201
|
Adiponectin/AdipoRs signaling as a key player in testicular aging and associated metabolic disorders. VITAMINS AND HORMONES 2021; 115:611-634. [PMID: 33706964 DOI: 10.1016/bs.vh.2020.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aging undergoes serious worsening of peripheral organs and vital physiological processes including reproductive performances. Altered white adipose tissue and adipocyte functioning during aging results in ectopic lipid storage/obesity or metabolic derangements, leading to insulin resistance state. Eventually, accelerating cellular senescence thereby enhancing the high risk of age-associated metabolic alterations. Such alterations may cause derangement of numerous physiologically active obesity hormones, known as "adipokines." Specifically, adiponectin exhibits insulin sensitizing action causing anti-aging and anti-obesity effects via activation of adiponectin receptors (AdipoRs). The male reproductive physiology from reproductive mature stage to advanced senescent stage undergoes insidious detrimental changes. The mechanisms by which testicular functions decline with aging remain largely speculative. Adiponectin has also recently been shown to regulate metabolism and longevity signaling thus prolonging lifespan. Therefore, the strategy for activating adiponectin/AdipoRs signaling pathways are expected to provide a solid basis for the prevention and treatment of aging and obesity-associated reproductive dysfunctions, as well as for ensuring healthy reproductive longevity in humans.
Collapse
|
202
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
203
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
204
|
Nabavizadeh N, Shboul M, Hojati Z. Bioenergetic analysis of aged-phenotype skin in a rare syndromic cutis laxa. J Cosmet Dermatol 2021; 20:2999-3006. [PMID: 33522694 DOI: 10.1111/jocd.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Skin aging is an inevitable phenomenon characterized by wrinkled skin and loss of elasticity. To date, several studies have been performed on skin aging to discover the underlying mechanisms and improve efficient preventive strategies and anti-aging therapeutics. AIMS Here, we aimed to investigate the modifications of oxidative phosphorylation and glycolysis which are the critical determinants of aging in aged-phenotype skin. METHODS Due to the complexity of the skin aging process, we performed bioenergetic measurements on aged-phenotype fibroblasts from an inherited cutis laxa syndrome which remarkably presents clinical features of normal aged skin. Bioenergetic analysis was performed on cutis laxa samples (n = 3) and healthy samples (n = 3) using Seahorse XFe24 Analyzer. We also compared the sensitivity of cultured aged-phenotype fibroblasts to normal cells in glucose withdrawal. RESULTS Our results show a significant increase in oxidative phosphorylation parameters but not glycolysis in the patient fibroblast cells implying increased energy demand and preferential dependence on mitochondrial respiration in those cells. Interestingly, we found the patient cells demonstrate hypersensitivity to glucose starvation, supporting their enhanced energy consumption. CONCLUSIONS In summary, our work suggested increased energy demand and higher oxidative phosphorylation in aged-phenotype cells which can be considered in anti-skin aging therapeutic design.
Collapse
Affiliation(s)
- Nasrinsadat Nabavizadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Laboratory of Human Genetics and Embryology, Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Zohreh Hojati
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
205
|
Birkisdóttir MB, Jaarsma D, Brandt RMC, Barnhoorn S, Vliet N, Imholz S, Oostrom CT, Nagarajah B, Portilla Fernández E, Roks AJM, Elgersma Y, Steeg H, Ferreira JA, Pennings JLA, Hoeijmakers JHJ, Vermeij WP, Dollé MET. Unlike dietary restriction, rapamycin fails to extend lifespan and reduce transcription stress in progeroid DNA repair-deficient mice. Aging Cell 2021; 20:e13302. [PMID: 33484480 PMCID: PMC7884048 DOI: 10.1111/acel.13302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Dietary restriction (DR) and rapamycin extend healthspan and life span across multiple species. We have recently shown that DR in progeroid DNA repair‐deficient mice dramatically extended healthspan and trippled life span. Here, we show that rapamycin, while significantly lowering mTOR signaling, failed to improve life span nor healthspan of DNA repair‐deficient Ercc1∆/− mice, contrary to DR tested in parallel. Rapamycin interventions focusing on dosage, gender, and timing all were unable to alter life span. Even genetically modifying mTOR signaling failed to increase life span of DNA repair‐deficient mice. The absence of effects by rapamycin on P53 in brain and transcription stress in liver is in sharp contrast with results obtained by DR, and appoints reducing DNA damage and transcription stress as an important mode of action of DR, lacking by rapamycin. Together, this indicates that mTOR inhibition does not mediate the beneficial effects of DR in progeroid mice, revealing that DR and rapamycin strongly differ in their modes of action.
Collapse
Affiliation(s)
- María B. Birkisdóttir
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
| | - Dick Jaarsma
- Department of Neuroscience Erasmus MC Rotterdam The Netherlands
| | | | - Sander Barnhoorn
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
| | - Nicole Vliet
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
| | - Sandra Imholz
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Conny T. Oostrom
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Bhawani Nagarajah
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Eliana Portilla Fernández
- Division of Vascular Medicine and Pharmacology Department of Internal Medicine Erasmus MC Rotterdam The Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology Department of Internal Medicine Erasmus MC Rotterdam The Netherlands
| | - Ype Elgersma
- Department of Neuroscience Erasmus MC Rotterdam The Netherlands
| | - Harry Steeg
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - José A. Ferreira
- Department of Statistics, Informatics and Modelling National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| | - Jan H. J. Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
- Department of Molecular Genetics Erasmus MC Rotterdam The Netherlands
- CECAD Forschungszentrum Köln Germany
| | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands
| | - Martijn E. T. Dollé
- Centre for Health Protection National Institute for Public Health and the Environment (RIVM Bilthoven The Netherlands
| |
Collapse
|
206
|
Relationship between muscle mass index and LDL cholesterol target levels: Analysis of two studies of the Korean population. Atherosclerosis 2021; 325:1-7. [PMID: 33857762 DOI: 10.1016/j.atherosclerosis.2021.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Decreased skeletal muscle mass is an important change in body composition with aging. Maintaining the optimal low-density lipoprotein (LDL) cholesterol level is crucial for the prevention of cardiovascular diseases (CVD). We investigated whether muscle mass was associated with dyslipidemia. METHODS We analyzed the data of 17,546 adults from the 2008-2011 Korean National Health and Nutrition Examination Survey (KNHANES) and 5126 adults from the Korean Genome and Epidemiology Study (KoGES). Participants were classified into the lower skeletal muscle mass index (LSMI) group and normal group. LSMI was defined as body mass index (BMI)-adjusted appendicular skeletal muscle mass <0.789 (men) and <0.512 (women) in the KNHANES, and as sex-specific lowest quintile of the BMI-adjusted total skeletal muscle mass in the KoGES. Participants were defined as having dyslipidemia when the serum LDL cholesterol levels were higher than their LDL cholesterol management targets based on their CVD risk level. RESULTS The odds ratio with 95% confidence interval (CI) for dyslipidemia of the LSMI group was 1.230 (1.016-1.488, p = 0.034) after adjusting for confounding variables compared to the normal group in the 2008-2011 KNHANES. In the KoGES, the hazard ratio with 95% CI for incident dyslipidemia of the LSMI group compared to the normal group was 1.225 (1.101-1.364, p < 0.001). Regardless of abdominal obesity, LSMI was significantly associated with a higher risk of incident dyslipidemia. CONCLUSIONS LSMI was associated with dyslipidemia regardless of abdominal obesity. Prevention of muscle mass loss may be an important strategy for LDL cholesterol management.
Collapse
|
207
|
[Relationship between fibroblast growth factor-21, muscle mass, and function outcomes in overweight and obese older adults living in the community. An exploratory study]. Rev Esp Geriatr Gerontol 2021; 56:81-86. [PMID: 33422362 DOI: 10.1016/j.regg.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Age-related decreases in muscle mass and function are associated with the development of metabolic impairments, particularly in the context of obesity. Fibroblast growth factor21 (FGF-21) has been suggested as a common mediator of both processes. No known studies have examined the association between FGF-21 and muscle mass and function in overweight or obese older adults. With this in mind, this study aimed to investigate the association between plasma levels of FGF-21 and muscle mass and function outcomes in overweight or obese older adults. MATERIALS AND METHODS Exploratory study, which included 39 adults of 60-70years old with body mass indexes >25kg/m2. As study outcomes, measurements were made of appendicular muscle mass (AMM), grip strength, 5 times sit-to-stand test (5xSTT), as well as plasma levels of FGF-21, fasting glucose, and insulin. The homeostatic model assessment index (HOMA-IR) was also calculated to determine the presence of insulin resistance. RESULTS Significant relationships were found between plasma levels of FGF-21 vs 5xSTT (rho=0.49; P<.05). Moreover, FGF-21 levels were significantly higher in those with insulin resistance (P<.05), as well as with having lower levels of AMM (P<.05). CONCLUSION There is a relationship between the plasma levels of FGF-21 and muscle function outcomes in overweight or obese older adults. Future studies should investigate the potential causalities between these relationships.
