201
|
Antiviral Activity of 3D, a Butene Lactone Derivative Against Influenza A Virus In Vitro and In Vivo. Viruses 2021; 13:v13020278. [PMID: 33670217 PMCID: PMC7916974 DOI: 10.3390/v13020278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus is a highly variable and contagious respiratory pathogen that can cause annual epidemics and it poses an enormous threat to public health. Therefore, there is an urgent need for a new generation of antiviral drugs to combat the emergence of drug-resistant strains of the influenza virus. A novel series of butene lactone derivatives were screened and the compound 3D was selected, as it exhibited in vitro potential antiviral activity against A/Weiss/43 H1N1 virus with low toxicity. In addition, 3D dose-dependently inhibited the viral replication, expression of viral mRNA and viral proteins. 3D exerted a suppressive effect on A/Virginia/ATCC2/2009 H1N1 and A/California/2/2014 H3N2 in vitro. The time-of-addition analysis indicated that 3D suppressed H1N1 in the early stage of its life cycle. A/Weiss/43 H1N1-induced apoptosis in A549 cells was reduced by 3D via the mitochondrial apoptosis pathway. 3D could decrease the production of H1N1-induced pro-inflammatory cytokines that are induced by H1N1 in vitro and in vivo. The administration of 3D reduced lung lesions and virus load in vivo. These results suggest that 3D, which is a butene lactone derivative, is a promising agent for the treatment of influenza A virus infection.
Collapse
|
202
|
Abstract
Recent studies have identified host long noncoding RNAs (lncRNAs) as key regulators of
host-virus interactions during viral infection. The influenza A virus (IAV) remains a
serious threat to public health and economic stability. It is well known that thousands of
lncRNAs are differentially expressed upon IAV infection, some of which regulate IAV
infection by modulating the host innate immune response, affecting cellular metabolism, or
directly interacting with viral proteins. Some of these lncRNAs appear to be required for
IAV infection, but the molecular mechanisms are not completely elucidated. In this review,
we summarize the roles of host lncRNAs in regulating IAV infection and provide an overview
of the lncRNA-mediated regulatory network. The goal of this review is to stimulate further
research on the function of both well-established and newly discovered lncRNAs in IAV
infection.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, People's Repbulic of People's Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, People's Repbulic of People's Republic of China.,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Repbulic of People's Republic of China.,Beijing Friendship Hospital, Capital Medical University, Beijing, People's Repbulic of People's Republic of China
| |
Collapse
|
203
|
Vitamin D Modulation of the Innate Immune Response to Paediatric Respiratory Pathogens Associated with Acute Lower Respiratory Infections. Nutrients 2021; 13:nu13010276. [PMID: 33478006 PMCID: PMC7835957 DOI: 10.3390/nu13010276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is an essential component of immune function and childhood deficiency is associated with an increased risk of acute lower respiratory infections (ALRIs). Globally, the leading childhood respiratory pathogens are Streptococcus pneumoniae, respiratory syncytial virus and the influenza virus. There is a growing body of evidence describing the innate immunomodulatory properties of vitamin D during challenge with respiratory pathogens, but recent systematic and unbiased synthesis of data is lacking, and future research directions are unclear. We therefore conducted a systematic PubMed literature search using the terms “vitamin D” and “Streptococcus pneumoniae” or “Respiratory Syncytial Virus” or “Influenza”. A priori inclusion criteria restricted the review to in vitro studies investigating the effect of vitamin D metabolites on human innate immune cells (primary, differentiated or immortalised) in response to stimulation with the specified respiratory pathogens. Eleven studies met our criteria. Despite some heterogeneity across pathogens and innate cell types, vitamin D modulated pathogen recognition receptor (PRRs: Toll-like receptor 2 (TLR2), TLR4, TLR7 and nucleotide-binding oligomerisation domain-containing protein 2 (NOD2)) expression; increased antimicrobial peptide expression (LL-37, human neutrophil peptide (HNP) 1-3 and β-defensin); modulated autophagosome production reducing apoptosis; and modulated production of inflammatory cytokines (Interleukin (IL) -1β, tumour necrosis factor-α (TNF-α), interferon-ɣ (IFN-ɣ), IL-12p70, IFN-β, Regulated on Activation, Normal T cell Expressed (RANTES), IL-10) and chemokines (IL-8 and C-X-C motif chemokine ligand 10 (CXCL10)). Differential modulation of PRRs and IL-1β was reported across immune cell types; however, this may be due to the experimental design. None of the studies specifically focused on immune responses in cells derived from children. In summary, vitamin D promotes a balanced immune response, potentially enhancing pathogen sensing and clearance and restricting pathogen induced inflammatory dysregulation. This is likely to be important in controlling both ALRIs and the immunopathology associated with poorer outcomes and progression to chronic lung diseases. Many unknowns remain and further investigation is required to clarify the nuances in vitamin D mediated immune responses by pathogen and immune cell type and to determine whether these in vitro findings translate into enhanced immunity and reduced ALRI in the paediatric clinical setting.
Collapse
|
204
|
Li RF, Zhou XB, Zhou HX, Yang ZF, Jiang HM, Wu X, Li WJ, Qiu JJ, Mi JN, Chen M, Zhong NS, Zhu GY, Jiang ZH. Novel Fatty Acid in Cordyceps Suppresses Influenza A (H1N1) Virus-Induced Proinflammatory Response Through Regulating Innate Signaling Pathways. ACS OMEGA 2021; 6:1505-1515. [PMID: 33490810 PMCID: PMC7818636 DOI: 10.1021/acsomega.0c05264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 05/05/2023]
Abstract
Influenza virus (IV) infections usually cause acute lung injury characterized by exaggerated proinflammatory responses. The paucity of therapeutic strategies that target host immune response to attenuate lung injury poses a substantial challenge in management of IV infections. In this study, we chemically synthesized a novel fatty acid (2Z,4E)-deca-2,4-dienoic acid (DDEA) identified from Chinese Cordyceps by using UHPLC-Q-TOF-MS techniques. The DDEA did not inhibit H1N1 virus replication but attenuated proinflammatory responses by reducing mRNA and protein levels of TNF-α, IFN-α, IFN-β, IL-6, CXCL-8/IL-8, CCL-2/MCP-1, CXCL-10/IP-10, CCL-3/MIP-1α, and CCL-4/MIP-1β in A549 cells and U937-derived macrophages. The anti-inflammatory effect occurred through downregulations of TLR-3-, RIG-I-, and type I IFN-activated innate immune signaling pathways. Altogether, our results indicate that DDEA may potentially be used as an anti-inflammatory therapy for the treatment of IV infections.
Collapse
Affiliation(s)
- Run-Feng Li
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | - Xiao-Bo Zhou
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | | | - Zi-Feng Yang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
- KingMed
Virology Diagnostic & Translational Center, Guangzhou 510000, China
- Guangdong-Hong
Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou 510000, China
| | - Hai-Ming Jiang
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Xiao Wu
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Wen-Jia Li
- Dongguan
HEC Cordyceps R&D Co.,Ltd, Dongguan 523850, China
| | - Jian-Jian Qiu
- Dongguan
HEC Cordyceps R&D Co.,Ltd, Dongguan 523850, China
| | - Jia-Ning Mi
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | - Ming Chen
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | - Nan-Shan Zhong
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Guo-Yuan Zhu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | - Zhi-Hong Jiang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| |
Collapse
|
205
|
Pseudorabies virus UL24 antagonizes OASL-mediated antiviral effect. Virus Res 2021; 295:198276. [PMID: 33476694 DOI: 10.1016/j.virusres.2020.198276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022]
Abstract
Oligoadenylate synthetases-like (OASL) protein exerts various effects on DNA and RNA viruses by inhibiting cGAS-mediated IFN production and by enhancing RIG-I-mediated IFN induction, respectively. In this study, we aimed to examine the role of OASL in pseudorabies virus (PRV) proliferation and investigate the function of the PRV UL24 protein in cellular innate immunity. We found that OASL regulates PRV proliferation by enhancing RIG-I signaling. PRV infection decreased the expression of OASL at both the mRNA and protein levels in PK15 and HeLa cells. OASL expression suppressed the proliferation of PRV in a RIG-I-dependent manner and boosted RIG-I-mediated IFN expression as well as IFN-stimulated gene (ISG) induction. In contrast, knockdown of OASL enhanced PRV proliferation and reduced RIG-I signaling. However, the PRV UL24 protein was found to impair RIG-I signaling, thus inhibiting transcription of IFN and ISGs. In addition, the UL24 protein reduced RIG-I-induced expression of endogenous OASL in an IRF3-dependent manner, thereby antagonizing the OASL antiviral effect. Taken together, our findings characterize the role of OASL in PRV proliferation and provide new insights into the role of UL24 in PRV pathogenesis.
Collapse
|
206
|
Mara K, Dai M, Brice AM, Alexander MR, Tribolet L, Layton DS, Bean AGD. Investigating the Interaction between Negative Strand RNA Viruses and Their Hosts for Enhanced Vaccine Development and Production. Vaccines (Basel) 2021; 9:vaccines9010059. [PMID: 33477334 PMCID: PMC7830660 DOI: 10.3390/vaccines9010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host–pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host–pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host–pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.
Collapse
|
207
|
Wang ZH, Lin YW, Wei XB, Li F, Liao XL, Yuan HQ, Huang DZ, Qin TH, Geng H, Wang SH. Predictive Value of Prognostic Nutritional Index on COVID-19 Severity. Front Nutr 2021; 7:582736. [PMID: 33521032 PMCID: PMC7840577 DOI: 10.3389/fnut.2020.582736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
Background: The prognostic nutritional index (PNI) has been described as a simple risk-stratified tool for several diseases. We explored the predictive role of the PNI on coronavirus disease 2019 (COVID-19) severity. Methods: A total of 101 patients with COVID-19 were included in this retrospective study from January 2020 to March 2020. They were divided into two groups according to COVID-19 severity: non-critical (n = 56) and critical (n = 45). The PNI was calculated upon hospital admission: 10 × serum albumin (g/dL) + 0.005 × total lymphocyte count (/mm3). Critical COVID-19 was defined as having one of the following features: respiratory failure necessitating mechanical ventilation; shock; organ dysfunction necessitating admission to the intensive care unit (ICU). The correlation between the PNI with COVID-19 severity was analyzed. Results: The PNI was significantly lower in critically ill than that in non-critically ill patients (P < 0.001). The receiver operating characteristic curve indicated that the PNI was a good discrimination factor for identifying COVID-19 severity (P < 0.001). Multivariate logistic regression analysis showed the PNI to be an independent risk factor for critical illness due to COVID-19 (P = 0.002). Conclusions: The PNI is a valuable biomarker that could be used to discriminate COVID-19 severity.
