201
|
Shevlyakov A, Nikogosov D, Stewart LA, Toribio-Mateas M. Reference values for intake of six types of soluble and insoluble fibre in healthy UK inhabitants based on the UK Biobank data. Public Health Nutr 2021; 25:1-15. [PMID: 34105446 PMCID: PMC9993053 DOI: 10.1017/s1368980021002524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To obtain a set of reference values for the intake of different types of dietary fibre in a healthy UK population. DESIGN This descriptive cross-sectional study used the UK Biobank data to estimate the dietary patterns of healthy individuals. Data on fibre content in different foods were used to calculate the reference values which were then calibrated using real-world data on total fibre intake. SETTING UK Biobank is a prospective cohort study of over 500 000 individuals from across the United Kingdom with the participants aged between 40 and 69 years. PARTICIPANTS UK Biobank contains information on over 500 000 participants. This study was performed using the data on 19 990 individuals (6941 men, 13 049 women) who passed stringent quality control and filtering procedures and had reported above-zero intake of the analysed foods. RESULTS A set of reference values for the intake of six different types of soluble and insoluble fibres (cellulose, hemicelluloses, pectin and lignin), including the corresponding totals, was developed and calibrated using real-world data. CONCLUSIONS To our knowledge, this is the first study to establish specific reference values for the intake of different types of dietary fibre. It is well known that effects exerted by different types of fibre both directly and through modulation of microbiota are numerous. Conceivably, a deficit or excess intake of specific types of dietary fibre may detrimentally affect human health. Filling this knowledge gap opens new avenues for research in discussion in studies of nutrition and microbiota and offers valuable tools for practitioners worldwide.
Collapse
Affiliation(s)
- Artem Shevlyakov
- Atlas Biomed Group Limited, Tower Bridge House, St. Katharines Way, LondonE1W 1DD, UK
| | - Dimitri Nikogosov
- Atlas Biomed Group Limited, Tower Bridge House, St. Katharines Way, LondonE1W 1DD, UK
| | - Leigh-Ann Stewart
- Atlas Biomed Group Limited, Tower Bridge House, St. Katharines Way, LondonE1W 1DD, UK
- School of Health and Education, Middlesex University, The Burroughs, London, UK
| | - Miguel Toribio-Mateas
- Atlas Biomed Group Limited, Tower Bridge House, St. Katharines Way, LondonE1W 1DD, UK
- School of Health and Education, Middlesex University, The Burroughs, London, UK
- London, School of Applied Sciences, London South Bank University, London, UK
| |
Collapse
|
202
|
Gantenbein KV, Kanaka-Gantenbein C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021; 13:nu13061951. [PMID: 34204057 PMCID: PMC8227318 DOI: 10.3390/nu13061951] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
It has been established, worldwide, that non-communicable diseases such as obesity, diabetes, metabolic syndrome, and cardiovascular events account for a high percentage of morbidity and mortality in contemporary societies. Several modifiable risk factors, such as sedentary activities, sleep deprivation, smoking, and unhealthy dietary habits have contributed to this increase. Healthy nutrition in terms of adherence to the Mediterranean diet (MD), rich in fruits, legumes, vegetables, olive oil, herbs, spices, and high fiber intake may contribute to the decrease in this pandemic. The beneficial effects of the MD can be mainly attributed to its numerous components rich in anti-inflammatory and antioxidant properties. Moreover, the MD may further contribute to the improvement of reproductive health, modify the risk for neurodegenerative diseases, and protect against depression and psychosocial maladjustment. There is also evidence highlighting the impact of healthy nutrition in female people on the composition of the gut microbiota and future metabolic and overall health of their offspring. It is therefore important to highlight the beneficial effects of the MD on metabolic, reproductive, and mental health, while shaping the overall health of future generations. The beneficial effects of MD can be further enhanced by increased physical activity in the context of a well-balanced healthy lifestyle.
Collapse
|
203
|
Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
204
|
Effect of Taro Starch, Beet Juice, Probiotic, and/or Psicose on Gut Microbiota in a Type 2 Diabetic Rat Model: A Pilot Study. J Nutr Metab 2021; 2021:1825209. [PMID: 34094596 PMCID: PMC8163543 DOI: 10.1155/2021/1825209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/14/2020] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives. The gut microbiota has been shown to be involved in the development and severity of type 2 diabetes (T2D). The aim of the present study was to test the effect of potential functional food ingredients, alone or in combination, on the gut microbiota composition in diabetic rats in a pilot study of 1 week of feeding. Methods. In a pilot study to modulate the composition of the gut microbiota, (i) native taro starch, (ii) modified taro starch, (iii) beet juice, (iv) psicose, (v) the probiotic L. plantarum IS-10506, (vi) native starch combined with beet juice, (vii) native starch to which beet juice was adsorbed, (viii) modified starch combined with beet juice, and (ix) modified starch to which beet juice was adsorbed were fed to rats in which T2D was induced with streptozotocin (STZ). After one week, the composition of the gut microbiota was evaluated by sequencing the PCR-amplified V3-V4 region of the 16S rRNA gene. Results and Conclusions. The next-generation sequencing showed that 13 microbial taxa of the gut microbiota were significantly different between groups, depending on the treatment. The results of this pilot study will be used to design a 4-week intervention study in STZ-induced T2D rats to determine the best functional food for counteracting T2D, including their effects on satiety hormones. This should ultimately lead to the development of functional foods for prediabetic and diabetic individuals.
Collapse
|
205
|
Ponzo V, Pellegrini M, D’Eusebio C, Bioletto F, Goitre I, Buscemi S, Frea S, Ghigo E, Bo S. Mediterranean Diet and SARS-COV-2 Infection: Is There Any Association? A Proof-of-Concept Study. Nutrients 2021; 13:nu13051721. [PMID: 34069656 PMCID: PMC8160854 DOI: 10.3390/nu13051721] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this observational study was investigating the possible correlation between adherence to the Mediterranean diet (MeD) and SARS-COV-2 infection rates and severity among healthcare professionals (HCPs). An online self-administrated questionnaire (evaluating both MeD adherence and dietary habits) was filled out by HCPs working in Piedmont (Northern Italy) from 15 January to 28 February 2021. Out of the 1206 questionnaires collected, 900 were considered reliable and analyzed. Individuals who reported the SARS-COV-2 infection (n = 148) showed a significantly lower MeD score, with a lower adherence in fruit, vegetables, cereals, and olive oil consumption. In a logistic regression model, the risk of infection was inversely associated with the MeD score (OR = 0.88; 95% CI 0.81–0.97) and the consumption of cereals (OR = 0.64; 0.45–0.90). Asymptomatic individuals with SARS-COV-2 infection reported a lower intake of saturated fats than symptomatic; individuals requiring hospitalization were significantly older and reported worse dietary habits than both asymptomatic and symptomatic individuals. After combining all symptomatic individuals together, age (OR = 1.05; 1.01–1.09) and saturated fats intake (OR = 1.09; 1.01–1.17) were associated with the infection severity. HCPs who reported a SARS-COV-2 infection showed a significantly lower MeD score and cereal consumption. The infection severity was directly associated with higher age and saturated fat intake.
Collapse
Affiliation(s)
- Valentina Ponzo
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Marianna Pellegrini
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Chiara D’Eusebio
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Fabio Bioletto
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Ilaria Goitre
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Silvio Buscemi
- Unit of Clinical Nutrition, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy;
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Simone Frea
- Cardiology Unit, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy;
| | - Ezio Ghigo
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
| | - Simona Bo
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (V.P.); (M.P.); (C.D.); (F.B.); (I.G.); (E.G.)
- Correspondence: ; Tel.: +39-011-633-6036
| |
Collapse
|
206
|
Fan HY, Tung YT, Yang YCSH, Hsu JB, Lee CY, Chang TH, Su ECY, Hsieh RH, Chen YC. Maternal Vegetable and Fruit Consumption during Pregnancy and Its Effects on Infant Gut Microbiome. Nutrients 2021; 13:1559. [PMID: 34063157 PMCID: PMC8148194 DOI: 10.3390/nu13051559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Maternal nutrition intake during pregnancy may affect the mother-to-child transmission of bacteria, resulting in gut microflora changes in the offspring, with long-term health consequences in later life. Longitudinal human studies are lacking, as only a small amount of studies showing the effect of nutrition intake during pregnancy on the gut microbiome of infants have been performed, and these studies have been mainly conducted on animals. This pilot study explores the effects of high or low fruit and vegetable gestational intake on the infant microbiome. We enrolled pregnant women with a complete 3-day dietary record and received postpartum follow-up. The 16S rRNA gene sequence was used to characterize the infant gut microbiome at 2 months (n = 39). Principal coordinate analysis ordination revealed that the infant gut microbiome clustered differently for high and low maternal fruit and vegetable consumption (p < 0.001). The linear discriminant analysis effect size and feature selection identified 6 and 17 taxa from both the high and low fruit and vegetable consumption groups. Among the 23 abundant taxa, we observed that six maternal intake nutrients were associated with nine taxa (e.g., Erysipelatoclostridium, Isobaculum, Lachnospiraceae, Betaproteobacteria, Burkholderiaceae, Sutterella, Clostridia, Clostridiales, and Lachnoclostridium). The amount of gestational fruit and vegetable consumption is associated with distinct changes in the infant gut microbiome at 2 months of age. Therefore, strategies involving increased fruit and vegetable consumption during pregnancy should be employed for modifying the gut microbiome early in life.
