201
|
Mihailidou C, Papavassiliou AG, Kiaris H. A crosstalk between p21 and UPR-induced transcription factor C/EBP homologous protein (CHOP) linked to type 2 diabetes. Biochimie 2014; 99:19-27. [DOI: 10.1016/j.biochi.2013.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/06/2013] [Indexed: 02/04/2023]
|
202
|
Jones HB, Reens J, Brocklehurst SR, Betts CJ, Bickerton S, Bigley AL, Jenkins RP, Whalley NM, Morgan D, Smith DM. Islets of Langerhans from prohormone convertase-2 knockout mice show α-cell hyperplasia and tumorigenesis with elevated α-cell neogenesis. Int J Exp Pathol 2014; 95:29-48. [PMID: 24456331 DOI: 10.1111/iep.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/14/2013] [Indexed: 01/24/2023] Open
Abstract
Antagonism of the effects of glucagon as an adjunct therapy with other glucose-lowering drugs in the chronic treatment of diabetes has been suggested to aggressively control blood glucose levels. Antagonism of glucagon effects, by targeting glucagon secretion or disabling the glucagon receptor, is associated with α-cell hyperplasia. We evaluated the influence of total glucagon withdrawal on islets of Langerhans using prohormone convertase-2 knockout mice (PC2-ko), in which α-cell hyperplasia is present from a young age and persists throughout life, in order to understand whether or not sustained glucagon deficit would lead to islet tumorigenesis. PC2-ko and wild-type (WT) mice were maintained drug-free, and cohorts of these groups sampled at 3, 12 and 18 months for plasma biochemical and morphological (histological, immunohistochemical, electron microscopical and image analytical) assessments. WT mice showed no islet tumours up to termination of the study, but PC2-ko animals displayed marked changes in islet morphology from α-cell hypertrophy/hyperplasia/atypical hyperplasia, to adenomas and carcinomas, these latter being first encountered at 6-8 months. Islet hyperplasias and tumours primarily consisted of α-cells associated to varying degrees with other islet endocrine cell types. In addition to substantial increases in islet neoplasia, increased α-cell neogenesis associated primarily with pancreatic duct(ule)s was present. We conclude that absolute blockade of the glucagon signal results in tumorigenesis and that the PC2-ko mouse represents a valuable model for investigation of islet tumours and pancreatic ductal neogenesis.
Collapse
Affiliation(s)
- Huw B Jones
- Department of Pathological Sciences, AstraZeneca Pharmaceuticals, Macclesfield, Cheshire, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
Metformin has been the mainstay of therapy for diabetes mellitus for many years; however, the mechanistic aspects of metformin action remained ill-defined. Recent advances revealed that this drug, in addition to its glucose-lowering action, might be promising for specifically targeting metabolic differences between normal and abnormal metabolic signalling. The knowledge gained from dissecting the principal mechanisms by which metformin works can help us to develop novel treatments. The centre of metformin's mechanism of action is the alteration of the energy metabolism of the cell. Metformin exerts its prevailing, glucose-lowering effect by inhibiting hepatic gluconeogenesis and opposing the action of glucagon. The inhibition of mitochondrial complex I results in defective cAMP and protein kinase A signalling in response to glucagon. Stimulation of 5'-AMP-activated protein kinase, although dispensable for the glucose-lowering effect of metformin, confers insulin sensitivity, mainly by modulating lipid metabolism. Metformin might influence tumourigenesis, both indirectly, through the systemic reduction of insulin levels, and directly, via the induction of energetic stress; however, these effects require further investigation. Here, we discuss the updated understanding of the antigluconeogenic action of metformin in the liver and the implications of the discoveries of metformin targets for the treatment of diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Ida Pernicova
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| |
Collapse
|
204
|
Bowerman M, Michalski JP, Beauvais A, Murray LM, DeRepentigny Y, Kothary R. Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Hum Mol Genet 2014; 23:3432-44. [PMID: 24497575 PMCID: PMC4049303 DOI: 10.1093/hmg/ddu052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn(2B/-)) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn(+/-)) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn(+/-)mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn(+/-)mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing β cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn(+/-)mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders.
Collapse
Affiliation(s)
- Melissa Bowerman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada The Neuroscience Institute of Montpellier (INM), Inserm UMR1051, Saint Eloi Hospital, Montpellier, France
| | - John-Paul Michalski
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and
| | | | | | | | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
205
|
Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine (Lond) 2014; 9:89-104. [DOI: 10.2217/nnm.12.205] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: The correlation of diabetes and an imbalance in zinc homeostasis makes zinc-based therapy an attractive proposition. In this study, zinc oxide nanoparticles were evaluated for antidiabetic effects and safety. Materials & methods: Zinc oxide nanoparticles (1, 3 and 10 mg/kg) were tested for antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. A single-dose pharmacokinetic study, cytotoxicity, hemolysis, acute and subacute toxicity tests, and mechanism-of-action studies were performed. Results: Oral administration of zinc oxide nanoparticles resulted in significant antidiabetic effects – that is, improved glucose tolerance, higher serum insulin (70%), reduced blood glucose (29%), reduced nonesterified fatty acids (40%) and reduced triglycerides (48%). Nanoparticles were systemically absorbed resulting in elevated zinc levels in the liver, adipose tissue and pancreas. Increased insulin secretion and superoxide dismutase activity were also seen in rat insulinoma (RIN-5F) cells. Nanoparticles were safe up to a 300 mg/kg dose in rats. Conclusion: Zinc oxide nanoparticles are a promising antidiabetic agent warranting further studies. Original submitted 9 July 2012; Revised submitted 27 November 2012; Published online 21 February 2013
Collapse
Affiliation(s)
- Rinku D Umrani
- Centre for Nanobioscience, Agharkar Research Institute, G G Agarkar Road, Pune 411004, Maharashtra, India
| | - Kishore M Paknikar
- Centre for Nanobioscience, Agharkar Research Institute, G G Agarkar Road, Pune 411004, Maharashtra, India
| |
Collapse
|
206
|
Crocker DE, Fowler MA, Champagne CD, Vanderlugt AL, Houser DS. Metabolic response to a glucagon challenge varies with adiposity and life-history stage in fasting northern elephant seals. Gen Comp Endocrinol 2014; 195:99-106. [PMID: 24239794 DOI: 10.1016/j.ygcen.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/06/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Metabolic adaptations for extended fasting in wildlife prioritize beta-oxidation of lipids and reduced glucose utilization to support energy metabolism. The pancreatic hormone glucagon plays key roles in regulating glycemia and lipid metabolism during fasting in model species but its function in wildlife species adapted for extended fasting is not well understood. Northern elephant seals (NES) undergo natural fasts of 1-3months while under constraints of high nutrient demands including lactation and development. We performed a glucagon challenge on lactating, molting and developing NES, early and late in their natural fasts, to examine the impact of this important regulatory hormone on metabolism. Glucagon caused increases in plasma glucose, insulin, fatty acids, ketones and urea, but the magnitude of these effects varied widely with adiposity and life-history stage. The strong impact of adiposity on glucose and insulin responses suggest a potential role for adipose derived factors in regulating hepatic metabolism and pancreatic sensitivity. Elevations in plasma glucose in response to glucagon were strongly associated with increases in protein catabolism, suggesting negative impacts of elevated glucagon on protein sparing. Glucagon promoted rapid ketone accumulation suggesting that low ketoacid levels in NES reflect low rates of production. These results demonstrate strong metabolic impacts of glucagon and support the idea that glucagon levels are downregulated in the context of metabolic adaptation to extended fasting. These results suggest that the regulation of carbohydrate and lipid metabolism in NES changes with adiposity, fasting duration and under various constraints of nutrient demands.
Collapse
Affiliation(s)
| | - Melinda A Fowler
- Sonoma State University, Rohnert Park, CA 94928, USA; Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Cory D Champagne
- Sonoma State University, Rohnert Park, CA 94928, USA; National Marine Mammal Foundation, San Diego, CA 92106, USA
| | | | - Dorian S Houser
- Sonoma State University, Rohnert Park, CA 94928, USA; National Marine Mammal Foundation, San Diego, CA 92106, USA
| |
Collapse
|
207
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
208
|
Wang R, McGrath BC, Kopp RF, Roe MW, Tang X, Chen G, Cavener DR. Insulin secretion and Ca2+ dynamics in β-cells are regulated by PERK (EIF2AK3) in concert with calcineurin. J Biol Chem 2013; 288:33824-33836. [PMID: 24114838 DOI: 10.1074/jbc.m113.503664] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) (EIF2AK3) is essential for normal development and function of the insulin-secreting β-cell. Although genetic ablation of PERK in β-cells results in permanent neonatal diabetes in humans and mice, the underlying mechanisms remain unclear. Here, we used a newly developed and highly specific inhibitor of PERK to determine the immediate effects of acute ablation of PERK activity. We found that inhibition of PERK in human and rodent β-cells causes a rapid inhibition of secretagogue-stimulated subcellular Ca(2+) signaling and insulin secretion. These dysfunctions stem from alterations in store-operated Ca(2+) entry and sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase activity. We also found that PERK regulates calcineurin, and pharmacological inhibition of calcineurin results in similar defects on stimulus-secretion coupling. Our findings suggest that interplay between calcineurin and PERK regulates β-cell Ca(2+) signaling and insulin secretion, and that loss of this interaction may have profound implications in insulin secretion defects associated with diabetes.