Collapse
Affiliation(s)
- Zhong-hua Wang
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying-Wen Lin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Xue-biao Wei
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fei Li
- Emergency Department, The First People's Hospital of Jingzhou, Jingzhou, China
| | - Xiao-Long Liao
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui-qing Yuan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Shaoguan, Shaoguan, China
| | - Dao-zheng Huang
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tie-he Qin
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Heng Geng
- Department of Critical Care Medicine, The First People's Hospital of Jingzhou, Jingzhou, China
| | - Shou-hong Wang
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
208
|
Zhao Z, Wei Y, Tao C. An enlightening role for cytokine storm in coronavirus infection. Clin Immunol 2021; 222:108615. [PMID: 33203513 PMCID: PMC7583583 DOI: 10.1016/j.clim.2020.108615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak in Wuhan, China has dispersed rapidly worldwide. Although most patients present with mild fever, cough with varying pulmonary shadows, a significant portion still develops severe respiratory dysfunction. And these severe cases are often associated with manifestations outside the respiratory tract. Currently, it is not difficult to find inflammatory cytokines upregulated in the blood of infected patients. However, some complications in addition to respiratory system with the coronavirus disease 2019 (COVID-19) are impossible to explain or cannot be attributed to virus itself. Thus excessive cytokines and their potentially fatal adverse effects are probably the answer to the multiple organ dysfunctions and growing mortality. This review provides a comprehensive overview of the mechanisms underlying cytokine storm, summarizes its pathophysiology and improves understanding of cytokine storm associated with coronavirus infections by comparing SARS-CoV-2 with severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yinhao Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
209
|
Zhilinskaya IN, Marchenko VA, Kharchenko EP. Mimicry between proteins of human and avian influenza viruses and host immune system proteins. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
210
|
Abstract
Influenza poses a significant disease burden on children worldwide, with high rates of hospitalization and substantial morbidity and mortality. Although the clinical presentation of influenza in children has similarities to that seen in adults, there are unique aspects to how children present with infection that are important to recognize. In addition, children play a significant role in viral transmission within communities. Growing evidence supports the idea that early influenza infection can uniquely establish lasting immunologic memory, making an understanding of how viral immunity develops in this population critical to better protect children from infection and to facilitate efforts to develop a more universally protective influenza vaccine.
Collapse
Affiliation(s)
- Jennifer Nayak
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Rochester Medical Center, Rochester, New York 14642-0001, USA
| | - Gregory Hoy
- Medical Scientist Training Program, Medical School, University of Michigan, Ann Arbor, Michigan 48109-2029, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2029, USA
| |
Collapse
|
211
|
Host factors involved in influenza virus infection. Emerg Top Life Sci 2020; 4:389-398. [PMID: 33210707 DOI: 10.1042/etls20200232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Influenza virus causes an acute febrile respiratory disease in humans that is commonly known as 'flu'. Influenza virus has been around for centuries and is one of the most successful, and consequently most studied human viruses. This has generated tremendous amount of data and information, thus it is pertinent to summarise these for, particularly interdisciplinary readers. Viruses are acellular organisms and exist at the interface of living and non-living. Due to this unique characteristic, viruses require another organism, i.e. host to survive. Viruses multiply inside the host cell and are obligate intracellular pathogens, because their relationship with the host is almost always harmful to host. In mammalian cells, the life cycle of a virus, including influenza is divided into five main steps: attachment, entry, synthesis, assembly and release. To complete these steps, some viruses, e.g. influenza utilise all three parts - plasma membrane, cytoplasm and nucleus, of the cell; whereas others, e.g. SARS-CoV-2 utilise only plasma membrane and cytoplasm. Hence, viruses interact with numerous host factors to complete their life cycle, and these interactions are either exploitative or antagonistic in nature. The host factors involved in the life cycle of a virus could be divided in two broad categories - proviral and antiviral. This perspective has endeavoured to assimilate the information about the host factors which promote and suppress influenza virus infection. Furthermore, an insight into host factors that play a dual role during infection or contribute to influenza virus-host adaptation and disease severity has also been provided.
Collapse
|
212
|
Zohar T, Loos C, Fischinger S, Atyeo C, Wang C, Slein MD, Burke J, Yu J, Feldman J, Hauser BM, Caradonna T, Schmidt AG, Cai Y, Streeck H, Ryan ET, Barouch DH, Charles RC, Lauffenburger DA, Alter G. Compromised Humoral Functional Evolution Tracks with SARS-CoV-2 Mortality. Cell 2020; 183:1508-1519.e12. [PMID: 33207184 PMCID: PMC7608014 DOI: 10.1016/j.cell.2020.10.052] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
The urgent need for an effective SARS-CoV-2 vaccine has forced development to progress in the absence of well-defined correlates of immunity. While neutralization has been linked to protection against other pathogens, whether neutralization alone will be sufficient to drive protection against SARS-CoV-2 in the broader population remains unclear. Therefore, to fully define protective humoral immunity, we dissected the early evolution of the humoral response in 193 hospitalized individuals ranging from moderate to severe. Although robust IgM and IgA responses evolved in both survivors and non-survivors with severe disease, non-survivors showed attenuated IgG responses, accompanied by compromised Fcɣ receptor binding and Fc effector activity, pointing to deficient humoral development rather than disease-enhancing humoral immunity. In contrast, individuals with moderate disease exhibited delayed responses that ultimately matured. These data highlight distinct humoral trajectories associated with resolution of SARS-CoV-2 infection and the need for early functional humoral immunity.
Collapse
Affiliation(s)
- Tomer Zohar
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; PhD Program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Chuangqi Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew D Slein
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - John Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard, Medical School, Boston, MA 02215, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Tim Caradonna
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hendrik Streeck
- Institute of Virology, University Hospital, University of Bonn and German Center for Infection Research (DZIF), Bonn-Cologne, Bonn, Germany
| | - Edward T Ryan
- Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard, Medical School, Boston, MA 02215, USA
| | - Richelle C Charles
- Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
213
|
Lai Y, Zhang Q, Long H, Han T, Li G, Zhan S, Li Y, Li Z, Jiang Y, Liu X. Ganghuo Kanggan Decoction in Influenza: Integrating Network Pharmacology and In Vivo Pharmacological Evaluation. Front Pharmacol 2020; 11:607027. [PMID: 33362562 PMCID: PMC7759152 DOI: 10.3389/fphar.2020.607027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Ganghuo Kanggan decoction (GHKGD) is a clinical experience prescription used for the treatment of viral pneumonia in the Lingnan area of China, and its clinical effect is remarkable. However, the mechanism of GHKGD in influenza is still unclear. Objective: To predict the active components and signaling pathway of GHKGD and to explore its therapeutic mechanism in influenza and to verified it in vivo using network pharmacology. Methods: The potential active components and therapeutic targets of GHKGD in the treatment of influenza were hypothesized through a series of network pharmacological strategies, including compound screening, target prediction and pathway enrichment analysis. Based on the target network and enrichment results, a mouse model of influenza A virus (IAV) infection was established to evaluate the therapeutic effect of GHKGD on influenza and to verify the possible molecular mechanism predicted by network pharmacology. Results: A total of 116 candidate active compounds and 17 potential targets were identified. The results of the potential target enrichment analysis suggested GHKGD may involve the RLR signaling pathway to reduce inflammation in the lungs. In vivo experiments showed that GHKGD had a protective effect on pneumonia caused by IAV-infected mice. Compared with the untreated group, the weight loss in the GHKGD group in the BALB/c mice decreased, and the inflammatory pathological changes in lung tissue were reduced (p < 0.05). The expression of NP protein and the virus titers in lung were significantly decreased (p < 0.05). The protein expression of RIG-I, NF-kB, and STAT1 and the level of MAVS and IRF3/7 mRNA were remarkably inhibited in GHKGD group (p < 0.05). After the treatment with GHKGD, the level of Th1 cytokines (IFN-γ, TNF-α, IL-2) was increased, while the expression of Th2 (IL-5, IL4) cytokines was reduced (p < 0.05). Conclusion: Through a network pharmacology strategy and in vivo experiments, the multi-target and multi-component pharmacological characteristics of GHKGD in the treatment of influenza were revealed, and regulation of the RLR signaling pathway during the anti-influenza process was confirmed. This study provides a theoretical basis for the research and development of new drugs from GHKGD.
Collapse
Affiliation(s)
- Yanni Lai
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong Zhang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haishan Long
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaofeng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiwei Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
214
|
Wu CY, Chuang HY, Wong CH. Influenza virus neuraminidase regulates host CD8 + T-cell response in mice. Commun Biol 2020; 3:748. [PMID: 33293641 PMCID: PMC7722854 DOI: 10.1038/s42003-020-01486-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022] Open
Abstract
Influenza A virus (IAV)-specific CD8+ T-cell response was shown to provide protection against pandemic and seasonal influenza infections. However, the response was often relatively weak and the mechanism was unclear. Here, we show that the composition of IAV released from infected cells is regulated by the neuraminidase (NA) activity and the cells infected by NA-defective virus cause intracellular viral protein accumulation and cell death. In addition, after uptake of NA-defective viruses by dendritic cells (DCs), an expression of the major histocompatibility complex class I is induced to activate IAV-specific CD8+ T-cell response. When mice were infected by NA-defective IAV, a CD8+ T-cell response to the highly conserved viral antigens including PB1, NP, HA, M1, M2 and NS1 was observed along with the increasing expression of IL10, IL12 and IL27. Vaccination of mice with NA-defective H1N1 A/WSN/33 induced a strong IAV-specific CD8+ T cell response against H1N1, H3N2 and H5N1. This study reveals the role of NA in the IAV-specific CD8+ T-cell response and virion assembly process, and provides an alternative direction toward the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Hong-Yang Chuang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan.