Collapse
Affiliation(s)
- Hsien-Yu Fan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan;
| | - Justin BoKai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Cheng-Yang Lee
- Office of Information Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.L.); (T.-H.C.)
| | - Tzu-Hao Chang
- Office of Information Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.L.); (T.-H.C.)
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan;
| | - Yang-Ching Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan;
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan;
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
207
|
Neto CC, Mortzfeld BM, Turbitt JR, Bhattarai SK, Yeliseyev V, DiBenedetto N, Bry L, Bucci V. Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model. MICROBIAL CELL 2021; 8:131-142. [PMID: 34055966 PMCID: PMC8144911 DOI: 10.15698/mic2021.06.752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cranberry consumption has numerous health benefits, with experimental reports showing its anti-inflammatory and anti-tumor properties. Importantly, microbiome research has demonstrated that the gastrointestinal bacterial community modulates host immunity, raising the question of whether the cranberry-derived effect may be related to its ability to modulate the microbiome. Only a few studies have investigated the effect of cranberry products on the microbiome to date. Especially because cranberries are rich in dietary fibers, the extent of microbiome modulation by polyphenols, particularly proanthocyanidins (PACs), remains to be shown. Since previous work has only focused on long-term effects of cranberry extracts, in this study we investigated the effect of a water-soluble, PAC-rich cranberry juice extract (CJE) on the short-term dynamics of a human-derived bacterial community in a gnotobiotic mouse model. CJE characterization revealed a high enrichment in PACs (57%), the highest ever utilized in a microbiome study. In a 37-day experiment with a ten-day CJE intervention and 14-day recovery phase, we profiled the microbiota via 16S rRNA sequencing and applied diverse time-series analytics methods to identify individual bacterial responses. We show that daily administration of CJE induces distinct dynamic patterns in bacterial abundances during and after treatment, before recovering resiliently to pre-treatment levels. Specifically, we observed an increase of Akkermansia muciniphila and Clostridium hiranonis at the expense of Bacteroides ovatus after the offset of the selection pressure imposed by the PAC-rich CJE. This demonstrates that termination of an intervention with a cranberry product can induce changes of a magnitude as high as the intervention itself.
Collapse
Affiliation(s)
- Catherine C Neto
- Department of Chemistry and Biochemistry University of Massachusetts Dartmouth, North Dartmouth, MA.,UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA
| | - Benedikt M Mortzfeld
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| | - John R Turbitt
- Department of Chemistry and Biochemistry University of Massachusetts Dartmouth, North Dartmouth, MA.,UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Vanni Bucci
- UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
208
|
Altomare A, Di Rosa C, Imperia E, Emerenziani S, Cicala M, Guarino MPL. Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients 2021; 13:1506. [PMID: 33946961 PMCID: PMC8146452 DOI: 10.3390/nu13051506] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable Bowel Syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by abdominal pain associated with defecation or a change in bowel habits. Gut microbiota, which acts as a real organ with well-defined functions, is in a mutualistic relationship with the host, harvesting additional energy and nutrients from the diet and protecting the host from pathogens; specific alterations in its composition seem to play a crucial role in IBS pathophysiology. It is well known that diet can significantly modulate the intestinal microbiota profile but it is less known how different nutritional approach effective in IBS patients, such as the low-FODMAP diet, could be responsible of intestinal microbiota changes, thus influencing the presence of gastrointestinal (GI) symptoms. The aim of this review was to explore the effects of different nutritional protocols (e.g., traditional nutritional advice, low-FODMAP diet, gluten-free diet, etc.) on IBS-D symptoms and on intestinal microbiota variations in both IBS-D patients and healthy subjects. To date, an ideal nutritional protocol does not exist for IBS-D patients but it seems crucial to consider the effect of the different nutritional approaches on the intestinal microbiota composition to better define an efficient strategy to manage this functional disorder.
Collapse
Affiliation(s)
- Annamaria Altomare
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Claudia Di Rosa
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Elena Imperia
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Sara Emerenziani
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| | - Michele Cicala
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| | - Michele Pier Luca Guarino
- Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.E.); (M.C.); (M.P.L.G.)
| |
Collapse
|
209
|
Pacheco AR, Osborne ML, Segrè D. Non-additive microbial community responses to environmental complexity. Nat Commun 2021; 12:2365. [PMID: 33888697 PMCID: PMC8062479 DOI: 10.1038/s41467-021-22426-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental composition is a major, though poorly understood, determinant of microbiome dynamics. Here we ask whether general principles govern how microbial community growth yield and diversity scale with an increasing number of environmental molecules. By assembling hundreds of synthetic consortia in vitro, we find that growth yield can remain constant or increase in a non-additive manner with environmental complexity. Conversely, taxonomic diversity is often much lower than expected. To better understand these deviations, we formulate metrics for epistatic interactions between environments and use them to compare our results to communities simulated with experimentally-parametrized consumer resource models. We find that key metabolic and ecological factors, including species similarity, degree of specialization, and metabolic interactions, modulate the observed non-additivity and govern the response of communities to combinations of resource pools. Our results demonstrate that environmental complexity alone is not sufficient for maintaining community diversity, and provide practical guidance for designing and controlling microbial ecosystems.
Collapse
Affiliation(s)
- Alan R Pacheco
- Graduate Program in Bioinformatics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Melisa L Osborne
- Graduate Program in Bioinformatics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Daniel Segrè
- Graduate Program in Bioinformatics, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Physics, Boston University, Boston, MA, USA.
| |
Collapse
|
210
|
Gawlik-Kotelnicka O, Strzelecki D. Probiotics as a Treatment for "Metabolic Depression"? A Rationale for Future Studies. Pharmaceuticals (Basel) 2021; 14:ph14040384. [PMID: 33924064 PMCID: PMC8074252 DOI: 10.3390/ph14040384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
Depression and metabolic diseases often coexist, having several features in common, e.g., chronic low-grade inflammation and intestinal dysbiosis. Different microbiota interventions have been proposed to be used as a treatment for these disorders. In the paper, we review the efficacy of probiotics in depressive disorders, obesity, metabolic syndrome and its liver equivalent based on the published experimental studies, clinical trials and meta-analyses. Probiotics seem to be effective in reducing depressive symptoms when administered in addition to antidepressants. Additionally, probiotics intake may ameliorate some of the clinical components of metabolic diseases. However, standardized methodology regarding probiotics use in clinical trials has not been established yet. In this narrative review, we discuss current knowledge on the recently used methodology with its strengths and limitations and propose criteria that may be implemented to create a new study of the effectiveness of probiotics in depressive disorders comorbid with metabolic abnormalities. We put across our choice on type of study population, probiotics genus, strains, dosages and formulations, intervention period, as well as primary and secondary outcome measures.
Collapse
|
211
|
Genetically determined hypertensive phenotype affects gut microbiota composition, but not vice versa. J Hypertens 2021; 39:1790-1799. [PMID: 34397627 DOI: 10.1097/hjh.0000000000002864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Research suggests reciprocal crosstalk between the host and gut bacteria. This study evaluated the interaction between gut microbiota and arterial blood pressure (BP) in rats. METHODS Continuous telemetry recordings of BP were started in 7-week-old normotensive Wistar--Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Two weeks later, half of the WKY and SHR were subjected to cross-transplantation of fecal matter, with stools harvested from either WKY or SHR and BP measurements until the age of 14 weeks. The composition of gut bacteria was assessed through analysis of the bacterial 16S ribosomal RNA gene sequence. The concentration of microbiota-derived metabolites was evaluated using HPLC-MS. RESULTS There was a significant difference between WKY and SHR in the composition of gut bacteria at the start and end of the study. This was accompanied by significant histological differences in the colon. SHR, but not WKY, showed a gradual increase in BP throughout the experiment. For both WKY and SHR, there was no significant difference in BP or metabolic parameters between animals receiving fecal transplantation from either SHR or WKY. CONCLUSION Genetically induced hypertension in SHR is associated with alterations in the composition of gut bacteria and histological morphology of the colon. An inter-strain fecal transplant does not affect BP and does not produce long-term changes in gut bacteria composition. We propose that the impact of the host genotype and/or phenotype on the gut bacteria may be greater than the impact of the gut bacteria on the host BP.