Collapse
Affiliation(s)
- Rong Wang
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Barbara C McGrath
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Richard F Kopp
- Department of Medicine, Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Michael W Roe
- Department of Medicine, Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Xin Tang
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Gong Chen
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Douglas R Cavener
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802.
| |
Collapse
|
209
|
Vieira E, Marroquí L, Figueroa ALC, Merino B, Fernandez-Ruiz R, Nadal A, Burris TP, Gomis R, Quesada I. Involvement of the clock gene Rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells. PLoS One 2013; 8:e69939. [PMID: 23936124 PMCID: PMC3723646 DOI: 10.1371/journal.pone.0069939] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022] Open
Abstract
Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion. Rev-erb alpha down-regulation by siRNA (60–70% inhibition) in alphaTC1-9 cells inhibited low-glucose induced glucagon secretion (p<0.05) and led to a decrease in key genes of the exocytotic machinery. The Rev-erb alpha agonist GSK4112 increased glucagon secretion (1.6 fold) and intracellular calcium signals in alphaTC1-9 cells and mouse primary alpha-cells, whereas the Rev-erb alpha antagonist SR8278 produced the opposite effect. At 0.5 mM glucose, alphaTC1-9 cells exhibited intrinsic circadian Rev-erb alpha expression oscillations that were inhibited by 11 mM glucose. In mouse primary alpha-cells, glucose induced similar effects (p<0.001). High glucose inhibited key genes controlled by AMPK such as Nampt, Sirt1 and PGC-1 alpha in alphaTC1-9 cells (p<0.05). AMPK activation by metformin completely reversed the inhibitory effect of glucose on Nampt-Sirt1-PGC-1 alpha and Rev-erb alpha. Nampt inhibition decreased Sirt1, PGC-1 alpha and Rev-erb alpha mRNA expression (p<0.01) and glucagon release (p<0.05). These findings identify Rev-erb alpha as a new intracellular regulator of glucagon secretion via AMPK/Nampt/Sirt1 pathway.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Animals
- Cell Line
- Circadian Rhythm/genetics
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation
- Glucagon/genetics
- Glucagon/metabolism
- Glucagon-Secreting Cells/cytology
- Glucagon-Secreting Cells/drug effects
- Glucagon-Secreting Cells/metabolism
- Glucose/metabolism
- Glucose/pharmacology
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Isoquinolines/pharmacology
- Metformin/pharmacology
- Mice
- Nicotinamide Phosphoribosyltransferase/genetics
- Nicotinamide Phosphoribosyltransferase/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Elaine Vieira
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- * E-mail: (EV); (IQ)
| | - Laura Marroquí
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Ana Lucia C. Figueroa
- Diabetes and Obesity Laboratory, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Beatriz Merino
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Rebeca Fernandez-Ruiz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Diabetes and Obesity Laboratory, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Angel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Thomas P. Burris
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ramon Gomis
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Diabetes and Obesity Laboratory, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Endocrinology and Diabetes Unit, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- * E-mail: (EV); (IQ)
| |
Collapse
|
210
|
Díaz-Villaseñor A, Granados O, González-Palacios B, Tovar-Palacio C, Torre-Villalvazo I, Olivares-García V, Torres N, Tovar AR. Differential modulation of the functionality of white adipose tissue of obese Zucker (fa/fa) rats by the type of protein and the amount and type of fat. J Nutr Biochem 2013; 24:1798-809. [PMID: 23773624 DOI: 10.1016/j.jnutbio.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/12/2013] [Accepted: 03/26/2013] [Indexed: 01/14/2023]
Abstract
Recent evidence indicates that several metabolic abnormalities developed during obesity are associated with the presence of dysfunctional adipose tissue. Diet is a key factor that modulates several functions of adipose tissue; however, each nutrient in the diet produces specific changes. Thus, the aim of this work was to study the effect of the interaction of the type (coconut or soybean oil) and amount (5% or 10%) of fat with the type of dietary protein (casein or soy protein) on the functionality of white adipose tissue of Zucker (fa/fa) rats. The results showed that soybean oil reduced adipocyte size and decreased esterified saturated fatty acids in white adipose tissue. Excess dietary fat also modified the composition of esterified fatty acids in white adipose tissue, increased the secretion of saturated fatty acids to serum from white adipose tissue and reduced the process of fatty acids re-esterification. On the other hand, soy protein sensitized the activation of the hormone-sensitive lipase by increasing the phosphorylation of this enzyme (Ser 563) despite rats fed soy protein were normoglucagonemic, in contrast with rats fed casein that showed hyperglucagonemia but reduced hormone-sensitive lipase phosphorylation. Finally, in white adipose tissue, the interaction between the tested dietary components modulated the transcription/translation process of lipid and carbohydrate metabolism genes via the activity of the PERK-endoplasmic reticulum stress response. Therefore, our results showed that the type of protein and the type and amount of dietary fat selectively modify the activity of white adipose tissue, even in a genetic model of obesity.
Collapse
|
211
|
Fernández-Millán E, de Toro-Martín J, Lizárraga-Mollinedo E, Escrivá F, Álvarez C. Role of endogenous IL-6 in the neonatal expansion and functionality of Wistar rat pancreatic alpha cells. Diabetologia 2013; 56:1098-107. [PMID: 23435784 DOI: 10.1007/s00125-013-2862-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Plasma glucagon concentrations rise sharply during the early postnatal period. This condition is associated with increased alpha cell mass. However, the trophic factors that regulate alpha cell turnover during the perinatal period have not been studied. Macrophage infiltrations are present in the neonatal pancreas, and this cell type releases cytokines such as IL-6. Alpha cells have been identified as a primary target of IL-6 actions. We therefore investigated the physiological relevance of IL-6 to neonatal pancreatic alpha cell maturation. METHODS Histochemical analyses were performed to quantify alpha cell mass, replication and apoptosis. Pancreatic Il6 expression was determined by quantitative RT-PCR. The biological effect of IL-6 was tested in two in vivo rat models of IL-6 blockade and chronic undernutrition. RESULTS Alpha cell mass increased sharply shortly after birth but decreased significantly after weaning. Pancreatic alpha cell proliferation was as high as 2.5% at the beginning of suckling but diminished with time to 1.2% in adulthood. Similarly, alpha cell neoformation was remarkably high on postnatal day (PN) 4, whereas alpha cell apoptosis was low throughout the neonatal period. Moreover, Il6 mRNA exhibited developmental upregulation in the pancreas of suckling rats, with the highest expression on PN2. Neutralisation of IL-6 reduced alpha cell mass expansion and glucagon production. IL-6 staining was detected within the islets, mainly in the alpha cells. Finally, undernourished neonates showed altered alpha cell number and function and delayed appearance of IL-6 in the pancreas. CONCLUSIONS/INTERPRETATION These data point to a potential role for local IL-6 in the regulation of alpha cell growth and function during suckling.
Collapse
Affiliation(s)
- E Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Madrid, Spain.
| | | | | | | | | |
Collapse
|
212
|
Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci 2013; 14:6981-7015. [PMID: 23535335 PMCID: PMC3645673 DOI: 10.3390/ijms14046981] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/15/2022] Open
Abstract
The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes.
Collapse
|
213
|
Gadhia MM, Maliszewski AM, O'Meara MC, Thorn SR, Lavezzi JR, Limesand SW, Hay WW, Brown LD, Rozance PJ. Increased amino acid supply potentiates glucose-stimulated insulin secretion but does not increase β-cell mass in fetal sheep. Am J Physiol Endocrinol Metab 2013; 304:E352-62. [PMID: 23211516 PMCID: PMC3566506 DOI: 10.1152/ajpendo.00377.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amino acids and glucose acutely stimulate fetal insulin secretion. In isolated adult pancreatic islets, amino acids potentiate glucose-stimulated insulin secretion (GSIS), but whether amino acids have this same effect in the fetus is unknown. Therefore, we tested the effects of increased fetal amino acid supply on GSIS and morphology of the pancreas. We hypothesized that increasing fetal amino acid supply would potentiate GSIS. Singleton fetal sheep received a direct intravenous infusion of an amino acid mixture (AA) or saline (CON) for 10-14 days during late gestation to target a 25-50% increase in fetal branched-chain amino acids (BCAA). Early-phase GSIS increased 150% in the AA group (P < 0.01), and this difference was sustained for the duration of the hyperglycemic clamp (105 min) (P < 0.05). Glucose-potentiated arginine-stimulated insulin secretion (ASIS), pancreatic insulin content, and pancreatic glucagon content were similar between groups. β-Cell mass and area were unchanged between groups. Baseline and arginine-stimulated glucagon concentrations were increased in the AA group (P < 0.05). Pancreatic α-cell mass and area were unchanged. Fetal and pancreatic weights were similar. We conclude that a sustained increase of amino acid supply to the normally growing late-gestation fetus potentiated fetal GSIS but did not affect the morphology or insulin content of the pancreas. We speculate that increased β-cell responsiveness (insulin secretion) following increased amino acid supply may be due to increased generation of secondary messengers in the β-cell. This may be enhanced by the paracrine action of glucagon on the β-cell.
Collapse
Affiliation(s)
- Monika M Gadhia
- Perinatal Research Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Huang YC, Rupnik MS, Karimian N, Herrera PL, Gilon P, Feng ZP, Gaisano HY. In situ electrophysiological examination of pancreatic α cells in the streptozotocin-induced diabetes model, revealing the cellular basis of glucagon hypersecretion. Diabetes 2013; 62:519-30. [PMID: 23043159 PMCID: PMC3554363 DOI: 10.2337/db11-0786] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early-stage type 1 diabetes (T1D) exhibits hyperglucagonemia by undefined cellular mechanisms. Here we characterized α-cell voltage-gated ion channels in a streptozotocin (STZ)-induced diabetes model that lead to increased glucagon secretion mimicking T1D. GYY mice expressing enhanced yellow fluorescence protein in α cells were used to identify α cells within pancreas slices. Mice treated with low-dose STZ exhibited hyperglucagonemia, hyperglycemia, and glucose intolerance, with 71% reduction of β-cell mass. Although α-cell mass of STZ-treated mice remained unchanged, total pancreatic glucagon content was elevated, coinciding with increase in size of glucagon granules. Pancreas tissue slices enabled in situ examination of α-cell electrophysiology. α cells of STZ-treated mice exhibited the following: 1) increased exocytosis (serial depolarization-induced capacitance), 2) enhanced voltage-gated Na(+) current density, 3) reduced voltage-gated K(+) current density, and 4) increased action potential (AP) amplitude and firing frequency. Hyperglucagonemia in STZ-induced diabetes is thus likely due to increased glucagon content arising from enlarged glucagon granules and increased AP firing frequency and amplitude coinciding with enhanced Na(+) and reduced K(+) currents. These alterations may prime α cells in STZ-treated mice for more glucagon release per cell in response to low glucose stimulation. Thus, our study provides the first insight that STZ treatment sensitizes release mechanisms of α cells.