- Department of Chemistry, The Scripps Research Institute, 10550N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
215
|
Xu X, Miao J, Shao Q, Gao Y, Hong L. Apigenin suppresses influenza A virus-induced RIG-I activation and viral replication. J Med Virol 2020; 92:3057-3066. [PMID: 32776519 DOI: 10.1002/jmv.26403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
Apigenin is a flavonoid of low toxicity and multiple beneficial bioactivities, including the properties of antitumor, antioxidant, anti-inflammatory, and antiviral activities. However, the effects of Apigenin on influenza virus infection remain poorly understood. Thus, the aim of this study is to investigate the effect of Apigenin on influenza A virus (IAV)-induced inflammation and viral replication. This study demonstrated that Apigenin treatment significantly suppressed IAV-induced upregulation of retinoic acid-inducible gene-I (RIG-I) expression, as well as the production of proinflammatory cytokines and interferons (IFN-β and IFN-λ1). Meanwhile, Apigenin also protected cells from IAV-induced cell death. In addition, Apigenin specifically inhibited the activation of RIG-I signaling via promoting the ubiquitin-mediated degradation of RIG-I, which may cause by the disrupting its interaction with heat shock protein 90α. Interestingly, instead of enhancing viral replication due to the inhibitory effects of Apigenin on the activation of RIG-I and expression of IFNs, Apigenin inhibited IAV replication in vitro. Further study demonstrated that Apigenin inhibited the influenza viral neuraminidase (NA) activity. Thus, Apigenin may serve as a promising supplementary approach for treatment of influenza because it protected cells from IAV-induced cell death and inhibited viral NA activity to suppress viral replication.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Pediatrics, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Miao
- Department of Pediatrics, Binzhou People's Hospital, Binzhou, China
| | - Qingliang Shao
- Department of Pediatrics, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Gao
- Department of Pediatrics, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Luojia Hong
- Department of Hematology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
216
|
Wu Q, Jorde I, Kershaw O, Jeron A, Bruder D, Schreiber J, Stegemann-Koniszewski S. Resolved Influenza A Virus Infection Has Extended Effects on Lung Homeostasis and Attenuates Allergic Airway Inflammation in a Mouse Model. Microorganisms 2020; 8:microorganisms8121878. [PMID: 33260910 PMCID: PMC7761027 DOI: 10.3390/microorganisms8121878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic airway inflammation (AAI) involves T helper cell type 2 (Th2) and pro-inflammatory responses to aeroallergens and many predisposing factors remain elusive. Influenza A virus (IAV) is a major human pathogen that causes acute respiratory infections and induces specific immune responses essential for viral clearance and resolution of the infection. Beyond acute infection, IAV has been shown to persistently affect lung homeostasis and respiratory immunity. Here we asked how resolved IAV infection affects subsequently induced AAI. Mice infected with a sublethal dose of IAV were sensitized and challenged in an ovalbumin mediated mouse model for AAI after resolution of the acute viral infection. Histological changes, respiratory leukocytes, cytokines and airway hyperreactivity were analyzed in resolved IAV infection alone and in AAI with and without previous IAV infection. More than five weeks after infection, we detected persistent pneumonia with increased activated CD4+ and CD8+ lymphocytes as well as dendritic cells and MHCII expressing macrophages in the lung. Resolved IAV infection significantly affected subsequently induced AAI on different levels including morphological changes, respiratory leukocytes and lymphocytes as well as the pro-inflammatory cytokine responses, which was clearly diminished. We conclude that IAV has exceptional persisting effects on respiratory immunity with substantial consequences for subsequently induced AAI.
Collapse
Affiliation(s)
- Qingyu Wu
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Ilka Jorde
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.J.); (D.B.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.J.); (D.B.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
- Correspondence:
| |
Collapse
|
217
|
Oves M, Ravindran M, Rauf MA, Omaish Ansari M, Zahin M, Iyer AK, Ismail IMI, Khan MA, Palaniyar N. Comparing and Contrasting MERS, SARS-CoV, and SARS-CoV-2: Prevention, Transmission, Management, and Vaccine Development. Pathogens 2020; 9:pathogens9120985. [PMID: 33255989 PMCID: PMC7761006 DOI: 10.3390/pathogens9120985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is responsible for an unprecedented disruption to the healthcare systems and economies of countries around the world. Developing novel therapeutics and a vaccine against SARS-CoV-2 requires an understanding of the similarities and differences between the various human coronaviruses with regards to their phylogenic relationships, transmission, and management. Phylogenetic analysis indicates that humans were first infected with SARS-CoV-2 in late 2019 and the virus rapidly spread from the outbreak epicenter in Wuhan, China to various parts of the world. Multiple variants of SARS-CoV-2 have now been identified in particular regions. It is apparent that MERS, SARS-CoV, and SARS-CoV-2 present with several common symptoms including fever, cough, and dyspnea in mild cases, but can also progress to pneumonia and acute respiratory distress syndrome. Understanding the molecular steps leading to SARS-CoV-2 entry into cells and the viral replication cycle can illuminate crucial targets for testing several potential therapeutics. Genomic and structural details of SARS-CoV-2 and previous attempts to generate vaccines against SARS-CoV and MERS have provided vaccine targets to manage future outbreaks more effectively. The coordinated global response against this emerging infectious disease is unique and has helped address the need for urgent therapeutics and vaccines in a remarkably short time.
Collapse
Affiliation(s)
- Mohammad Oves
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia; (M.O.); (I.M.I.I.)
| | - Mithunan Ravindran
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Mohd Ahmar Rauf
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (M.A.R.); (A.K.I.)
| | - Mohammad Omaish Ansari
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia;
| | - Maryam Zahin
- Center for Predictive Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Arun K. Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (M.A.R.); (A.K.I.)
| | - Iqbal M. I. Ismail
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia; (M.O.); (I.M.I.I.)
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Makkah 21589, Saudi Arabia
| | - Meraj A. Khan
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Correspondence: (M.A.K.); (N.P.)
| | - Nades Palaniyar
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Correspondence: (M.A.K.); (N.P.)
| |
Collapse
|
218
|
Prigge AD, Ma R, Coates BM, Singer BD, Ridge KM. Age-Dependent Differences in T-Cell Responses to Influenza A Virus. Am J Respir Cell Mol Biol 2020; 63:415-423. [PMID: 32609537 DOI: 10.1165/rcmb.2020-0169tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Respiratory infections from influenza A virus (IAV) cause substantial morbidity and mortality in children relative to adults. T cells play a critical role in the host response to IAV by supporting the innate and humoral responses, mediating cytotoxic activity, and promoting recovery. There are age-dependent differences in the number, subsets, and localization of T cells, which impact the host response to pathogens. In this article, we first review how T cells recognize IAV and examine differences in the resting T-cell populations between juveniles and adults. Next, we describe how the juvenile CD4+, CD8+, and regulatory T-cell responses compare with those in adults and discuss the potential physiologic and clinical consequences of the differences. Finally, we explore the roles of two unconventional T-cell types in the juvenile response to influenza, natural-killer T cells and γδ T cells. A clear understanding of age-dependent differences in the T-cell response is essential to developing therapies to prevent or reverse the deleterious effects of IAV in children.
Collapse
Affiliation(s)
- Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Biochemistry and Molecular Genetics.,Simpson Querrey Center for Epigenetics, and
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
219
|
Danov O, Wolff M, Bartel S, Böhlen S, Obernolte H, Wronski S, Jonigk D, Hammer B, Kovacevic D, Reuter S, Krauss-Etschmann S, Sewald K. Cigarette Smoke Affects Dendritic Cell Populations, Epithelial Barrier Function, and the Immune Response to Viral Infection With H1N1. Front Med (Lausanne) 2020; 7:571003. [PMID: 33240904 PMCID: PMC7678748 DOI: 10.3389/fmed.2020.571003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Smokers with apparently “healthy” lungs suffer from more severe and frequent viral respiratory infections, but the mechanisms underlying this observation are still unclear. Epithelial cells and dendritic cells (DC) form the first line of defense against inhaled noxes such as smoke or viruses. We therefore aimed to obtain insight into how cigarette smoke affects DCs and epithelial cells and how this influences the response to viral infection. Female C57BL/6J mice were exposed to cigarette smoke (CS) for 1 h daily for 24 days and then challenged i.n. with the viral mimic and Toll-like receptor 3 (TLR3) ligand poly (I:C) after the last exposure. DC subpopulations were analyzed 24 h later in whole lung homogenates by flow cytometry. Calu-3 cells or human precision-cut lung slices (PCLS) cultured at air-liquid interface were exposed to CS or air and subsequently inoculated with influenza H1N1. At 48 h post infection cytokines were analyzed by multiplex technology. Cytotoxic effects were measured by release of lactate dehydrogenase (LDH) and confocal imaging. In Calu-3 cells the trans-epithelial electrical resistance (TEER) was assessed. Smoke exposure of mice increased numbers of inflammatory and plasmacytoid DCs in lung tissue. Additional poly (I:C) challenge further increased the population of inflammatory DCs and conventional DCs, especially CD11b+ cDCs. Smoke exposure led to a loss of the barrier function in Calu-3 cells, which was further exaggerated by additional influenza H1N1 infection. Influenza H1N1-induced secretion of antiviral cytokines (IFN-α2a, IFN-λ, interferon-γ-induced protein 10 [IP-10]), pro-inflammatory cytokine IL-6, as well as T cell-associated cytokines (e.g., I-TAC) were completely suppressed in both Calu-3 cells and human PCLS after smoke exposure. In summary, cigarette smoke exposure increased the number of inflammatory DCs in the lung and disrupted epithelial barrier functions, both of which was further enhanced by viral stimulation. Additionally, the antiviral immune response to influenza H1N1 was strongly suppressed by smoke. These data suggest that smoke impairs protective innate mechanisms in the lung, which could be responsible for the increased susceptibility to viral infections in “healthy” smokers.