Collapse
|
208
|
Amin R, Kolahi AA, Sohrabi MR. Disparities in Obesity Prevalence in Iranian Adults: Cross-Sectional Study Using Data from the 2016 STEPS Survey. Obes Facts 2021; 14:298-305. [PMID: 34102635 PMCID: PMC8255641 DOI: 10.1159/000516115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION This paper outlines the prevalence, disparities, and social determinants of preobesity and obesity in Iranian adults. METHODS Data on 28,321 adults who participated in the 2016 National Survey of the Risk Factors of Noncommunicable Diseases (STEPS) survey were analyzed. The body mass index (BMI) was calculated from physically measured height and weight. To assess the association between sociodemographic factors and the prevalence of preobesity and obesity, a χ2 test and a logistic regression model were used. Socioeconomic inequality was quantified by a concentration index. Disparities in provincial mean BMI and concentration indices were shown on the map of Iran using geographic information system analysis. RESULTS Overall, 60.3% of the participants were affected by preobesity or obesity. The preobesity prevalence was 39% in men and 35.2% in women. The obesity prevalence was 15.6% in men and 30.4% in women. The mean BMI for the country was 26.5. Higher ranges were observed across the northwestern and central territories. Female individuals in the age group 48-57 years who were married and lived in urban settings had an increased risk of being preobese or obese. The concentration index revealed a prorich inequality, with a greater magnitude among women. CONCLUSION The findings suggest that policies aimed at reducing preobesity and obesity should remain a public health priority in Iran. However, a greater emphasis should be placed on the northwestern and central territories and on higher socioeconomic groups.
Collapse
Affiliation(s)
- Rozhin Amin
- Department of Community Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Sohrabi
- Department of Community Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Mohammad-Reza Sohrabi,
| |
Collapse
|
209
|
Grajeda Y, Arias N, Barrios A, Pervin S, Singh R. Aging-induced stem cell dysfunction: Molecular mechanisms and potential therapeutic avenues. STEM CELLS AND AGING 2021:203-222. [DOI: 10.1016/b978-0-12-820071-1.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
210
|
Kumar A, Chamoto K. Immune metabolism in PD-1 blockade-based cancer immunotherapy. Int Immunol 2021; 33:17-26. [PMID: 32622347 PMCID: PMC7771015 DOI: 10.1093/intimm/dxaa046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Energy metabolism plays an important role in proliferating cells. Recent reports indicate that metabolic regulation or metabolic products can control immune cell differentiation, fate and reactions. Cancer immunotherapy based on blockade of programmed cell death protein 1 (PD-1) has been used worldwide, but a significant fraction of patients remain unresponsive. Therefore, clarifying the mechanisms and overcoming the unresponsiveness are urgent issues. Because cancer immunity consists of interactions between the cancer and host immune cells, there has recently been a focus on the metabolic interactions and/or competition between the tumor and the immune system to address these issues. Cancer cells render their microenvironment immunosuppressive, driving T-cell dysfunction or exhaustion, which is advantageous for cancer cell survival. However, accumulating mechanistic evidence of T-cell and cancer cell metabolism has gradually revealed that controlling the metabolic pathways of either type of cell can overcome T-cell dysfunction and reprogram the metabolic balance in the tumor microenvironment. Here, we summarize the role of immune metabolism in T-cell-based immune surveillance and cancer immune escape. This new concept has boosted the development of combination therapy and predictive biomarkers in cancer immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida, Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
211
|
Ji J, Tao P, Wang Q, Li L, Xu Y. SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy. Endocr Metab Immune Disord Drug Targets 2021; 21:835-842. [PMID: 33121427 DOI: 10.2174/1871530320666201029143606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is referred to as the microvascular complication of the kidneys induced by insufficient production of insulin or an ineffective cellular response to insulin, and is the main cause of end-stage renal disease. Currently, available therapies provide only symptomatic relief and fail to improve the outcome of diabetic nephropathy. Studies on diabetic animals had shown overexpression of SIRT1 in both podocytes and renal tubular cells attenuated proteinuria and kidney injury in the animal model of DN. Sirt1 exerts renoprotective effects in DKD in part through the deacetylation of transcription factors involved in the disease pathogenesis, such as NF-кB, Smad3, FOXO and p53. The purpose of this review is to highlight the protective mechanism of SIRT1 involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Jing Ji
- Department of Nephrology, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Pengyu Tao
- Basic Medical School, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Lingxing Li
- Department of Cardiovascular Medicine, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong Province, China
| | - Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
212
|
Mohammed I, Hollenberg MD, Ding H, Triggle CR. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front Endocrinol (Lausanne) 2021; 12:718942. [PMID: 34421827 PMCID: PMC8374068 DOI: 10.3389/fendo.2021.718942] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
The numerous beneficial health outcomes associated with the use of metformin to treat patients with type 2 diabetes (T2DM), together with data from pre-clinical studies in animals including the nematode, C. elegans, and mice have prompted investigations into whether metformin has therapeutic utility as an anti-aging drug that may also extend lifespan. Indeed, clinical trials, including the MILES (Metformin In Longevity Study) and TAME (Targeting Aging with Metformin), have been designed to assess the potential benefits of metformin as an anti-aging drug. Preliminary analysis of results from MILES indicate that metformin may induce anti-aging transcriptional changes; however it remains controversial as to whether metformin is protective in those subjects free of disease. Furthermore, despite clinical use for over 60 years as an anti-diabetic drug, the cellular mechanisms by which metformin exerts either its actions remain unclear. In this review, we have critically evaluated the literature that has investigated the effects of metformin on aging, healthspan and lifespan in humans as well as other species. In preparing this review, particular attention has been placed on the strength and reproducibility of data and quality of the study protocols with respect to the pharmacokinetic and pharmacodynamic properties of metformin. We conclude that despite data in support of anti-aging benefits, the evidence that metformin increases lifespan remains controversial. However, via its ability to reduce early mortality associated with various diseases, including diabetes, cardiovascular disease, cognitive decline and cancer, metformin can improve healthspan thereby extending the period of life spent in good health. Based on the available evidence we conclude that the beneficial effects of metformin on aging and healthspan are primarily indirect via its effects on cellular metabolism and result from its anti-hyperglycemic action, enhancing insulin sensitivity, reduction of oxidative stress and protective effects on the endothelium and vascular function.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- *Correspondence: Chris R. Triggle, ; Ibrahim Mohammed,
| | - Morley D. Hollenberg
- Inflammation Research Network and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Hong Ding
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- Departments of Medical Education and Pharmacology, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
| | - Chris R. Triggle
- Department of Medical Education, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- Departments of Medical Education and Pharmacology, Weill Cornell Medicine-Qatar, Al-Rayyan, Qatar
- *Correspondence: Chris R. Triggle, ; Ibrahim Mohammed,
| |
Collapse
|
213
|
Zhao Z, Xue F, Gu Y, Han J, Jia Y, Ye K, Zhang Y. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7,8-dihydroxyflavone in female mice. Mol Metab 2020; 45:101149. [PMID: 33352311 PMCID: PMC7811170 DOI: 10.1016/j.molmet.2020.101149] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Objective 7,8-Dihydroxyflavone (7,8-DHF), a small molecular mimetic of brain-derived neurotrophic factor (BDNF), alleviates high-fat diet-induced obesity in female mice in a sex-specific manner by activating muscular tropomyosin-related kinase B (TrkB). However, the underlying molecular mechanism for this sex difference is unknown. Moreover, muscular estrogen receptor α (ERα) plays a critical role in metabolic diseases. Impaired ERα action is often accompanied by metabolic syndrome (MetS) in postmenopausal women. This study investigated whether muscular ERα is involved in the metabolic effects of 7,8-DHF. Methods For the in vivo studies, 72 female C57BL/6J mice were given a low-fat diet or high-fat diet, and both received daily intragastric administration of vehicle or 7,8-DHF for 24 weeks. The hypothalamic-pituitary-ovarian (HPO) axis function was assessed by investigating typical sex-related serum hormones and the ovarian reserve. Indicators of menopausal MetS, including lipid metabolism, insulin sensitivity, bone density, and serum inflammatory cytokines, were also evaluated. The expression levels of ERα and other relevant signaling molecules were also examined. In vitro, the molecular mechanism involved in the interplay of ERα and TrkB receptors was verified in differentiated C2C12 myotubes using several inhibitors and a lentivirus short hairpin RNA-knockdown strategy. Results Long-term oral administration of 7,8-DHF acted as a protective factor for the female HPO axis function, protecting against ovarian failure, earlier menopause, and sex hormone disorders, which was paralleled by the alleviation of MetS coupled with the production of ERα-rich, TrkB-activated, and uncoupling protein 1 (UCP1) high thermogenic skeletal muscle tissues. 7,8-DHF-stimulated transactivation of ERα at serine 118 (S118) and tyrosine 537 (Y537), which was crucial to activate the BDNF/TrkB signaling cascades. In turn, activation of BDNF/TrkB signaling was also required for the ligand-independent activation of ERα, especially at the Y537 phosphorylation site. In addition, Src family kinases played a core role in the interplay of ERα and TrkB, synergistically activating the signaling pathways related to energy metabolism. Conclusions These findings revealed a novel role of 7,8-DHF in protecting the function of the female HPO axis and activating tissue-specific ERα, which improves our understanding of this sex difference in 7,8-DHF-mediated maintenance of metabolic homeostasis and provides new therapeutic strategies for managing MetS in women. 7,8-DHF improves hypothalamic-pituitary-ovarian axis function in mature adult female mice. 7,8-DHF protects against ovarian failure and onset of earlier menopause. 7,8-DHF-induced transactivation of ERα is crucial to activate BDNF/TrkB signaling cascades. 7,8-DHF-induced activations of ERα and BDNF/TrkB signaling are interdependent. Src family kinases play a core role in the crosstalk of ERα and BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Fan Xue
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yanpei Gu
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Jianxin Han
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yingxian Jia
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
214
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|
215
|
Kritschil R, Zhang Z, Lei C, Zhong J, Dong Q, Lee J, Conover CA, Sowa G, Vallejo AN, Vo N. Effects of suppressing bioavailability of insulin-like growth factor on age-associated intervertebral disc degeneration. JOR Spine 2020; 3:e1112. [PMID: 33392450 PMCID: PMC7770198 DOI: 10.1002/jsp2.1112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/07/2023] Open
Abstract
Suppression of the insulin-like growth factor-1 (IGF-1) signaling pathway reduces age-related disorders and increases lifespan across species, making the IGF-1 pathway a key regulator of aging. Previous in vitro intervertebral disc cell studies have reported the pro-anabolic effect of exogenously adding IGF-1 on matrix production. However, the overall effects of suppressing IGF-1 signaling on age-related intervertebral disc degeneration (IDD) is not known. Here, the effects of suppressing IGF-1 signaling on age-related IDD in vivo were examined using PAPPA -/- mice. These are animals with targeted deletion of pregnancy-associated plasma protein A (PAPPA), the major protease that cleaves inhibitory IGF binding proteins that control bioavailability of IGF-1 for cell signaling. Compared to age-matched wild-type (Wt) littermates, reduced levels of matrix proteoglycan (PG) and aggrecan were seen in discs of 23-month old PAPPA -/- mice. Decreased aggrecanolysis and expression of two key catabolic markers, matrix metalloproteinase-3 and a disintegrin and metalloproteinase with thrombospondin motifs-4, were also observed in discs of old PAPPA -/- mice compared to Wt littermates. Suppressing IGF-1 signaling has been implicated to shift cellular metabolism toward maintenance rather than growth and decreasing cellular senescence. Along this line, discs of old PAPPA -/- mice also exhibited lower cellular senescence, assessed by p53 and lamin B1 markers. Collectively, the data reveal complex regulation of disc matrix homeostasis by PAPPA/IGF-1 signaling during chronologic aging, that is, reduced IGF-1 bioavailability confers the benefit of decreasing disc cellular senescence and matrix catabolism but also the disadvantage of decreasing disc PG matrix anabolism. This pathway requires further mechanistic elucidation before IGF-1 could be considered as a therapeutic growth factor for treating IDD.