Collapse
Affiliation(s)
- Ya-Chi Huang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marjan S. Rupnik
- Faculty of Medicine, Institute of Physiology/CIPKEBIP, University of Maribor, Maribor, Slovenia
| | - Negar Karimian
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Pedro L. Herrera
- Cell Physiology & Metabolism, University of Geneva, Geneva, Switzerland
| | - Patrick Gilon
- Pole d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Zhong-Ping Feng
- Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Y. Gaisano
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Herbert Y. Gaisano,
| |
Collapse
|
215
|
Bähr I, Mühlbauer E, Albrecht E, Peschke E. Evidence of the receptor-mediated influence of melatonin on pancreatic glucagon secretion via the Gαq protein-coupled and PI3K signaling pathways. J Pineal Res 2012; 53:390-8. [PMID: 22672634 DOI: 10.1111/j.1600-079x.2012.01009.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Melatonin has been shown to modulate glucose metabolism by influencing insulin secretion. Recent investigations have also indicated a regulatory function of melatonin on the pancreatic α-cells. The present in vitro and in vivo studies evaluated whether melatonin mediates its effects via melatonin receptors and which signaling cascade is involved. Incubation experiments using the glucagon-producing mouse pancreatic α-cell line αTC1 clone 9 (αTC1.9) as well as isolated pancreatic islets of rats and mice revealed that melatonin increases glucagon secretion. Preincubation of αTC1.9 cells with the melatonin receptor antagonists luzindole and 4P-PDOT abolished the glucagon-stimulatory effect of melatonin. In addition, glucagon secretion was lower in the pancreatic islets of melatonin receptor knockout mice than in the islets of the wild-type (WT) control animals. Investigations of melatonin receptor knockout mice revealed decreased plasma glucagon concentrations and elevated mRNA expression levels of the hepatic glucagon receptor when compared to WT mice. Furthermore, studies using pertussis toxin, as well as measurements of cAMP concentrations, ruled out the involvement of Gαi- and Gαs-coupled signaling cascades in mediating the glucagon increase induced by melatonin. In contrast, inhibition of phospholipase C in αTC1.9 cells prevented the melatonin-induced effect, indicating the physiological relevance of the Gαq-coupled pathway. Our data point to the involvement of the phosphatidylinositol 3-kinase signaling cascade in mediating melatonin effects in pancreatic α-cells. In conclusion, these findings provide evidence that the glucagon-stimulatory effect of melatonin in pancreatic α-cells is melatonin receptor mediated, thus supporting the concept of melatonin-modulated and diurnal glucagon release.
Collapse
MESH Headings
- Animals
- Cell Line
- Cyclic AMP/metabolism
- Diabetes Mellitus, Type 2/enzymology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Regulation
- Glucagon/blood
- Glucagon/metabolism
- Glucagon-Secreting Cells/drug effects
- Glucagon-Secreting Cells/enzymology
- Glucagon-Secreting Cells/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Melanins/pharmacology
- Mice
- Mice, Knockout
- Pertussis Toxin/pharmacology
- Phosphatidylinositol 3-Kinase/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/drug effects
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/drug effects
- Receptor, Melatonin, MT2/genetics
- Receptors, Glucagon/drug effects
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
- Tetrahydronaphthalenes/pharmacology
- Tissue Culture Techniques
- Tryptamines/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | | | | | |
Collapse
|
216
|
Yu R, Chen CR, Liu X, Kodra JT. Rescue of a pathogenic mutant human glucagon receptor by pharmacological chaperones. J Mol Endocrinol 2012; 49:69-78. [PMID: 22693263 DOI: 10.1530/jme-12-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously demonstrated that a homozygous inactivating P86S mutation of the glucagon receptor (GCGR) causes a novel human disease of hyperglucagonemia, pancreatic α-cell hyperplasia, and pancreatic neuroendocrine tumors (Mahvash disease). The mechanisms for the decreased activity of the P86S mutant (P86S) are abnormal receptor localization to the endoplasmic reticulum (ER) and defective interaction with glucagon. To search for targeted therapies for Mahvash disease, we examined whether P86S can be trafficked to the plasma membrane by pharmacological chaperones and whether novel glucagon analogs restore effective receptor interaction. We used enhanced green fluorescent protein-tagged P86S stably expressed in HEK 293 cells to allow fluorescence imaging and western blotting and molecular modeling to design novel glucagon analogs in which alanine 19 was replaced with serine or asparagine. Incubation at 27 °C largely restored normal plasma membrane localization and normal processing of P86S but osmotic chaperones had no effects. The ER stressors thapsigargin and curcumin partially rescued P86S. The lipophilic GCGR antagonist L-168,049 also partially rescued P86S, so did Cpd 13 and 15 to a smaller degree. The rescued P86S led to more glucagon-stimulated cAMP production and was internalized by glucagon. Compared with the native glucagon, the novel glucagon analogs failed to stimulate more cAMP production by P86S. We conclude that the mutant GCGR is partially rescued by several pharmacological chaperones and our data provide proof-of-principle evidence that Mahvash disease can be potentially treated with pharmacological chaperones. The novel glucagon analogs, however, failed to interact with P86S more effectively.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology and Carcinoid and Neuroendocrine Tumor Center, Cedars-Sinai Medical Center, B-131, 8700 Beverly Boulevard, Los Angeles, California 90048, USA.
| | | | | | | |
Collapse
|
217
|
Gaisano HY, Macdonald PE, Vranic M. Glucagon secretion and signaling in the development of diabetes. Front Physiol 2012; 3:349. [PMID: 22969729 PMCID: PMC3432929 DOI: 10.3389/fphys.2012.00349] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 12/19/2022] Open
Abstract
Normal release of glucagon from pancreatic islet α-cells promotes glucose mobilization, which counteracts the hypoglycemic actions of insulin, thereby ensuring glucose homeostasis. In treatment of diabetes aimed at rigorously reducing hyperglycemia to avoid chronic complications, the resulting hypoglycemia triggering glucagon release from α-cells is frequently impaired, with ensuing hypoglycemic complications. This review integrates the physiology of glucagon secretion regulating glucose homeostasis in vivo to single α-cell signaling, and how both become perturbed in diabetes. α-cells within the social milieu of the islet micro-organ are regulated not only by intrinsic signaling events but also by paracrine regulation, particularly by adjacent insulin-secreting β-cells and somatostatin-secreting δ-cells. We discuss the intrinsic α-cell signaling events, including glucose sensing and ion channel regulation leading to glucagon secretion. We then discuss the complex crosstalk between the islet cells and the breakdown of this crosstalk in diabetes contributing to the dysregulated glucagon secretion. Whereas, there are many secretory products released by β- and δ-cells that become deficient or excess in diabetes, we discuss the major ones, including the better known insulin and lesser known somatostatin, which act as putative paracrine on/off switches that very finely regulate α-cell secretory responses in health and diabetes. Of note in several type 1 diabetes (T1D) rodent models, blockade of excess somatostatin actions on α-cell could normalize glucagon secretion sufficient to attain normoglycemia in response to hypoglycemic assaults. There has been slow progress in fully elucidating the pathophysiology of the α-cell in diabetes because of the small number of α-cells within an islet and the islet mass becomes severely reduced and inflamed in diabetes. These limitations are just now being surmounted by new approaches.
Collapse
Affiliation(s)
- Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto Toronto, ON, Canada
| | | | | |
Collapse
|
218
|
Cho YM, Merchant CE, Kieffer TJ. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 2012; 135:247-78. [DOI: 10.1016/j.pharmthera.2012.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
|
219
|
Gosmain Y, Cheyssac C, Masson MH, Guérardel A, Poisson C, Philippe J. Pax6 is a key component of regulated glucagon secretion. Endocrinology 2012; 153:4204-15. [PMID: 22778220 DOI: 10.1210/en.2012-1425] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Pax6 transcription factor is crucial for pancreatic α-cells. Indeed, Pax6-deficient mouse models are characterized by markedly altered α-cell differentiation. Our objective was to investigate the role of Pax6 in glucagon secretion process. We used a Pax6-deficient model in rat primary enriched-α cells with specific small interfering RNA leading to a 70% knockdown of Pax6 expression. We first showed that Pax6 knockdown decreases glucagon biosynthesis as well as glucagon release. Through physiological assays, we demonstrated that the decrease of Pax6 affects specifically acute glucagon secretion in primary α-cell in response to glucose, palmitate, and glucose-dependent insulinotropic peptide (GIP) but not the response to arginine and epinephrine. We identified in Pax6 knockdown model that genes involved in glucagon secretion such as the glucokinase (GCK), G protein-coupled receptor (GPR40), and GIP receptor (GIPR) as well as the corresponding proteins were significantly decreased whereas the insulin receptor (IR) Kir6.2/Sur1, and glucose transporter 1 genes were not affected. We demonstrated that Pax6 directly binds and activates specific elements on the promoter region of the GPR40, GCK, and GIPR genes. Finally, through site-directed mutagenesis experiments, we showed that disruption of Pax6 binding on the GCK, GPR40, and GIPR gene promoters led to specific decreases of their activities in the αTC1.9 glucagon-producing cell line. Hence our results indicate that Pax6 acts on the regulation of glucagon secretion at least through the transcriptional control of GCK, GPR40, and GIPR. We propose that Pax6 is not only critical for glucagon biosynthesis but also for glucagon secretion particularly in response to nutrients.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Cells, Cultured
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Glucagon/metabolism
- Glucokinase/genetics
- Glucokinase/metabolism
- Glucose Transporter Type 1/genetics
- Glucose Transporter Type 1/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Immunoprecipitation
- Mutagenesis, Site-Directed
- PAX6 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Rats
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Yvan Gosmain
- Diabetes Unit, University Hospital, University of Geneva Medical School, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | |
Collapse
|
220
|
Ropero AB, Pang Y, Alonso-Magdalena P, Thomas P, Nadal A. Role of ERβ and GPR30 in the endocrine pancreas: A matter of estrogen dose. Steroids 2012; 77:951-8. [PMID: 22306576 DOI: 10.1016/j.steroids.2012.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 12/17/2022]
Abstract
The endocrine pancreas has emerged as a target for estrogens. The functions of pancreatic α-, β- and δ-cells are modulated by the endogenous hormone, 17β-estradiol (E2). Low physiological concentrations (100pM-1nM) of E2 rapidly decrease the activity of the ATP-sensitive potassium channel (K(ATP)) and enhance glucose-induced insulin release in β-cells in an estrogen receptor β (ERβ)-dependent manner. In addition to the insulinotropic action of ERβ, the newly described estrogen receptor, GPR30, is involved in the insulinotropic effects of high doses of E2 (100nM-5μM). The specific GPR30 agonist G1 also increases insulin secretion in β-cells. Low glucose-induced calcium oscillations and glucagon secretion are suppressed by E2. The effects on glucagon secretion may be mediated by GPR30. Somatostatin release is also decreased by E2 and G1. In this review we summarize all the data published up to date on the rapid insulinotropic effects of estrogens in the endocrine pancreas and propose a model to integrate the estrogen actions mediated through both receptors.