Collapse
Affiliation(s)
- Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Martin Wolff
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Sabine Bartel
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Pathology and Medical Biology, University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Sebastian Böhlen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hanover, Germany
| | - Barbara Hammer
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Draginja Kovacevic
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Sebastian Reuter
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Essen, Germany
| | - Susanne Krauss-Etschmann
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Asthma Research, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| |
Collapse
|
220
|
Chen S, Quan K, Wang D, Du Y, Qin T, Peng D, Liu X. Truncation or Deglycosylation of the Neuraminidase Stalk Enhances the Pathogenicity of the H5N1 Subtype Avian Influenza Virus in Mallard Ducks. Front Microbiol 2020; 11:583588. [PMID: 33193225 PMCID: PMC7641914 DOI: 10.3389/fmicb.2020.583588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/02/2022] Open
Abstract
H5N1 subtype avian influenza virus (AIV) with a deletion of 20 amino acids at residues 49–68 in the stalk region of neuraminidase (NA) became a major epidemic virus. To determine the effect of truncation or deglycosylation of the NA stalk on virulence, we used site-directed mutagenesis to insert 20 amino acids in the short-stalk virus A/mallard/Huadong/S/2005 (SY) to recover the long-stalk virus (rSNA+). A series of short-stalk or deglycosylated-stalk viruses were also constructed basing on the long-stalk virus, and then the characteristics and pathogenicity of the resulting viruses were evaluated. The results showed that most of the short-stalk or deglycosylated-stalk viruses had smaller plaques, and increased thermal and low-pH stability, and a decreased neuraminidase activity when compared with the virus rSNA+. In a mallard ducks challenge study, most of the short-stalk or deglycosylated-stalk viruses showed increased pathological lesions and virus titers in the organ tissues and increased virus shedding in the oropharynx and cloaca when compared with the rSNA+ virus, while most of the short-stalk viruses, especially rSNA-20, showed higher pathogenicity than the deglycosylated-stalk virus. In addition, the short-stalk viruses showed a significantly upregulated expression of the immune-related factors in the lungs of the infected mallard ducks, including IFN-α, Mx1, and IL-8. The results suggested that NA stalk truncation or deglycosylation increases the pathogenicity of H5N1 subtype AIV in mallard ducks, which will provide a pre-warning for prevention and control of H5N1 subtype avian influenza in the waterfowl.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
221
|
Corder BN, Bullard BL, Poland GA, Weaver EA. A Decade in Review: A Systematic Review of Universal Influenza Vaccines in Clinical Trials during the 2010 Decade. Viruses 2020; 12:E1186. [PMID: 33092070 PMCID: PMC7589362 DOI: 10.3390/v12101186] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
On average, there are 3-5 million severe cases of influenza virus infections globally each year. Seasonal influenza vaccines provide limited protection against divergent influenza strains. Therefore, the development of a universal influenza vaccine is a top priority for the NIH. Here, we report a comprehensive summary of all universal influenza vaccines that were tested in clinical trials during the 2010-2019 decade. Of the 1597 studies found, 69 eligible clinical trials, which investigated 27 vaccines, were included in this review. Information from each trial was compiled for vaccine target, vaccine platform, adjuvant inclusion, clinical trial phase, and results. As we look forward, there are currently three vaccines in phase III clinical trials which could provide significant improvement over seasonal influenza vaccines. This systematic review of universal influenza vaccine clinical trials during the 2010-2019 decade provides an update on the progress towards an improved influenza vaccine.
Collapse
Affiliation(s)
- Brigette N. Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Brianna L. Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Gregory A. Poland
- Mayo Vaccine Research Group, General Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA;
| | - Eric A. Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| |
Collapse
|
222
|
Uddin MH, Zonder JA, Azmi AS. Exportin 1 inhibition as antiviral therapy. Drug Discov Today 2020; 25:1775-1781. [PMID: 32569833 PMCID: PMC7305737 DOI: 10.1016/j.drudis.2020.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Coronavirus 2019 (COVID-19; caused by Severe Acute Respiratory Syndrome Coronavirus 2; SARS-CoV-2) is a currently global health problem. Previous studies showed that blocking nucleocytoplasmic transport with exportin 1 (XPO1) inhibitors originally developed as anticancer drugs can quarantine key viral accessory proteins and genomic materials in the nucleus of host cell and reduce virus replication and immunopathogenicity. These observations support the concept of the inhibition of nuclear export as an effective strategy against an array of viruses, including influenza A, B, and SARS-CoV. Clinical studies using the XPO1 inhibitor selinexor as a therapy for COVID-19 infection are in progress.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey A Zonder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
223
|
Zhou HX, Li RF, Wang YF, Shen LH, Cai LH, Weng YC, Zhang HR, Chen XX, Wu X, Chen RF, Jiang HM, Wang C, Yang M, Lu J, Luo XD, Jiang Z, Yang ZF. Total alkaloids from Alstonia scholaris inhibit influenza a virus replication and lung immunopathology by regulating the innate immune response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153272. [PMID: 32702592 DOI: 10.1016/j.phymed.2020.153272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/01/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Alstonia scholaris is a folk medicine used to treat cough, asthma and chronic obstructive pulmonary disease in China. Total alkaloids (TA) from A. scholaris exhibit anti-inflammatory properties in acute respiratory disease, which suggests their possible anti-inflammatory effect on influenza virus infection. PURPOSE To assess the clinical use of TA by demonstrating their anti-influenza and anti-inflammatory effects and the possible mechanism underlying the effect of TA on influenza A virus (IAV) infection in vitro and to reveal the inhibitory effect of TA on lung immunopathology caused by IAV infection. METHODS Antiviral and anti-inflammatory activities were assessed in Madin-Darby canine kidney (MDCK) and A549 cells and U937-derived macrophages infected with influenza A/PR/8/34 (H1N1) virus. Proinflammatory cytokine levels were measured by real-time quantitative PCR and Bio-Plex assays. The activation of innate immune signaling induced by H1N1 virus in the absence or presence of TA was detected in A549 cells by Western blot. Furthermore, mice were infected intranasally with H1N1 virus and treated with TA (50, 25 and 12.5 mg/kg/d) or oseltamivir (60 mg/kg/d) for 5 days in vivo. The survival rates and body weight were recorded, and the viral titer, proinflammatory cytokine levels, innate immune cell populations and histopathological changes in the lungs were analyzed. RESULTS TA significantly inhibited viral replication in A549 cells and U937-derived macrophages and markedly reduced cytokine and chemokine production at the mRNA and protein levels. Furthermore, TA blocked the activation of pattern recognition receptor (PRR)- and IFN-activated signal transduction in A549 cells. Critically, TA also increased the survival rate, reduced the viral titer, suppressed proinflammatory cytokine production and innate immune cell infiltration and improved lung histopathology in a lethal PR8 mouse model. CONCLUSION TA exhibits anti-viral and anti-inflammatory effects against IAV infection by interfering with PRR- and IFN-activated signal transduction.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; Dongguan People's Hospital, Dongguan, 523000, China
| | - Run-Feng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yi-Feng Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li-Han Shen
- Dongguan People's Hospital, Dongguan, 523000, China
| | - Li-Hua Cai
- Dongguan People's Hospital, Dongguan, 523000, China
| | - Yun-Ceng Weng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | | | - Xin-Xin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Rui-Feng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Hai-Ming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Mingrong Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Jingguang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Xiao-Dong Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Zhihong Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China; Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, 510000, China
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China; KingMed Virology Diagnostic & Translational Center, 510000, China; Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, 510000, China.
| |
Collapse
|
224
|
Daneshkhah A, Agrawal V, Eshein A, Subramanian H, Roy HK, Backman V. Evidence for possible association of vitamin D status with cytokine storm and unregulated inflammation in COVID-19 patients. Aging Clin Exp Res 2020; 32:2141-2158. [PMID: 32876941 PMCID: PMC7465887 DOI: 10.1007/s40520-020-01677-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES We present evidence for a possible role of Vitamin D (VitD) deficiency in unregulated cytokine production and inflammation leading to complications in COVID-19 patients. DESIGN The time-adjusted case mortality ratio (T-CMR) was estimated as the ratio of deceased patients on day N to the confirmed cases on day N-8. The adaptive average of T-CMR (A-CMR) was calculated as a metric of COVID-19 associated mortality. A model based on positivity change (PC) and an estimated prevalence of COVID-19 was used to determine countries with similar screening strategies. A possible association of A-CMR with the mean concentration of 25-hydroxyvitamin D (25(OH)D) in elderly individuals in countries with similar screening strategy was investigated. We considered high C-reactive protein (CRP) in severe COVID-19 patients (CRP ≥ 1 mg/dL) as a surrogate of a cytokine storm. We considered high-sensitivity CRP (hs-CRP) in healthy subjects as hs-CRP ≥ 0.2 mg/dL. RESULTS A link between 25(OH)D and A-CMR in countries with similar screening strategy is evidence for VitD's possible role in reducing unregulated cytokine production and inflammation among patients with severe COVID-19. We observed an odds ratio (OR) of 1.8 with 95% confidence interval (95% CI) (1.2 to 2.6) and an OR of 1.9 with 95% CI (1.4 to 2.7) for hs-CRP in VitD deficient elderly from low-income families and high-income families, respectively. COVID-19 patient-level data show an OR of 3.4 with 95% CI (2.15 to 5.4) for high CRP in severe COVID-19 patients. CONCLUSION We conclude that future studies on VitD's role in reducing cytokine storm and COVID-19 mortality are warranted.
Collapse
Affiliation(s)
- Ali Daneshkhah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | | | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
225
|
Cheng JC, Liaw CC, Lin MK, Chen CJ, Chao CL, Chao CH, Kuo YH, Chiu YP, Peng YS, Huang HC. Anti-Influenza Virus Activity and Chemical Components from the Parasitic Plant Cuscuta japonica Choisy on Dimocarpus longans Lour. Molecules 2020; 25:molecules25194427. [PMID: 32993192 PMCID: PMC7582473 DOI: 10.3390/molecules25194427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
Dodder (Cuscuta spp.) is a parasitic weed damaging many plants and agricultural production. The native obligate parasite Cuscuta japonica Choisy (Japanese dodder) parasitizes Dimocarpus longans Lour., Ficus septica Burm. F., Ficus microcarpa L.f., Mikania micrantha H.B.K. and Melia azedarach Linn, respectively. Five Japanese dodders growing on different plants exhibit slightly different metabolites and amounts which present different pharmacological effects. Among these plants, a significant antiviral activity against influenza A virus (IAV) was found in Japanese dodder parasitizing on D. longans Lour. (CL). To further explore methanol extract components in Japanese dodder (CL), four undescribed aromatic glycosides, cuscutasides A–D (compounds 1–4) were isolated, together with twenty-six known compounds 5–30. The chemical structures of 1–4 were elucidated using a combination of spectroscopic techniques. The eighteen isolated compounds were evaluated for antiviral activity against IAV activity. Among them, 1-monopalmitin (29) displayed potent activity against influenza A virus (A/WSN/1933(H1N1)) with EC50 2.28 ± 0.04 μM and without noteworthy cytotoxicity in MDCK cells. The interrupt step of 29 on the IAV life cycle was determined. These data provide invaluable information for new applications for this otherwise harmful weed.