Collapse
|
212
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
213
|
Berding K, Carbia C, Cryan JF. Going with the grain: Fiber, cognition, and the microbiota-gut-brain-axis. Exp Biol Med (Maywood) 2021; 246:796-811. [PMID: 33641478 PMCID: PMC8719029 DOI: 10.1177/1535370221995785] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
Healthy dietary intake has been acknowledged for decades as one of the main contributors to health. More recently, the field of nutritional psychiatry has progressed our understanding regarding the importance of nutrition in supporting mental health and cognitive function. Thereby, individual nutrients, including omega-3 fatty acids and polyphenols, have been recognized to be key drivers in this relationship. With the progress in appreciating the influence of dietary fiber on health, increasingly research is focusing on deciphering its role in brain processes. However, while the importance of dietary fiber in gastrointestinal and metabolic health is well established, leading to the development of associated health claims, the evidence is not conclusive enough to support similar claims regarding cognitive function. Albeit the increasing knowledge of the impact of dietary fiber on mental health, only a few human studies have begun to shed light onto the underexplored connection between dietary fiber and cognition. Moreover, the microbiota-gut-brain axis has emerged as a key conduit for the effects of nutrition on the brain, especially fibers, that are acted on by specific bacteria to produce a variety of health-promoting metabolites. These metabolites (including short chain fatty acids) as well as the vagus nerve, the immune system, gut hormones, or the kynurenine pathway have been proposed as underlying mechanisms of the microbiota-brain crosstalk. In this minireview, we summarize the evidence available from human studies on the association between dietary fiber intake and cognitive function. We provide an overview of potential underlying mechanisms and discuss remaining questions that need to be answered in future studies. While this field is moving at a fast pace and holds promise for future important discoveries, especially data from human cohorts are required to further our understanding and drive the development of public health recommendations regarding dietary fiber in brain health.
Collapse
Affiliation(s)
- Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
214
|
Maternal resveratrol therapy protected adult rat offspring against hypertension programmed by combined exposures to asymmetric dimethylarginine and trimethylamine-N-oxide. J Nutr Biochem 2021; 93:108630. [PMID: 33798707 DOI: 10.1016/j.jnutbio.2021.108630] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/10/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
Resveratrol, a phytochemical, has shown antioxidant properties and potential benefits in hypertension. Asymmetric dimethylarginine (ADMA)-related nitric oxide deficiency and gut microbiota-derived metabolite trimethylamine-N-oxide (TMAO) have been linked to hypertension. We aimed to test whether maternal resveratrol therapy would protect adult offspring against hypertension programmed by prenatal exposure to ADMA and TMAO. Pregnant Sprague-Dawley rats received ADMA 10 mg/kg/day (A), TMAO 0.65 mg/hr (T), ADMA+TMAO (AT), or vesicle (CV). One group of ADMA+TMAO-exposed rats received 50 mg/L of resveratrol in drinking water during pregnancy and lactation periods (ATR). Male offspring (n = 8/group) were assigned to five groups: CV, A, T, AT, and ATR. Rats were killed at 12 weeks of age. ADMA exposure caused the elevation of blood pressure in 12-week-old male offspring, which was exacerbated by TMAO exposure. Treatment with resveratrol rescued hypertension programmed by combined ADMA and TMAO exposure. This was accompanied by alterations in the compositions of gut microbiota and increased fecal butyrate levels. Both the abundance of the butyrate-producing genera Lachnospiraceae and Ruminococcaceae were augmented by resveratrol. Meanwhile, resveratrol therapy significantly increased the abundance of the Cyanobiaceae and Erysipelotrichaceae families. Moreover, the protective effects of resveratrol were related to the mediation of the renin-angiotensin system . Our data provide new insights into the protective mechanisms of resveratrol against hypertension programmed by ADMA and TMAO, including regulation of gut microbiota and their metabolites, the renin-angiotensin system, and nitric oxide pathway. Resveratrol might be a potential reprogramming strategy to protect against the hypertension of developmental origins.
Collapse
|
215
|
Khine WWT, Teo AHT, Loong LWW, Tan JJH, Ang CGH, Ng W, Lee CN, Zhu C, Lau QC, Lee YK. Gut Microbiome of a Multiethnic Community Possessed No Predominant Microbiota. Microorganisms 2021; 9:microorganisms9040702. [PMID: 33805276 PMCID: PMC8065435 DOI: 10.3390/microorganisms9040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
With increasing globalisation, various diets from around the world are readily available in global cities. This study aimed to verify if multiethnic dietary habits destabilised the gut microbiome in response to frequent changes, leading to readily colonisation of exogenous microbes. This may have health implications. We profiled Singapore young adults of different ethnicities for dietary habits, faecal type, gut microbiome and cytokine levels. Subjects were challenged with Lactobacillus casei, and corresponding changes in microbiome and cytokines were evaluated. Here, we found that the majority of young adults had normal stool types (73% Bristol Scale Types 3 and 4) and faecal microbiome categorised into three clusters, irrespective of race and gender. Cluster 1 was dominated by Bacteroides, Cluster 2 by Prevotella, while Cluster 3 showed a marginal increase in Blautia, Ruminococaceae and Ruminococcus, without a predominant microbiota. These youngsters in the three faecal microbiome clusters preferred Western high sugary beverages, Southeast Asian plant-rich diet and Asian/Western diets in rotation, respectively. Multiethnic dietary habits (Cluster 3) led to a gut microbiome without predominant microbiota yet demonstrated colonisation resistance to Lactobacillus. Although Bacteroides and Prevotella are reported to be health-promoting but also risk factors for some illnesses, Singapore-style dietary rotation habits may alleviate Bacteroides and Prevotella associated ill effects. Different immunological outcome was observed during consumption of the lactobacilli among the three microbiome clusters.
Collapse
Affiliation(s)
- Wei Wei Thwe Khine
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (W.W.T.K.); (A.H.T.T.)
- Functional Food Forum, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Anna Hui Ting Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (W.W.T.K.); (A.H.T.T.)
| | - Lucas Wee Wei Loong
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535, Clementi Road, Singapore 599489, Singapore; (L.W.W.L.); (J.J.H.T.); (C.G.H.A.); (W.N.); (C.Z.); (Q.C.L.)
| | - Jarett Jun Hao Tan
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535, Clementi Road, Singapore 599489, Singapore; (L.W.W.L.); (J.J.H.T.); (C.G.H.A.); (W.N.); (C.Z.); (Q.C.L.)
| | - Clarabelle Geok Hui Ang
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535, Clementi Road, Singapore 599489, Singapore; (L.W.W.L.); (J.J.H.T.); (C.G.H.A.); (W.N.); (C.Z.); (Q.C.L.)
| | - Winnie Ng
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535, Clementi Road, Singapore 599489, Singapore; (L.W.W.L.); (J.J.H.T.); (C.G.H.A.); (W.N.); (C.Z.); (Q.C.L.)
| | - Chuen Neng Lee
- Department of Surgery, National University of Hospital, Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore;
| | - Congju Zhu
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535, Clementi Road, Singapore 599489, Singapore; (L.W.W.L.); (J.J.H.T.); (C.G.H.A.); (W.N.); (C.Z.); (Q.C.L.)
| | - Quek Choon Lau
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535, Clementi Road, Singapore 599489, Singapore; (L.W.W.L.); (J.J.H.T.); (C.G.H.A.); (W.N.); (C.Z.); (Q.C.L.)
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (W.W.T.K.); (A.H.T.T.)
- Department of Surgery, National University of Hospital, Tower Block, 1E Kent Ridge Road, Singapore 119228, Singapore;
- Correspondence:
| |
Collapse
|
216
|
Gawlik-Kotelnicka O, Skowrońska A, Margulska A, Czarnecka-Chrebelska KH, Łoniewski I, Skonieczna-Żydecka K, Strzelecki D. The Influence of Probiotic Supplementation on Depressive Symptoms, Inflammation, and Oxidative Stress Parameters and Fecal Microbiota in Patients with Depression Depending on Metabolic Syndrome Comorbidity-PRO-DEMET Randomized Study Protocol. J Clin Med 2021; 10:jcm10071342. [PMID: 33804999 PMCID: PMC8036404 DOI: 10.3390/jcm10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
There is a huge need to search for new treatment options and potential biomarkers of therapeutic response to antidepressant treatment. Depression and metabolic syndrome often coexist, while a pathophysiological overlap, including microbiota changes, may play a role. The paper presents a study protocol that aims to assess the effect of probiotic supplementation on symptoms of depression, anxiety and stress, metabolic parameters, inflammatory and oxidative stress markers, as well as fecal microbiota in adult patients with depressive disorders depending on the co-occurrence of metabolic syndrome. The trial will be a four-arm, parallel-group, prospective, randomized, double-blind, controlled design that will include 200 participants and will last 20 weeks (ClinicalTrials.gov identifier: NCT04756544). The probiotic preparation will contain Lactobacillus helveticus Rosell®-52, Bifidobacterium longum Rosell®-175. We will assess the level of depression, anxiety and stress, quality of life, blood pressure, body mass index and waist circumference, white blood cells count, serum levels of C-reactive protein, high-density lipoprotein (HDL) cholesterol, triglycerides, fasting glucose, fecal microbiota composition and the level of some fecal microbiota metabolites, as well as serum inflammatory markers and oxidative stress parameters. The proposed trial may establish a safe and easy-to-use adjunctive treatment option in a subpopulation of depressive patients only partially responsive to pharmacologic therapy.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
- Correspondence:
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
| | - Aleksandra Margulska
- Admission Department, Central Teaching Hospital of Medical University of Lodz, 92-216 Lodz, Poland;
| | | | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
| |
Collapse
|
217
|
Beyaz Coşkun A, Sağdiçoğlu Celep AG. Therapeutic modulation methods of gut microbiota and gut-liver axis. Crit Rev Food Sci Nutr 2021; 62:6505-6515. [PMID: 33749411 DOI: 10.1080/10408398.2021.1902263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver diseases are considered global health problems that cause more than 1 million deaths each year. Due to the increase in the prevalence of liver diseases worldwide, studies on different treatment methods have increased. Some of these methods is diagnostic and therapeutic applications based on the examination of the intestinal and intestinal microbiota. In this study, research articles, systematic review and review in the literature were examined in order to determine gut-liver axis relationship and treatment methods for liver diseases with gut modulation methods. Studies related to the subject have been searched in Google Scholar and Pubmed databases. The keywords "liver disease" and "gut-liver axis" and "microbiota" and "gut modulation methods" or "probiotic" or "prebiotic" or "symbiotic" or "antibiotic" or "bile acid regulation" or "adsorbent" or "fecal microbiota transplantation" were used in the searches. Improvements have been achieved in biomarkers of liver diseases by providing intestinal modulation with probiotic, prebiotic, symbiotic, antibiotic and adsorbents applications, bile acid regulation and fecal microbiota transplantation. In the results of experimental and clinical studies, it was seen that the therapeutic potential of the treatments performed by applying probiotics, prebiotics and symbiotics was higher.
