokine in many heart disorders, including chronic heart failure and ischemic heart disease, contributing to cardiac remodeling and dysfunction. The implication of TNF-α in inflammatory responses in the heart has been indicated to be mediated through the induction of C-C Motif Chemokine Ligand 20 (CCL20). However, the detailed mechanisms of TNF-α-induced CCL20 upregulation in human cardiac fibroblasts (HCFs) are not completely defined. We demonstrated that in HCFs, TNF-α induced CCL20 mRNA expression and promoter activity leading to an increase in the secretion of CCL20. TNF-α-mediated responses were attenuated by pretreatment with TNFR1 antibody, the inhibitor of epidermal growth factor receptor (EGFR) (AG1478), p38 mitogen-activated protein kinase (MAPK) (p38 inhibitor VIII, p38i VIII), c-Jun amino N-terminal kinase (JNK)1/2 (SP600125), nuclear factor kappaB (NF-κB) (helenalin), or forkhead box O (FoxO)1 (AS1841856) and transfection with siRNA of TNFR1, EGFR, p38α, JNK2, p65, or FoxO1. Moreover, TNF-α markedly induced EGFR, p38 MAPK, JNK1/2, FoxO1, and NF-κB p65 phosphorylation which was inhibited by their respective inhibitors in these cells. In addition, TNF-α-enhanced binding of FoxO1 or p65 to the CCL20 promoter was inhibited by p38i VIII, SP600125, and AS1841856, or helenalin, respectively. Accordingly, in HCFs, our findings are the first to clarify that TNF-α-induced CCL20 secretion is mediated through a TNFR1-dependent EGFR/p38 MAPK and JNK1/2/FoxO1 or NF-κB cascade. We demonstrated that TNFR1-derived EGFR transactivation is involved in the TNF-α-induced responses in these cells. Understanding the regulation of CCL20 expression by TNF-α on HCFs may provide a potential therapeutic strategy in cardiac inflammatory disorders.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 40402, Taiwan
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 2229)
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Wun-Hsin Hsu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
221
|
Tazawa K, Azuma Presse MM, Furusho H, Stashenko P, Sasaki H. Revisiting the role of IL-1 signaling in the development of apical periodontitis. FRONTIERS IN DENTAL MEDICINE 2022; 3:985558. [PMID: 36938490 PMCID: PMC10021022 DOI: 10.3389/fdmed.2022.985558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apical periodontitis (AP) develops as a result of an immune response to pulpal bacterial infection, and various cytokines are involved in the pathogenesis of AP, with Interleukin (IL)-1 being considered a key cytokine. The role of IL-1 in the pathogenesis of AP has been well studied. It is known that IL-1 expression in periapical lesions correlates closely with the development of AP. IL-1 is a potent bone-resorptive cytokine that induces osteoclast formation and activation. Hence, inhibiting its signaling with IL-1 receptor antagonist (IL-1RA) results in a reduction in periapical lesion size. On the other hand, IL-1 is also a central cytokine that combats bacterial infection by activating innate immune responses. Therefore, a complete loss of IL-1 signaling leads to a failure to limit bacterial dissemination and consequently exacerbates AP. In vivo, IL-1 expression is tightly regulated and its signaling is modulated to optimize the immune response. Obesity causes systemic low-grade chronic inflammation and increases the risk of cardiovascular, renal, and other disorders. In experimentally induced AP, obesity significantly increases periapical bone loss, albeit the underlying mechanism remains unclear. Recent technological innovations have enabled more comprehensive and detailed analyses than previously, leading to new insights into the role of IL-1RA in regulating IL-1 signaling, and modulating apical lesion progression in obesity. In this review, we provide a brief overview of the function of IL-1 in AP development, with special emphasis on the latest findings in normal weight and obese states.
Collapse
Affiliation(s)
- Kento Tazawa
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mariane Maffei Azuma Presse
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Philip Stashenko
- Department of Translational Dental Medicine and Department of Endodontics, Boston University Goldman School of Dental Medicine, Boston, MA, United States
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
222
|
Khan MA, Rabbani G, Kumari M, Khan MJ. Ellagic acid protects type II collagen induced arthritis in rat via diminution of IKB phosphorylation and suppression IKB-NF-kB complex activation: in vivo and in silico study. Inflammopharmacology 2022; 30:1729-1743. [PMID: 35939220 DOI: 10.1007/s10787-022-01022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The present study was designed to explore the potential anti-inflammatory and anti-arthritic effects of ellagic acid (EA) in collagen-induced arthritis (CIA). METHODS CIA rats were treated with MTX (0.25 mg/kg body wt.) and EA (50 mg/kg b.wt.) for a period of 20 days. The effects of treatment in the rats were assessed biochemically by analyzing inflammatory mediators (NF-kB, iNOS, TNF-α, IL-1β, IL-6 and IL-10) and oxidative stress related parameters (MPO, NO, LPO, catalase, SOD, GSH). In addition, we also assessed the expression of some inflammatory mediators TNF-α, CD8 + though immunohistochemistry in the joint tissue. RESULTS In the present study, we found expression and synthesis of transcription factor NF-kB was prominent in CIA rats. In addition, main pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, and the anti-inflammatory IL-10, was also stand out. Further, reactive oxygen/nitrogen species was also elevated in CIA rats. Treatment with EA ameliorates all the above mentioned inflammatory and oxidative stress related parameters to near normal. Further, we also confirmed the expression of TNF-α, CD8+ T cells through immunohistochemistry was mitigates in joint tissue of EA treated rats. We find EA significantly inhibited the developmental phase of arthritis. CONCLUSION These results suggest that EA act as potent anti-arthritic and anti-inflammatory agent that could be used as a tool for the development of new drug for the treatment of arthritis.
Collapse
Affiliation(s)
- Mahmood Ahmad Khan
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital, Dilshad Garden, Delhi, 110095, India.
| | - Gulam Rabbani
- Nano Diagnostics and Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Monika Kumari
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital, Dilshad Garden, Delhi, 110095, India
| | - Mohd Jahir Khan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
223
|
Abstract
Organ-specific metastasis to secondary organs is dependent on the formation of a supportive pre-metastatic niche. This tissue-specific microenvironmental response is thought to be mediated by mutational and epigenetic changes to primary tumour cells resulting in altered cross-talk between cell types. This response is augmented through the release of tumour and stromal signalling mediators including cytokines, chemokines, exosomes and growth factors. Although researchers have elucidated some of the cancer-promoting features that are bespoke to organotropic metastasis to the lungs, it remains unclear if these are organ-specific or generic between organs. Understanding the mechanisms that mediate the metastasis-promoting synergy between the host microenvironment, immunity, and pulmonary structures may elucidate predictive, prognostic and therapeutic markers that could be targeted to reduce the metastatic burden of disease. Herein, we give an updated summary of the known cellular and molecular mechanisms that contribute to the formation of the lung pre-metastatic niche and tissue-specific metastasis.