Collapse
Affiliation(s)
- Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan; (J.-C.C.); (Y.-P.C.); (Y.-S.P.)
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan;
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan; (M.-K.L.); (Y.-H.K.)
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan;
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Chien-Liang Chao
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan 269, Taiwan;
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan; (M.-K.L.); (Y.-H.K.)
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Yen-Po Chiu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan; (J.-C.C.); (Y.-P.C.); (Y.-S.P.)
| | - Yu-Shin Peng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan; (J.-C.C.); (Y.-P.C.); (Y.-S.P.)
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan; (M.-K.L.); (Y.-H.K.)
- Master Program for Food and Drug Safety, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5211)
| |
Collapse
|
226
|
Modelling within-host macrophage dynamics in influenza virus infection. J Theor Biol 2020; 508:110492. [PMID: 32966828 DOI: 10.1016/j.jtbi.2020.110492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Human respiratory disease associated with influenza virus infection is of significant public health concern. Macrophages, as part of the front line of host innate cellular defence, have been shown to play an important role in controlling viral replication. However, fatal outcomes of infection, as evidenced in patients infected with highly pathogenic viral strains, are often associated with prompt activation and excessive accumulation of macrophages. Activated macrophages can produce a large amount of pro-inflammatory cytokines, which leads to severe symptoms and at times death. However, the mechanism for rapid activation and excessive accumulation of macrophages during infection remains unclear. It has been suggested that the phenomena may arise from complex interactions between macrophages and influenza virus. In this work, we develop a novel mathematical model to study the relationship between the level of macrophage activation and the level of viral load in influenza infection. Our model combines a dynamic model of viral infection, a dynamic model of macrophages and the essential interactions between the virus and macrophages. Our model predicts that the level of macrophage activation can be negatively correlated with the level of viral load when viral infectivity is sufficiently high. We further identify that temporary depletion of resting macrophages in response to viral infection is a major driver in our model for the negative relationship between the level of macrophage activation and viral load, providing new insight into the mechanisms that regulate macrophage activation. Our model serves as a framework to study the complex dynamics of virus-macrophage interactions and provides a mechanistic explanation for existing experimental observations, contributing to an enhanced understanding of the role of macrophages in influenza viral infection.
Collapse
|
227
|
Hwang HS, Chang M, Kim YA. Influenza-Host Interplay and Strategies for Universal Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030548. [PMID: 32962304 PMCID: PMC7564814 DOI: 10.3390/vaccines8030548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza is an annual epidemic and an occasional pandemic caused by pathogens that are responsible for infectious respiratory disease. Humans are highly susceptible to the infection mediated by influenza A viruses (IAV). The entry of the virus is mediated by the influenza virus hemagglutinin (HA) glycoprotein that binds to the cellular sialic acid receptors and facilitates the fusion of the viral membrane with the endosomal membrane. During IAV infection, virus-derived pathogen-associated molecular patterns (PAMPs) are recognized by host intracellular specific sensors including toll-like receptors (TLRs), C-type lectin receptors, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) either on the cell surface or intracellularly in endosomes. Herein, we comprehensively review the current knowledge available on the entry of the influenza virus into host cells and the molecular details of the influenza virus–host interface. We also highlight certain strategies for the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| |
Collapse
|
228
|
Induction of the Antiviral Immune Response and Its Circumvention by Coronaviruses. Viruses 2020; 12:v12091039. [PMID: 32961897 PMCID: PMC7551260 DOI: 10.3390/v12091039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some coronaviruses are zoonotic viruses of human and veterinary medical importance. The novel coronavirus, severe acute respiratory symptoms coronavirus 2 (SARS-CoV-2), associated with the current global pandemic, is characterized by pneumonia, lymphopenia, and a cytokine storm in humans that has caused catastrophic impacts on public health worldwide. Coronaviruses are known for their ability to evade innate immune surveillance exerted by the host during the early phase of infection. It is important to comprehensively investigate the interaction between highly pathogenic coronaviruses and their hosts. In this review, we summarize the existing knowledge about coronaviruses with a focus on antiviral immune responses in the respiratory and intestinal tracts to infection with severe coronaviruses that have caused epidemic diseases in humans and domestic animals. We emphasize, in particular, the strategies used by these coronaviruses to circumvent host immune surveillance, mainly including the hijack of antigen-presenting cells, shielding RNA intermediates in replication organelles, 2′-O-methylation modification for the evasion of RNA sensors, and blocking of interferon signaling cascades. We also provide information about the potential development of coronavirus vaccines and antiviral drugs.
Collapse
|
229
|
Klomp M, Ghosh S, Mohammed S, Nadeem Khan M. From virus to inflammation, how influenza promotes lung damage. J Leukoc Biol 2020; 110:115-122. [PMID: 32895987 DOI: 10.1002/jlb.4ru0820-232r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
Despite seasonal vaccines, influenza-related hospitalization and death rates have remained unchanged over the past 5 years. Influenza pathogenesis has 2 crucial clinical components; first, influenza causes acute lung injury that may require hospitalization. Second, acute injury promotes secondary bacterial pneumonia, a leading cause of hospitalization and disease burden in the United States and globally. Therefore, developing an effective therapeutic regimen against influenza requires a comprehensive understanding of the damage-associated immune-mechanisms to identify therapeutic targets for interventions to mitigate inflammation/tissue-damage, improve antiviral immunity, and prevent influenza-associated secondary bacterial diseases. In this review, the pathogenic immune mechanisms implicated in acute lung injury and the possibility of using lung inflammation and barrier crosstalk for developing therapeutics against influenza are highlighted.
Collapse
Affiliation(s)
- Mitchell Klomp
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sumit Ghosh
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sohail Mohammed
- Department of Biomedical Sciences, University of North Dakota, USA
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
230
|
Dumm RE, Wellford SA, Moseman EA, Heaton NS. Heterogeneity of Antiviral Responses in the Upper Respiratory Tract Mediates Differential Non-lytic Clearance of Influenza Viruses. Cell Rep 2020; 32:108103. [PMID: 32877682 PMCID: PMC7462569 DOI: 10.1016/j.celrep.2020.108103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 08/11/2020] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses initiate infection in the upper respiratory tract (URT), but early viral tropism and the importance of cell-type-specific antiviral responses in this tissue remain incompletely understood. By infecting transgenic lox-stop-lox reporter mice with a Cre-recombinase-expressing influenza B virus, we identify olfactory sensory neurons (OSNs) as a major viral cell target in the URT. These cells become infected, then eliminate the virus and survive in the host post-resolution of infection. OSN responses to infection are characterized by a strong induction of interferon-stimulated genes and more rapid clearance of viral protein relative to other cells in the epithelium. We speculate that this cell-type-specific response likely serves to protect the central nervous system from infection. More broadly, these results highlight the importance of evaluating antiviral responses across different cell types, even those within the same tissue, to more fully understand the mechanisms of viral disease.
Collapse
Affiliation(s)
- Rebekah E Dumm
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sebastian A Wellford
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - E Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
231
|
Kim YH, Bang YJ, Park HJ, Li Ko H, Park SI, Hwang KA, Kim H, Nam JH. Inactivated influenza vaccine formulated with single-stranded RNA-based adjuvant confers mucosal immunity and cross-protection against influenza virus infection. Vaccine 2020; 38:6141-6152. [DOI: 10.1016/j.vaccine.2020.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/20/2020] [Accepted: 07/12/2020] [Indexed: 01/31/2023]
|
232
|
Deng Z, Zhang M, Zhu T, Zhili N, Liu Z, Xiang R, Zhang W, Xu Y. Dynamic changes in peripheral blood lymphocyte subsets in adult patients with COVID-19. Int J Infect Dis 2020; 98:353-358. [PMID: 32634585 PMCID: PMC7334931 DOI: 10.1016/j.ijid.2020.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread widely. The aim of this study was to investigate the dynamic changes in peripheral blood lymphocyte subsets in adult patients with COVID-19. METHODS The electronic medical records were reviewed. Data including demographic characteristics, clinical manifestations, comorbidities, laboratory data, and radiological examinations of 435 hospitalized COVID-19 patients with a confirmed SARS-CoV-2 viral infection were extracted and analyzed retrospectively. Lymphocyte subset counts at each week after the onset of the illness were compared with those of the other weeks of illness and with those of control individuals. RESULTS The various lymphocyte subsets (CD3+, CD4+, CD8+, CD19+, and CD16/56+) were below the normal ranges at 1 week after the onset of illness, reaching a nadir during the second week. They increased gradually during the third week and returned to normal levels in the fifth week, but were still lower than those of the healthy controls. The CD3+, CD4+, and CD8+ counts were significantly lower in patients with severe disease compared to those with non-severe disease, and in patients who died compared to those who recovered. DISCUSSION This research indicates that the levels of peripheral blood lymphocyte subsets (CD3+, CD4+, and CD8+) are associated with disease progression and severity, and with the prognosis in patients with COVID-19. Dynamic monitoring of human immune function is one of the indicators for evaluating the severity of disease and the prognosis of COVID-19 patients, and is useful for formulating appropriate treatment strategies.