Collapse
Affiliation(s)
- Ayfer Beyaz Coşkun
- Department of Nutrition and Dietetics, Faculty of Health Science, Fırat University, Elazığ, Turkey
| | | |
Collapse
|
218
|
Blesl A, Stadlbauer V. The Gut-Liver Axis in Cholestatic Liver Diseases. Nutrients 2021; 13:nu13031018. [PMID: 33801133 PMCID: PMC8004151 DOI: 10.3390/nu13031018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut-liver axis describes the physiological interplay between the gut and the liver and has important implications for the maintenance of health. Disruptions of this equilibrium are an important factor in the evolution and progression of many liver diseases. The composition of the gut microbiome, the gut barrier, bacterial translocation, and bile acid metabolism are the key features of this cycle. Chronic cholestatic liver diseases include primary sclerosing cholangitis, the generic term secondary sclerosing cholangitis implying the disease secondary sclerosing cholangitis in critically ill patients and primary biliary cirrhosis. Pathophysiology of these diseases is not fully understood but seems to be multifactorial. Knowledge about the alterations of the gut-liver axis influencing the pathogenesis and the outcome of these diseases has considerably increased. Therefore, this review aims to describe the function of the healthy gut-liver axis and to sum up the pathological changes in these cholestatic liver diseases. The review compromises the actual level of knowledge about the gut microbiome (including the mycobiome and the virome), the gut barrier and the consequences of increased gut permeability, the effects of bacterial translocation, and the influence of bile acid composition and pool size in chronic cholestatic liver diseases. Furthermore, therapeutic implications and future scientific objectives are outlined.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Correspondence:
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| |
Collapse
|
219
|
Oluwagbemigun K, O'Donovan AN, Berding K, Lyons K, Alexy U, Schmid M, Clarke G, Stanton C, Cryan J, Nöthlings U. Long-term dietary intake from infancy to late adolescence is associated with gut microbiota composition in young adulthood. Am J Clin Nutr 2021; 113:647-656. [PMID: 33471048 PMCID: PMC7948843 DOI: 10.1093/ajcn/nqaa340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gut microbiota composition as influenced by long-term diet may be associated with the risk of adult chronic diseases. Thus, establishing the relation of long-term diet, particularly starting from early life, with adult microbiota composition would be an important research advance. OBJECTIVE We aimed to investigate the association of long-term intake of energy, carbohydrate, fiber, protein, and fat from infancy to late adolescence with microbiota composition in adulthood. METHODS Within the prospective DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study, we sampled stool 1 or 2 times within 1 y from 128 adults (median age: 29 y). Microbiota composition was profiled by 16S ribosomal RNA sequencing. Annual dietary records from age 1 to 18 y were retrieved. We estimated trajectories of energy, energy-adjusted carbohydrate, fiber, protein, and fat intake with multilevel models, producing predicted intake at age 1 y and rates of change in intake. A multivariate, zero-inflated, logistic-normal model was used to model the association between intake trajectories and the composition of 158 genera in single-sampled individuals. Associations found in this model were confirmed in double-sampled individuals using a zero-inflated Beta regression model. RESULTS Adjusting for covariates and temporal differences in microbiota composition, long-term carbohydrate intake was associated with 3 genera. Specifically, carbohydrate intake at age 1 y was negatively associated with Phascolarctobacterium [coefficient = -4.31; false discovery rate (FDR)-adjusted P = 0.006] and positively associated with Dialister (coefficient = 3.06; FDR-adjusted P = 0.003), and the rate of change in carbohydrate intake was positively associated with Desulfovibrio (coefficient = 13.16; FDR-adjusted P = 0.00039). Energy and other macronutrients were not associated with any genus. CONCLUSIONS This work links long-term carbohydrate intake to microbiota composition. Considering the associations of high carbohydrate intake and microbiota composition with some diseases, these findings could inform the development of gut microbiota-targeted dietary recommendations for disease prevention.
Collapse
Affiliation(s)
- Kolade Oluwagbemigun
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Aoife N O'Donovan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katriona Lyons
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - Ute Alexy
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics, and Epidemiology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - John Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ute Nöthlings
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
220
|
Romano-Keeler J, Zhang J, Sun J. The Life-Long Role of Nutrition on the Gut Microbiome and Gastrointestinal Disease. Gastroenterol Clin North Am 2021; 50:77-100. [PMID: 33518170 PMCID: PMC7863586 DOI: 10.1016/j.gtc.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial colonization of the intestines occurs during the first 2 years of life. Homeostasis of the gut microbiome is established to foster normal intestinal immune development for adulthood. Derangements in this process can interfere with immune function and increase an individual's risk for gastrointestinal disorders. We discuss the role of diet and the microbiome on the onset of such disorders. We examine how micronutrients, prebiotics, and probiotics modulate disease pathogenesis. We discuss how diet and abnormal microbial colonization impact extraintestinal organs. Understanding the communication of nutrition and the microbiome offers exciting opportunities for therapeutics.
Collapse
Affiliation(s)
- Joann Romano-Keeler
- Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, 840 South Wood Street, MC 856, Suite 1252, Chicago, IL 60612, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Room 704 CSB, MC716, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Room 704 CSB, MC716, Chicago, IL 60612, USA; University of Illinois Cancer Center, 818 South Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
221
|
Heart-gut axis: Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) to prevent cardiovascular disease through gut microbiota. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
222
|
Food, Nutrition, Physical Activity and Microbiota: Which Impact on Lung Cancer? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052399. [PMID: 33804536 PMCID: PMC7967729 DOI: 10.3390/ijerph18052399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Lung cancer still represents the leading cause of cancer-related death, globally. Likewise, malnutrition and inactivity represent a major risk for loss of functional pulmonary capacities influencing overall lung cancer severity. Therefore, the adhesion to an appropriate health lifestyle is crucial in the management of lung cancer patients despite the subtype of cancer. This review aims to summarize the available knowledge about dietary approaches as well as physical activity as the major factors that decrease the risk towards lung cancer, and improve the response to therapies. We discuss the most significant dietary schemes positively associated to body composition and prognosis of lung cancer and the main molecular processes regulated by specific diet schemes, functional foods and physical activity, i.e., inflammation and oxidative stress. Finally, we report evidence demonstrating that dysbiosis of lung and/or gut microbiome, as well as their interconnection (the gut–lung axis), are strictly related to dietary patterns and regular physical activity playing a key role in lung cancer formation and progression, opening to the avenue of modulating the microbiome as coadjuvant therapy. Altogether, the evidence reported in this review highlights the necessity to consider non-pharmacological interventions (nutrition and physical activity) as effective adjunctive strategies in the management of lung cancer.
Collapse
|
223
|
Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. Int J Mol Sci 2021; 22:ijms22042121. [PMID: 33672754 PMCID: PMC7924631 DOI: 10.3390/ijms22042121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/04/2023] Open
Abstract
A high-fat, Western-style diet is an important predisposing factor for the onset of type 2 diabetes and obesity. It causes changes in gut microbial profile, reduction of microbial diversity, and the impairment of the intestinal barrier, leading to increased serum lipopolysaccharide (endotoxin) levels. Elevated lipopolysaccharide (LPS) induces acetyltransferase P300 both in the nucleus and cytoplasm of liver hepatocytes through the activation of the IRE1-XBP1 pathway in the endoplasmic reticulum stress. In the nucleus, induced P300 acetylates CRTC2 to increase CRTC2 abundance and drives Foxo1 gene expression, resulting in increased expression of the rate-limiting gluconeogenic gene G6pc and Pck1 and abnormal liver glucose production. Furthermore, abnormal cytoplasm-appearing P300 acetylates IRS1 and IRS2 to disrupt insulin signaling, leading to the prevention of nuclear exclusion and degradation of FOXO1 proteins to further exacerbate the expression of G6pc and Pck1 genes and liver glucose production. Inhibition of P300 acetyltransferase activity by chemical inhibitors improved insulin signaling and alleviated hyperglycemia in obese mice. Thus, P300 acetyltransferase activity appears to be a therapeutic target for the treatment of type 2 diabetes and obesity.