Collapse
Affiliation(s)
- Oliver Cucanic
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Rae H Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
224
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2022. [PMID: 35440774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
225
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? Nat Rev Gastroenterol Hepatol 2022; 19:493-507. [PMID: 35440774 DOI: 10.1038/s41575-022-00604-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
226
|
Pediatric ECMO: unfavorable outcomes are associated with inflammation and endothelial activation. Pediatr Res 2022; 92:549-556. [PMID: 34732815 PMCID: PMC9061896 DOI: 10.1038/s41390-021-01817-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Inflammatory and endothelial activation responses during extracorporeal membrane oxygenation (ECMO) support in children are poorly understood. In this study, we aimed to determine if circulating inflammatory, endothelial activation, and fibrinolytic markers are associated with mortality and with neurologic outcomes in children on ECMO. METHODS We conducted a secondary analysis of a two-center prospective observational study of 99 neonatal and pediatric ECMO patients. Inflammatory (interferon gamma [IFNγ], interleukin-6 [IL-6], IL-1β, tumor necrosis factor alpha [TNFα]), endothelial activation (E-selectin, P-selectin, intercellular adhesion molecule-3 [ICAM-3], thrombomodulin [TM]), and fibrinolytic markers (tissue plasminogen activator [tPA], plasminogen activator inhibitor-1 [PAI-1]) were measured in plasma on days 1, 2, 3, 5, 7, and every third day thereafter during the ECMO course. RESULTS All ECMO day 1 inflammatory biomarkers were significantly elevated in children with abnormal vs. normal neuroimaging. ECMO day 1 and peak levels of IL-6 and PAI-1 were significantly elevated in children who died compared to those who survived to hospital discharge. Tested biomarkers showed no significant association with long-term neurobehavioral outcomes measured using the Vineland Adaptive Behavioral Scales, Second Edition. CONCLUSIONS High levels of circulating inflammatory, endothelial activation, and fibrinolytic markers are associated with mortality and abnormal neuroimaging in children on ECMO. IMPACT The inflammatory, endothelial activation, and fibrinolytic profile of children on ECMO differs by primary indication for extracorporeal support. Proinflammatory biomarkers on ECMO day 1 are associated with abnormal neurologic imaging in children on ECMO in univariable but not multivariable models. In multivariable models, a pronounced proinflammatory and prothrombotic biomarker profile on ECMO day 1 and longitudinally was significantly associated with mortality. Further studies are needed to identify inflammatory, endothelial, and fibrinolytic profiles associated with increased risk for neurologic injury and mortality through potential mediation of bleeding and thrombosis.
Collapse
|
227
|
Kim S, Bando Y, Chang C, Kwon J, Tarverti B, Kim D, Lee SH, Ton-That H, Kim R, Nara PL, Park NH. Topical application of Porphyromonas gingivalis into the gingival pocket in mice leads to chronic‑active infection, periodontitis and systemic inflammation. Int J Mol Med 2022; 50:103. [PMID: 35703359 PMCID: PMC9242655 DOI: 10.3892/ijmm.2022.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis (Pg), one of the 'red-complex' perio-pathogens known to play a critical role in the development of periodontitis, has been used in various animal models to mimic human bacteria-induced periodontitis. In order to achieve a more realistic animal model of human Pg infection, the present study investigated whether repeated small-volume topical applications of Pg directly into the gingival pocket can induce local infection, including periodontitis and systemic vascular inflammation in wild-type mice. Freshly cultured Pg was topically applied directly into the gingival pocket of the second molars for 5 weeks (3 times/week). After the final application, the mice were left in cages for 4 or 8 weeks and sacrificed. The status of Pg colony formation in the pocket, gingival inflammation, alveolar bone loss, the expression levels of pro-inflammatory cytokines in the serum and aorta, the presence of anti-Pg lipopolysaccharide (LPS) and gingipain (Kpg and RgpB) antibodies in the serum, as well as the accumulation of Pg LPS and gingipain aggregates in the gingiva and arterial wall were evaluated. The topical application of Pg into the gingival pocket induced the following local and systemic pathohistological changes in mice when examined at 4 or 8 weeks after the final topical Pg application: Pg colonization in the majority of gingival pockets; increased gingival pocket depths; gingival inflammation indicated by the increased expression of TNF-α, IL-6 and IL-1β; significant loss of alveolar bone at the sites of topical Pg application; and increased levels of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-17, IL-13, KC and IFN-γ in the serum in comparison to those from mice receiving PBS. In addition, the Pg application/colonization model induced anti-Pg LPS and gingipain antibodies in serum, as well as the accumulation of Pg LPS and gingipain aggregates in the gingivae and arterial walls. To the best of our knowledge, this mouse model represents the first example of creating a more sustained local infection in the gingival tissues of wild-type mice and may prove to be useful for the investigation of the more natural and complete pathogenesis of the bacteria in the development of local oral and systemic diseases, such as atherosclerosis. It may also be useful for the determination of a treatment/prevention/efficacy model associated with Pg-induced colonization periodontitis in mice.