Collapse
Affiliation(s)
- Zhifeng Deng
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Minli Zhang
- Yaxin School of Nursing, Wuhan Institute of Design and Sciences, Wuhan 430205, China
| | - Ting Zhu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Niu Zhili
- Department of Laboratory Science, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheming Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rong Xiang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Zhang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Xu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
233
|
Frank K, Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front Cell Infect Microbiol 2020; 10:425. [PMID: 32974217 PMCID: PMC7461885 DOI: 10.3389/fcimb.2020.00425] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines limit their spread, but they do not prevent all infections. Therapeutic treatments for those experiencing severe infection are limited; further advances are held back by insufficient understanding of the fundamental immune mechanisms responsible for immunopathology. NK cells and T cells are essential in host responses to influenza infection. They produce immunomodulatory cytokines and mediate the cytotoxic response to infection. An imbalance in NK and T cell responses can lead to two outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions and uncontrolled infection. The main cause of death in influenza patients is the former, mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T cells contribute to cytokine storm, but they are also required for viral clearance. Many studies have attempted to distinguish protective and pathogenic components of the NK cell and T cell influenza response, but it has become clear that they are dynamic and integrated processes. This review will analyze how NK cell and T cell effector functions during influenza infection affect the host response and correlate with morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
234
|
Zhang B, Goraya MU, Chen N, Xu L, Hong Y, Zhu M, Chen JL. Zinc Finger CCCH-Type Antiviral Protein 1 Restricts the Viral Replication by Positively Regulating Type I Interferon Response. Front Microbiol 2020; 11:1912. [PMID: 32922375 PMCID: PMC7456897 DOI: 10.3389/fmicb.2020.01912] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023] Open
Abstract
Zinc finger CCCH-type antiviral protein 1 (ZC3HAV1) is a host antiviral factor that can repress translation and promote degradation of specific viral mRNAs. In this study, we found that expression of ZC3HAV1 was significantly induced by infection with influenza A virus (IAV) and Sendai virus (Sev). It was shown that deficiency of IFNAR resulted in a dramatic decrease in the virus-induced expression of ZC3HAV1. Furthermore, transfection with poly(I:C) and treatment with interferon β (IFN-β) induced the ZC3HAV1 expression. Interference with the endogenous expression of ZC3HAV1 enhanced the replication of influenza virus by impairing the production of IFN-β and MxA, following the infection of influenza virus. In contrast, ectopic expression of ZC3HAV1 significantly restricted the replication of influenza virus by increasing the IFN-β expression. In addition, ZC3HAV1 also promoted the induction of tumor necrosis factor and interleukin 6. These results suggest that ZC3HAV1 is induced by IFN-β/IFNAR signaling during IAV and Sev infection and involved in positive regulation of IFN-dependent innate antiviral response.
Collapse
Affiliation(s)
- Baoge Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lifeng Xu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Hong
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meiyi Zhu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
235
|
Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses. Viruses 2020; 12:v12080862. [PMID: 32784697 PMCID: PMC7472103 DOI: 10.3390/v12080862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Avian influenza A viruses (AIVs), as a zoonotic agent, dramatically impacts public health and the poultry industry. Although low pathogenic avian influenza virus (LPAIV) incidence and mortality are relatively low, the infected hosts can act as a virus carrier and provide a resource pool for reassortant influenza viruses. At present, vaccination is the most effective way to eradicate AIVs from commercial poultry. The inactivated vaccines can only stimulate humoral immunity, rather than cellular and mucosal immune responses, while failing to effectively inhibit the replication and spread of AIVs in the flock. In recent years, significant progresses have been made in the understanding of the mechanisms underlying the vaccine antigen activities at the mucosal surfaces and the development of safe and efficacious mucosal vaccines that mimic the natural infection route and cut off the AIVs infection route. Here, we discussed the current status and advancement on mucosal immunity, the means of establishing mucosal immunity, and finally a perspective for design of AIVs mucosal vaccines. Hopefully, this review will help to not only understand and predict AIVs infection characteristics in birds but also extrapolate them for distinction or applicability in mammals, including humans.
Collapse
|
236
|
Lopez CE, Legge KL. Influenza A Virus Vaccination: Immunity, Protection, and Recent Advances Toward A Universal Vaccine. Vaccines (Basel) 2020; 8:E434. [PMID: 32756443 PMCID: PMC7565301 DOI: 10.3390/vaccines8030434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza virus infections represent a serious public health threat and account for significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. Despite being an important countermeasure to combat influenza virus and being highly efficacious when matched to circulating influenza viruses, current preventative strategies of vaccination against influenza virus often provide incomplete protection due the continuous antigenic drift/shift of circulating strains of influenza virus. Prevention and control of influenza virus infection with vaccines is dependent on the host immune response induced by vaccination and the various vaccine platforms induce different components of the local and systemic immune response. This review focuses on the immune basis of current (inactivated influenza vaccines (IIV) and live attenuated influenza vaccines (LAIV)) as well as novel vaccine platforms against influenza virus. Particular emphasis will be placed on how each platform induces cross-protection against heterologous influenza viruses, as well as how this immunity compares to and contrasts from the "gold standard" of immunity generated by natural influenza virus infection.
Collapse
Affiliation(s)
- Christopher E. Lopez
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin L. Legge
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
237
|
Johnson KEE, Ghedin E. Quantifying between-Host Transmission in Influenza Virus Infections. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038422. [PMID: 31871239 DOI: 10.1101/cshperspect.a038422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The error-prone replication and life cycle of influenza virus generate a diverse set of genetic variants. Transmission between hosts strictly limits both the number of virus particles and the genetic diversity of virus variants that reach a new host and establish an infection. This sharp reduction in the virus population at transmission--the transmission bottleneck--is significant to the evolution of influenza virus and to its epidemic and pandemic potential. This review describes transmission bottlenecks and their effect on the diversity and evolution of influenza virus. It also reviews the methods for calculating and predicting bottleneck sizes and highlights the host and viral determinants of influenza transmissibility.
Collapse
Affiliation(s)
- Katherine E E Johnson
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, and Department of Epidemiology, College of Global Public Health, New York University, New York, New York 10003, USA
| |
Collapse
|
238
|
Jiang Y, Cai X, Yao J, Guo H, Yin L, Leung W, Xu C. Role of Extracellular Vesicles in Influenza Virus Infection. Front Cell Infect Microbiol 2020; 10:366. [PMID: 32850473 PMCID: PMC7396637 DOI: 10.3389/fcimb.2020.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza virus infection is a major health care concern associated with significant morbidity and mortality worldwide, and cause annual seasonal epidemics and pandemics at irregular intervals. Recent research has highlighted that viral components can be found on the extracellular vesicles (EVs) released from infected cells, implying a functional relevance of EVs with influenza virus dissemination. Therefore, exploring the role of EVs in influenza virus infection has been attracting significant attention. In this review, we will briefly introduce the biogenesis of EVs, and focus on the role of EVs in influenza virus infection, and then discuss the EVs-based influenza vaccines and the limitations of EVs studies, to further enrich and boost the development of preventative and therapeutic strategies to combat influenza virus.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwen Yao
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liangjun Yin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
239
|
Yu J, Sun X, Goie JYG, Zhang Y. Regulation of Host Immune Responses against Influenza A Virus Infection by Mitogen-Activated Protein Kinases (MAPKs). Microorganisms 2020; 8:microorganisms8071067. [PMID: 32709018 PMCID: PMC7409222 DOI: 10.3390/microorganisms8071067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza is a major respiratory viral disease caused by infections from the influenza A virus (IAV) that persists across various seasonal outbreaks globally each year. Host immune response is a key factor determining disease severity of influenza infection, presenting an attractive target for the development of novel therapies for treatments. Among the multiple signal transduction pathways regulating the host immune activation and function in response to IAV infections, the mitogen-activated protein kinase (MAPK) pathways are important signalling axes, downstream of various pattern recognition receptors (PRRs), activated by IAVs that regulate various cellular processes in immune cells of both innate and adaptive immunity. Moreover, aberrant MAPK activation underpins overexuberant production of inflammatory mediators, promoting the development of the “cytokine storm”, a characteristic of severe respiratory viral diseases. Therefore, elucidation of the regulatory roles of MAPK in immune responses against IAVs is not only essential for understanding the pathogenesis of severe influenza, but also critical for developing MAPK-dependent therapies for treatment of respiratory viral diseases. In this review, we will summarise the current understanding of MAPK functions in both innate and adaptive immune response against IAVs and discuss their contributions towards the cytokine storm caused by highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Jiabo Yu
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Xiang Sun
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Jian Yi Gerald Goie
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Correspondence: ; Tel.: +65-65166407
| |
Collapse
|
240
|
Soto JA, Gálvez NMS, Andrade CA, Pacheco GA, Bohmwald K, Berrios RV, Bueno SM, Kalergis AM. The Role of Dendritic Cells During Infections Caused by Highly Prevalent Viruses. Front Immunol 2020; 11:1513. [PMID: 32765522 PMCID: PMC7378533 DOI: 10.3389/fimmu.2020.01513] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of innate immune cells with major relevance in the establishment of an adaptive response, as they are responsible for the activation of lymphocytes. Since their discovery, several reports of their role during infectious diseases have been performed, highlighting their functions and their mechanisms of action. DCs can be categorized into different subsets, and each of these subsets expresses a wide arrange of receptors and molecules that aid them in the clearance of invading pathogens. Interferon (IFN) is a cytokine -a molecule of protein origin- strongly associated with antiviral immune responses. This cytokine is secreted by different cell types and is fundamental in the modulation of both innate and adaptive immune responses against viral infections. Particularly, DCs are one of the most important immune cells that produce IFN, with type I IFNs (α and β) highlighting as the most important, as they are associated with viral clearance. Type I IFN secretion can be induced via different pathways, activated by various components of the virus, such as surface proteins or genetic material. These molecules can trigger the activation of the IFN pathway trough surface receptors, including IFNAR, TLR4, or some intracellular receptors, such as TLR7, TLR9, and TLR3. Here, we discuss various types of dendritic cells found in humans and mice; their contribution to the activation of the antiviral response triggered by the secretion of IFN, through different routes of the induction for this important antiviral cytokine; and as to how DCs are involved in human infections that are considered highly frequent nowadays.