Collapse
|
224
|
Mullins AP, Arjmandi BH. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021; 13:519. [PMID: 33562498 PMCID: PMC7915747 DOI: 10.3390/nu13020519] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, claiming over 650,000 American lives annually. Typically not a singular disease, CVD often coexists with dyslipidemia, hypertension, type-2 diabetes (T2D), chronic system-wide inflammation, and obesity. Obesity, an independent risk factor for both CVD and T2D, further worsens the problem, with over 42% of adults and 18.5% of youth in the U.S. categorized as such. Dietary behavior is a most important modifiable risk factor for controlling the onset and progression of obesity and related disease conditions. Plant-based eating patterns that include beans and legumes support health and disease mitigation through nutritional profile and bioactive compounds including phytochemical. This review focuses on the characteristics of beans and ability to improve obesity-related diseases and associated factors including excess body weight, gut microbiome environment, and low-grade inflammation. Additionally, there are growing data that link obesity to compromised immune response and elevated risk for complications from immune-related diseases. Body weight management and nutritional status may improve immune function and possibly prevent disease severity. Inclusion of beans as part of a plant-based dietary strategy imparts cardiovascular, metabolic, and colon protective effects; improves obesity, low-grade inflammation, and may play a role in immune-related disease risk management.
Collapse
Affiliation(s)
- Amy P. Mullins
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
- Department of Family and Consumer Sciences--Leon County Extension Services, University of Florida Institute of Food and Agricultural Sciences, Tallahassee, FL 32301, USA
| | - Bahram H. Arjmandi
- Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
225
|
|
226
|
|
227
|
Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, Kurz K. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021; 13:361. [PMID: 33504065 PMCID: PMC7912578 DOI: 10.3390/nu13020361] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota-gut-brain axis plays an important role in the development of neurodegenerative diseases. Commensal and pathogenic enteric bacteria can influence brain and immune system function by the production of lipopolysaccharides and amyloid. Dysbiosis of the intestinal microbiome induces local and consecutively systemic immune-mediated inflammation. Proinflammatory cytokines then trigger neuroinflammation and finally neurodegeneration. Immune-mediated oxidative stress can lead to a deficiency of vitamins and essential micronutrients. Furthermore, the wrong composition of gut microbiota might impair the intake and metabolization of nutrients. In patients with Alzheimer's disease (AD) significant alterations of the gut microbiota have been demonstrated. Standard Western diet, infections, decreased physical activity and chronic stress impact the composition and diversity of gut microbiota. A higher abundancy of "pro-inflammatory" gut microbiota goes along with enhanced systemic inflammation and neuroinflammatory processes. Thus, AD beginning in the gut is closely related to the imbalance of gut microbiota. Modulation of gut microbiota by Mediterranean diet, probiotics and curcumin can slow down cognitive decline and alter the gut microbiome significantly. A multi-domain intervention approach addressing underlying causes of AD (inflammation, infections, metabolic alterations like insulin resistance and nutrient deficiency, stress) appears very promising to reduce or even reverse cognitive decline by exerting positive effects on the gut microbiota.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Daniela Ehrlich
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Lukas Lanser
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| | - Katharina Kurz
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
228
|
Sivixay S, Bai G, Tsuruta T, Nishino N. Cecum microbiota in rats fed soy, milk, meat, fish, and egg proteins with prebiotic oligosaccharides. AIMS Microbiol 2021; 7:1-12. [PMID: 33659765 PMCID: PMC7921376 DOI: 10.3934/microbiol.2021001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/12/2021] [Indexed: 01/16/2023] Open
Abstract
Diet is considered the most influential factor in modulating the gut microbiota but how dietary protein sources differ in their modulatory effects is not well understood. In this study, soy, meat (mixture of beef and pork), and fish proteins (experiment 1) and soy, milk (casein), and egg proteins (experiment 2) were fed to rats with cellulose (CEL) and raffinose (RAF); the microbiota composition and short-chain fatty acid concentration in the cecum were determined. Egg protein feeding decreased the concentration of acetic acid and the richness and diversity of the cecum microbiota. RAF feeding increased the concentrations of acetic and propionic acids and decreased the richness and diversity of the cecum microbiota. When fed with CEL, the abundance of Ruminococcaceae and Christensenellaceae, Akkermansiaceae and Tannerellaceae, and Erysipelotrichaceae enhanced with soy protein, meat and fish proteins, and egg protein, respectively. The effects of dietary proteins diminished with RAF feeding and the abundance of Bifidobacteriaceae, Erysipelotrichaceae, and Lachnospiraceae increased and that of Ruminococcaceae and Christensenellaceae decreased regardless of the protein source. These results indicate that, although the effect of prebiotics is more robust and distinctive, dietary protein sources may influence the composition and metabolic activities of the gut microbiota. The stimulatory effects of soy, meat, and egg proteins on Christensenellaceae, Akkermansiaceae, and Erysipelotrichaceae deserve further examination to better elucidate the dietary manipulation of the gut microbiota.
Collapse
Affiliation(s)
- Souliphone Sivixay
- Department of Animal Science, Graduate School of Life and Environmental Science, Okayama University, Okayama, Japan
| | - Gaowa Bai
- Department of Animal Science, Graduate School of Life and Environmental Science, Okayama University, Okayama, Japan.,Department of Health Science and Social Welfare, Takahashi, Japan
| | - Takeshi Tsuruta
- Department of Animal Science, Graduate School of Life and Environmental Science, Okayama University, Okayama, Japan
| | - Naoki Nishino
- Department of Animal Science, Graduate School of Life and Environmental Science, Okayama University, Okayama, Japan
| |
Collapse
|
229
|
Verduci E, Mameli C, Amatruda M, Petitti A, Vizzuso S, El Assadi F, Zuccotti G, Alabduljabbar S, Terranegra A. Early Nutrition and Risk of Type 1 Diabetes: The Role of Gut Microbiota. Front Nutr 2021; 7:612377. [PMID: 33425976 PMCID: PMC7785819 DOI: 10.3389/fnut.2020.612377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) appears most frequently in childhood, with an alarming increasing incidence in the last decades. Although the genetic predisposition is a major risk factor, it cannot solely explain the complex etiology of T1D which is still not fully understood. In this paper, we reviewed the most recent findings on the role of early nutrition and the involvement of the gut microbiota in the etiopathogenesis of T1D. The main conclusions that are withdrawn from the current literature regarding alleviating the risk of developing T1D through nutrition are the encouragement of long-term breast-feeding for at least the first 6 months of life and the avoidance of early complementary foods and gluten introduction (before 4 months of age) as well as cow milk introduction before 12 months of life. These detrimental feeding habits create a gut microbiota dysbiotic state that can contribute to the onset of T1D in infancy. Finally, we discussed the possibility to introduce probiotics, prebiotics and post-biotics in the prevention of T1D.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Matilde Amatruda
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Agnese Petitti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Sara Vizzuso
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Farah El Assadi
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | | | | |
Collapse
|
230
|
Hussain T, Murtaza G, Kalhoro DH, Kalhoro MS, Metwally E, Chughtai MI, Mazhar MU, Khan SA. Relationship between gut microbiota and host-metabolism: Emphasis on hormones related to reproductive function. ACTA ACUST UNITED AC 2021; 7:1-10. [PMID: 33997325 PMCID: PMC8110851 DOI: 10.1016/j.aninu.2020.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
It has been well recognized that interactions between the gut microbiota and host-metabolism have a proven effect on health. The gut lumen is known for harboring different bacterial communities. Microbial by-products and structural components, which are derived through the gut microbiota, generate a signaling response to maintain homeostasis. Gut microbiota is not only involved in metabolic disorders, but also participates in the regulation of reproductive hormonal function. Bacterial phyla, which are localized in the gut, allow for the metabolization of steroid hormones through the stimulation of different enzymes. Reproductive hormones such as progesterone, estrogen and testosterone play a pivotal role in the successful completion of reproductive events. Disruption in this mechanism may lead to reproductive disorders. Environmental bacteria can affect the metabolism, and degrade steroid hormones and their relevant compounds. This behavior of the bacteria can safely be implemented to eliminate steroidal compounds from a polluted environment. In this review, we summarize the metabolism of steroid hormones on the regulation of gut microbiota and vice-versa, and also examined the significant influence this process has on various events of reproductive function. Altogether, the evidence suggests that steroid hormones and gut microbiota exert a central role in the modification of host bacterial action and impact the reproductive efficiency of animals and humans.
Collapse
Affiliation(s)
- Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, 70050, Pakistan
| | - Dildar H Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, 70050, Pakistan
| | - Muhammad S Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, 70050, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Muhammad I Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Muhammad U Mazhar
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Shahzad A Khan
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, 12350, Pakistan
| |
Collapse
|
231
|
Rishi P, Thakur K, Vij S, Rishi L, Singh A, Kaur IP, Patel SKS, Lee JK, Kalia VC. Diet, Gut Microbiota and COVID-19. Indian J Microbiol 2020; 60:420-429. [PMID: 33012868 PMCID: PMC7521193 DOI: 10.1007/s12088-020-00908-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Worldwide, millions of individuals have been affected by the prevailing SARS-CoV-2. Therefore, a robust immune system remains indispensable, as an immunocompromised host status has proven to be fatal. In the absence of any specific antiviral drug/vaccine, COVID-19 related drug repurposing along with various other non-pharmacological measures coupled with lockdown have been employed to combat this infection. In this context, a plant based rich fiber diet, which happens to be consumed by a majority of the Indian population, appears to be advantageous, as it replenishes the host gut microbiota with beneficial microbes thereby leading to a symbiotic association conferring various health benefits to the host including enhanced immunity. Further, implementation of the lockdown which has proven to be a good non-pharmacological measure, seems to have resulted in consumption of home cooked healthy diet, thereby enriching the beneficial microflora in the gut, which might have resulted in better prognosis of COVID-19 patients in India in comparison to that observed in the western countries.