Collapse
Affiliation(s)
- Sharon Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yasuhiko Bando
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Chungyu Chang
- Section of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Jeonga Kwon
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Berta Tarverti
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Doohyun Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Hung Ton-That
- Section of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Reuben Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Peter L Nara
- Keystone Bio Incorporated, Suite 200, St. Louis, MO 63110, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
228
|
Mahittikorn A, Mala W, Srisuphanunt M, Masangkay FR, Kotepui KU, Wilairatana P, Kotepui M. Tumour necrosis factor-α as a prognostic biomarker of severe malaria: a systematic review and meta-analysis. J Travel Med 2022; 29:6573410. [PMID: 35467747 DOI: 10.1093/jtm/taac053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Tumour necrosis factor-alpha (TNF-α) levels are reportedly altered during malaria. In this systematic review and meta-analysis, we aimed to collect and compare data on TNF-α levels between patients with malaria of varying severity and healthy asymptomatic positive controls. METHODS We searched PubMed, Scopus and Web of Science for studies that reported TNF-α levels in malaria cases of different severity and healthy asymptomatic positive controls using a combination of search terms. The quality of the included studies was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology checklist. To compare the TNF-α levels among fatal cases, severe cases, uncomplicated cases and healthy asymptomatic positive controls, we applied the random-effects model that assumed the existence of variations between studies. The effect estimate was pooled mean difference (MD) with a 95% confidence interval (CI). RESULTS From 1694 studies, we included 31 studies that met our eligibility criteria for systematic review and meta-analysis. Patients with severe malaria showed higher mean TNF-α levels than those with uncomplicated malaria (P < 0.001, pooled MD = 79.02 pg/ml, 95% CI: 63.68-94.35 pg/ml, I2: 99.5%, n = 26 studies). Furthermore, fatal cases had no difference in the mean TNF-α levels in comparison with survived cases (P = 0.055, pooled MD = 82.38 pg/ml, 95% CI: -1.93 to 166.69 pg/ml, I2: 99.54%, n = 5 studies). Finally, patients with uncomplicated malaria showed higher mean TNF-α levels than those with asymptomatic malaria (P < 0.001, pooled MD = 45.10 pg/ml, 95% CI: 18.45-71.76 pg/ml, I2: 97.09%, n = 5 studies). CONCLUSION This systematic review and meta-analysis confirmed the increase of TNF-α levels in patients with severe malaria. Therefore, TNF-α may be alternatively used as a prognostic biomarker of severe malaria. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanida Mala
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Mayuna Srisuphanunt
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | | | - Kwuntida Uthaisar Kotepui
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Manas Kotepui
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
229
|
The emerging coloprotective effect of sildenafil against ulcerative colitis in rats via exerting counterbalance between NF-κB signaling and Nrf-2/HO-1 pathway. Inflammopharmacology 2022; 30:1351-1362. [PMID: 35834151 PMCID: PMC9293796 DOI: 10.1007/s10787-022-01016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
The current work explored the influences of time dependent Sildenafil (SILD) administration, and the possible outcomes from its concomitant administration with dexamethasone against acetic acid-induced ulcerative colitis in rats. Rats were assigned into six random groups: diseased group (AA), injected once with 2 ml acetic acid (3%) intrarectally, 2 days before sacrification. SILD + AA, received sildenafil (25 mg/kg, orally) for 6 days starting 3 days pre-injection of AA; SILD-t + AA, received sildenafil (25 mg/kg, orally), starting at time of AA injection and continued for 3 days; DEXA + AA, received dexamethasone (2 mg/kg, i.p.) for 3 days, starting at time of AA injection; SILD-t + DEXA + AA, received sildenafil (25 mg/kg, orally) and dexamethasone (2 mg/kg, i.p.), as mentioned. Sildenafil markedly ameliorated disease activity index (DAI), ulcer scores, colon length shortening and colonic histopathological changes. Mechanistically, Sildenafil markedly attenuated immunoexpression of NF-κB p65/ TNF-α and COX-2, diminished oxidative stress (↓ MDA/NO levels and ↑ GSH level and SOD activity), increased levels of Nrf-2/HO-1, compared to untreated group. Taken together, Sildenafil treatment suppressed acetic acid-induced ulcerative colitis, probably via inhibiting NF-κB/TNF-α signaling dependent of Nrf-2/HO-1 pathway, reducing oxidative stress and attenuating inflammation. Surprisingly, effects of sildenafil were unpromoted in a time dependant manner. Short term treatment with sildenafil was sufficient to exert its coloprotective effect, while longer term pretreatment was only superior among other treatments in the macroscopical changes. Moreover, concurrent administration of sildenafil and dexamethasone had the preference in boosting the antioxidant defense and anti-inflammatory mechanisms, visualized by histopathological/immunohistochemical changes.
Collapse
|
230
|
Antioxidant and Anti-Inflammatory Effects of Thyme (Thymus vulgaris L.) Essential Oils Prepared at Different Plant Phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 Macrophages. Antioxidants (Basel) 2022; 11:antiox11071330. [PMID: 35883820 PMCID: PMC9311800 DOI: 10.3390/antiox11071330] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Thyme (Thymus vulgaris L.) essential oil (TEO) is widely used as an alternative therapy especially for infections of the upper respiratory tract. TEO possesses antiviral, antibacterial, and antifungal properties. The emerging antibiotic resistance of bacterial strains, including Pseudomonas aeruginosa, has prompted the urge to find alternative treatments. In the present study, we examined the anti-inflammatory and antioxidant effects of thymol, the main compound of TEO, and two TEOs prepared at the beginning and at the end of the flowering period that may make these oils promising candidates as complementary or alternative therapies against P. aeruginosa infections. The activity measurements of the antioxidant enzymes peroxidase (PX), catalase (CAT), and superoxide dismutase (SOD) as well as the determination of total antioxidant capacity of P. aeruginosa-activated THP-1 cells revealed that thymol and both TEOs increased CAT and SOD activity as well as the antioxidant capacity of the THP-1 cells. The measurements of the proinflammatory cytokine mRNA expression and secreted protein level of LPS-activated THP-1 cells showed that from the two TEOs, only TEO prepared at the beginning of the flowering period acted as a potent inhibitor of the synthesis of IL-6, IL-8, IL-β, and TNF-α. Our results suggest that not only thymol, but also the synergism or the antagonistic effects of the additional compounds of the essential oils are responsible for the anti-inflammatory activity of TEOs.
Collapse
|
231
|
Lee EK, Koh EM, Kim YN, Song J, Song CH, Jung KJ. Immunomodulatory Effect of Hispolon on LPS-Induced RAW264.7 Cells and Mitogen/Alloantigen-Stimulated Spleen Lymphocytes of Mice. Pharmaceutics 2022; 14:pharmaceutics14071423. [PMID: 35890318 PMCID: PMC9322787 DOI: 10.3390/pharmaceutics14071423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Hispolon is a potent anticancer, anti-inflammatory, antioxidant, and antidiabetic agent isolated from Phellinus linteus, an oriental medicinal mushroom. However, the immunomodulatory mechanisms by which hispolon affects macrophages and lymphocytes remain poorly characterized. We investigated the immunomodulatory effects of hispolon on oxidative stress, inflammatory responses, and lymphocyte proliferation using lipopolysaccharide (LPS)-treated RAW264.7 macrophages or mitogen/alloantigen-treated mouse splenocytes. Hispolon inhibited LPS-induced reactive oxygen and nitrogen species (ROS/RNS) generation and decreased total sulfhydryl (SH) levels in a cell-free system and RAW264.7 cells. Hispolon exerted significant anti-inflammatory effects by inhibiting production of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) and activation of nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in LPS-treated RAW264.7 cells. Hispolon also modulated NF-κB and STAT3 activation by suppressing the NF-κB p65 interaction with phospho-IκBα and the STAT3 interaction with JAK1, as determined via coimmunoprecipitation analysis. Additionally, hispolon significantly decreased lymphocyte proliferation, T cell responses and T helper type 1 (Th1)/type 2 (Th2) cytokines production in mitogen/alloantigen-treated splenocytes. We conclude that hispolon exerts immunomodulatory effects on LPS-treated macrophages or mitogen/alloantigen-treated splenocytes through antioxidant, anti-inflammatory, and antiproliferative activities. Thus, hispolon may be a therapeutic agent for treating immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Eun Kyeong Lee
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
| | - Eun Mi Koh
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
| | - Yu Na Kim
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
| | - Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup 56212, Korea;
| | - Chi Hun Song
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
| | - Kyung Jin Jung
- Immunotoxicology Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (E.K.L.); (E.M.K.); (Y.N.K.); (C.H.S.)