Collapse
Affiliation(s)
- Rebecca Kritschil
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Zhongying Zhang
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Changbin Lei
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryFirst Affiliated Hospital of Jinan UniversityGuangdongChina
| | - Jiongbiao Zhong
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Spinal SurgeryThe First Affiliated Hospital of University of South ChinaHengyangHunanP.R.China
| | - Qing Dong
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joon Lee
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Gwendolyn Sowa
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Abbe N. Vallejo
- Department of Pediatrics, UPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nam Vo
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
216
|
Muñoz VR, Gaspar RC, Kuga GK, Pavan ICB, Simabuco FM, da Silva ASR, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. The Effects of Aging on Rho-Kinase and Insulin Signaling in Skeletal Muscle and White Adipose Tissue of Rats. J Gerontol A Biol Sci Med Sci 2020; 75:432-436. [PMID: 30596894 DOI: 10.1093/gerona/gly293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
The insulin receptor substrate 1 regulates insulin-mediated glucose uptake and is a target of Rho-kinase (Rock); however, the relationship between age-related insulin resistance and Rock signaling specifically in skeletal muscle and adipose tissue is unknown. We evaluated the content and activity of Rock in C2C12 myotubes, and in skeletal muscle and white adipose tissue (WAT) from two rodent models that differ in their patterns of body fat accumulation during aging (Wistar and Fischer 344 rats). Body fat gain in the Wistar rats was greater than in Fischer rats and only Wistar rats had impairment of whole-body insulin sensitivity. Rock activity and insulin signaling were impaired in skeletal muscle in both rat models, but only middle-aged Wistar rats had higher Rock activity in WAT. These data are consistent with a positive role of Rock in regulating insulin signaling in both skeletal muscle and its negative role in the adipose tissue, suggesting that Rock activity in adipose tissue is important in age-related insulin resistance.
Collapse
Affiliation(s)
- Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Gabriel Keine Kuga
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Postgraduate Program in Motor Science - São Paulo State University (UNESP).,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys Esper Cintra
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
217
|
Carter CS, Richardson A, Huffman DM, Austad S. Bring Back the Rat! J Gerontol A Biol Sci Med Sci 2020; 75:405-415. [PMID: 31894235 DOI: 10.1093/gerona/glz298] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
As 2020 is "The Year of the Rat" in the Chinese astrological calendar, it seems an appropriate time to consider whether we should bring back the laboratory rat to front-and-center in research on the basic biology of mammalian aging. Beginning in the 1970s, aging research with rats became common, peaking in 1992 but then declined dramatically by 2018 as the mouse became preeminent. The purpose of this review is to highlight some of the historical contributions as well as current advantages of the rat as a mammalian model of human aging, because we suspect at least a generation of researchers is no longer aware of this history or these advantages. Herein, we compare and contrast the mouse and rat in the context of several biological domains relevant to their use as appropriate models of aging: phylogeny/domestication, longevity interventions, pathology/physiology, and behavior/cognition. It is not the goal of this review to give a complete characterization of the differences between mice and rats, but to provide important examples of why using rats as well as mice is important to advance our understanding of the biology of aging.
Collapse
Affiliation(s)
- Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Science Center, and the Oklahoma City VA Medical Center
| | - Derek M Huffman
- Department of Molecular Pharmacology, Department of Medicine, and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham
| |
Collapse
|
218
|
Wang H, Wu Y, Fang R, Sa J, Li Z, Cao H, Cui Y. Time-Varying Gene Network Analysis of Human Prefrontal Cortex Development. Front Genet 2020; 11:574543. [PMID: 33304381 PMCID: PMC7701309 DOI: 10.3389/fgene.2020.574543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
The prefrontal cortex (PFC) constitutes a large part of the human central nervous system and is essential for the normal social affection and executive function of humans and other primates. Despite ongoing research in this region, the development of interactions between PFC genes over the lifespan is still unknown. To investigate the conversion of PFC gene interaction networks and further identify hub genes, we obtained time-series gene expression data of human PFC tissues from the Gene Expression Omnibus (GEO) database. A statistical model, loggle, was used to construct time-varying networks and several common network attributes were used to explore the development of PFC gene networks with age. Network similarity analysis showed that the development of human PFC is divided into three stages, namely, fast development period, deceleration to stationary period, and recession period. We identified some genes related to PFC development at these different stages, including genes involved in neuronal differentiation or synapse formation, genes involved in nerve impulse transmission, and genes involved in the development of myelin around neurons. Some of these genes are consistent with findings in previous reports. At the same time, we explored the development of several known KEGG pathways in PFC and corresponding hub genes. This study clarified the development trajectory of the interaction between PFC genes, and proposed a set of candidate genes related to PFC development, which helps further study of human brain development at the genomic level supplemental to regular anatomical analyses. The analytical process used in this study, involving the loggle model, similarity analysis, and central analysis, provides a comprehensive strategy to gain novel insights into the evolution and development of brain networks in other organisms.
Collapse
Affiliation(s)
- Huihui Wang
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yongqing Wu
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ruiling Fang
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jian Sa
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhi Li
- Department of Hematology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongyan Cao
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
219
|
Drijvers JM, Sharpe AH, Haigis MC. The effects of age and systemic metabolism on anti-tumor T cell responses. eLife 2020; 9:e62420. [PMID: 33170123 PMCID: PMC7655106 DOI: 10.7554/elife.62420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Average age and obesity prevalence are increasing globally. Both aging and obesity are characterized by profound systemic metabolic and immunologic changes and are cancer risk factors. The mechanisms linking age and body weight to cancer are incompletely understood, but recent studies have provided evidence that the anti-tumor immune response is reduced in both conditions, while responsiveness to immune checkpoint blockade, a form of cancer immunotherapy, is paradoxically intact. Dietary restriction, which promotes health and lifespan, may enhance cancer immunity. These findings illustrate that the systemic context can impact anti-tumor immunity and immunotherapy responsiveness. Here, we review the current knowledge of how age and systemic metabolic state affect the anti-tumor immune response, with an emphasis on CD8+ T cells, which are key players in anti-tumor immunity. A better understanding of the underlying mechanisms may lead to novel therapies enhancing anti-tumor immunity in the context of aging or metabolic dysfunction.