Collapse
Affiliation(s)
- Jorge A Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas M S Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V Berrios
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
241
|
Hong EH, Song JH, Kim SR, Cho J, Jeong B, Yang H, Jeong JH, Ahn JH, Jeong H, Kim SE, Chang SY, Ko HJ. Morin Hydrate Inhibits Influenza Virus entry into Host Cells and Has Anti-inflammatory Effect in Influenza-infected Mice. Immune Netw 2020; 20:e32. [PMID: 32895619 PMCID: PMC7458794 DOI: 10.4110/in.2020.20.e32] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
Influenza virus is the major cause of seasonal and pandemic flu. Currently, oseltamivir, a potent and selective inhibitor of neuraminidase of influenza A and B viruses, is the drug of choice for treating patients with influenza virus infection. However, recent emergence of oseltamivir-resistant influenza viruses has limited its efficacy. Morin hydrate (3,5,7,2′,4′-pentahydroxyflavone) is a flavonoid isolated from Morus alba L. It has antioxidant, anti-inflammatory, neuroprotective, and anticancer effects partly by the inhibition of the NF-кB signaling pathway. However, its effects on influenza virus have not been studied. We evaluated the antiviral activity of morin hydrate against influenza A/Puerto Rico/8/1934 (A/PR/8; H1N1) and oseltamivir-resistant A/PR/8 influenza viruses in vitro. To determine its mode of action, we carried out time course experiments, and time of addition, hemolysis inhibition, and hemagglutination assays. The effects of the co-administration of morin hydrate and oseltamivir were assessed using the murine model of A/PR/8 infection. We found that morin hydrate reduced hemagglutination by A/PR/8 in vitro. It alleviated the symptoms of A/PR/8-infection, and reduced the levels of pro-inflammatory cytokines and chemokines, such as TNF-α and CCL2, in infected mice. Co-administration of morin hydrate and oseltamivir phosphate reduced the virus titers and attenuated pulmonary inflammation. Our results suggest that morin hydrate exhibits antiviral activity by inhibiting the entry of the virus.
Collapse
Affiliation(s)
- Eun-Hye Hong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea.,Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Birang Jeong
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Heejung Yang
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hyeon Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Hyunjin Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Seong-Eun Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology and Immunology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea.,Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
242
|
Li C, Culhane MR, Cheeran M, Galina Pantoja L, Jansen ML, Amodie D, Mellencamp MA, Torremorell M. Exploring heterologous prime-boost vaccination approaches to enhance influenza control in pigs. Vet Res 2020; 51:89. [PMID: 32646490 PMCID: PMC7344353 DOI: 10.1186/s13567-020-00810-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
Influenza A viruses evolve rapidly to escape host immunity. In swine, this viral evolution has resulted in the emergence of multiple H1 and H3 influenza A virus (IAV) lineages in the United States (US) pig populations. The heterologous prime-boost vaccination strategy is a promising way to deal with diverse IAV infection in multiple animal models. However, whether or not this vaccination strategy is applicable to US swine to impart immunity against infection from North American strains of IAV is still unknown. We performed a vaccination-challenge study to evaluate the protective efficacy of using multivalent inactivated vaccine and/or a live attenuated IAV vaccine (LAIV) in pigs following multiple prime-boost vaccination protocols against a simultaneous H1N1 and H3N2 IAV infection. Our data show that pigs in the heterologous prime-boost vaccination group had more favorable outcomes consistent with a better response against virus challenge than non-vaccinated pigs. Additionally, delivering a multivalent heterologous inactivated vaccine boost to pigs following a single LAIV administration was also beneficial. We concluded the heterologous prime boost vaccination strategy may potentiate responses to suboptimal immunogens and holds the potential applicability to control IAV in the North American swine industry. However, more studies are needed to validate the application of this vaccination approach under field conditions.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Maxim Cheeran
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | | | | |
Collapse
|
243
|
Jin L, Ying ZH, Yu CH, Zhang HH, Yu WY, Wu XN. Isofraxidin ameliorated influenza viral inflammation in rodents via inhibiting platelet aggregation. Int Immunopharmacol 2020; 84:106521. [PMID: 32315950 DOI: 10.1016/j.intimp.2020.106521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Platelets have been proved to exacerbate influenza infection and its complications. Inhibition of platelet activation may be a feasible method for preventing severe infection and secondary acute lung injury (ALI). Isofraxidin (IFD) is a natural coumarin isolated from the plants Sarcandra glabra and Siberian ginseng, and exerts anticancer, antioxidant and antiinflammatory effects. In the present study, we examined the therapeutic effects of IFD in ADP- or arachidonic acid (AA)-induced platelet aggregation model and in influenza A virus (IAV)-induced ALI mouse model. The results showed that IFD significantly inhibited platelet aggregation induced by ADP and AA in vitro in a concentration-dependent manner as well as the release of soluble P-selectin and platelet factor 4. Moreover, IFD significantly relieved IAV-induced lung inflammation, reduced the expressions of platelet activation biomarkers (P-selectin and CD61), decreased the serum levels of TNF-α, IL-1β, IL-6 and MIP-2, suppressed peripheral platelet aggregation and prolonged the survival time of infected mice. The western blotting results also demonstrated that IFD reduced the phosphorylation levels of PI3K, AKT and p38 in the activated platelets stimulated by ADP and IAV infection. But IFD did not have any effects on IAV replication. It indicated that IFD ameliorated IAV-induced severe lung damage and lethal infection by suppressing platelet aggregation via regulating PI3K/AKT and MAPK pathways.
Collapse
Affiliation(s)
- Lei Jin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhen-Hua Ying
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310006, China
| | - Chen-Huan Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Wen-Ying Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Xiao-Ning Wu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
244
|
Abstract
It has been over 100 years since the 1918 influenza pandemic, one of the most infamous examples of viral immunopathology. Since that time, there has been an inevitable repetition of influenza pandemics every few decades and yearly influenza seasons, which have a significant impact on human health. Recently, noteworthy progress has been made in defining the cellular and molecular mechanisms underlying pathology induced by an exuberant host response to influenza virus infection. Infection with influenza viruses is associated with a wide spectrum of disease, from mild symptoms to severe complications including respiratory failure, and the severity of influenza disease is driven by a complex interplay of viral and host factors. This chapter will discuss mechanisms of infection severity using concepts of disease resistance and tolerance as a framework for understanding the balance between viral clearance and immunopathology. We review mechanistic studies in animal models of infection and correlational studies in humans that have begun to define these factors and discuss promising host therapeutic targets to improve outcomes from severe influenza disease.
Collapse
Affiliation(s)
- David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Taylor L Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
245
|
L'Huillier AG, Ferreira VH, Hirzel C, Nellimarla S, Ku T, Natori Y, Humar A, Kumar D. T-cell responses following Natural Influenza Infection or Vaccination in Solid Organ Transplant Recipients. Sci Rep 2020; 10:10104. [PMID: 32572168 PMCID: PMC7308384 DOI: 10.1038/s41598-020-67172-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/11/2020] [Indexed: 11/09/2022] Open
Abstract
Little is known about cell-mediated immune responses to natural influenza infection in solid organ transplant (SOT) patients. The aim of our study was to evaluate the CD4+ and CD8+ responses to influenza A and B infection in a cohort of SOT patients. We collected peripheral blood mononuclear cells at influenza diagnosis and four weeks later from 31 SOT patients during the 2017–2018 influenza season. Infection-elicited influenza-specific CD4+ and CD8+ T-cell responses were measured using flow cytometry and intracellular cytokine staining and compared to responses following influenza vaccine in SOT patients. Natural infection was associated with a significant increase in CD4+ T-cell responses. For example, polyfunctional cells increased from 21 to 782 and from 193 to 1436 cells per 106 CD4+ T-cells among influenza A/H3N2 and B-infected patients (p = 0.006 and 0.004 respectively). Moreover, infection-elicited CD4+ responses were superior than vaccine-elicited responses for influenza A/H1N1 (931 vs 1; p = 0.026), A/H3N2 (647 vs 1; p = 0.041) and B (619 vs 1; p = 0.004). Natural influenza infection triggers a significant increase in CD4+ T-cell responses in SOT patients. Infection elicits significantly stronger CD4+ responses compared to the influenza vaccine and thereby likely elicits better protection against reinfection.
Collapse
Affiliation(s)
- Arnaud G L'Huillier
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University Hospitals of Geneva & University of Geneva Medical School, Geneva, Switzerland.,Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Victor H Ferreira
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Cedric Hirzel
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.,Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Terrance Ku
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Yoichiro Natori
- Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, Florida, USA.,Miami Transplant Institute, Miami, Florida, USA
| | - Atul Humar
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.
| | - Deepali Kumar
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
246
|
Hung IFN, Cheng VCC, Li X, Tam AR, Hung DLL, Chiu KHY, Yip CCY, Cai JP, Ho DTY, Wong SC, Leung SSM, Chu MY, Tang MOY, Chen JHK, Poon RWS, Fung AYF, Zhang RR, Yan EYW, Chen LL, Choi CYK, Leung KH, Chung TWH, Lam SHY, Lam TPW, Chan JFW, Chan KH, Wu TC, Ho PL, Chan JWM, Lau CS, To KKW, Yuen KY. SARS-CoV-2 shedding and seroconversion among passengers quarantined after disembarking a cruise ship: a case series. THE LANCET. INFECTIOUS DISEASES 2020; 20:1051-1060. [PMID: 32539986 PMCID: PMC7292581 DOI: 10.1016/s1473-3099(20)30364-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
Background A cruise ship is a closed-off environment that simulates the basic functioning of a city in terms of living conditions and interpersonal interactions. Thus, the Diamond Princess cruise ship, which was quarantined because of an onboard outbreak of COVID-19 in February, 2020, provides an opportunity to define the shedding pattern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patient antibody responses before and after the onset of symptoms. Methods We recruited adult (≥18 years) passengers from Hong Kong who had been on board the Diamond Princess cruise ship docked in Yokohama, Japan in February, 2020. All participants had been found to be negative for SARS-CoV-2 by RT-PCR 4 days before disembarking and were transferred to further quarantine in a public estate in Hong Kong, where they were recruited. Participants were prospectively screened by quantitative RT-PCR (RT-qPCR) of nasopharyngeal and throat swabs, and serum IgG and IgM against internal nucleoprotein and the surface spike receptor-binding protein (RBD) of SARS-CoV-2 at baseline (upon entering quarantine) and on days 4, 8, and 12 of quarantine. Findings On Feb 22, 2020, 215 adults were recruited, of whom nine (4%; 95% CI 2–8) were positive for SARS-CoV-2 by RT-qPCR or serology and were hospitalised. Of these nine patients, nasopharyngeal swab RT-qPCR was positive in eight patients (89%; 57–99) at baseline. All nine patients were positive for anti-RBD IgG by day 8. Eight (89%; 57–99) were simultaneously positive for nasopharyngeal swab RT-PCR and anti-RBD IgG. One patient who was positive for anti-RBD IgG and had a negative viral load had multifocal peripheral ground-glass changes on high-resolution CT that were typical of COVID-19. Five patients (56%; 27–81) with ground-glass changes on high-resolution CT were found to have higher anti-nucleoprotein-IgG OD values on day 8 and 12 and anti-RBD IgG OD value on day 12 than patients without ground-glass changes. Six (67%; 35–88) patients remained asymptomatic throughout the 14-day quarantine period. Interpretation Patients with COVID-19 can develop asymptomatic lung infection with viral shedding and those with evidence of pneumonia on imaging tend to have an increased antibody response. Positive IgG or IgM confirmed infection of COVID-19 in both symptomatic and asymptomatic patients. A combination of RT-PCR and serology should be implemented for case finding and contact tracing to facilitate early diagnosis, prompt isolation, and treatment. Funding Shaw Foundation Hong Kong; Sanming-Project of Medicine (Shenzhen); High Level-Hospital Program (Guangdong Health Commission).