- Correspondence: ; Tel.: +82-42-610-8279; Fax: +82-42-610-8099
| |
Collapse
|
232
|
Maghbooli Z, Ebrahimi Meimand S, Malek Hosseini AA, Shirvani A. Alterations in circulating levels of vitamin D binding protein, total and bioavailability of vitamin D in diabetic retinopathy patients. BMC Endocr Disord 2022; 22:169. [PMID: 35778716 PMCID: PMC9250226 DOI: 10.1186/s12902-022-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
AIMS This study aimed to investigate the association between circulating levels of vitamin D binding protein (VDBP) and its genotypes and diabetic retinopathy risk. METHODS This case-control study recruited 154 patients with type 2 diabetes mellitus; 62 with diabetic retinopathy (DR) and 92 without DR and diabetic nephropathy (DN). Circulating levels of 25-hydroxyvitamin D3 and VDBP levels were measured in the patients. The genotype and phenotype of VDBP were evaluated based on two common VDBP variations; rs7041 and rs4588. RESULTS Serum levels of VDBP were significantly lower in patients with DR than in patients without DR and/or DN (Ln-VDBP (μg/ml): 6.14 ± 0.92 vs. 6.73 ± 1.45, p = 0.001) even after adjustment for age, sex, body mass index, disease duration, estimated glomerular filtration rate (eGFR), HbA1C, insulin therapy profile, and serum levels of 25(OH)D. The distribution of VDBP phenotypes and genotypes in the two studied groups were nearly the same, and the distribution was similar to that of the general population. CONCLUSIONS In this study, we found the association between lower circulating levels of VDBP and risk of DR. However, the precise mechanism linking these two remains unknown. Further and more in-depth research is needed to find out the underlying causes of the relationship.
Collapse
Affiliation(s)
- Zhila Maghbooli
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Ali-Asghar Malek Hosseini
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
233
|
Kwak Y, Daly CWP, Fogarty EA, Grimson A, Kwak H. Dynamic and widespread control of poly(A) tail length during macrophage activation. RNA (NEW YORK, N.Y.) 2022; 28:947-971. [PMID: 35512831 PMCID: PMC9202586 DOI: 10.1261/rna.078918.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The poly(A) tail enhances translation and transcript stability, and tail length is under dynamic control during cell state transitions. Tail regulation plays essential roles in translational timing and fertilization in early development, but poly(A) tail dynamics have not been fully explored in post-embryonic systems. Here, we examined the landscape and impact of tail length control during macrophage activation. Upon activation, more than 1500 mRNAs, including proinflammatory genes, underwent distinctive changes in tail lengths. Increases in tail length correlated with mRNA levels regardless of transcriptional activity, and many mRNAs that underwent tail extension encode proteins necessary for immune function and post-transcriptional regulation. Strikingly, we found that ZFP36, whose protein product destabilizes target transcripts, undergoes tail extension. Our analyses indicate that many mRNAs undergoing tail lengthening are, in turn, degraded by elevated levels of ZFP36, constituting a post-transcriptional feedback loop that ensures transient regulation of transcripts integral to macrophage activation. Taken together, this study establishes the complexity, relevance, and widespread nature of poly(A) tail dynamics, and the resulting post-transcriptional regulation during macrophage activation.
Collapse
Affiliation(s)
- Yeonui Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Ciarán W P Daly
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
234
|
Breton E, Fotso Soh J, Booij L. Immunoinflammatory processes: Overlapping mechanisms between obesity and eating disorders? Neurosci Biobehav Rev 2022; 138:104688. [PMID: 35594735 DOI: 10.1016/j.neubiorev.2022.104688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Obesity and eating disorders are conditions that involve eating behaviors and are sometimes comorbid. Current evidence supports alterations in immunoinflammatory processes in both obesity and eating disorders. A plausible hypothesis is that immunoinflammatory processes may be involved in the pathophysiology of obesity and eating disorders. The aim of this review is to highlight the link between obesity and eating disorders, with a particular focus on immunoinflammatory processes. First, the relation between obesity and eating disorders will be presented, followed by a brief review of the literature on their association with immunoinflammatory processes. Second, developmental factors will be discussed to clarify the link between obesity, eating disorders, and immunoinflammatory processes. Genetic and epigenetic risk factors as well as the potential roles of stress pathways and early life development will be presented. Finally, implications of these findings for future research are discussed. This review highlighted biological and developmental aspects that overlap between obesity and EDs, emphasizing the need for biopsychosocial research approaches to advance current knowledge and practice in these fields.
Collapse
Affiliation(s)
- E Breton
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
| | - J Fotso Soh
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychology, Concordia University, Montreal, Canada
| | - L Booij
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada; Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
235
|
Sudarsanam H, Buhmann R, Henschler R. Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Front Bioeng Biotechnol 2022; 10:886637. [PMID: 35845425 PMCID: PMC9277485 DOI: 10.3389/fbioe.2022.886637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023] Open
Abstract
Ex vivo expansion of T lymphocytes is a central process in the generation of cellular therapies targeted at tumors and other disease-relevant structures, which currently cannot be reached by established pharmaceuticals. The influence of culture conditions on T cell functions is, however, incompletely understood. In clinical applications of ex vivo expanded T cells, so far, a relatively classical standard cell culture methodology has been established. The expanded cells have been characterized in both preclinical models and clinical studies mainly using a therapeutic endpoint, for example antitumor response and cytotoxic function against cellular targets, whereas the influence of manipulations of T cells ex vivo including transduction and culture expansion has been studied to a much lesser detail, or in many contexts remains unknown. This includes the circulation behavior of expanded T cells after intravenous application, their intracellular metabolism and signal transduction, and their cytoskeletal (re)organization or their adhesion, migration, and subsequent intra-tissue differentiation. This review aims to provide an overview of established T cell expansion methodologies and address unanswered questions relating in vivo interaction of ex vivo expanded T cells for cellular therapy.