Collapse
Affiliation(s)
- Jefte M Drijvers
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
220
|
Huang X, Ouyang Q, Ran M, Zeng B, Deng L, Hu S, Yang M, Li G, Deng T, He M, Li T, Yang H, Zhang G, Zhang H, Zeng C, Wang J. The immune and metabolic changes with age in giant panda blood by combined transcriptome and DNA methylation analysis. Aging (Albany NY) 2020; 12:21777-21797. [PMID: 33188156 PMCID: PMC11623972 DOI: 10.18632/aging.103990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/14/2020] [Indexed: 11/25/2022]
Abstract
Giant panda (Ailuropoda melanoleuca) is an endangered mammalian species. Exploring immune and metabolic changes that occur in giant pandas with age is important for their protection. In this study, we systematically investigated the physiological and biochemical indicators in blood, as well as the transcriptome, and methylation profiles of young, adult, and old giant pandas. The white blood cell (WBC), neutrophil (NEU) counts and hemoglobin (HGB) concentrations increased significantly with age (young to adult), and some indicators related to blood glucose and lipids also changed significantly with age. In the transcriptome analysis, differentially expressed genes (DEGs) were found in comparisons of the young and adult (257), adult and old (20), young and old (744) groups. Separation of the DEGs into eight profiles according to the expression trend using short time-series expression miner (STEM) software revealed that most DEGs were downregulated with age. Functional analysis showed that most DEGs were associated with disease and that these DEGs were also associated with the immune system and metabolism. Furthermore, gene methylation in giant pandas decreased globally with age, and the expression of CCNE1, CD79A, IL1R1, and TCF7 showed a highly negative correlation with their degree of methylation. These results indicate that the giant panda's immune function improves gradually with age (young to adult), and that changes in the methylation profile are involved in the effects of age on immune and metabolic functions. These results have important implications for the understanding and conservation of giant pandas.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingxia Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guo Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Tao Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Ti Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Haidi Yang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Guiquan Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Heming Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in The Giant Panda National Park, Dujiangyan 611830, Sichuan, China
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
221
|
Forrester JV, Kuffova L, Delibegovic M. The Role of Inflammation in Diabetic Retinopathy. Front Immunol 2020; 11:583687. [PMID: 33240272 PMCID: PMC7677305 DOI: 10.3389/fimmu.2020.583687] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is central to pathogenic processes in diabetes mellitus and the metabolic syndrome and particularly implicates innate immunity in the development of complications. Inflammation is a primary event in Type 1 diabetes where infectious (viral) and/or autoimmune processes initiate disease; in contrast, chronic inflammation is typical in Type 2 diabetes and is considered a sequel to increasing insulin resistance and disturbed glucose metabolism. Diabetic retinopathy (DR) is perceived as a vascular and neurodegenerative disease which occurs after some years of poorly controlled diabetes. However, many of the clinical features of DR are late events and reflect the nature of the retinal architecture and its cellular composition. Retinal microvascular disease is, in fact, an early event pathogenetically, induced by low grade, persistent leukocyte activation which causes repeated episodes of capillary occlusion and, progressive, attritional retinal ischemia. The later, overt clinical signs of DR are a consequence of the retinal ischemia. Metabolic dysregulation involving both lipid and glucose metabolism may lead to leukocyte activation. On a molecular level, we have shown that macrophage-restricted protein tyrosine phosphatase 1B (PTP1B) is a key regulator of inflammation in the metabolic syndrome involving insulin resistance and it is possible that PTP1B dysregulation may underlie retinal microvascular disease. We have also shown that adherent CCR5+CD11b+ monocyte macrophages appear to be selectively involved in retinal microvascular occlusion. In this review, we discuss the relationship between early leukocyte activation and the later features of DR, common pathogenetic processes between diabetic microvascular disease and other vascular retinopathies, the mechanisms whereby leukocyte activation is induced in hyperglycemia and dyslipidemia, the signaling mechanisms involved in diabetic microvascular disease, and possible interventions which may prevent these retinopathies. We also address a possible role for adaptive immunity in DR. Although significant improvements in treatment of DR have been made with intravitreal anti-VEGF therapy, a sizeable proportion of patients, particularly with sight-threatening macular edema, fail to respond. Alternative therapies targeting inflammatory processes may offer an advantage.
Collapse
Affiliation(s)
- John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Mirela Delibegovic
- Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom
| |
Collapse
|
222
|
Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, Fernandez E, Galecki A, Garvey WT, Jayarathne H, Kumar N, Javors MA, Ladiges WC, Macchiarini F, Nelson J, Reifsnyder P, Rosenthal NA, Sadagurski M, Salmon AB, Smith DL, Snyder JM, Lombard DB, Strong R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight 2020; 5:140019. [PMID: 32990681 PMCID: PMC7710304 DOI: 10.1172/jci.insight.140019] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Canagliflozin (Cana) is an FDA-approved diabetes drug that protects against cardiovascular and kidney diseases. It also inhibits the sodium glucose transporter 2 by blocking renal reuptake and intestinal absorption of glucose. In the context of the mouse Interventions Testing Program, genetically heterogeneous mice were given chow containing Cana at 180 ppm at 7 months of age until their death. Cana extended median survival of male mice by 14%. Cana also increased by 9% the age for 90th percentile survival, with parallel effects seen at each of 3 test sites. Neither the distribution of inferred cause of death nor incidental pathology findings at end-of-life necropsies were altered by Cana. Moreover, although no life span benefits were seen in female mice, Cana led to lower fasting glucose and improved glucose tolerance in both sexes, diminishing fat mass in females only. Therefore, the life span benefit of Cana is likely to reflect blunting of peak glucose levels, because similar longevity effects are seen in male mice given acarbose, a diabetes drug that blocks glucose surges through a distinct mechanism, i.e., slowing breakdown of carbohydrate in the intestine. Interventions that control daily peak glucose levels deserve attention as possible preventive medicines to protect from a wide range of late-life neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, USA
| | - Molly Bogue
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Lucas Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Vivian Diaz
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Elizabeth Fernandez
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Andrzej Galecki
- Departments of Internal Medicine and Biostatistics, University of Michigan School of Medicine and School of Public Health, Ann Arbor, Michigan, USA
| | - W. Timothy Garvey
- Department of Nutrition Sciences and Diabetes Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Navasuja Kumar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Martin A. Javors
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Warren C. Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | - James Nelson
- Sam and Ann Barshop Institute for Longevity and Aging Research and Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, Texas, USA
| | | | | | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Adam B. Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences and Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M. Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - David B. Lombard
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Randy Strong
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| |
Collapse
|
223
|
Dai N, Shi Q, Hua Y, Guo Y, Bian Z, Li L, Chen Z, Lu Y. Internal fat mediates the impact of age on diabetes onset in chinese people between 30 and 44 years old. ENDOCRINOL DIAB NUTR 2020; 67:594-601. [PMID: 32224148 PMCID: PMC7674848 DOI: 10.1016/j.endinu.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 11/25/2022]
Abstract
AIMS We sought to measure the effect of controlling body fat indexes on decreasing the incidence of type 2 diabetes mellitus (T2DM) mathematically. METHODS Study samples were selected from a well-established cohort in Suzhou, China between 2004 and 2008, comprising 6364 males and 9678 females. The questionnaire contained socio-demographic characteristics, smoking, alcohol consumption, diet, physical activity, personal and family medical history and current medication. Multiple linear regression, Cox regression and mediation analyses were performed to determine the relationship among age, body fat indexes and T2DM onset. RESULTS All the three body fat indexes [the body mass index (BMI), waist-to-hip ratio (WHR) and body fat percentage] showed a significant positive association (P<0.05) with age and T2DM. Significant indirect effects (IE) were detected for age, which were mediated respectively through WHR [IE=1.10, 95%CI: 1.07-1.13; P<0.001], the BMI (IE=1.15, 95%CI: 1.11-1.18; P<0.001), and body fat percentage (IE=1.09, 95%CI: 1.07-1.12; P<0.001). The combined body fat index score demonstrated a significant association with age (P<0.001) and a stronger relationship with the onset of diabetes (P<0.001) along with a significant mediating effect (IE=1.17; 95%CI: 1.13-1.22; P<0.001). The total effect of age on T2DM was 1.60 (95%CI: 1.21-2.10; P=0.0008). As a result, the three body fat indexes jointly mediated 33.97% of the age impact on diabetes onset. CONCLUSIONS This pilot study revealed important roles for body fat indexes in mediating the age pathway to the onset of diabetes. Controling body fat in the appropriate range could reduce 33.97% of the risk of T2DM onset with increasing age.