Collapse
Affiliation(s)
- Ana B Ropero
- Instituto de Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain.
| | | | | | | | | |
Collapse
|
221
|
Abstract
Glucagon, a peptide hormone secreted from the α-cells of the pancreatic islets, is critical for blood glucose homeostasis. We reviewed the literature and employed a computational systems analysis of intracellular metabolic and electrical regulation of glucagon secretion to better understand these processes. The mathematical model of α-cell metabolic parameters is based on our previous model for pancreatic β-cells. We also formulated an ionic model for action potentials that incorporates Ca ( 2+) , K (+) , Na (+) and Cl (-) currents. Metabolic and ionic models are coupled to the equations describing Ca ( 2+) homeostasis and glucagon secretion that depends on activation of specific voltage-gated Ca ( 2+) channels. Paracrine and endocrine regulations were analyzed with an emphasis on their effects on a hyperpolarization of membrane potential. This general model simulates and gives insight into the mechanisms of regulation of glucagon secretion under a wide range of experimental conditions. We also reviewed and analyzed dysfunctional mechanisms in α-cells to determine key pharmacological targets for modulating glucagon secretion in type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Leonid E Fridlyand
- The Kovler Diabetes Center, Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
222
|
Masked function of amino acid sensors on pancreatic hormone secretion in ventromedial hypothalamic (VMH) lesioned rats with marked hyperinsulinemia. Obes Res Clin Pract 2012; 6:e175-262. [DOI: 10.1016/j.orcp.2011.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 11/18/2022]
|
223
|
Shafik AN. Effects of topiramate on diabetes mellitus induced by streptozotocin in rats. Eur J Pharmacol 2012; 684:161-7. [PMID: 22498001 DOI: 10.1016/j.ejphar.2012.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 03/14/2012] [Accepted: 03/23/2012] [Indexed: 12/18/2022]
|
224
|
Koh DS, Cho JH, Chen L. Paracrine interactions within islets of Langerhans. J Mol Neurosci 2012; 48:429-40. [PMID: 22528452 DOI: 10.1007/s12031-012-9752-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/12/2012] [Indexed: 01/05/2023]
Abstract
Glucose supply fluctuates between meal and fasting periods and its consumption by the body varies greatly depending on bodily metabolism. Pancreatic islets of Langerhans secrete various endocrine hormones including insulin and glucagon to keep blood glucose level relatively constant. Additionally, islet hormones regulate activity of neighboring cells as local autocrine or paracrine modulators. Moreover, islet cells release neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) to gain more precise regulation of hormones release kinetics. Excitatory glutamate is co-released with glucagon from α-cells and activates glutamate receptors in the neighboring cells. GABA released from β-cells was shown to inhibit α-cells but to activate β-cells by acting GABA(A) receptors. This review summarizes the recent progress in understanding the paracrine/autocrine interactions in islets.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
225
|
Marroquí L, Batista TM, Gonzalez A, Vieira E, Rafacho A, Colleta SJ, Taboga SR, Boschero AC, Nadal A, Carneiro EM, Quesada I. Functional and structural adaptations in the pancreatic α-cell and changes in glucagon signaling during protein malnutrition. Endocrinology 2012; 153:1663-72. [PMID: 22334714 DOI: 10.1210/en.2011-1623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic malnutrition leads to multiple changes in β-cell function and peripheral insulin actions to adapt glucose homeostasis to these restricted conditions. However, despite glucose homeostasis also depends on glucagon effects, the role of α-cells in malnutrition is largely unknown. Here, we studied α-cell function and hepatic glucagon signaling in mice fed with low-protein (LP) or normal-protein diet for 8 wk after weaning. Using confocal microscopy, we found that inhibition of Ca²⁺ signaling by glucose was impaired in α-cells of LP mice. Consistent with these findings, the ability of glucose to inhibit glucagon release in isolated islets was also diminished in LP mice. This altered secretion was not related with changes in either glucagon gene expression or glucagon content. A morphometric analysis showed that α-cell mass was significantly increased in malnourished animals, aspect that was probably related with their enhanced plasma glucagon levels. When we analyzed the hepatic function, we observed that the phosphorylation of protein kinase A and cAMP response-binding element protein in response to fasting or exogenous glucagon was impaired in LP mice. Additionally, the up-regulated gene expression in response to fasting observed in the hepatic glucagon receptor as well as several key hepatic enzymes, such as peroxisome proliferator-activated receptor γ, glucose-6-phosphatase, and phosphoenolpyruvate carboxykinase, was altered in malnourished animals. Finally, liver glycogen mobilization in response to fasting and the ability of exogenous glucagon to raise plasma glucose levels were lower in LP mice. Therefore, chronic protein malnutrition leads to several alterations in both the α-cell function and hepatic glucagon signaling.
Collapse
Affiliation(s)
- Laura Marroquí
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Peery HE, Day GS, Dunn S, Fritzler MJ, Prüss H, De Souza C, Doja A, Mossman K, Resch L, Xia C, Sakic B, Belbeck L, Foster WG. Anti-NMDA receptor encephalitis. The disorder, the diagnosis and the immunobiology. Autoimmun Rev 2012; 11:863-72. [PMID: 22440397 DOI: 10.1016/j.autrev.2012.03.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 12/21/2022]
Abstract
Anti-NMDAR encephalitis is a newly characterized syndrome with a progressive, predictable clinical course and the possibility of effective treatment. Accurate and timely diagnosis is critical to selection and implementation of treatments, and optimal patient outcomes. Outcomes are improved with early diagnosis via indirect immunofluorescence or cell-based assays, and the rapid and appropriate administration of immunosuppressant and anti-psychotic therapies. Three possible scenarios accounting for the immunopathogenesis of anti-NMDAR encephalitis are presented, with the most probable one being that of paraneoplastic autoimmunity. Future efforts in this disorder should focus on elucidating the mechanisms that contribute to initiation of this antibody response, as well as exploring the role of tumors, infectious triggers and immune-reactivation. Finally, accessible tools need to be developed that allow for reliable identification of specific antibody markers against synaptic proteins.
Collapse
Affiliation(s)
- Harry E Peery
- Department of Obstetrics and Gynecology, Division of Reproductive Biology, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
González-Vélez V, Dupont G, Gil A, González A, Quesada I. Model for glucagon secretion by pancreatic α-cells. PLoS One 2012; 7:e32282. [PMID: 22412861 PMCID: PMC3296707 DOI: 10.1371/journal.pone.0032282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022] Open
Abstract
Glucagon hormone is synthesized and released by pancreatic α-cells, one of the islet-cell types. This hormone, along with insulin, maintains blood glucose levels within the physiological range. Glucose stimulates glucagon release at low concentrations (hypoglycemia). However, the mechanisms involved in this secretion are still not completely clear. Here, using experimental calcium time series obtained in mouse pancreatic islets at low and high glucose conditions, we propose a glucagon secretion model for α-cells. Our model takes into account that the resupply of releasable granules is not only controlled by cytoplasmic , as in other neuroendocrine and endocrine cells, but also by the level of extracellular glucose. We found that, although calcium oscillations are highly variable, the average secretion rates predicted by the model fall into the range of values reported in the literature, for both stimulated and non-stimulated conditions. For low glucose levels, the model predicts that there would be a well-controlled number of releasable granules refilled slowly from a large reserve pool, probably to ensure a secretion rate that could last for several minutes. Studying the α-cell response to the addition of insulin at low glucose, we observe that the presence of insulin reduces glucagon release by decreasing the islet level. This observation is in line with previous work reporting that dynamics, mainly frequency, is altered by insulin [1]. Thus, the present results emphasize the main role played by and glucose in the control of glucagon secretion by α-cells. Our modeling approach also shows that calcium oscillations potentiate glucagon secretion as compared to constant levels of this cellular messenger. Altogether, the model sheds new light on the subcellular mechanisms involved in α-cell exocytosis, and provides a quantitative predictive tool for studying glucagon secretion modulators in physiological and pathological conditions.