Collapse
Affiliation(s)
| | | | - Reinhard Henschler
- Institute of Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
236
|
Rueda-Gensini L, Serna JA, Bolaños NI, Rodriguez J, Cruz JC, Muñoz-Camargo C. Evaluating the Impact of Thermal Processing on the Anti-Inflammatory Activity of Non-Centrifugal Cane Sugar: Implications on Cytokine Secretion and TLR4 Signaling. Front Pharmacol 2022; 13:905347. [PMID: 35837292 PMCID: PMC9274305 DOI: 10.3389/fphar.2022.905347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plant-derived products have gained considerable attention as inflammation modulators given the wide variety of anti-inflammatory phytochemicals reported to be present in plants and their limited side effects in vivo during prolonged exposure periods. Non-centrifugal cane sugar (NCS) has been identified as a promising sugarcane-derived product due to its high polyphenolic composition and antioxidant potential, but its incorporations into nutraceuticals and other relevant products of biomedical interest has been limited by the ample composition-wise variability resulting from extreme and loosely controlled processing conditions. Here, we assessed the effect of reducing thermal exposure during NCS processing on the retained polyphenolic profiles, as well as on their antioxidant and anti-inflammatory activities. Specifically, we proposed two modified NCS production methods that reduce exposure to unwanted thermal processing conditions by 1) limiting the employed temperatures through vacuum-aided dehydration and 2) by reducing exposure time through refractance window evaporation. By comparing the modified NCS products with traditional NCS, we showed that the proposed process strategies yield enhanced polyphenolic profiles, as evidenced by the results of the Folin-Ciocalteu polyphenol quantification method and the components identification by HPLC coupled to mass spectrometry. Although these compositional differences failed to impact the antioxidant profiles and cytocompatibility of the products, they showed an enhanced anti-inflammatory potential, given their superior modulation capacity of inflammatory cytokine secretion in both systemic and neuroinflammatory scenarios in vitro. Moreover, we showed that both modified NCS products interfere with TLR4 signaling in human monocytes to a significantly greater extent than traditional NCS. However, the anti-inflammatory effect of NCS produced under window refractance evaporation was slightly superior than under vacuum-aided dehydration, demonstrating that reducing exposure time to high temperatures is likely more effective than reducing the operation temperature. Overall, these findings demonstrated that limiting thermal exposure is beneficial for the development of NCS-based natural products with superior anti-inflammatory potential, which can be further exploited in the rational design of more potent nutraceuticals for potentially preventing chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Natalia I. Bolaños
- Vice-presidency of Research and Creation, Universidad de los Andes, Bogotá, Colombia
| | - Jader Rodriguez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, Mosquera, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Carolina Muñoz-Camargo,
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Carolina Muñoz-Camargo,
| |
Collapse
|
237
|
Biomarkers of Oxidative Stress Tethered to Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9154295. [PMID: 35783193 PMCID: PMC9249518 DOI: 10.1155/2022/9154295] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a broad term that incorporated a group of conditions that affect the blood vessels and the heart. CVD is a foremost cause of fatalities around the world. Multiple pathophysiological mechanisms are involved in CVD; however, oxidative stress plays a vital role in generating reactive oxygen species (ROS). Oxidative stress occurs when the concentration of oxidants exceeds the potency of antioxidants within the body while producing reactive nitrogen species (RNS). ROS generated by oxidative stress disrupts cell signaling, DNA damage, lipids, and proteins, thereby resulting in inflammation and apoptosis. Mitochondria is the primary source of ROS production within cells. Increased ROS production reduces nitric oxide (NO) bioavailability, which elevates vasoconstriction within the arteries and contributes to the development of hypertension. ROS production has also been linked to the development of atherosclerotic plaque. Antioxidants can decrease oxidative stress in the body; however, various therapeutic drugs have been designed to treat oxidative stress damage due to CVD. The present review provides a detailed narrative of the oxidative stress and ROS generation with a primary focus on the oxidative stress biomarker and its association with CVD. We have also discussed the complex relationship between inflammation and endothelial dysfunction in CVD as well as oxidative stress-induced obesity in CVD. Finally, we discussed the role of antioxidants in reducing oxidative stress in CVD.
Collapse
|
238
|
Shapiro L, Scherger S, Franco-Paredes C, Gharamti AA, Fraulino D, Henao-Martinez AF. Chasing the Ghost: Hyperinflammation Does Not Cause Sepsis. Front Pharmacol 2022; 13:910516. [PMID: 35814227 PMCID: PMC9260244 DOI: 10.3389/fphar.2022.910516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Sepsis is infection sufficient to cause illness in the infected host, and more severe forms of sepsis can result in organ malfunction or death. Severe forms of Coronavirus disease-2019 (COVID-19), or disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are examples of sepsis. Following infection, sepsis is thought to result from excessive inflammation generated in the infected host, also referred to as a cytokine storm. Sepsis can result in organ malfunction or death. Since COVID-19 is an example of sepsis, the hyperinflammation concept has influenced scientific investigation and treatment approaches to COVID-19. However, decades of laboratory study and more than 100 clinical trials designed to quell inflammation have failed to reduce sepsis mortality. We examine theoretical support underlying widespread belief that hyperinflammation or cytokine storm causes sepsis. Our analysis shows substantial weakness of the hyperinflammation approach to sepsis that includes conceptual confusion and failure to establish a cause-and-effect relationship between hyperinflammation and sepsis. We conclude that anti-inflammation approaches to sepsis therapy have little chance of future success. Therefore, anti-inflammation approaches to treat COVID-19 are likewise at high risk for failure. We find persistence of the cytokine storm concept in sepsis perplexing. Although treatment approaches based on the hyperinflammation concept of pathogenesis have failed, the concept has shown remarkable resilience and appears to be unfalsifiable. An approach to understanding this resilience is to consider the hyperinflammation or cytokine storm concept an example of a scientific paradigm. Thomas Kuhn developed the idea that paradigms generate rules of investigation that both shape and restrict scientific progress. Intrinsic features of scientific paradigms include resistance to falsification in the face of contradictory data and inability of experimentation to generate alternatives to a failing paradigm. We call for rejection of the concept that hyperinflammation or cytokine storm causes sepsis. Using the hyperinflammation or cytokine storm paradigm to guide COVID-19 treatments is likewise unlikely to provide progress. Resources should be redirected to more promising avenues of investigation and treatment.