Collapse
Affiliation(s)
- Ivan Fan-Ngai Hung
- Infectious Disease Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China; Infection Control Team, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Xin Li
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anthony Raymond Tam
- Infectious Disease Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Derek Ling-Lung Hung
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelvin Hei-Yeung Chiu
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Deborah Tip-Yin Ho
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shuk-Ching Wong
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China; Infection Control Team, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Sally Sau-Man Leung
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Man-Yee Chu
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Milky Oi-Yan Tang
- Infectious Disease Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jonathan Hon-Kwan Chen
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rosana Wing-Shan Poon
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Agnes Yim-Fong Fung
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ricky Ruiqi Zhang
- Infectious Disease Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Erica Yuen-Wing Yan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lin-Lei Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Charlotte Yee-Ki Choi
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kit-Hang Leung
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tom Wai-Hin Chung
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sonia Hiu-Yin Lam
- Department of Radiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Tina Poy-Wing Lam
- Department of Radiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tak-Chiu Wu
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Pak-Leung Ho
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Johnny Wai-Man Chan
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Chak-Sing Lau
- Infectious Disease Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
247
|
Cheung PHH, Ye ZW, Lee TWT, Chen H, Chan CP, Jin DY. PB1-F2 protein of highly pathogenic influenza A (H7N9) virus selectively suppresses RNA-induced NLRP3 inflammasome activation through inhibition of MAVS-NLRP3 interaction. J Leukoc Biol 2020; 108:1655-1663. [PMID: 32386456 DOI: 10.1002/jlb.4ab0420-694r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1-F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1-F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL-1β and IL-18. On the other hand, when expressed intracellularly PB1-F2 suppresses NLRP3 inflammasome maturation. How extracellular and intracellular PB1-F2 orchestrates to drive viral pathogenesis remains unclear. In this study, we demonstrated the suppression of NLRP3 inflammasome activation and IL-1β secretion by PB1-F2 of highly pathogenic influenza A (H7N9) virus in infected human monocyte-derived macrophages. Mechanistically, H7N9 PB1-F2 selectively mitigated RNA-induced NLRP3 inflammasome activation by inhibiting the interaction between NLRP3 and MAVS. Intracellular PB1-F2 of H7N9 virus did not affect extracellular PB1-F2-induced NLRP3 inflammasome maturation. In contrast, PB1-F2 of WSN laboratory strain of human IAV effectively suppressed IL-1β processing and secretion induced by various stimuli including NLRP3, AIM2, and pro-IL-1β. This subtype-specific effect of PB1-F2 on inflammasome activation correlates with the induction of a proinflammatory cytokine storm by H7N9 but not WSN virus. Our findings on selective suppression of MAVS-dependent activation of NLRP3 inflammasome by H7N9 PB1-F2 have implications in viral pathogenesis and antiviral development.
Collapse
Affiliation(s)
| | - Zi-Wei Ye
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
248
|
Landreth S, Lu Y, Pandey K, Zhou Y. A Replication-Defective Influenza Virus Vaccine Confers Complete Protection against H7N9 Viral Infection in Mice. Vaccines (Basel) 2020; 8:E207. [PMID: 32370136 PMCID: PMC7349114 DOI: 10.3390/vaccines8020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Avian influenza H7N9 viruses continue to pose a great threat to public health, which is evident by their high case-fatality rates. Although H7N9 was first isolated in humans in China in 2013, to date, there is no commercial vaccine available against this particular strain. Our previous studies developed a replication-defective influenza virus through mutation of the hemagglutinin (HA) cleavage site from a trypsin-sensitive to an elastase-sensitive motif. In this study, we report the development of a reassortant mutant influenza virus derived from the human isolate A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], which is the QVT virus. The HA gene of this virus possesses three mutations at the cleavage site, Lys-Gly-Arg were mutated to Gln-Thr-Val at amino acid (aa) positions 337, 338, and 339, respectively. We report this virus to rely on elastase in vitro, possess unaltered replication abilities when elastase was provided compared to the wild type virus in vitro, and to be non-virulent and replication-defective in mice. In addition, we report this virus to induce significant levels of antibodies and IFN-γ and IL-5 secreting cells, and to protect mice against a lethal challenge of the BC15 (H7N9) virus. This protection is demonstrated through the lack of body weight loss, 100% survival rate, and the prevention of BC15 (H7N9) viral replication as well as the reduction of proinflammatory cytokines induced in the mouse lung associated with the influenza disease. Therefore, these results provide strong evidence for the use of this reassortant mutant H7N9 virus as a replication-defective virus vaccine candidate against H7N9 viruses.
Collapse
Affiliation(s)
- Shelby Landreth
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Yao Lu
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
| | - Kannupriya Pandey
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Yan Zhou
- Vaccine and Infections Disease Organization, International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.L.); (Y.L.); (K.P.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
249
|
To EE, Erlich JR, Liong F, Luong R, Liong S, Esaq F, Oseghale O, Anthony D, McQualter J, Bozinovski S, Vlahos R, O'Leary JJ, Brooks DA, Selemidis S. Mitochondrial Reactive Oxygen Species Contribute to Pathological Inflammation During Influenza A Virus Infection in Mice. Antioxid Redox Signal 2020; 32:929-942. [PMID: 31190565 PMCID: PMC7104903 DOI: 10.1089/ars.2019.7727] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: Reactive oxygen species (ROS) are highly reactive molecules generated in different subcellular sites or compartments, including endosomes via the NOX2-containing nicotinamide adenine dinucleotide phosphate oxidase during an immune response and in mitochondria during cellular respiration. However, while endosomal NOX2 oxidase promotes innate inflammation to influenza A virus (IAV) infection, the role of mitochondrial ROS (mtROS) has not been comprehensively investigated in the context of viral infections in vivo. Results: In this study, we show that pharmacological inhibition of mtROS, with intranasal delivery of MitoTEMPO, resulted in a reduction in airway/lung inflammation, neutrophil infiltration, viral titers, as well as overall morbidity and mortality in mice infected with IAV (Hkx31, H3N2). MitoTEMPO treatment also attenuated apoptotic and necrotic neutrophils and macrophages in airway and lung tissue. At an early phase of influenza infection, that is, day 3 there were significantly lower amounts of IL-1β protein in the airways, but substantially higher amounts of type I IFN-β following MitoTEMPO treatment. Importantly, blocking mtROS did not appear to alter the initiation of an adaptive immune response by lung dendritic cells, nor did it affect lung B and T cell populations that participate in humoral and cellular immunity. Innovation/Conclusion: Influenza virus infection promotes mtROS production, which drives innate immune inflammation and this exacerbates viral pathogenesis. This pathogenic cascade highlights the therapeutic potential of local mtROS antioxidant delivery to alleviate influenza virus pathology.
Collapse
Affiliation(s)
- Eunice E To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Jonathan R Erlich
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Felicia Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Raymond Luong
- Infection and Immunity Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Stella Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Farisha Esaq
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Osezua Oseghale
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Desiree Anthony
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Jonathan McQualter
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Steven Bozinovski
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| | - John J O'Leary
- Department of Histopathology Trinity College Dublin, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland.,Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin, Ireland
| | - Doug A Brooks
- Division of Health Sciences, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health Sciences and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Melbourne, Australia
| |
Collapse
|
250
|
Romeli S, Hassan SS, Yap WB. Multi-Epitope Peptide-Based and Vaccinia-Based Universal Influenza Vaccine Candidates Subjected to Clinical Trials. Malays J Med Sci 2020; 27:10-20. [PMID: 32788837 PMCID: PMC7409566 DOI: 10.21315/mjms2020.27.2.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
In light of the limited protection conferred by current influenza vaccines, immunisation using universal influenza vaccines has been proposed for protection against all or most influenza sub-types. The fundamental principle of universal influenza vaccines is based on conserved antigens found in most influenza strains, such as matrix 2, nucleocapsid, matrix 1 and stem of hemagglutinin proteins. These antigens trigger cross-protective immunity against different influenza strains. Many researchers have attempted to produce the conserved epitopes of these antigens in the form of peptides in the hope of generating universal influenza vaccine candidates that can broadly induce cross-reactive protection against influenza viral infections. However, peptide vaccines are poorly immunogenic when applied individually owing to their small molecular sizes. Hence, strategies, such as combining peptides as multi-epitope vaccines or presenting peptides on vaccinia virus particles, are employed. This review discusses the clinical and laboratory findings of several multi-epitope peptide vaccine candidates and vaccinia-based peptide vaccines. The majority of these vaccine candidates have reached the clinical trial phase. The findings in this study will indeed shed light on the applicability of universal influenza vaccines to prevent seasonal and pandemic influenza outbreaks in the near future.
Collapse
Affiliation(s)
- Syazwani Romeli
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Wei Boon Yap
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|