Collapse
Affiliation(s)
- Virginia González-Vélez
- Departmento Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, México City, México
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, Brussels, Belgium
| | - Amparo Gil
- Departamento Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, Cantabria, Spain
- * E-mail:
| | - Alejandro González
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Iván Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
228
|
Plentz RR, Palagani V, Wiedemann A, Diekmann U, Glage S, Naujok O, Jörns A, Müller T. Islet microarchitecture and glucose transporter expression of the pancreas of the marmoset monkey display similarities to the human. Islets 2012; 4:123-9. [PMID: 22627676 DOI: 10.4161/isl.19254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The common marmoset New World monkey (Callithrix jacchus), is a primate model with great potential for scientific research, including research on diabetes. However, in opposite to Rhesus and Java monkeys (Macaca mulatta and Macaca fascicularis) little is known about the marmosets islet microarchitecture, glucose transporter and pancreatic marker gene expression. In this work we analyze differences and similarities in size, shape, cellular composition and intra-islet topography between the common marmoset and the human endocrine pancreas. Different sized, circular and a-circular shaped islets of the common marmoset and human display α-cells in the whole islet organ leading to a ribbon-like islet type. The number of islets was significantly higher in the common marmoset compared with humans. However, the area of insulin-producing cells was significantly higher in the human pancreas. Intra-islet distribution pattern of δ- and β-cells was similar in both species. The morphology of the exocrine pancreas regarding acinar and ductal cells was quite similar as confirmed by ultrastructural analysis. Additionally the ultrastructure of secretory granules from α-, δ- and β-cells of human and non-human primate pancreas showed the same characteristics. Molecular analysis showed the presence of endocrine pancreatic marker genes like PMCA2, NCX1, SUR1, KIR6.2, MAFA, NGN3 and PDX1 also expressed in the human. For the first time we could show presence of Glut 5 and 9 transporters in addition to the low abundance transporter Glut2 and the highly expressed Glut1 glucose transporter. We propose that Callithrix jacchus displays a new animal model for diabetes research and regenerative medicine.
Collapse
Affiliation(s)
- Ruben R Plentz
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Köhler M, Daré E, Ali MY, Rajasekaran SS, Moede T, Leibiger B, Leibiger IB, Tibell A, Juntti-Berggren L, Berggren PO. One-step purification of functional human and rat pancreatic alpha cells. Integr Biol (Camb) 2012; 4:209-19. [PMID: 22267247 DOI: 10.1039/c2ib00125j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic alpha cells contribute to glucose homeostasis by the regulated secretion of glucagon, which increases glycogenolysis and hepatic gluconeogenesis in response to hypoglycemia. Alterations of glucagon secretion are observed in diabetic patients and exacerbate the disease. The restricted availability of purified primary alpha cells has limited our understanding of their function in health and disease. This study was designed to establish convenient protocols for the purification of viable alpha cells from rat and human pancreatic islets by FACS, using intrinsic cellular properties. Islets were isolated from the pancreata of Wistar rats or deceased human organ donors. Dispersed islet cells were separated by FACS based on light scatter and autofluorescence. Purity of sorted cells was evaluated by immunocytochemistry using hormone specific antibodies. Relative hormone expression was further determined by quantitative RT-PCR. Viability was determined by Annexin V and propidium iodide staining and function was assessed by monitoring cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) using Fura-2/AM. We developed species-specific FACS gating strategies that resulted in populations consisting mainly of alpha cells (96.6 ± 1.4%, n = 3 for rat; 95.4 ± 1.7%, n = 4 for human, mean ± SEM). These cell fractions showed ~5-fold and ~4-fold enrichment (rat and human, respectively) of glucagon mRNA expression compared to total ungated islet cells. Most of the sorted cells were viable and functional, as they responded with an increase in [Ca(2+)](i) upon stimulation with L-arginine (10 mM). The majority of the sorted human alpha cells responded also to stimulation with kainate (100 μM), whereas this response was infrequent in rat alpha cells. Using the same sample preparation, but a different gating strategy, we were also able to sort rat and human populations enriched in beta cells. In conclusion, we have simplified and optimized a method for the purification of rat alpha cells, as well as established a novel approach to separate human alpha cells using neither antibodies nor dyes possibly interfering with cellular functions.
Collapse
Affiliation(s)
- Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1:03, SE-17176, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Ito A, Ichiyanagi N, Ikeda Y, Hagiyama M, Inoue T, Kimura KB, Sakurai MA, Hamaguchi K, Murakami Y. Adhesion molecule CADM1 contributes to gap junctional communication among pancreatic islet α-cells and prevents their excessive secretion of glucagon. Islets 2012; 4:49-55. [PMID: 22513384 DOI: 10.4161/isl.18675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cell adhesion molecule-1 (CADM1) is a recently identified adhesion molecule of pancreatic islet α-cells that mediates nerve-α-cell interactions via trans-homophilic binding and serves anatomical units for the autonomic control of glucagon secretion. CADM1 also mediates attachment between adjacent α-cells. Since gap junctional intercellular communication (GJIC) among islet cells is essential for islet hormone secretion, we examined whether CADM1 promotes GJIC among α-cells and subsequently participates in glucagon secretion regulation. Dye transfer assays using αTC6 mouse α-cells, which endogenously express CADM1, supported this possibility; efficient cell-to-cell spread of gap junction-permeable dye was detected in clusters of αTC6 cells transfected with nonspecific, but not with CADM1-targeting, siRNA. Immunocytochemical analysis of connexin 36, a major component of the gap junction among αTC6 cells, revealed that it was localized exclusively to the cell membrane in CADM1-non-targeted αTC6 cells, but diffusely to the cytoplasm in CADM1-targeted cells. Next, we incubated CADM1-targeted and non-targeted αTC6 cells in a medium containing 1 mM glucose and 200 mM arginine for 30 min to induce glucagon secretion, and found that the targeted cells secreted three times more glucagon than did the non-targeted. We conducted similar experiments using pancreatic islets that were freshly isolated from wild-type and CADM1-knockout mice, and expressed glucagon secretion as ratios relative to baseline values. The increase in ratio was larger in CADM1-knockout islets than in wild-type islets. These results suggest that CADM1 may serve as a volume limiter of glucagon secretion by sustaining α-cell attachment necessary for efficient GJIC.
Collapse
Affiliation(s)
- Akihiko Ito
- Division of Molecular Pathology; Institute of Medical Science; University of Tokyo; Tokyo, Japan; Department of Pathology; Faculty of Medicine; Kinki University; Osaka, Japan
| | - Naoki Ichiyanagi
- Division of Molecular Pathology; Institute of Medical Science; University of Tokyo; Tokyo, Japan
| | - Yuki Ikeda
- Division of Molecular Pathology; Institute of Medical Science; University of Tokyo; Tokyo, Japan
| | - Man Hagiyama
- Division of Molecular Pathology; Institute of Medical Science; University of Tokyo; Tokyo, Japan; Department of Pathology; Faculty of Medicine; Kinki University; Osaka, Japan
| | - Takao Inoue
- Department of Pathology; Faculty of Medicine; Kinki University; Osaka, Japan
| | - Keiko B Kimura
- Division of Molecular Pathology; Institute of Medical Science; University of Tokyo; Tokyo, Japan
| | - Minami A Sakurai
- Department of Pathology; Faculty of Medicine; Kinki University; Osaka, Japan; Department of Molecular Genetics; Research Institute for Microbial Diseases; Osaka University; Osaka, Japan
| | - Kazuyuki Hamaguchi
- Department of Community Health and Gerontological Nursing; Faculty of Medicine; Oita University; Oita, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology; Institute of Medical Science; University of Tokyo; Tokyo, Japan
| |
Collapse
|
231
|
Vivoli M, Caulfield TR, Martínez-Mayorga K, Johnson AT, Jiao GS, Lindberg I. Inhibition of prohormone convertases PC1/3 and PC2 by 2,5-dideoxystreptamine derivatives. Mol Pharmacol 2011; 81:440-54. [PMID: 22169851 DOI: 10.1124/mol.111.077040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The prohormone convertases PC1/3 and PC2 are eukaryotic serine proteases involved in the proteolytic maturation of peptide hormone precursors and are implicated in a variety of pathological conditions, including obesity, diabetes, and neurodegenerative diseases. In this work, we screened 45 compounds obtained by derivatization of a 2,5-dideoxystreptamine scaffold with guanidinyl and aryl substitutions for convertase inhibition. We identified four promising PC1/3 competitive inhibitors and three PC2 inhibitors that exhibited various inhibition mechanisms (competitive, noncompetitive, and mixed), with sub- and low micromolar inhibitory potency against a fluorogenic substrate. Low micromolar concentrations of certain compounds blocked the processing of the physiological substrate proglucagon. The best PC2 inhibitor effectively inhibited glucagon synthesis, a known PC2-mediated process, in a pancreatic cell line; no cytotoxicity was observed. We also identified compounds that were able to stimulate both 87 kDa PC1/3 and PC2 activity, behavior related to the presence of aryl groups on the dideoxystreptamine scaffold. By contrast, inhibitory activity was associated with the presence of guanidinyl groups. Molecular modeling revealed interactions of the PC1/3 inhibitors with the active site that suggest structural modifications to further enhance potency. In support of kinetic data suggesting that PC2 inhibition probably occurs via an allosteric mechanism, we identified several possible allosteric binding sites using computational searches. It is noteworthy that one compound was found to both inhibit PC2 and stimulate PC1/3. Because glucagon acts in functional opposition to insulin in blood glucose homeostasis, blocking glucagon formation and enhancing proinsulin cleavage with a single compound could represent an attractive therapeutic approach in diabetes.