Collapse
Affiliation(s)
- Praveen Rishi
- Department of Microbiology, Panjab University, BMS Block I, South Campus, Chandigarh, India
| | - Khemraj Thakur
- Department of Microbiology, Panjab University, BMS Block I, South Campus, Chandigarh, India
| | - Shania Vij
- Department of Microbiology, Panjab University, BMS Block I, South Campus, Chandigarh, India
| | | | - Aagamjit Singh
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Vipin C. Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
232
|
Preguiça I, Alves A, Nunes S, Fernandes R, Gomes P, Viana SD, Reis F. Diet-induced rodent models of obesity-related metabolic disorders-A guide to a translational perspective. Obes Rev 2020; 21:e13081. [PMID: 32691524 DOI: 10.1111/obr.13081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Diet is a critical element determining human health and diseases, and unbalanced food habits are major risk factors for the development of obesity and related metabolic disorders. Despite technological and pharmacological advances, as well as intensification of awareness campaigns, the prevalence of metabolic disorders worldwide is still increasing. Thus, novel therapeutic approaches with increased efficacy are urgently required, which often depends on cellular and molecular investigations using robust animal models. In the absence of perfect rodent models, those induced by excessive consumption of fat and sugars better replicate the key aspects that are the root causes of human metabolic diseases. However, the results obtained using these models cannot be directly compared, particularly because of the use of different dietary protocols, and animal species and strains, among other confounding factors. This review article revisits diet-induced models of obesity and related metabolic disorders, namely, metabolic syndrome, prediabetes, diabetes and nonalcoholic fatty liver disease. A critical analysis focused on the main pathophysiological features of rodent models, as opposed to the criteria defined for humans, is provided as a practical guide with a translational perspective for the establishment of animal models of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Inês Preguiça
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Pedro Gomes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), University of Porto, Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal.,ESTESC-Coimbra Health School, Pharmacy, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
233
|
Ferraris C, Elli M, Tagliabue A. Gut Microbiota for Health: How Can Diet Maintain A Healthy Gut Microbiota? Nutrients 2020; 12:nu12113596. [PMID: 33238627 PMCID: PMC7700621 DOI: 10.3390/nu12113596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cinzia Ferraris
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: (C.F.); (A.T.)
| | - Marina Elli
- AAT-Advanced Analytical Technologies Srl, 29017 Fiorenzuola d'Arda, Italy;
| | - Anna Tagliabue
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: (C.F.); (A.T.)
| |
Collapse
|
234
|
Galyean S, Sawant D, Shin AC. Immunometabolism, Micronutrients, and Bariatric Surgery: The Use of Transcriptomics and Microbiota-Targeted Therapies. Mediators Inflamm 2020; 2020:8862034. [PMID: 33281501 PMCID: PMC7685844 DOI: 10.1155/2020/8862034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Obesity is associated with the gut microbiota and decreased micronutrient status. Bariatric surgery is a recommended therapy for obesity. It can positively affect the composition of the gut bacteria but also disrupt absorption of nutrients. Low levels of micronutrients can affect metabolic processes, like glycolysis, TCA cycle, and oxidative phosphorylation, that are associated with the immune system also known as immunometabolism. METHODS MEDLINE, PUBMED, and Google Scholar were searched. Articles involving gut microbiome, micronutrient deficiency, gut-targeted therapies, transcriptome analysis, micronutrient supplementation, and bariatric surgery were included. RESULTS Studies show that micronutrients play a pivotal role in the intestinal immune system and regulating immunometabolism. Research demonstrates that gut-targeting therapies may improve the microbiome health for bariatric surgery populations. There is limited research that examines the role of micronutrients in modulating the gut microbiota among the bariatric surgery population. CONCLUSIONS Investigations are needed to understand the influence that micronutrient deficiencies have on the gut, particularly immunometabolism. Nutritional transcriptomics shows great potential in providing this type of analysis to develop gut-modulating therapies as well as more personalized nutrition recommendations for bariatric surgery patients.
Collapse
Affiliation(s)
- Shannon Galyean
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Dhanashree Sawant
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Andrew C. Shin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
235
|
Bañuls-Mirete M, Ogdie A, Guma M. Micronutrients: Essential Treatment for Inflammatory Arthritis? Curr Rheumatol Rep 2020; 22:87. [PMID: 33104882 PMCID: PMC8078476 DOI: 10.1007/s11926-020-00962-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Synovial inflammation is characteristic of inflammatory chronic arthropathies and can cause progressive articular damage, chronic pain, and functional loss. Scientific research has increasingly focused on investigating anti-inflammatory micronutrients present in fruits, vegetables, spices, seeds, tea, and wine. This review aims to examine the anti-inflammatory effect of polyphenols (phytonutrients present in plants) and other micronutrients described in randomized clinical trials conducted in patients with chronic inflammatory arthropathies. RECENT FINDINGS There is an increasing evidence that differences in micronutrient intake might play an essential role in pathogenesis, therapeutic response, and remission of synovitis. Randomized clinical trials with specific micronutrient- or nutrient-enriched food intake show improvement of symptoms and modulation of both pro- and anti-inflammatory mediators. We found convincing evidence of the anti-inflammatory effect of several micronutrients in arthritis symptoms and inflammation. Although in clinical practice nutritional recommendations to patients with chronic joint inflammation are not consistently prescribed, the addition of these nutrients to day-to-day eating habits could potentially change the natural history of inflammatory arthritis. Future research is needed for a consensus on the specific nutritional recommendations for patients with chronic synovial inflammation.
Collapse
Affiliation(s)
- Marina Bañuls-Mirete
- Department of Medicine, School of Medicine, University of California, San Diego UCSD, 9500 Gilman Dr. MC 0663, La Jolla, CA, 92093-0663, USA
| | - Alexis Ogdie
- Division of Rheumatology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego UCSD, 9500 Gilman Dr. MC 0663, La Jolla, CA, 92093-0663, USA.
- Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
236
|
Microbiota, Fiber, and NAFLD: Is There Any Connection? Nutrients 2020; 12:nu12103100. [PMID: 33053631 PMCID: PMC7600472 DOI: 10.3390/nu12103100] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota can contribute to the development and progression of non-alcoholic fatty liver disease (NAFLD). In fact, some specific changes of gut microbiota are observed in patients in what is called dysbiota. There has been a lot of investigation by using a variety of interventions, including diet, showing the possibility to modify components of gastrointestinal dysbiota towards healthy and multivariate microbiota to restore physiologic status. One of the main focuses has been dietary fiber (DF), in which most of its variants are prebiotics. The highest effective treatment for NAFLD is, so far, weight loss achieved by caloric restriction. DF supplementation with oligofructose facilitates weight loss, enhances the production of beneficial metabolites, decreases some pathogenic bacteria population by increasing Bifidobacteria, and has effects on intestinal barrier permeability. DF use has been associated with improvement in diverse metabolic diseases, including NAFLD, by modifying gut microbiota. Additionally, it has been shown that a higher insoluble fiber consumption (≥7.5 g/day) revealed improvements in 3 different scores of liver fibrosis. Further research is needed, but given the evidence available, it is reasonable to prescribe its consumption in early stages of NAFLD in order to prevent disease progression.
Collapse
|
237
|
Brown EG, Goldman SM. Modulation of the Microbiome in Parkinson's Disease: Diet, Drug, Stool Transplant, and Beyond. Neurotherapeutics 2020; 17:1406-1417. [PMID: 33034846 PMCID: PMC7851230 DOI: 10.1007/s13311-020-00942-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiome is altered in Parkinson's disease and likely plays a key role in its pathophysiology, affecting symptoms and response to therapy and perhaps modifying progression or even disease initiation. Gut dysbiosis therefore has a significant potential as a therapeutic target in Parkinson's disease, a condition elusive to disease-modifying therapy thus far. The gastrointestinal environment hosts a complex ecology, and efforts to modulate the relative abundance or function of established microorganisms are still in their infancy. Still, these techniques are being rapidly developed and have important implications for our understanding of Parkinson's disease. Currently, modulation of the microbiome can be achieved through non-pharmacologic means such as diet, pharmacologically through probiotic, prebiotic, or antibiotic use and procedurally through fecal transplant. Novel techniques being explored include the use of small molecules or genetically engineered organisms, with vast potential. Here, we review how some of these approaches have been used to date, important areas of ongoing research, and how microbiome modulation may play a role in the clinical management of Parkinson's disease in the future.