Collapse
Affiliation(s)
- Ningbin Dai
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Qianwen Shi
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Yujie Hua
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yan Lu
- Suzhou Center for Disease Control and Prevention, Suzhou, China.
| |
Collapse
|
224
|
Meade RD, Akerman AP, Notley SR, McGinn R, Poirier P, Gosselin P, Kenny GP. Physiological factors characterizing heat-vulnerable older adults: A narrative review. ENVIRONMENT INTERNATIONAL 2020; 144:105909. [PMID: 32919284 DOI: 10.1016/j.envint.2020.105909] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/17/2020] [Indexed: 05/26/2023]
Abstract
More frequent and intense periods of extreme heat (heatwaves) represent the most direct challenge to human health posed by climate change. Older adults are particularly vulnerable, especially those with common age-associated chronic health conditions (e.g., cardiovascular disease, hypertension, obesity, type 2 diabetes, chronic kidney disease). In parallel, the global population is aging and age-associated disease rates are on the rise. Impairments in the physiological responses tasked with maintaining homeostasis during heat exposure have long been thought to contribute to increased risk of health disorders in older adults during heatwaves. As such, a comprehensive overview of the provisional links between age-related physiological dysfunction and elevated risk of heat-related injury in older adults would be of great value to healthcare officials and policy makers concerned with protecting heat-vulnerable sectors of the population from the adverse health impacts of heatwaves. In this narrative review, we therefore summarize our current understanding of the physiological mechanisms by which aging impairs the regulation of body temperature, hemodynamic stability and hydration status. We then examine how these impairments may contribute to acute pathophysiological events common during heatwaves (e.g., heatstroke, major adverse cardiovascular events, acute kidney injury) and discuss how age-associated chronic health conditions may exacerbate those impairments. Finally, we briefly consider the importance of physiological research in the development of climate-health programs aimed at protecting heat-vulnerable individuals.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan McGinn
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Paul Poirier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Pierre Gosselin
- Institut National de Santé Publique du Québec and Université Laval, Québec, Québec, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
225
|
ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion 2020; 55:54-63. [DOI: 10.1016/j.mito.2020.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
|
226
|
Sathyan S, Ayers E, Gao T, Weiss EF, Milman S, Verghese J, Barzilai N. Plasma proteomic profile of age, health span, and all-cause mortality in older adults. Aging Cell 2020; 19:e13250. [PMID: 33089916 PMCID: PMC7681045 DOI: 10.1111/acel.13250] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is a complex trait characterized by a diverse spectrum of endophenotypes. By utilizing the SomaScan® proteomic platform in 1,025 participants of the LonGenity cohort (age range: 65–95, 55.7% females), we found that 754 of 4,265 proteins were associated with chronological age. Pleiotrophin (PTN; β[SE] = 0.0262 [0.0012]; p = 3.21 × 10−86), WNT1‐inducible‐signaling pathway protein 2 (WISP‐2; β[SE] = 0.0189 [0.0009]; p = 4.60 × 10−82), chordin‐like protein 1 (CRDL1; β[SE] = 0.0203[0.0010]; p = 1.45 × 10−77), transgelin (TAGL; β[SE] = 0.0215 [0.0011]; p = 9.70 × 10−71), and R‐spondin‐1(RSPO1; β[SE] = 0.0208 [0.0011]; p = 1.09 × 10−70), were the proteins most significantly associated with age. Weighted gene co‐expression network analysis identified two of nine modules (clusters of highly correlated proteins) to be significantly associated with chronological age and demonstrated that the biology of aging overlapped with complex age‐associated diseases and other age‐related traits. The correlation between proteomic age prediction based on elastic net regression and chronological age was 0.8 (p < 2.2E−16). Pathway analysis showed that inflammatory response, organismal injury and abnormalities, cell and organismal survival, and death pathways were associated with aging. The present study made novel associations between a number of proteins and aging, constructed a proteomic age model that predicted mortality, and suggested possible proteomic signatures possessed by a cohort enriched for familial exceptional longevity.
Collapse
Affiliation(s)
- Sanish Sathyan
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Emmeline Ayers
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Tina Gao
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
| | - Erica F. Weiss
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Sofiya Milman
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | - Joe Verghese
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| |
Collapse
|
227
|
Sciarretta S, Forte M, Castoldi F, Frati G, Versaci F, Sadoshima J, Kroemer G, Maiuri MC. Caloric restriction mimetics for the treatment of cardiovascular diseases. Cardiovasc Res 2020; 117:1434-1449. [PMID: 33098415 DOI: 10.1093/cvr/cvaa297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Caloric restriction mimetics (CRMs) are emerging as potential therapeutic agents for the treatment of cardiovascular diseases. CRMs include natural and synthetic compounds able to inhibit protein acetyltransferases, to interfere with acetyl coenzyme A biosynthesis, or to activate (de)acetyltransferase proteins. These modifications mimic the effects of caloric restriction, which is associated with the activation of autophagy. Previous evidence demonstrated the ability of CRMs to ameliorate cardiac function and reduce cardiac hypertrophy and maladaptive remodelling in animal models of ageing, mechanical overload, chronic myocardial ischaemia, and in genetic and metabolic cardiomyopathies. In addition, CRMs were found to reduce acute ischaemia-reperfusion injury. In many cases, these beneficial effects of CRMs appeared to be mediated by autophagy activation. In the present review, we discuss the relevant literature about the role of different CRMs in animal models of cardiac diseases, emphasizing the molecular mechanisms underlying the beneficial effects of these compounds and their potential future clinical application.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Versaci
- Division of Cardiology, S. Maria Goretti Hospital, 04100 Latina, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, G-609, Newark, NJ 07103, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou Jiangsu 215163, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| |
Collapse
|
228
|
Schneider A, Saccon TD, Garcia DN, Zanini BM, Isola JVV, Hense JD, Alvarado-Rincón JA, Cavalcante MB, Mason JB, Stout MB, Bartke A, Masternak MM. The Interconnections Between Somatic and Ovarian Aging in Murine Models. J Gerontol A Biol Sci Med Sci 2020; 76:1579-1586. [PMID: 33037434 DOI: 10.1093/gerona/glaa258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian female is born with a limited ovarian reserve of primordial follicles. These primordial follicles are slowly activated throughout the reproductive lifecycle, thereby determining lifecycle length. Once primordial follicles are exhausted, women undergo menopause, which is associated with several metabolic perturbations and a higher mortality risk. Long before exhaustion of the reserve, females experience severe declines in fertility and health. As such, significant efforts have been made to unravel the mechanisms that promote ovarian aging and insufficiency. In this review, we explain how long-living murine models can provide insights in the regulation of ovarian aging. There is now overwhelming evidence that most life-span-extending strategies, and long-living mutant models simultaneously delay ovarian aging. Therefore, it appears that the same mechanisms that regulate somatic aging may also be modulating ovarian aging and germ cell exhaustion. We explore several potential contributing mechanisms including insulin resistance, inflammation, and DNA damage-all of which are hallmarks of cellular aging throughout the body including the ovary. These findings are in alignment with the disposable soma theory of aging, which dictates a trade-off between growth, reproduction, and DNA repair. Therefore, delaying ovarian aging will not only increase the fertility window of middle age females, but may also actively prevent menopausal-related decline in systemic health parameters, compressing the period of morbidity in mid-to-late life in females.
Collapse
Affiliation(s)
- Augusto Schneider
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Tatiana D Saccon
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Driele N Garcia
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Bianka M Zanini
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - José V V Isola
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Jéssica D Hense
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Joao A Alvarado-Rincón
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | | | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois, University School of Medicine, Springfield
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
| |
Collapse
|
229
|
Resistance exercise attenuates postprandial metabolic responses to a high-fat meal similarly in younger and older men. Nutr Res 2020; 83:73-85. [PMID: 33032071 DOI: 10.1016/j.nutres.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/24/2023]
Abstract
This study examined whether an acute bout of resistance exercise (RE) attenuated postprandial responses to a high fat meal (HFM) similarly in younger versus older adult men, and probed relationships among skeletal muscle mass (SMM), age, the metabolic load index (MLI) response, and the improvement in the MLI elicited by RE versus CON. Eleven younger (24 ± 4y) and 9 older (61 ± 5y) men completed RE or control (CON) the night prior to a HFM. Before and 1, 3, and 5 hours after the HFM, blood triglycerides (TG), glucose (GLU), MLI, and cholesterol concentrations were quantified. Following a 7 ± 1-day washout period, participants returned and completed the opposite condition. Independent of age, TGs were 32.1 ± 27.1 mg/dL and 52.7 ± 26.8 mg/dL lower in RE than CON at 3 and 5 hours, respectively. MLI was also 24.3 to 56.9 mg/dL lower in RE than CON from 1 to 5 hours post-meal independent of age. The TG and MLI area under the curves (AUCs) were 15% to 31% lower in RE than CON. The GLU response was greater in the older than younger men at 1 to 5 hours post-meal. Moreover, the average GLU response was 5.6 ± 2.5 mg/dL lower in RE versus CON and was inversely related to SMM across the sample (r = -0.615). However, age, volume, or SMM were not related to the MLIAUC, nor to the improvement elicited by RE. Therefore, although the older men displayed a greater postprandial glucose response than the younger men, RE attenuated the postprandial metabolic response to a HFM similarly in younger and older men.
Collapse
|
230
|
Zhang P, Su Q, Ye X, Guan P, Chen C, Hang Y, Dong J, Xu Z, Hu W. Trends in LDL-C and Non-HDL-C Levels with Age. Aging Dis 2020; 11:1046-1057. [PMID: 33014521 PMCID: PMC7505266 DOI: 10.14336/ad.2019.1025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Understanding how blood lipid levels change with age in the general population is a precondition to defining dyslipidemia. To explore age-related trends in LDL-C and non-HDL-C levels in the general population, a large-scale cross-sectional study with 49,201 males and 35,084 females was adopted. Trends of non-HDL-C and LDL-C levels were plotted against each age (18 to 85 years old, one-year increments); the trends, as well as the influence of confounding factors on the trends, were validated and adjusted by linear regression modeling. The trajectory of LDL-C and non-HDL-C levels by age displayed a nonlinear correlation trend. Further multivariate linear regression modeling that incorporated sex-specific age phases showed that age was positively associated with LDL-C and non-HDL-C levels, with coefficients of 0.018 and 0.031, respectively, in females aged ≥18 to ≤56 years and negatively associated with LDL-C and non-HDL-C levels, with coefficients of -0·013 and -0.015, respectively, in females aged ≥57 years. The LDL-C and non-HDL-C levels increased with age in males ≥18 to ≤33 years of age, with coefficients of 0.025 and 0.053, respectively; the lipid levels plateaued at ≥34 to ≤56 years of age and subsequently decreased in those ≥57 years of age, with coefficients of -0.008 and -0.018, respectively. In contrast, pooled analyses without age stratification concealed these details. In conclusion, fluctuating increasing and decreasing lipid levels occurred with phases of aging in both sexes. Well-grounded age stratification is necessary to improve lipid-related pathophysiological studies.