Collapse
Affiliation(s)
- Mirella Vivoli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
232
|
Bagger JI, Knop FK, Holst JJ, Vilsbøll T. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab 2011; 13:965-71. [PMID: 21615669 DOI: 10.1111/j.1463-1326.2011.01427.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glucagon is a hormone secreted from the alpha cells of the pancreatic islets. Through its effect on hepatic glucose production (HGP), glucagon plays a central role in the regulation of glucose homeostasis. In patients with type 2 diabetes mellitus (T2DM), abnormal regulation of glucagon secretion has been implicated in the development of fasting and postprandial hyperglycaemia. Therefore, new therapeutic agents based on antagonizing glucagon action, and hence blockade of glucagon-induced HGP, could be effective in lowering both fasting and postprandial hyperglycaemia in patients with T2DM. This review focuses on the mechanism of action, safety and efficacy of glucagon antagonists in the treatment of T2DM and discusses the challenges associated with this new potential antidiabetic treatment modality.
Collapse
Affiliation(s)
- J I Bagger
- Diabetes Research Division, Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | | |
Collapse
|
233
|
Thorel F, Damond N, Chera S, Wiederkehr A, Thorens B, Meda P, Wollheim CB, Herrera PL. Normal glucagon signaling and β-cell function after near-total α-cell ablation in adult mice. Diabetes 2011; 60:2872-82. [PMID: 21926270 PMCID: PMC3198058 DOI: 10.2337/db11-0876] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis. RESEARCH DESIGN AND METHODS We generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss. RESULTS Adult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions. CONCLUSIONS An extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.
Collapse
Affiliation(s)
- Fabrizio Thorel
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Damond
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andreas Wiederkehr
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bernard Thorens
- Department of Physiology and Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claes B. Wollheim
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L. Herrera
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Corresponding author: Pedro L. Herrera,
| |
Collapse
|
234
|
Henquin JC, Accili D, Ahrén B, Boitard C, Seino S, Cerasi E. Long in the shade, glucagon re-occupies centre court. Diabetes Obes Metab 2011; 13 Suppl 1:v-viii. [PMID: 21824249 DOI: 10.1111/j.1463-1326.2011.01476.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
235
|
Hardy AB, Serino AS, Wijesekara N, Chimienti F, Wheeler MB. Regulation of glucagon secretion by zinc: lessons from the β cell-specific Znt8 knockout mouse model. Diabetes Obes Metab 2011; 13 Suppl 1:112-7. [PMID: 21824264 DOI: 10.1111/j.1463-1326.2011.01451.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In type-2 diabetes, hyperglucagonaemia aggravates elevated blood glucose levels. Relative to our knowledge of the β-cell and insulin secretion, there remains a limited understanding of glucagon secretion in α-cells. Regulation of glucagon may be dependent on a combination of factors, which include direct glucose sensing by the α-cell, innervations from the autonomic nervous system and potential 'paracrine' actions by hormones and factors that are released by adjacent endocrine cells within the islets. The list of potential 'paracrine' regulators within the islet includes insulin, somatostatin, γ-aminobutyric acid, glutamate and zinc. Zinc crystallises with insulin in β-cells and is co-secreted with insulin. In the scientific literature, the effect of exogeneous zinc on glucagon secretion has been debated. Here, we confirm that an increase in exogeneous zinc does inhibit glucagon secretion. To determine if there are physiological effects of zinc on glucagon secretion we used a β-cell-specific ZnT8 knockout (Znt8BKO) mouse model. Znt8BKO mice, despite showing lower granular zinc content in β-cells, showed no changes in fasted plasma glucagon levels and glucose regulated glucagon secretion. These findings suggest that zinc secreted from β-cell does not regulate glucagon secretion.
Collapse
Affiliation(s)
- A B Hardy
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
236
|
Yu R, Dhall D, Nissen NN, Zhou C, Ren SG. Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice. PLoS One 2011; 6:e23397. [PMID: 21853126 PMCID: PMC3154424 DOI: 10.1371/journal.pone.0023397] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023] Open
Abstract
Inhibition of glucagon signaling causes hyperglucagonemia and pancreatic α cell hyperplasia in mice. We have recently demonstrated that a patient with an inactivating glucagon receptor mutation (P86S) also exhibits hyperglucagonemia and pancreatic α cell hyperplasia but further develops pancreatic neuroendocrine tumors (PNETs). To test the hypothesis that defective glucagon signaling causes PNETs, we studied the pancreata of mice deficient in glucagon receptor (Gcgr−/−) from 2 to 12 months, using WT and heterozygous mice as controls. At 2–3 months, Gcgr−/− mice exhibited normal islet morphology but the islets were mostly composed of α cells. At 5–7 months, dysplastic islets were evident in Gcgr−/− mice but absent in WT or heterozygous controls. At 10–12 months, gross PNETs (≥1 mm) were detected in most Gcgr−/− pancreata and micro-PNETs (<1 mm) were found in all (n = 14), whereas the islet morphology remained normal and no PNETs were found in any WT (n = 10) or heterozygous (n = 25) pancreata. Most PNETs in Gcgr−/− mice were glucagonomas, but some were non-functioning. No tumors predominantly expressed insulin, pancreatic polypeptide, or somatostatin, although some harbored focal aggregates of tumor cells expressing one of those hormones. The PNETs in Gcgr−/− mice were well differentiated and occasionally metastasized to the liver. Menin expression was aberrant in most dysplatic islets and PNETs. Vascular endothelial growth factor (VEGF) was overexpressed in PNET cells and its receptor Flk-1 was found in the abundant blood vessels or blood islands inside the tumors. We conclude that defective glucagon signaling causes PNETs in the Gcgr−/− mice, which may be used as a model of human PNETs. Our results further suggest that completely inhibiting glucagon signaling may not be a safe approach to treat diabetes.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.
| | | | | | | | | |
Collapse
|
237
|
Wang L, Zhao Y, Gui B, Fu R, Ma F, Yu J, Qu P, Dong L, Chen C. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet {alpha}-cells. J Endocrinol 2011; 210:173-9. [PMID: 21565851 DOI: 10.1530/joe-11-0132] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of free fatty acids (FFAs) in glucagon secretion has not been well established, and the involvement of FFA receptor GPR40 and its downstream signaling pathways in regulating glucagon secretion are rarely demonstrated. In this study, it was found that linoleic acid (LA) acutely stimulated glucagon secretion from primary cultured rat pancreatic islets. LA at 20 and 40 μmol/l dose-dependently increased glucagon secretion both at 3 mmol/l glucose and at 15 mmol/l glucose, although 15 mmol/l glucose reduced basal glucagon levels. LA induced an increase in cytoplasmic free calcium concentrations ([Ca(2)(+)](i)) in identified rat α-cells, which is reflected by increased Fluo-3 intensity under confocal microscopy recording. The increase in [Ca(2)(+)](i) was partly inhibited by removal of extracellular Ca(2)(+) and eliminated overall by further exhaustion of intracellular Ca(2)(+) stores using thapsigargin treatment, suggesting that both Ca(2)(+) release and Ca(2)(+) influx contributed to the LA-stimulated increase in [Ca(2)(+)](i) in α-cells. Double immunocytochemical stainings showed that GPR40 was expressed in glucagon-positive α-cells. LA-stimulated increase in [Ca(2)(+)](i) was blocked by inhibition of GPR40 expression in α-cells after GPR40-specific antisense treatment. The inhibition of phospholipase C activity by U73122 also blocked the increase in [Ca(2)(+)](i) by LA. It is concluded that LA activates GPR40 and phospholipase C (and downstream signaling pathways) to increase Ca(2)(+) release and associated Ca(2)(+) influx through Ca(2)(+) channels, resulting in increase in [Ca(2)(+)](i) and glucagon secretion.
Collapse
Affiliation(s)
- Li Wang
- The Second Affiliated Hospital of Medical School, Xi'an Jiao Tong University, Xi'an 710004, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Henquin JC, Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 2011; 54:1720-5. [PMID: 21465328 PMCID: PMC3110273 DOI: 10.1007/s00125-011-2118-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/18/2011] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is a bi-hormonal disease characterised by relative hypoinsulinaemia and hyperglucagonaemia with elevated blood glucose levels. Besides pancreatic beta cell defects, a low number of beta cells (low beta cell mass) may contribute to the insufficient secretion of insulin. In this study our aim was to determine whether the alpha cell mass is also altered. METHODS Using a point counting method, we measured the ratio of alpha to beta cell areas in pancreas samples obtained at autopsy from 50 type 2 diabetic subjects, whose beta cell mass had previously been found to be 36% lower than that of 52 non-diabetic subjects. RESULTS The topography of alpha and beta cells was similar in both groups: many alpha cells were localised in the centre of the islets and the ratio of alpha/beta cell areas increased with islet size. The average ratio was significantly higher in type 2 diabetic subjects (0.72) than in non-diabetic subjects (0.42), with, however, a large overlap between the two groups. In contrast, the alpha cell mass was virtually identical in type 2 diabetic subjects (366 mg) and non-diabetic subjects (342 mg), and was not influenced by sex, BMI or type of diabetes treatment. CONCLUSIONS The higher proportion of alpha to beta cells in the islets of some type 2 diabetic subjects is due to a decrease in beta cell number rather than an increase in alpha cell number. This imbalance may contribute to alterations in the normal inhibitory influence exerted by beta cells on alpha cells, and lead to the relative hyperglucagonaemia observed in type 2 diabetes.