Collapse
Affiliation(s)
- Leland Shapiro
- Division of Infectious Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sias Scherger
- Division of Infectious Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Carlos Franco-Paredes
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Hospital Infantil de México, Federico Gomez, Mexico City, Mexico
| | - Amal A. Gharamti
- Department of Internal Medicine, Yale University, Waterbury, CT, United States
| | - David Fraulino
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrés F. Henao-Martinez
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
239
|
Associations of Tumor Necrosis Factor-Alpha Gene Polymorphisms (TNF)-α TNF-863A/C (rs1800630), TNF-308A/G (rs1800629), TNF-238A/G (rs361525), and TNF-Alpha Serum Concentration with Age-Related Macular Degeneration. Life (Basel) 2022; 12:life12070928. [PMID: 35888018 PMCID: PMC9319996 DOI: 10.3390/life12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease leading to irreversible central vision loss among the elderly in developed countries. While the disease accounts for 9% of all cases of vision loss, the prevalence of AMD is likely to increase due to the exponential aging of the population. Due to this reason, our study aimed to determine the associations of tumor necrosis factor-alpha (TNF-α) gene single-nucleotide polymorphisms (SNPs) TNF-863A/C (rs1800630), TNF-308A/G (rs1800629), TNF-238A/G (rs361525), and TNF-α serum concentration with age-related macular degeneration. Analysis of TNF-α rs1800630, rs1800629, and rs361525 polymorphisms showed that the TNF-α rs1800630 A allele was statistically significantly more frequent in the exudative AMD group compared to the control group (p = 0.029). Additionally, the TNF-α rs1800630 A allele was more frequent in females with exudative AMD than in the control group of healthy females (p = 0.027). The TNF-α rs1800630 A allele was more frequent in females with exudative AMD than in females with early AMD (p = 0.014). TNF-α rs1800630, rs1800629, and rs361525 haplotype A-A-G were associated with decreased odds of exudative AMD (p < 0.0001), and haplotype A-G-G was associated with 24-fold increased exudative AMD occurrence (p < 0.0001). TNF-α protein levels were lower in subjects with exudative AMD compared to the control group (p < 0.001). The study showed significant associations between inflammatory cytokine TNF-α single-nucleotide polymorphisms and serum level with AMD pathogenesis. Analysis of TNF-α genotypes and serum concentration may be helpful for the AMD diagnosis.
Collapse
|
240
|
Ma S, Zhang J, Liu H, Li S, Wang Q. The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 10:896591. [PMID: 35721513 PMCID: PMC9199005 DOI: 10.3389/fcell.2022.896591] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis, is a refractory disease with many immune abnormalities and pathologies in the gastrointestinal tract. Because macrophages can distinguish innocuous antigens from potential pathogens to maintain mucosa barrier functions, they are essential cells in the intestinal immune system. With numerous numbers in the intestinal tract, tissue-resident macrophages have a significant effect on the constant regeneration of intestinal epithelial cells and maintaining the immune homeostasis of the intestinal mucosa. They also have a significant influence on IBD through regulating pro-(M1) or anti-inflammatory (M2) phenotype polarization according to different environmental cues. The disequilibrium of the phenotypes and functions of macrophages, disturbed by intracellular or extracellular stimuli, influences the progression of disease. Further investigation of macrophages’ role in the progression of IBD will facilitate deciphering the pathogenesis of disease and exploring novel targets to develop novel medications. In this review, we shed light on the origin and maintenance of intestinal macrophages, as well as the role of macrophages in the occurrence and development of IBD. In addition, we summarize the interaction between gut microbiota and intestinal macrophages, and the role of the macrophage-derived exosome. Furthermore, we discuss the molecular and cellular mechanisms participating in the polarization and functions of gut macrophages, the potential targeted strategies, and current clinical trials for IBD.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Jiaxin Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Heshi Liu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Shuang Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
241
|
Thaweesest W, Buranasudja V, Phumsuay R, Muangnoi C, Vajragupta O, Sritularak B, Rashatasakhon P, Rojsitthisak P. Anti-Inflammatory Activity of Oxyresveratrol Tetraacetate, an Ester Prodrug of Oxyresveratrol, on Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123922. [PMID: 35745046 PMCID: PMC9228887 DOI: 10.3390/molecules27123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Oxyresveratrol (OXY) has been reported for its anti-inflammatory activity; however, the pharmaceutical applications of this compound are limited by its physicochemical properties and poor pharmacokinetic profiles. The use of an ester prodrug is a promising strategy to overcome these obstacles. In previous researches, several carboxylate esters of OXY were synthesized and oxyresveratrol tetraacetate (OXY-TAc) was reported to possess anti-melanogenic and anti-skin-aging properties. In this study, in addition to OXY-TAc, two novel ester prodrugs of OXY, oxyresveratrol tetrapropionate (OXY-TPr), and oxyresveratrol tetrabutyrate (OXY-TBu), were synthesized. Results from the Caco-2-permeation assay suggested that synthesized ester prodrugs can improve the membrane-permeation ability of OXY. The OXY-TAc exhibited the most significant profile, then this prodrug was chosen to observe anti-inflammatory activities with lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Our results showed that OXY-Tac significantly alleviated secretion of several pro-inflammatory mediators (nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), mitigated expression of enzyme-regulated inflammation (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)), and suppressed the MAPK cascades. Interestingly, the observed anti-inflammatory activities of OXY-TAc were more remarkable than those of its parent compound OXY. Taken together, we demonstrated that OXY-TAc improved physicochemical and pharmacokinetic profiles and enhanced the pharmacological effects of OXY. Hence, the results in the present study would strongly support the clinical utilities of OXY-TAc for the treatment of inflammation-related disorders.