Collapse
Affiliation(s)
- Peng Zhang
- 1Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Qian Su
- 1Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaomiao Ye
- 1Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ping Guan
- 1Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Chengjun Chen
- 1Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanwen Hang
- 1Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- 1Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhongjie Xu
- 2Shanghai Minhang District Medical Emergency Center, Shanghai, China
| | - Wei Hu
- 1Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
231
|
Is metformin a geroprotector? A peek into the current clinical and experimental data. Mech Ageing Dev 2020; 191:111350. [DOI: 10.1016/j.mad.2020.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
|
232
|
Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020; 12:254. [PMID: 33088270 PMCID: PMC7497228 DOI: 10.3389/fnagi.2020.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species and reactive nitrogen species (RONS) are by-products of aerobic metabolism. RONS trigger a signaling cascade that can be transduced through oxidation-reduction (redox)-based post-translational modifications (redox PTMs) of protein thiols. This redox signaling is essential for normal cellular physiology and coordinately regulates the function of redox-sensitive proteins. It plays a particularly important role in the brain, which is a major producer of RONS. Aberrant redox PTMs of protein thiols can impair protein function and are associated with several diseases. This mini review article aims to evaluate the role of redox PTMs of protein thiols, in particular S-nitrosation, in brain aging, and in neurodegenerative diseases. It also discusses the potential of using redox-based therapeutic approaches for neurodegenerative conditions.
Collapse
Affiliation(s)
- Mattéa J Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
233
|
Stabilization of telomere by the antioxidant property of polyphenols: Anti-aging potential. Life Sci 2020; 259:118341. [PMID: 32853653 DOI: 10.1016/j.lfs.2020.118341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022]
Abstract
Aging is a form of a gradual loss of physiological integrity that results in impaired cellular function and ultimately increased vulnerability to disease and death. This process is a significant risk factor for critical age-related disorders such as cancer, diabetes, cardiovascular disease, and neurological conditions. Several mechanisms contribute to aging, most notably progressive telomeres shortening, which can be counteracted by telomerase enzyme activity and increasing in this enzyme activity associated with partly delaying the onset of aging. Individual behaviors and environmental factors such as nutrition affect the life-span by impact the telomerase activity rate. Healthy eating habits, including antioxidant intakes, such as polyphenols, can have a positive effect on telomere length by this mechanism. In this review, after studying the underlying mechanisms of aging and understanding the relationships between telomeres, telomerase, and aging, it has been attempted to explain the effect of polyphenols on reversing the oxidative stress and aging process.
Collapse
|
234
|
Biological and Functional Biomarkers of Aging: Definition, Characteristics, and How They Can Impact Everyday Cancer Treatment. Curr Oncol Rep 2020; 22:115. [PMID: 32827112 PMCID: PMC7442549 DOI: 10.1007/s11912-020-00977-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of Review Recognize which are the elements that predict why a person is aging faster or slower and which intervention we can arrange to slow down the process, which permits to prevent or delay the progression of multimorbidity and disability. Recent Findings Aging is a complex process that leads to changes in all the systems of the body and all the functions of the person; however, aging develops at different rates in different people, and chronological age is not always consistent with biological age. Summary Gerontologists are focused not only on finding the best theory able to explain aging but also on identifying one or more markers, which are able to describe aging processes. These biomarkers are necessary to better define the aging-related pathologies, manage multimorbidity, and improve the quality of life. The aim of this paper is to review the most recent evidence on aging biomarkers and the clusters related to them for personalization of treatments.
Collapse
|
235
|
Abstract
BACKGROUND Insulin shares a limited physiological concentration range with other endocrine hormones. Not only too low, but also too high systemic insulin levels are detrimental for body functions. MAIN BODY The physiological function and clinical relevance of insulin are usually seen in association with its role in maintaining glucose homeostasis. However, insulin is an anabolic hormone which stimulates a large number of cellular responses. Not only too low, but also excess insulin concentrations are detrimental to the physiological balance. Although the glucoregulatory activity of insulin is mitigated during hyperinsulinemia by dampening the efficiency of insulin signaling ("insulin resistance"), this is not the case for most other hormonal actions of insulin, including the promotion of protein synthesis, de novo lipogenesis, and cell proliferation; the inhibition of lipolysis, of autophagy-dependent cellular turnover, and of nuclear factor E2-related factor-2 (Nrf2)-dependent antioxidative; and other defense mechanisms. Hence, there is no general insulin resistance but selective impairment of insulin signaling which causes less glucose uptake from the blood and reduced activation of endothelial NO synthase (eNOS). Because of the largely unrestricted insulin signaling, hyperinsulinemia increases the risk of obesity, type 2 diabetes, and cardiovascular disease and decreases health span and life expectancy. In epidemiological studies, high-dose insulin therapy is associated with an increased risk of cardiovascular disease. Randomized controlled trials of insulin treatment did not observe any effect on disease risk, but these trials only studied low insulin doses up to 40 IU/day. Proof for a causal link between elevated insulin levels and cardiovascular disease risk comes from Mendelian randomization studies comparing individuals with genetically controlled low or high insulin production. CONCLUSIONS The detrimental actions of prolonged high insulin concentrations, seen also in cell culture, argue in favor of a lifestyle that limits circadian insulin levels. The health risks associated with hyperinsulinemia may have implications for treatment regimens used in type 2 diabetes.
Collapse
|
236
|
Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int J Mol Sci 2020; 21:ijms21175964. [PMID: 32825115 PMCID: PMC7504224 DOI: 10.3390/ijms21175964] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic dysfunctions induced by high fat diet (HFD) consumption are not limited to organs involved in energy metabolism but cause also a chronic low-grade systemic inflammation that affects the whole body including the central nervous system. The brain has been considered for a long time to be protected from systemic inflammation by the blood–brain barrier, but more recent data indicated an association between obesity and neurodegeneration. Moreover, obesity-related consequences, such as insulin and leptin resistance, mitochondrial dysfunction and reactive oxygen species (ROS) production, may anticipate and accelerate the physiological aging processes characterized by systemic inflammation and higher susceptibility to neurological disorders. Here, we discussed the link between obesity-related metabolic dysfunctions and neuroinflammation, with particular attention to molecules regulating the interplay between energetic impairment and altered synaptic plasticity, for instance AMP-activated protein kinase (AMPK) and Brain-derived neurotrophic factor (BDNF). The effects of HFD-induced neuroinflammation on neuronal plasticity may be mediated by altered brain mitochondrial functions. Since mitochondria play a key role in synaptic areas, providing energy to support synaptic plasticity and controlling ROS production, the negative effects of HFD may be more pronounced in synapses. In conclusion, it will be emphasized how HFD-induced metabolic alterations, systemic inflammation, oxidative stress, neuroinflammation and impaired brain plasticity are tightly interconnected processes, implicated in the pathogenesis of neurological diseases.
Collapse
|
237
|
Yamamuro T, Kawabata T, Fukuhara A, Saita S, Nakamura S, Takeshita H, Fujiwara M, Enokidani Y, Yoshida G, Tabata K, Hamasaki M, Kuma A, Yamamoto K, Shimomura I, Yoshimori T. Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat Commun 2020; 11:4150. [PMID: 32811819 PMCID: PMC7434891 DOI: 10.1038/s41467-020-17985-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
The systemic decline in autophagic activity with age impairs homeostasis in several tissues, leading to age-related diseases. A mechanistic understanding of adipocyte dysfunction with age could help to prevent age-related metabolic disorders, but the role of autophagy in aged adipocytes remains unclear. Here we show that, in contrast to other tissues, aged adipocytes upregulate autophagy due to a decline in the levels of Rubicon, a negative regulator of autophagy. Rubicon knockout in adipocytes causes fat atrophy and hepatic lipid accumulation due to reductions in the expression of adipogenic genes, which can be recovered by activation of PPARγ. SRC-1 and TIF2, coactivators of PPARγ, are degraded by autophagy in a manner that depends on their binding to GABARAP family proteins, and are significantly downregulated in Rubicon-ablated or aged adipocytes. Hence, we propose that age-dependent decline in adipose Rubicon exacerbates metabolic disorders by promoting excess autophagic degradation of SRC-1 and TIF2.