Collapse
Affiliation(s)
- J C Henquin
- Department of Pathology, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| | | |
Collapse
|
239
|
Yamamoto T, Koyama H, Kurajoh M, Shoji T, Tsutsumi Z, Moriwaki Y. Biochemistry of uridine in plasma. Clin Chim Acta 2011; 412:1712-24. [PMID: 21689643 DOI: 10.1016/j.cca.2011.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/04/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022]
Abstract
Uridine is a pyrimidine nucleoside that plays a crucial role in synthesis of RNA, glycogen, and biomembrane. In humans, uridine is present in plasma in considerably higher quantities than other purine and pyrimidine nucleosides, thus it may be utilized for endogenous pyrimidine synthesis. Uridine has a number of biological effects on a variety of organs with or without disease, such as the reproductive organs, central and peripheral nervous systems, and liver. In addition, it is used in clinical situations as a rescue agent to protect against the adverse effects of 5-fluorouracil. Since the biological actions of uridine may be related to its plasma concentration, it is important to examine factors that have effects on that concentration. Factors associated with an increase in plasma concentration of uridine include enhanced ATP consumption, enhanced uridine diphosphate (UDP)-glucose consumption via glycogenesis, inhibited uridine uptake by cells via the nucleoside transport pathway, increased intestinal absorption, and increased 5-phosphribosyl-1-pyrophosphate and urea synthesis. In contrast, factors that decrease the plasma concentration of uridine are associated with accelerated uridine uptake by cells via the nucleoside transport pathway and decreased pyrimidine synthesis.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.
| | | | | | | | | | | |
Collapse
|
240
|
Andersson SA, Pedersen MG, Vikman J, Eliasson L. Glucose-dependent docking and SNARE protein-mediated exocytosis in mouse pancreatic alpha-cell. Pflugers Arch 2011; 462:443-54. [PMID: 21643653 DOI: 10.1007/s00424-011-0979-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/05/2011] [Accepted: 05/13/2011] [Indexed: 12/20/2022]
Abstract
The function of alpha-cells in patients with type 2 diabetes is often disturbed; glucagon secretion is increased at hyperglycaemia, yet fails to respond to hypoglycaemia. A crucial mechanism behind the fine-tuned release of glucagon relies in the exocytotic machinery including SNARE proteins. Here, we aimed to investigate the temporal role of syntaxin 1A and SNAP-25 in mouse alpha-cell exocytosis. First, we used confocal imaging to investigate glucose dependency in the localisation of SNAP-25 and syntaxin 1A. SNAP-25 was mainly distributed in the plasma membrane at 2.8 mM glucose, whereas the syntaxin 1A distribution in the plasma membrane, as compared to the cytosolic fraction, was highest at 8.3 mM glucose. Furthermore, following inclusion of an antibody against SNAP-25 or syntaxin 1A, exocytosis evoked by a train of ten depolarisations and measured as an increase in membrane capacitance was reduced by ~50%. Closer inspection revealed a reduction in the refilling of granules from the reserve pool (RP), but also showed a decreased size of the readily releasable pool (RRP) by ~45%. Disparate from the situation in pancreatic beta-cells, the voltage-dependent Ca²⁺ current was not reduced, but the Ca²⁺ sensitivity of exocytosis decreased by the antibody against syntaxin 1A. Finally, ultrastructural analysis revealed that the number of docked granules was >2-fold higher at 16.7 mM than at 1 mM glucose. We conclude that syntaxin 1A and SNAP-25 are necessary for alpha-cell exocytosis and regulate fusion of granules belonging to both the RRP and RP without affecting the Ca²⁺ current.
Collapse
Affiliation(s)
- Sofia A Andersson
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | | | | | | |
Collapse
|
241
|
Abstract
The etiology of type 2 diabetes mellitus involves the induction of insulin resistance along with the disruption of pancreatic β-cell function and the loss of β-cell mass. In addition to a genetic predisposition, lifestyle factors seem to have an important role. Epidemiological studies indicate that the increased presence of endocrine disrupting chemicals (EDCs) in the environment may also play an important part in the incidence of metabolic diseases. Widespread EDCs, such as dioxins, pesticides and bisphenol A, cause insulin resistance and alter β-cell function in animal models. These EDCs are present in human blood and can accumulate in and be released from adipocytes. After binding to cellular receptors and other targets, EDCs either imitate or block hormonal responses. Many of them act as estrogens in insulin-sensitive tissues and in β cells, generating a pregnancy-like metabolic state characterized by insulin resistance and hyperinsulinemia. Adult exposure in mice produces insulin resistance and other metabolic alterations; in addition, during pregnancy, EDCs alter glucose metabolism in female mice, as well as glucose homeostasis and endocrine pancreatic function in offspring. Although more experimental work is necessary, evidence already exists to consider exposure to EDCs as a risk factor in the etiology of type 2 diabetes mellitus and other diseases related to insulin resistance.
Collapse
Affiliation(s)
- Paloma Alonso-Magdalena
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University, Edifício Vinalopó, Avenida de la Universidad s/n 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
242
|
Palerm CC. Physiologic insulin delivery with insulin feedback: a control systems perspective. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 102:130-137. [PMID: 20674062 DOI: 10.1016/j.cmpb.2010.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 06/08/2010] [Accepted: 06/11/2010] [Indexed: 05/29/2023]
Abstract
Individuals with type 1 diabetes mellitus must effectively manage glycemia to avoid acute and chronic complications related to aberrations of glucose levels. Because optimal diabetes management can be difficult to achieve and burdensome, research into a closed-loop insulin delivery system has been of interest for several decades. This paper provides an overview, from a control systems perspective, of the research and development effort of a particular algorithm--the external physiologic insulin delivery system. In particular the introduction of insulin feedback, based on β-cell physiology, is covered in detail. A summary of human clinical trials is provided in the context of the evolution of this algorithm, and this paper outlines some of the research avenues that show particular promise.
Collapse
Affiliation(s)
- Cesar C Palerm
- Medtronic Diabetes, Closed Loop R&D, 18000 Devonshire St., Northridge, CA 91325, USA.
| |
Collapse
|
243
|
Abstract
Recent investigations have demonstrated that melatonin influences carbohydrate metabolism mediated by insulin-inhibiting effects on pancreatic β-cells. This study evaluated whether melatonin has also an effect on pancreatic α-cells and glucagon expression as well as the glucagon secretion in vitro and in vivo. Glucagon-producing pancreatic α-cell line αTC1 clone 9 (αTC1.9) was used, which was characterized as an appropriate model with glucose responsiveness and expression of the melatonin receptors MT1 and MT2. The results demonstrate that melatonin incubation significantly enhanced the expression as well as the secretion of glucagon. These effects appeared to be more pronounced under hyperglycemic conditions compared to basal glucose concentrations. Notably, in vivo studies demonstrated that long-term oral melatonin administration led to significantly elevated plasma glucagon concentrations in Wistar rats. In contrast, plasma glucagon levels were found to be slightly decreased in type 2 diabetic Goto-Kakizaki rats. Moreover, investigations measuring the relative glucagon receptor mRNA expression showed marked differences in the liver of melatonin-substituted rats as well as in melatonin receptor knockout mice. In conclusion, these findings revealed evidence that melatonin influences pancreatic glucagon expression and secretion as well as the peripheral glucagon action.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | | | | |
Collapse
|
244
|
Marroquí L, Vieira E, Gonzalez A, Nadal A, Quesada I. Leptin downregulates expression of the gene encoding glucagon in alphaTC1-9 cells and mouse islets. Diabetologia 2011; 54:843-51. [PMID: 21234744 DOI: 10.1007/s00125-010-2024-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 11/19/2010] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Leptin, released by adipocytes, can modulate glucose homeostasis through direct actions on pancreatic alpha and beta cells. Although this hormone rapidly regulates alpha cell exocytosis, its long-term effects on glucagon gene expression are currently unknown. METHODS We analysed glucagon mRNA levels and protein content in alphaTC1-9 cells and isolated mouse islets cultured with leptin, as well as in islets from mice treated in vivo with leptin. We also studied the involvement of the signal transducers and activators of transcription (STAT) pathway by western blot, immunofluorescence and interference RNA. RESULTS Leptin incubation (0.0625-18.75 nmol/l) for 24 h inhibited glucagon gene expression in alphaTC1-9 cells. This inhibitory effect was also observed in isolated mouse islets cultured with leptin, as well as in islets from mice treated with leptin for 5 days. In contrast, no changes were detected in islets from db/db mice, which lack leptin receptors. Leptin treatment also reduced the glucagon protein content in alphaTC1-9 cells and mouse islets. Moreover, leptin induced phosphorylation of STAT3 and its translocation to the nucleus, which was confirmed by western blot analysis in alphaTC1-9 cells and by immunofluorescence in isolated alpha cells. Interestingly, the effect of leptin on glucagon mRNA levels was significantly reduced by Stat3 knockdown. In contrast, pharmacological inhibition of the phosphoinositide 3-kinase pathway did not affect leptin actions. CONCLUSIONS/INTERPRETATION Our results demonstrate that leptin can regulate glucagon gene expression in alpha cells via a STAT3 pathway, and are important for understanding the role of leptin in glucose homeostasis.
Collapse
Affiliation(s)
- L Marroquí
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Avenida de la Universidad, 03202 Elche, Spain
| | | | | | | | | |
Collapse
|
245
|
Insulin and glucagon regulate pancreatic α-cell proliferation. PLoS One 2011; 6:e16096. [PMID: 21283589 PMCID: PMC3026810 DOI: 10.1371/journal.pone.0016096] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) results from insulin resistance and β-cell dysfunction, in the setting of hyperglucagonemia. Glucagon is a 29 amino acid peptide hormone, which is secreted from pancreatic α cells: excessively high circulating levels of glucagon lead to excessive hepatic glucose output. We investigated if α-cell numbers increase in T2DM and what factor (s) regulate α-cell turnover. Leprdb/Leprdb (db/db) mice were used as a T2DM model and αTC1 cells were used to study potential α-cell trophic factors. Here, we demonstrate that in db/db mice α-cell number and plasma glucagon levels increased as diabetes progressed. Insulin treatment (EC50 = 2 nM) of α cells significantly increased α-cell proliferation in a concentration-dependent manner compared to non-insulin-treated α cells. Insulin up-regulated α-cell proliferation through the IR/IRS2/AKT/mTOR signaling pathway, and increased insulin-mediated proliferation was prevented by pretreatment with rapamycin, a specific mTOR inhibitor. GcgR antagonism resulted in reduced rates of cell proliferation in αTC1 cells. In addition, blockade of GcgRs in db/db mice improved glucose homeostasis, lessened α-cell proliferation, and increased intra-islet insulin content in β cells in db/db mice. These studies illustrate that pancreatic α-cell proliferation increases as diabetes develops, resulting in elevated plasma glucagon levels, and both insulin and glucagon are trophic factors to α-cells. Our current findings suggest that new therapeutic strategies for the treatment of T2DM may include targeting α cells and glucagon.