Collapse
Affiliation(s)
- Wuttinont Thaweesest
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Pharmaceutical Chemistry and Natural Products Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Visarut Buranasudja
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| | - Rianthong Phumsuay
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
| | - Chawanphat Muangnoi
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paitoon Rashatasakhon
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; (W.T.); (R.P.); (O.V.); (B.S.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
242
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
243
|
Panax notoginseng Alleviates Sepsis-Induced Acute Kidney Injury by Reducing Inflammation in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9742169. [PMID: 35698642 PMCID: PMC9188472 DOI: 10.1155/2022/9742169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Background Sepsis is defined as a host inflammatory response to infection that can result in end-organ dysfunction. One of the most common consequences of sepsis is acute kidney injury (AKI). Panax notoginseng powder (PNP) has been previously reported to protect against overactive inflammation process. However, the potential effect of PNP on septic AKI is poorly described. The current study was conducted to investigate the protective effects of PNP in septic AKI rats. Methods A model of septic AKI was established on male SD rats by using the cecal ligation and puncture procedure. PNP was administrated by gavage after the cecal ligation and puncture (CLP) procedure, and the mice were sacrificed at 6, 12, and 72 h after induction of sepsis. The serum and kidney samples were collected and assayed for biochemical tests, histopathological staining, inflammation, and apoptosis-related gene/protein expression. In addition, 15 rats in each group were used to calculate the 7-day survival rate. Results CLP-induced kidney injury was observed by the histopathological score, which markedly was attenuated by PNP treatment. Consistently, PNP intervention significantly alleviated the elevated levels of serum creatinine and blood urea nitrogen in CLP-induced sepsis rats. The CLP procedure also triggered proinflammatory cytokine production and increased the expression of various inflammation-related proteins in the kidneys. However, PNP inhibited the renal expression of IL-18, IL-1β, TNF-α, and IL-6 to substantially improve inflammatory response. Mechanistically, CLP induced the increase of the NF-κB p65 level in the injured kidneys, while PNP notably inhibited the corresponding protein expression. Conclusion PNP attenuated kidney inflammation to protect against CLP-induced septic AKI in rats via inhibiting the NF-κB signaling pathway.
Collapse
|
244
|
Kondoh N, Mizuno-Kamiya M. The Role of Immune Modulatory Cytokines in the Tumor Microenvironments of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2022; 14:cancers14122884. [PMID: 35740551 PMCID: PMC9221278 DOI: 10.3390/cancers14122884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Malignant phenotypes of head and neck squamous cell carcinomas (HNSCCs) are regulated by the pro- and anti-tumoral activities of immune modulatory cytokines associated with tumor microenvironments (TMEs). We first present the immune modulatory effects of pro-inflammatory cytokines, pro- and anti- (pro-/anti-) inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. We then report our evaluation of the functions of cytokines and chemokines that mediate the crosstalk between tumors and stromal cells, including cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), plasmacytoid dendritic cells (pDCs), and tumor-associated macrophages (TAMs). In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. Several chemokines mediate lymph node metastases in HNSCC patients. There are therapeutic approaches, using antitumoral cytokines or immunotherapies, that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. Finally, modulation by human papilloma virus (HPV) infection in HNSCC phenotypes and the prognostic significance of serum cytokine levels in HNSCC patients are discussed. Abstract HNSCCs are the major progressive malignancy of the upper digestive and respiratory organs. Malignant phenotypes of HNSCCs are regulated by the pro- and anti-tumoral activities of the immune modulatory cytokines associated with TMEs, i.e., a representative pro-inflammatory cytokine, interferon (IFN)-γ, plays a role as an anti-tumor regulator against HNSCCs; however, IFN-γ also drives programmed death-ligand (PD-L) 1 expression to promote cancer stem cells. Interleukin (IL)-2 promotes the cytotoxic activity of T cells and natural killer cells; however, endogenous IL-2 can promote regulatory T cells (Tregs), resulting in the protection of HNSCCs. In this report, we first classified and mentioned the immune modulatory aspects of pro-inflammatory cytokines, pro-/anti-inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. In the TME of HNSCCs, pro-tumoral immune modulation is mediated by stromal cells, including CAFs, MDSCs, pDCs, and TAMs. Therefore, we evaluated the functions of cytokines and chemokines that mediate the crosstalk between tumor cells and stromal cells. In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. We therefore evaluated the possibility of chemokines mediating lymph node metastases in HNSCC patients. We also mention therapeutic approaches using anti-tumoral cytokines or immunotherapies that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. We finally discuss modulation by HPV infection upon HNSCC phenotypes, as well as the prognostic significance of serum cytokine levels in HNSCC patients.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho 501-0296, Gifu, Japan
- Correspondence: ; Tel.: +81-58-329-1416; Fax: +81-58-329-1417
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, Mizuho 501-0296, Gifu, Japan;
| |
Collapse
|
245
|
Seal SV, Henry M, Pajot C, Holuka C, Bailbé D, Movassat J, Darnaudéry M, Turner JD. A Holistic View of the Goto-Kakizaki Rat Immune System: Decreased Circulating Immune Markers in Non- Obese Type 2 Diabetes. Front Immunol 2022; 13:896179. [PMID: 35677049 PMCID: PMC9168276 DOI: 10.3389/fimmu.2022.896179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells, lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is frequently associated with obesity and adipocyte-released inflammatory mediators, the pro-inflammatory milieu seems not due to Type-2 diabetes per se; although this overall reduction of immune markers suggests marked immune dysfunction in Goto-Kakizaki rats.
Collapse
Affiliation(s)
- Snehaa V Seal
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mathilde Henry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Clémentine Pajot
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Danielle Bailbé
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Jamileh Movassat
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Muriel Darnaudéry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
246
|
Cytokines and Venous Leg Ulcer Healing-A Systematic Review. Int J Mol Sci 2022; 23:ijms23126526. [PMID: 35742965 PMCID: PMC9224200 DOI: 10.3390/ijms23126526] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
Venous leg ulcers (VLUs) are the most common type of leg ulcers with a significant socioeconomic burden due to slow healing. Cytokines may be involved in the pathogenesis of VLUs. In this systematic review, our objective was to investigate the association between cytokine levels, including growth factors, with the healing of VLUs. PubMed, Embase, Web of Science and Cochrane Library were searched from their inception to August 2021. We retrieved 28 articles investigating 38 different cytokines in 790 patients. Cytokines were most commonly investigated in wound fluid and less frequently in biopsies and serum. The studies were judged as having a moderate to high risk of bias, and the results were often inconsistent and sometimes conflicting. A meta-analysis was not performed due to clinical and methodological heterogeneities. We found weak evidence for elevated IL-1α, IL-6, IL-8, TNF-α and VEGF levels in non-healing VLUs, an elevation that declined with healing. TGF-β1 levels tended to increase with VLU healing. Other cytokines warranting further investigations include EGF, FGF-2, GM-CSF, IL-1β, IL-1Ra and PDGF-AA/PDGF-BB. We conclude that non-healing VLUs may be associated with an elevation of a palette of pro-inflammatory cytokines, possibly reflecting activated innate immunity in these wounds. There is a paucity of reliable longitudinal studies monitoring the dynamic changes in cytokine levels during wound healing.