Collapse
Affiliation(s)
- Ethan G Brown
- Division of Movement Disorders and Neuromodulation, Weill Institute of Neurology, University of California, San Francisco, CA, USA.
| | - Samuel M Goldman
- Division of Movement Disorders and Neuromodulation, Weill Institute of Neurology, University of California, San Francisco, CA, USA
- Division of Occupational and Environmental Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
238
|
Zhou Y, Ye Z, Lu J, Miao S, Lu X, Sun H, Wu J, Wang Y, Huang Y. Long-term changes in the gut microbiota after 14-day bismuth quadruple therapy in penicillin-allergic children. Helicobacter 2020; 25:e12721. [PMID: 32656891 DOI: 10.1111/hel.12721] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Penicillin-allergic children who are infected with Helicobacter pylori constitute a relatively common subgroup. We aimed to study the short-term and long-term effects of bismuth quadruple therapy on gut microbiota in penicillin-allergic children. METHODS We prospectively recruited treatment-naive children with H pylori infection and H pylori-negative asymptomatic children as healthy controls. Patients received 14-day bismuth quadruple therapy consisting of omeprazole, clarithromycin, metronidazole, and bismuth. Fecal samples were collected at weeks 0, 2, 6, and 52. Alterations in the gut microbiota were analyzed by 16S rRNA gene sequencing. RESULTS Twenty-two subjects (14 gastritis patients, 8 duodenal ulcer patients) and 23 controls participated in this study. At week 2, alpha diversity was reduced in both gastritis (P < .05) and ulcer (except P = .16 with Chao 1 index) patients compared with baseline. Some changes persisted at week 6, and all were restored at week 52. Beta diversity was significantly altered 2 weeks after treatment in the gastritis and duodenal ulcer groups (P = .001, P = .002, respectively) and restored at weeks 6 and 52. The mean relative abundance of Bacteroidetes (P < .001, P = .005, respectively) decreased and that of Proteobacteria increased (P < .001, P = .03, respectively). All alterations recovered at week 6 and 52. In both the gastritis and ulcer groups at week 2, some beneficial bacteria were decreased including Bacteroides (P < .001 and P = .003), Faecalibacterium (P < .001 and P = .02), Phascolarctobacterium (P = .002 and P = .004), Roseburia ( P < .001 and P = .13), Bifidobacterium (P = .08 and P = .04), and Blautia (P < .001 and P = .002). Some detrimental bacteria were increased including Escherichia-Shigella (P < .001 and P = .19), Klebsiella (P < .001, and P = .09), Enterococcus (P < .001 and P = .007), and Streptococcus (P = .002 and P = .004). The changes returned to almost the pre-eradication level 1 year after therapy. CONCLUSION Bismuth quadruple therapy causes short-term dysbiosis of the gut microbiota. Most changes recovered 1-year post-eradication, indicating the long-term safety of H pylori therapy.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Ziqing Ye
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Junping Lu
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Shijian Miao
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaolan Lu
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Hua Sun
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Jie Wu
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Yuhuan Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
239
|
Ferreira C, Viana SD, Reis F. Gut Microbiota Dysbiosis-Immune Hyperresponse-Inflammation Triad in Coronavirus Disease 2019 (COVID-19): Impact of Pharmacological and Nutraceutical Approaches. Microorganisms 2020; 8:E1514. [PMID: 33019592 PMCID: PMC7601735 DOI: 10.3390/microorganisms8101514] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic infection caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients present a complex clinical picture that, in severe cases, evolves to respiratory, hepatic, gastrointestinal, and neurological complications, and eventually death. The underlying pathophysiological mechanisms are complex and multifactorial and have been summarized as a hyperresponse of the immune system that originates an inflammatory/cytokine storm. In elderly patients, particularly in those with pre-existing cardiovascular, metabolic, renal, and pulmonary disorders, the disease is particularly severe, causing prolonged hospitalization at intensive care units (ICU) and an increased mortality rate. Curiously, the same populations have been described as more prone to a gut microbiota (GM) dysbiosis profile. Intestinal microflora plays a major role in many metabolic and immune functions of the host, including to educate and strengthen the immune system to fight infections, namely of viral origin. Notably, recent studies suggest the existence of GM dysbiosis in COVID-19 patients. This review article highlights the interplay between the triad GM dysbiosis-immune hyperresponse-inflammation in the individual resilience/fragility to SARS-CoV-2 infection and presents the putative impact of pharmacological and nutraceutical approaches on the triumvirate, with focus on GM.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Sofia D. Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| |
Collapse
|
240
|
Yousefi M, Shadnoush M, Khorshidian N, Mortazavian AM. Insights to potential antihypertensive activity of berry fruits. Phytother Res 2020; 35:846-863. [PMID: 32959938 DOI: 10.1002/ptr.6877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
Hypertension is one of the main risk factors for cardiovascular disease and causes widespread morbidity and mortality worldwide. Although several antihypertensive drugs have been proposed for management of high blood pressure, changing lifestyle, including diet, has attracted interest recently. In this sense, consumption of fruits and vegetables, which are rich in vitamins, minerals, and phytochemicals, has been assigned as an efficient therapeutics. Berry fruits contain various bioactive compounds with potential health implications such as antioxidant, antimicrobial, anticancer, and anti-inflammatory properties. The main mechanisms responsible for antihypertensive activity mainly arise from the activity of flavonoids, minerals, and vitamins, as well as fibers. The objective of this review is to provide a summary of studies regarding the effect of berry fruits on the hypertensive animals and humans. The mechanisms involved in reducing blood pressure by each group of compounds have been highlighted. It can be concluded that berries' bioactive compounds are efficient in mitigation of hypertension through improvement of vascular function, angiotensin-converting enzyme's (ACE) inhibitory activity, increasing endothelial nitric oxide synthase (eNOS) activity, and nitric oxide (NO) production, besides anti-oxidative and anti-inflammatory activities. These fruits can be considered as potential sources of invaluable compounds for development of antihypertensive foods and pharmaceuticals.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amir M Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
241
|
Dietary Patterns, Carbohydrates, and Age-Related Eye Diseases. Nutrients 2020; 12:nu12092862. [PMID: 32962100 PMCID: PMC7551870 DOI: 10.3390/nu12092862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Over a third of older adults in the U.S. experience significant vision loss, which decreases independence and is a biomarker of decreased health span. As the global aging population is expanding, it is imperative to uncover strategies to increase health span and reduce the economic burden of this age-related disease. While there are some treatments available for age-related vision loss, such as surgical removal of cataracts, many causes of vision loss, such as dry age-related macular degeneration (AMD), remain poorly understood and no treatments are currently available. Therefore, it is necessary to better understand the factors that contribute to disease progression for age-related vision loss and to uncover methods for disease prevention. One such factor is the effect of diet on ocular diseases. There are many reviews regarding micronutrients and their effect on eye health. Here, we discuss the impact of dietary patterns on the incidence and progression of age-related eye diseases, namely AMD, cataracts, diabetic retinopathy, and glaucoma. Then, we focus on the specific role of dietary carbohydrates, first by outlining the physiological effects of carbohydrates on the body and then how these changes translate into eye and age-related ocular diseases. Finally, we discuss future directions of nutrition research as it relates to aging and vision loss, with a discussion of caloric restriction, intermittent fasting, drug interventions, and emerging randomized clinical trials. This is a rich field with the capacity to improve life quality for millions of people so they may live with clear vision for longer and avoid the high cost of vision-saving surgeries.
Collapse
|
242
|
Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - Role of gut microbiota dysbiosis. Ageing Res Rev 2020; 62:101123. [PMID: 32683039 PMCID: PMC7365123 DOI: 10.1016/j.arr.2020.101123] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 patients with pre-existing age-related comorbidities have poor outcomes. Gut microbiota dysbiosis is associated with ageing and age-related diseases. Viral-mediated ACE2 shedding favors poor outcomes by RAS-dependent mechanisms. Viral-mediated ACE2 shedding favors poor outcomes by RAS-independent gut dysbiosis. Potential of ACE2 and gut microbiota-based therapeutic opportunities for COVID-19.
Coronavirus disease 19 (COVID-19) is a pandemic condition caused by the new coronavirus SARS-CoV-2. The typical symptoms are fever, cough, shortness of breath, evolving to a clinical picture of pneumonia and, ultimately, death. Nausea and diarrhea are equally frequent, suggesting viral infection or transmission via the gastrointestinal-enteric system. SARS-CoV-2 infects human cells by using angiotensin converting enzyme 2 (ACE2) as a receptor, which is cleaved by transmembrane proteases during host cells infection, thus reducing its activities. ACE2 is a relevant player in the renin-angiotensin system (RAS), counterbalancing the deleterious effects of angiotensin II. Furthermore, intestinal ACE2 functions as a chaperone for the aminoacid transporter B0AT1. It has been suggested that B0AT1/ACE2 complex in the intestinal epithelium regulates gut microbiota (GM) composition and function, with important repercussions on local and systemic immune responses against pathogenic agents, namely virus. Notably, productive infection of SARS-CoV-2 in ACE2+ mature human enterocytes and patients’ GM dysbiosis was recently demonstrated. This review outlines the evidence linking abnormal ACE2 functions with the poor outcomes (higher disease severity and mortality rate) in COVID-19 patients with pre-existing age-related comorbidities and addresses a possible role for GM dysbiosis. The article culminates with the therapeutics opportunities based on these pathways.