Collapse
|
246
|
Freeman JS. A physiologic and pharmacological basis for implementation of incretin hormones in the treatment of type 2 diabetes mellitus. Mayo Clin Proc 2010; 85:S5-S14. [PMID: 21106868 PMCID: PMC2996163 DOI: 10.4065/mcp.2010.0467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Progressive deterioration of β-cell function is a hallmark of type 2 diabetes mellitus (DM). Together with increasing insulin resistance in peripheral tissues (in both the liver and the skeletal muscle), the inability of pancreatic insulin secretion to manage fasting and postprandial glucose levels results in hyperglycemia. Currently available oral antidiabetes agents improve glycemic parameters, but no single drug addresses the numerous pathophysiologic defects known to contribute to hyperglycemia in patients with type 2 DM. Dysregulation in the incretin system is another component of the pathophysiologic processes that lead to DM. Agents used to correct defects in the incretin system, such as glucagon-like peptide 1 receptor agonists and dipeptidyl peptidase 4 inhibitors, offer the potential to restore glucose-dependent insulin secretion and improve β-cell function. Glucagon-like peptide 1 receptor agonists also promote weight loss and provide beneficial effects on cardiovascular risk factors. A new approach that promotes the selection of pharmacotherapy for the treatment of patients with DM, with the goal of slowing or reversing the natural history of the disease, may be in order. Clinicians can select agents to address specific pathophysiologic defects to improve glycemia, with the hope of preventing the development of complications.
Collapse
Affiliation(s)
- Jeffrey S Freeman
- Division of Endocrinology and Metabolism, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA.
| |
Collapse
|
247
|
Russell SJ, El-Khatib FH, Nathan DM, Damiano ER. Efficacy determinants of subcutaneous microdose glucagon during closed-loop control. J Diabetes Sci Technol 2010; 4:1288-304. [PMID: 21129323 PMCID: PMC3005038 DOI: 10.1177/193229681000400602] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND During a previous clinical trial of a closed-loop blood glucose (BG) control system that administered insulin and microdose glucagon subcutaneously, glucagon was not uniformly effective in preventing hypoglycemia (BG<70 mg/dl). After a global adjustment of control algorithm parameters used to model insulin absorption and clearance to more closely match insulin pharmacokinetic (PK) parameters observed in the study cohort, administration of glucagon by the control system was more effective in preventing hypoglycemia. We evaluated the role of plasma insulin and plasma glucagon levels in determining whether glucagon was effective in preventing hypoglycemia. METHODS We identified and analyzed 36 episodes during which glucagon was given and categorized them as either successful or unsuccessful in preventing hypoglycemia. RESULTS In 20 of the 36 episodes, glucagon administration prevented hypoglycemia. In the remaining 16, BG fell below 70 mg/dl (12 of the 16 occurred during experiments performed before PK parameters were adjusted). The (dimensionless) levels of plasma insulin (normalized relative to each subject's baseline insulin level) were significantly higher during episodes ending in hypoglycemia (5.2 versus 3.7 times the baseline insulin level, p=.01). The relative error in the control algorithm's online estimate of the instantaneous plasma insulin level was also higher during episodes ending in hypoglycemia (50 versus 30%, p=.003), as were the peak plasma glucagon levels (183 versus 116 pg/ml, p=.007, normal range 50-150 pg/ml) and mean plasma glucagon levels (142 versus 75 pg/ml, p=.02). Relative to mean plasma insulin levels, mean plasma glucagon levels tended to be 59% higher during episodes ending in hypoglycemia, although this result was not found to be statistically significant (p=.14). The rate of BG descent was also significantly greater during episodes ending in hypoglycemia (1.5 versus 1.0 mg/dl/min, p=.02). CONCLUSIONS Microdose glucagon administration was relatively ineffective in preventing hypoglycemia when plasma insulin levels exceeded the controller's online estimate by >60%. After the algorithm PK parameters were globally adjusted, insulin dosing was more conservative and microdose glucagon administration was very effective in reducing hypoglycemia while maintaining normal plasma glucagon levels. Improvements in the accuracy of the controller's online estimate of plasma insulin levels could be achieved if ultrarapid-acting insulin formulations could be developed with faster absorption and less intra- and intersubject variability than the current insulin analogs available today.
Collapse
Affiliation(s)
- Steven J Russell
- Diabetes Unit and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
248
|
Abstract
OBJECTIVE We tested the hypothesis that an increase in insulin per se, i.e., in the absence of zinc, suppresses glucagon secretion during euglycemia and that a decrease in insulin per se stimulates glucagon secretion during hypoglycemia in humans. RESEARCH DESIGN AND METHODS We measured plasma glucagon concentrations in patients with type 1 diabetes infused with the zinc-free insulin glulisine on three occasions. Glulisine was infused with clamped euglycemia (∼95 mg/dl [5.3 mmol/l]) from 0 to 60 min on all three occasions. Then, glulisine was discontinued with clamped euglycemia or with clamped hypoglycemia (∼55 mg/dl [3.0 mmol/l]) or continued with clamped hypoglycemia from 60 to 180 min. RESULTS Plasma glucagon concentrations were suppressed by -13 ± 3, -9 ± 3, and -12 ± 2 pg/ml (-3.7 ± 0.9, -2.6 ± 0.9, and -3.4 ± 0.6 pmol/l), respectively, (all P < 0.01) during zinc-free hyperinsulinemic euglycemia over the first 60 min. Glucagon levels remained suppressed following a decrease in zinc-free insulin with euglycemia (-14 ± 3 pg/ml [-4.0 ± 0.9 pmol/l]) and during sustained hyperinsulinemia with hypoglycemia (-14 ± 2 pg/ml [-4.0 ± 0.6 pmol/l]) but increased to -3 ± 3 pg/ml (-0.9 ± 0.9 pmol/l) (P < 0.01) following a decrease in zinc-free insulin with hypoglycemia over the next 120 min. CONCLUSIONS These data indicate that an increase in insulin per se suppresses glucagon secretion and a decrease in insulin per se, in concert with a low glucose concentration, stimulates glucagon secretion. Thus, they document that insulin is a β-cell secretory product that, in concert with glucose and among other signals, reciprocally regulates α-cell glucagon secretion in humans.
Collapse
Affiliation(s)
- Benjamin A. Cooperberg
- From the Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Philip E. Cryer
- From the Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
- Corresponding author: Philip E. Cryer,
| |
Collapse
|
249
|
Eller LK, Reimer RA. A high calcium, skim milk powder diet results in a lower fat mass in male, energy-restricted, obese rats more than a low calcium, casein, or soy protein diet. J Nutr 2010; 140:1234-41. [PMID: 20463146 DOI: 10.3945/jn.109.119008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The combination of dairy protein and dietary calcium (Ca) may enhance weight loss more effectively than either compound alone. Our purpose in this study was to determine the effect of various protein sources [skim milk powder (SMP), whey, casein, and soy protein isolate (SPI)] and 2 levels of Ca [low, 0.67% Ca (LC) or high, 2.4% Ca (HC)] on weight loss. Sixty-four 12-wk-old Sprague-Dawley, diet-induced obese rats were assigned to 1 of 8 energy-restricted (ER) diets for 4 wk with 1 of the 4 protein sources and either LC or HC concentrations. Rats were ER to 70% of the ad libitum food and energy intake of a reference group (n = 8) fed the AIN-93M diet. The interaction between dietary protein and Ca affected final body weight and fat mass (FM) (P < 0.05). FM was less in rats fed SMP-HC than in those fed casein-LC or SPI-LC. Lean body mass was greater in rats fed SMP than in those fed whey. Rats fed HC diets had a lower plasma glucagon area under the curve (AUC) than those fed LC diets. The blood glucose AUC, homeostatic model of insulin resistance, and the expression of certain hepatic genes involved in energy metabolism were affected by protein and Ca. These data suggest that consuming a diet containing SMP and HC is associated with a lower FM in obese, male, ER rats than in diets containing casein or SPI and LC; however, the role of SMP and Ca in glucose homeostasis remains to be determined.
Collapse
Affiliation(s)
- Lindsay K Eller
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and 4Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | | |
Collapse
|
250
|
Abstract
Insulin replacement therapy in type 1 diabetes mellitus (T1DM) is nonphysiologic. Hyperinsulinemia is generated in the periphery to achieve normal insulin concentrations in the liver. This mismatch results in increased hypoglycemia, increased food intake with weight gain, and insufficient regulation of postprandial glucose excursions. Islet amyloid polypeptide is a hormone synthesized in pancreatic beta cells and cosecreted with insulin. Circulating islet amyloid polypeptide binds to receptors located in the hindbrain and increases satiety, delays gastric emptying and suppresses glucagon secretion. Thus, islet amyloid polypeptide complements the effects of insulin. T1DM is a state of both islet amyloid polypeptide and insulin deficiency. Pramlintide, a synthetic analog of islet amyloid polypeptide, can replace this hormone in patients with T1DM. When administered as adjunctive therapy to such patients treated with insulin, pramlintide decreases food intake and causes weight loss. Pramlintide therapy is also associated with suppression of glucagon secretion and delayed gastric emptying, both of which decrease postprandial plasma glucose excursions. Pramlintide therapy improves glycemic control and lessens weight gain. Agents that decrease intestinal carbohydrate digestion (alpha-glucosidase inhibitors) or decrease insulin resistance (metformin) might be alternative adjunctive therapies in T1DM, though its benefits are marginally supported by clinical data.
Collapse
Affiliation(s)
- Harold E Lebovitz
- Department of Medicine, Division of Endocrinology, State University of New York Health Science Center at Brooklyn, 450 Clarkson Avenue, New York, NY 11203, USA.
| |
Collapse
|