Collapse
|
247
|
Wang W, Liu H, Liu T, Yang H, He F. Insights into the Role of Macrophage Polarization in the Pathogenesis of Osteoporosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2485959. [PMID: 35707276 PMCID: PMC9192196 DOI: 10.1155/2022/2485959] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Millions of people worldwide suffer from osteoporosis, which causes bone fragility and increases the risk of fractures. Osteoporosis is closely related to the inhibition of osteogenesis and the enhancement of osteoclastogenesis. In addition, chronic inflammation and macrophage polarization may contribute to osteoporosis as well. Macrophages, crucial to inflammatory responses, display different phenotypes under the control of microenvironment. There are two major phenotypes, classically activated macrophages (M1) and alternatively activated macrophages (M2). Generally, M1 macrophages mainly lead to bone resorption, while M2 macrophages result in osteogenesis. M1/M2 ratio reflects the "fluid" state of macrophage polarization, and the imbalance of M1/M2 ratio may cause disease such as osteoporosis. Additionally, antioxidant drugs, such as melatonin, are applied to change the state of macrophage polarization and to treat osteoporosis. In this review, we introduce the mechanisms of macrophage polarization-mediated bone resorption and bone formation and the contribution to the clinical strategies of osteoporosis treatment.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
248
|
Masood F, Ehrenpreis ED, Rubin G, Russell J, Guru S, Luzzi P. State of the art review: coronary artery disease in patients with inflammatory bowel disease: mechanisms, prevalence, and outcomes. Acta Cardiol 2022; 77:297-306. [PMID: 34254879 DOI: 10.1080/00015385.2021.1940607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Extraintestinal disease manifestations of inflammatory bowel disease (IBD), such as arthritis and uveitis, have been well described in the medical literature. However, there has been growing evidence suggesting an association between IBD and both coronary artery disease (CAD) and acute myocardial infarctions (AMI). In this critical review, the pathogenesis of proatherogenic inflammatory markers (CD40-CD40L, IL-6, and TNF-α) are summarised along with clinical evidence that supports the association of these makers with CAD. Moreover, clinical data are examined that suggest an increased risk of AMI and CAD in IBD patients along with recent analyses of in-hospital and post-MI outcomes of AMI in IBD patients. This comprehensive review summarises and expands upon our understanding of the growing association between both CAD and AMI in IBD patients that potentially identifies IBD as a risk factor for developing CAD.
Collapse
Affiliation(s)
- Faisal Masood
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Eli D. Ehrenpreis
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, USA
- Rosalind Franklin University, North Chicago, IL, USA
| | - Gabrielle Rubin
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - James Russell
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Siddartha Guru
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Peter Luzzi
- Department of Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| |
Collapse
|
249
|
Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, Cohen DE, Horton JD, Pressman GS, Toth PP. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2022; 42:e168-e185. [PMID: 35418240 DOI: 10.1161/atv.0000000000000153] [Citation(s) in RCA: 215] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly common condition that is believed to affect >25% of adults worldwide. Unless specific testing is done to identify NAFLD, the condition is typically silent until advanced and potentially irreversible liver impairment occurs. For this reason, the majority of patients with NAFLD are unaware of having this serious condition. Hepatic complications from NAFLD include nonalcoholic steatohepatitis, hepatic cirrhosis, and hepatocellular carcinoma. In addition to these serious complications, NAFLD is a risk factor for atherosclerotic cardiovascular disease, which is the principal cause of death in patients with NAFLD. Accordingly, the purpose of this scientific statement is to review the underlying risk factors and pathophysiology of NAFLD, the associations with atherosclerotic cardiovascular disease, diagnostic and screening strategies, and potential interventions.
Collapse
|
250
|
White-Dzuro CG, Burns B, Pollins A, Rector JA, Assi PE, Thomas HC, Jackson K, Perdikis G, Al Kassis S, Bellan LM, Thayer WP. Successful prevention of secondary burn progression using infliximab hydrogel: A murine model. Burns 2022; 48:896-901. [PMID: 34952735 DOI: 10.1016/j.burns.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Burn injury remains a serious cause of morbidity and mortality worldwide. Severity of burns is determined by the percentage of burned area compared to the body surface area, age of patient, and by the depth of skin and soft tissue involvement; these factors determine management as well as prospective outcomes. The pathophysiology of partial- to full-thickness burn conversion remains poorly understood and is associated with a worse overall prognosis. Recent studies have demonstrated that an altered inflammatory response may play a significant role in this conversion and therefore a reduction in early inflammation is crucial to ultimately decreasing burn severity and morbidity. We hypothesize that the application of a microcapillary gelatin-alginate hydrogel loaded with anti-TNF-α (infliximab) monoclonal antibodies to a partial-thickness burn will reduce inflammation within partially burned skin and prevent further progression to a full-thickness burn. METHODS Assembly of the microfluidic hydrogels is achieved by embedding microfibers within a hydrogel scaffold composed of a gelatin-alginate blend, which is then soaked in a solution containing anti-TNF-α antibodies for drug loading. 12 young (2-4 months) and 12 old (>16 months) mice were given partial thickness burns. The treatment cohort received the anti-TNF-α infused hydrogel with an occlusive dressing and the control cohort only received an occlusive dressing. Mice were euthanized at post-burn day 3 and skin samples were taken. Burn depth was evaluated using Vimentin immunostaining. RESULTS All mice in the treatment cohort demonstrated decreased conversion of burn from partial to full thickness injury (old = p < 0.01, young = p < 0.001) as compared to the control group. Old mice had greater depth of burn than young mice (p < 0.001). There were greater eosinophils in the treatment cohort for both young and old mice, but it did not reach statistical significance. CONCLUSION The application of a novel microcapillary gelatin-alginate hydrogel infused with anti-TNF-α antibody to partial thickness burns in mice showed reduction in partial to full thickness burn secondary progression as compared to controls using this murine model; this promising finding might help decrease the high morbidity and mortality associated with burn injuries.
Collapse
Affiliation(s)
| | - Brady Burns
- Meharry Medical College, Nashville, TN, USA; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alonda Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John A Rector
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Patrick E Assi
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kianna Jackson
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Galen Perdikis
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Salam Al Kassis
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|