Collapse
Affiliation(s)
- Tadashi Yamamuro
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Kawabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shotaro Saita
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Fujiwara
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yusuke Enokidani
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Gota Yoshida
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Laboratory of Intracellular Membrane Dynamics, Graduate school of Frontier Biosciences, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| |
Collapse
|
238
|
Shen J, Zhu X, Liu H. MiR-483 induces senescence of human adipose-derived mesenchymal stem cells through IGF1 inhibition. Aging (Albany NY) 2020; 12:15756-15770. [PMID: 32805717 PMCID: PMC7467354 DOI: 10.18632/aging.103818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Human adipose-derived mesenchymal stem cells (hADSCs) are an ideal source of seed cells for regenerative applications and tissue engineering. However, long-term in vitro culture of hADSCs reduces their quantity and quality, which lessens their value in research and clinical applications. The molecular mechanisms underlying this biological process are poorly defined. Recently identified microRNAs (miRNAs) have emerged as critical modulators of cellular senescence. In this study, we examined the changes in hADSCs undergoing senescence. Significant miR-483-3p upregulation was noted during in vitro passaging of hADSCs, which correlated with the adipogenic differentiation and cellular senescence. Knockdown of miR-483-3p retarded the adipogenic differentiation potential of hADSCs and reduced cellular senescence. Dual-luciferase reporter assays identified insulin-like growth factor-1 (IGF1) as the target gene of miR-483-3p. IGF1 inhibition confirmed its inhibitory effects on replicative senescence in hADSCs. In conclusion, our study revealed essential regulatory roles of miR-483-3p in the adipogenesis and aging of hADSCs mediated by targeting IGF1.
Collapse
Affiliation(s)
- Junyan Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Xiaoqi Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
239
|
Yates T, Edwardson CL, Celis-Morales C, Biddle SJH, Bodicoat D, Davies MJ, Esliger D, Henson J, Kazi A, Khunti K, Sattar N, Sinclair AJ, Rowlands A, Velayudhan L, Zaccardi F, Gill JMR. Metabolic Effects of Breaking Prolonged Sitting With Standing or Light Walking in Older South Asians and White Europeans: A Randomized Acute Study. J Gerontol A Biol Sci Med Sci 2020; 75:139-146. [PMID: 30403772 PMCID: PMC6909896 DOI: 10.1093/gerona/gly252] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Background Prolonged sitting is common in older adults and is associated with insulin resistance and poor cardiometabolic health. We investigate whether breaking prolonged sitting with regular short bouts of standing or light walking improves postprandial metabolism in older white European and South Asian adults and whether effects are modified by ethnic group. Methods Thirty South Asian (15 women) and 30 white European (14 women) older adults (aged 65–79 years) undertook three experimental conditions in random order. (a) Prolonged sitting: continuous sitting during an observation period if 7.5 hours consuming two standardized mixed meals. (b) Standing breaks: sitting interrupted with 5 minutes of standing every 30 minutes (accumulating 60 minutes of standing over the observation period). (c) Walking breaks: sitting interrupted with 5 minutes of self-paced light walking every 30 minutes (accumulating 60 minutes of walking). Blood samples (glucose, insulin, triglycerides) and blood pressure were sampled regularly throughout each condition. Results Compared with prolonged sitting, walking breaks lowered postprandial insulin by 16.3 mU/L, (95% CI: 19.7, 22.0) with greater reductions (p = .029) seen in South Asians (22.4 mU/L; 12.4, 32.4) than white Europeans (10.3 mU/L; 5.9, 14.7). Glucose (0.3 mmol/L; 0.1, 0.5) and blood pressure (4 mm Hg; 2, 6), but not triglycerides, were lower with walking breaks, with no ethnic differences. Standing breaks did not improve any outcome. Conclusions Breaking prolonged sitting with short bouts of light walking, but not standing, resulted in clinically meaningful improvements in markers of metabolic health in older adults, with South Asians gaining a greater reduction in postprandial insulin. Trial Registration NCT02453204
Collapse
Affiliation(s)
- Thomas Yates
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Australia
- NIHR Leicester Biomedical Research Centre, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Australia
- Address correspondence to: Thomas Yates, PhD, Leicester Diabetes Centre, Leicester General Hospital, Leicester, LE5 4PW, UK. E-mail:
| | - Charlotte L Edwardson
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Australia
- NIHR Leicester Biomedical Research Centre, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Australia
| | - Carlos Celis-Morales
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Australia
| | - Stuart J H Biddle
- Institute for Resilient Regions, University of Southern Queensland, Springfield Central, Australia
| | - Danielle Bodicoat
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Australia
| | - Melanie J Davies
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Australia
- NIHR Leicester Biomedical Research Centre, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Australia
| | - Dale Esliger
- School of Sport, Exercise, and Health Sciences, Loughborough University, Birmingham
- National Centre for Sport and Exercise Medicine, University of Loughborough, Diabetes Frail Ltd and University of Aston, Birmingham
| | - Joe Henson
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Australia
- NIHR Leicester Biomedical Research Centre, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Australia
| | - Aadil Kazi
- Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Diabetes Frail Ltd and University of Aston, Birmingham
| | - Kamesh Khunti
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Australia
- NIHR Collaborations for Leadership in Applied Health Research and Care (CLAHRC) East Midlands, Diabetes Frail Ltd and University of Aston, Birmingham
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Australia
| | - Alan J Sinclair
- Foundation for Diabetes Research in Older People, Diabetes Frail Ltd and University of Aston, Birmingham
| | - Alex Rowlands
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Australia
- NIHR Leicester Biomedical Research Centre, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Australia
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology and Neurosciences, King’s College London
- Department of Health Sciences, University of Leicester
| | - Francesco Zaccardi
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Australia
| | - Jason M R Gill
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Australia
| |
Collapse
|
240
|
Lee JY, Kennedy BK, Liao CY. Mechanistic target of rapamycin signaling in mouse models of accelerated aging. J Gerontol A Biol Sci Med Sci 2020; 75:64-72. [PMID: 30900725 DOI: 10.1093/gerona/glz059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an essential nutrient-sensing kinase that integrates and regulates a number of fundamental cellular processes required for cell growth, cell motility, translation, metabolism, and autophagy. mTOR signaling has been implicated in the progression of many human diseases, and its dysregulation has been reported in several pathological processes, especially in age-related human diseases and mouse models of accelerated aging. In addition, many studies have demonstrated that the regulation of mTOR activity has a beneficial effect on longevity in several mouse models of aging. However, not all mouse models of accelerated aging show positive effects on aging-associated phenotypes in response to targeting mTOR signaling. Here, we review the effects of interventions that modulate mTOR signaling on aging-related phenotypes in different mouse models of accelerated aging and discuss their implications with respect to aging and aging-related disorders.
Collapse
Affiliation(s)
- Jin Young Lee
- Buck Institute for Research on Aging, Novato, California
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, California
- Department of Biochemistry and Physiology, National University of Singapore, Singapore
- Centre for Healthy Ageing, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, California
| |
Collapse
|
241
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
242
|
Pinto C, Ninfole E, Gaggiano L, Benedetti A, Marzioni M, Maroni L. Aging and the Biological Response to Liver Injury. Semin Liver Dis 2020; 40:225-232. [PMID: 31887774 DOI: 10.1055/s-0039-3402033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interest in understanding the aging process has recently risen in the scientific community. Aging, commonly defined as the functional decline in the function of organs and tissues, is indeed the major risk factor for the development of many chronic diseases, such as cardiovascular diseases, pathologies of nervous system, or cancer. To date, the influence of aging in the pathophysiology of liver and biliary diseases is not fully understood. Although liver cells have a high regenerative capacity, hepatocytes and cholangiocytes undergo extensive molecular changes in response to aging. Following time-dependent damage induced by aging, liver cells initially activate compensatory mechanisms that, if hyperstimulated, may lead to the decline of regenerative capacity and the development of pathologies. A deeper understanding of molecular aging has undoubtedly the potential to improve the clinical management of patients, possibly unveiling new pathways for selective drug treatment.
Collapse
Affiliation(s)
- Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Ninfole
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Gaggiano
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
243
|
Smith HJ, Sharma A, Mair WB. Metabolic Communication and Healthy Aging: Where Should We Focus Our Energy? Dev Cell 2020; 54:196-211. [PMID: 32619405 PMCID: PMC8168458 DOI: 10.1016/j.devcel.2020.06.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 02/09/2023]
Abstract
Aging is associated with a loss of metabolic homeostasis and plasticity, which is causally linked to multiple age-onset pathologies. The majority of the interventions-genetic, dietary, and pharmacological-that have been found to slow aging and protect against age-related disease in various organisms do so by targeting central metabolic pathways. However, targeting metabolic pathways chronically and ubiquitously makes it difficult to define the downstream effects responsible for lifespan extension and often results in negative effects on growth and health, limiting therapeutic potential. Insight into how metabolic signals are relayed between tissues, cells, and organelles opens up new avenues to target metabolic regulators locally rather than globally for healthy aging. In this review, we discuss the pro-longevity effects of targeting metabolic pathways in specific tissues and how these interventions communicate with distal cells to modulate aging. These studies may be crucial in designing interventions that promote longevity without negative health consequences.
Collapse
Affiliation(s)
- Hannah J Smith
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Arpit Sharma
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - William B Mair
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.
| |
Collapse
|
244
|
Gnad T, Navarro G, Lahesmaa M, Reverte-Salisa L, Copperi F, Cordomi A, Naumann J, Hochhäuser A, Haufs-Brusberg S, Wenzel D, Suhr F, Jespersen NZ, Scheele C, Tsvilovskyy V, Brinkmann C, Rittweger J, Dani C, Kranz M, Deuther-Conrad W, Eltzschig HK, Niemi T, Taittonen M, Brust P, Nuutila P, Pardo L, Fleischmann BK, Blüher M, Franco R, Bloch W, Virtanen KA, Pfeifer A. Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metab 2020; 32:56-70.e7. [PMID: 32589947 PMCID: PMC7437516 DOI: 10.1016/j.cmet.2020.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
The combination of aging populations with the obesity pandemic results in an alarming rise in non-communicable diseases. Here, we show that the enigmatic adenosine A2B receptor (A2B) is abundantly expressed in skeletal muscle (SKM) as well as brown adipose tissue (BAT) and might be targeted to counteract age-related muscle atrophy (sarcopenia) as well as obesity. Mice with SKM-specific deletion of A2B exhibited sarcopenia, diminished muscle strength, and reduced energy expenditure (EE), whereas pharmacological A2B activation counteracted these processes. Adipose tissue-specific ablation of A2B exacerbated age-related processes and reduced BAT EE, whereas A2B stimulation ameliorated obesity. In humans, A2B expression correlated with EE in SKM, BAT activity, and abundance of thermogenic adipocytes in white fat. Moreover, A2B agonist treatment increased EE from human adipocytes, myocytes, and muscle explants. Mechanistically, A2B forms heterodimers required for adenosine signaling. Overall, adenosine/A2B signaling links muscle and BAT and has both anti-aging and anti-obesity potential.
Collapse
Affiliation(s)
- Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Minna Lahesmaa
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Laia Reverte-Salisa
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Francesca Copperi
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Arnau Cordomi
- Laboratory of Computational Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Aileen Hochhäuser
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Saskia Haufs-Brusberg
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany; Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Frank Suhr
- Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany; Exercise Physiology Research Group, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Naja Zenius Jespersen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christian Brinkmann
- Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Joern Rittweger
- Department of Muscle and Bone Metabolism, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Christian Dani
- Université Côte d'Azur, CNRS, Inserm, iBV, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Tarja Niemi
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Markku Taittonen
- Department of Anesthesiology, Turku University Hospital, Turku, Finland
| | - Peter Brust
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Wilhelm Bloch
- Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
245
|
Sub-nanowatt resolution direct calorimetry for probing real-time metabolic activity of individual C. elegans worms. Nat Commun 2020; 11:2983. [PMID: 32532993 PMCID: PMC7293274 DOI: 10.1038/s41467-020-16690-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022] Open
Abstract
Calorimetry has been widely used in metabolic studies, but direct measurements from individual small biological model organisms such as C. elegans or isolated single cells have been limited by poor sensitivity of existing techniques and difficulties in resolving very small heat outputs. Here, by careful thermal engineering, we developed a robust, highly sensitive and bio-compatible calorimetric platform that features a resolution of ~270 pW—more than a 500-fold improvement over the most sensitive calorimeter previously used for measuring the metabolic heat output of C. elegans. Using this calorimeter, we demonstrate time-resolved metabolic measurements of single C. elegans worms from larval to adult stages. Further, we show that the metabolic output is significantly lower in long-lived C. elegans daf-2 mutants. These demonstrations clearly highlight the broad potential of this tool for studying the role of metabolism in disease, development and aging of small model organisms and single cells. Calorimetry is widely used for metabolic studies, but measurements of single cells and small organisms are limited by the sensitivity of current techniques. Here the authors develop a sensitive platform for performing time-resolved metabolic measurements of single C. elegans worms from larval to adult stages.
Collapse
|
246
|
Zhang WB, Aleksic S, Gao T, Weiss EF, Demetriou E, Verghese J, Holtzer R, Barzilai N, Milman S. Insulin-like Growth Factor-1 and IGF Binding Proteins Predict All-Cause Mortality and Morbidity in Older Adults. Cells 2020; 9:cells9061368. [PMID: 32492897 PMCID: PMC7349399 DOI: 10.3390/cells9061368] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
While the growth hormone/insulin-like growth factor-1 (GH/IGF-1) pathway plays essential roles in growth and development, diminished signaling via this pathway in model organisms extends lifespan and health-span. In humans, circulating IGF-1 and IGF-binding proteins 3 and 1 (IGFBP-3 and 1), surrogate measures of GH/IGF-1 system activity, have not been consistently associated with morbidity and mortality. In a prospective cohort of independently-living older adults (n = 840, mean age 76.1 ± 6.8 years, 54.5% female, median follow-up 6.9 years), we evaluated the age- and sex-adjusted hazards for all-cause mortality and incident age-related diseases, including cardiovascular disease, diabetes, cancer, and multiple-domain cognitive impairment (MDCI), as predicted by baseline total serum IGF-1, IGF-1/IGFBP-3 molar ratio, IGFBP-3, and IGFBP-1 levels. All-cause mortality was positively associated with IGF-1/IGFBP-3 molar ratio (HR 1.28, 95% CI 1.05–1.57) and negatively with IGFBP-3 (HR 0.82, 95% CI 0.680–0.998). High serum IGF-1 predicted greater risk for MDCI (HR 1.56, 95% CI 1.08–2.26) and composite incident morbidity (HR 1.242, 95% CI 1.004–1.538), whereas high IGFBP-1 predicted lower risk for diabetes (HR 0.50, 95% CI 0.29–0.88). In conclusion, higher IGF-1 levels and bioavailability predicted mortality and morbidity risk, supporting the hypothesis that diminished GH/IGF-1 signaling may contribute to human longevity and health-span.
Collapse
Affiliation(s)
- William B. Zhang
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Sandra Aleksic
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Tina Gao
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
| | - Erica F. Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
| | - Eleni Demetriou
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY 10033, USA;
| | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
- Department of Medicine, Division of Geriatrics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.F.W.); (J.V.); (R.H.)
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY 10033, USA;
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sofiya Milman
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (W.B.Z.); (S.A.); (T.G.); (N.B.)
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
247
|
Li D, Zhang T, Lu J, Peng C, Lin L. Natural constituents from food sources as therapeutic agents for obesity and metabolic diseases targeting adipose tissue inflammation. Crit Rev Food Sci Nutr 2020; 61:1-19. [PMID: 32462898 DOI: 10.1080/10408398.2020.1768044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue, an endocrine and paracrine organ, plays critical roles in the regulation of whole-body metabolic homeostasis. Obesity is accompanied with a chronic low-grade inflammation status in adipose tissue, which disrupts its endocrine function and results in metabolic derangements, such as type 2 diabetes. Dietary bioactive components, such as flavonoids, polyphenols and unsaturated fatty acids from fruits and vegetables, have been widely revealed to alleviate both systemic and adipose tissue inflammation, and improve metabolic disorders. Remarkably, some dietary bioactive components mitigate the inflammatory response in adipocytes, macrophages, and other immune cells, and modulate the crosstalk between adipocytes and macrophages or other immune cells, in adipose tissue. Epidemiological and preclinical studies related to these substances have indicated beneficial effects on adipose tissue inflammation. The main purpose of this review is to provide a comprehensive and up-to-date state of knowledge on dietary components targeting adipose tissue inflammation and their underlying mechanisms. These natural products have great potential to be developed as functional food or lead compounds for treating and/or preventing metabolic disorders.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
248
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
249
|
Gene therapy using a novel G6PC-S298C variant enhances the long-term efficacy for treating glycogen storage disease type Ia. Biochem Biophys Res Commun 2020; 527:824-830. [PMID: 32430177 DOI: 10.1016/j.bbrc.2020.04.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
The current phase I/II clinical trial for human glycogen storage disease type-Ia (GSD-Ia) (NCT03517085) uses a recombinant adeno-associated virus (rAAV) vector expressing a codon-optimized human glucose-6-phosphatase-α (G6Pase-α or G6PC). DNA sequence changes introduced by codon-optimization can negatively impact gene expression. We therefore generated a novel variant in which a single amino acid change, S298C, is introduced into the native human G6PC sequence. Short term gene transfer study in G6pc-/- mice showed that the rAAV-G6PC-S298C vector is 3-fold more efficacious than the native rAAV-G6PC vector. We have shown previously that restoring 3% of normal hepatic G6Pase-α activity in G6pc-/- mice prevents hepatocellular adenoma/carcinoma (HCA/HCC) development and that mice harboring <3% of normal hepatic G6Pase-α activity are at risk of tumor development. We have also shown that G6Pase-α deficiency leads to hepatic autophagy impairment that can contribute to hepatocarcinogenesis. We now undertake a long-term (66-week) preclinical characterization of the rAAV-G6PC-S298C vector in GSD-Ia gene therapy. We show that the increased efficacy of rAAV-G6PC-S298C has enabled the G6pc-/- mice treated with a lower dose of this vector to survive long-term. We further show that mice expressing ≥3% of normal hepatic G6Pase-α activity do not develop hepatic tumors or autophagy impairment but mice expressing <3% of normal hepatic G6Pase-α activity display impaired hepatic autophagy with one developing HCA/HCC nodules. Our study shows that the rAAV-G6PC-S298C vector provides equal or greater efficacy to the codon optimization approach, offering a valuable alternative vector for clinical translation in human GSD-Ia.
Collapse
|
250
|
Lee HY, Hong IS. Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions. Curr Stem Cell Res Ther 2020; 15:531-546. [PMID: 32394844 DOI: 10.2174/1574888x15666200512105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|