Collapse
|
243
|
Conteh AR, Huang R. Targeting the gut microbiota by Asian and Western dietary constituents: a new avenue for diabetes. Toxicol Res (Camb) 2020; 9:569-577. [PMID: 32905261 DOI: 10.1093/toxres/tfaa065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/05/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing numerous diabetes annually is a great concern in public health globally. Gut microbiota recently has been suggested to be an emerging organ acting as a critical regulator in diabetes. Notably, gut microbiota is closely affected through an individual's nutrient intake and dietary pattern. Moreover, the metabolites of diets through gut microbiota are closely associated with the development of diabetes. Increasing evidence has established the association of different dietary pattern with alterations of the gut microbiota profile, in particular, the Asian diet and Western diet are typically as essential components linked to the interactions between gut microbiota and induction of obesity which is a significant risk factor for diabetes. In addition, some bacteria-related therapeutic methods including probiotics, dietary short-chain fatty acids immunotherapy, and gut microbiome transfer would be applied in the clinical prevention and control diabetes. Taken together, based on current published observations, the gut microbiota may serve as regulator or targets by the Asian diet and Western diet, contributing to the prevention or induction of diabetes eventually. In general, in the upcoming future, one of the emerging strategies for the prevention and control of diabetes may modulate gut microbiota through precise dietary strategies.
Collapse
Affiliation(s)
- Abdul Rahman Conteh
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, 932 Lushan S Rd, Yuelu District, Changsha 410078, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, 932 Lushan S Rd, Yuelu District, Changsha 410078, China
| |
Collapse
|
244
|
Badran M, Khalyfa A, Ericsson A, Gozal D. Fecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naïve mice. Exp Neurol 2020; 334:113439. [PMID: 32835671 DOI: 10.1016/j.expneurol.2020.113439] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnea (OSA) is a chronic prevalent condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). Evidence suggests that OSA can alter the gut microbiome (GM) diversity and composition that may then promote the occurrence of some of the OSA-associated morbidities. However, it is unclear whether perturbations in the GM caused by IH can elicit sleep disturbances that underlie the increased sleep propensity that occurs in IH-exposed mice. To evaluate this issue, we exposed C57Bl/6 J mice to IH or room air (RA) for 6 weeks, and fecal matter was collected and frozen. C57Bl/6 J naïve mice were then randomly assigned to a fecal microbiota transfer (FMT) protocol for 3 weeks with either IH or RA fecal slur, and their GM was then analyzed using 16 s rRNA sequencing. In addition, FMT recipients underwent sleep recordings using piezoelectric approaches for 3 consecutive days. As anticipated, FMT-IH and FMT-RA mice showed different taxonomic profiles that corresponded to previous effects of IH on GM. Furthermore, FMT-IH mice exhibited increased sleep duration and the frequency of longer sleep bouts during the dark cycle, suggesting increased sleepiness (p < 0.0001 vs. FMT-RA mice). Thus, alterations of GM diversity induced by IH exposures can elicit sleep disturbances in the absence of concurrent IH, suggesting that sleep disturbances can be mediated, at least in part, by IH-induced alterations in GM.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States; University of Missouri, Metagenomics Center, Columbia, MO, United States
| | - David Gozal
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States.
| |
Collapse
|
245
|
Lim T, Ryu J, Lee K, Park SY, Hwang KT. Protective Effects of Black Raspberry ( Rubus occidentalis) Extract against Hypercholesterolemia and Hepatic Inflammation in Rats Fed High-Fat and High-Choline Diets. Nutrients 2020; 12:E2448. [PMID: 32824008 PMCID: PMC7468928 DOI: 10.3390/nu12082448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Choline is converted to trimethylamine by gut microbiota and further oxidized to trimethylamine-N-oxide (TMAO) by hepatic flavin monooxygenases. Positive correlation between TMAO and chronic diseases has been reported. Polyphenols in black raspberry (BR), especially anthocyanins, possess various biological activities. The objective of this study was to determine the effects of BR extract on the level of choline-derived metabolites, serum lipid profile, and inflammation markers in rats fed high-fat and high-choline diets. Forty female Sprague-Dawley (SD) rats were randomly divided into four groups and fed for 8 weeks as follows: CON (AIN-93G diet), HF (high-fat diet), HFC (HF + 1.5% choline water), and HFCB (HFC + 0.6% BR extract). Serum levels of TMAO, total cholesterol, and low-density lipoprotein (LDL)-cholesterol and cecal trimethylamine (TMA) level were significantly higher in the HFC than in the HFCB. BR extract decreased mRNA expression of pro-inflammatory genes including nuclear factor-κB (NF-κB), interleukin (IL)-1β, IL-6, and cyclooxygenase-2 (COX-2), and protein expression of NF-κB and COX-2 in liver tissue. These results suggest that consistent intake of BR extract might alleviate hypercholesterolemia and hepatic inflammation induced by excessive choline with a high-fat diet via lowering elevated levels of cecal TMA and serum TMAO in rats.
Collapse
Affiliation(s)
| | | | | | | | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea; (T.L.); (J.R.); (K.L.); (S.Y.P.)
| |
Collapse
|
246
|
Gkouskou K, Vlastos I, Karkalousos P, Chaniotis D, Sanoudou D, Eliopoulos AG. The "Virtual Digital Twins" Concept in Precision Nutrition. Adv Nutr 2020; 11:1405-1413. [PMID: 32770212 PMCID: PMC7666894 DOI: 10.1093/advances/nmaa089] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Nutritional and lifestyle changes remain at the core of healthy aging and disease prevention. Accumulating evidence underscores the impact of genetic, metabolic, and host gut microbial factors on individual responses to nutrients, paving the way for the stratification of nutritional guidelines. However, technological advances that incorporate biological, nutritional, lifestyle, and health data at an unprecedented scale and depth conceptualize a future where preventative dietary interventions will exceed stratification and will be highly individualized. We herein discuss how genetic information combined with longitudinal metabolomic, immune, behavioral, and gut microbial parameters, and bioclinical variables could define a digital replica of oneself, a "virtual digital twin," which could serve to guide nutrition in a personalized manner. Such a model may revolutionize the management of obesity and its comorbidities, and provide a pillar for healthy aging.
Collapse
Affiliation(s)
| | - Ioannis Vlastos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Karkalousos
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece,Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece,Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | |
Collapse
|
247
|
Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective. Nutrients 2020; 12:nu12082285. [PMID: 32751533 PMCID: PMC7468805 DOI: 10.3390/nu12082285] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The continuous population increase of older adults with metabolic diseases may contribute to increased prevalence of sarcopenia and obesity and requires advocacy of optimal nutrition treatments to combat their deleterious outcomes. Sarcopenic obesity, characterized by age-induced skeletal-muscle atrophy and increased adiposity, may accelerate functional decline and increase the risk of disability and mortality. In this review, we explore the influence of dietary protein on the gut microbiome and its impact on sarcopenia and obesity. Given the associations between red meat proteins and altered gut microbiota, a combination of plant and animal-based proteins are deemed favorable for gut microbiota eubiosis and muscle-protein synthesis. Additionally, high-protein diets with elevated essential amino-acid concentrations, alongside increased dietary fiber intake, may promote gut microbiota eubiosis, given the metabolic effects derived from short-chain fatty-acid and branched-chain fatty-acid production. In conclusion, a greater abundance of specific gut bacteria associated with increased satiation, protein synthesis, and overall metabolic health may be driven by protein and fiber consumption. This could counteract the development of sarcopenia and obesity and, therefore, represent a novel approach for dietary recommendations based on the gut microbiota profile. However, more human trials utilizing advanced metabolomic techniques to investigate the microbiome and its relationship with macronutrient intake, especially protein, are warranted.
Collapse
|
248
|
Dabbou S, Ferrocino I, Gasco L, Schiavone A, Trocino A, Xiccato G, Barroeta AC, Maione S, Soglia D, Biasato I, Cocolin L, Gai F, Nucera DM. Antimicrobial Effects of Black Soldier Fly and Yellow Mealworm Fats and Their Impact on Gut Microbiota of Growing Rabbits. Animals (Basel) 2020; 10:ani10081292. [PMID: 32731566 PMCID: PMC7460256 DOI: 10.3390/ani10081292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the in vitro antimicrobial activities of two types of insect fats extracted from black soldier fly larvae (HI, Hermetia illucens L.) and yellow mealworm larvae (TM, Tenebrio molitor L.) and their effects as dietary replacement of soybean oil (S) on cecal fermentation pattern, and fecal and cecal microbiota in rabbits. A total of 120 weaned rabbits were randomly allotted to three dietary treatments (40 rabbits/group) -a control diet (C diet) containing 1.5% of S and two experimental diets (HI diet (HID) and TM diet (TMD)), where S was totally substituted by HI or TM fats during the whole trial that lasted 41 days. Regarding the in vitro antimicrobial activities, HI and TM fats did not show any effects on Salmonella growth. Yersinia enterocolitica showed significantly lower growth when challenged with HI fats than the controls. The insect fat supplementation in rabbit diets increased the contents of the cecal volatile fatty acids when compared to the control group. A metataxonomic approach was adopted to investigate the shift in the microbial composition as a function of the dietary insect fat supplementation. The microbiota did not show a clear separation as a function of the inclusion, even if a specific microbial signature was observed. Indeed, HI and TM fat supplementation enriched the presence of Akkermansia that was found to be correlated with NH3-N concentration. An increase in Ruminococcus, which can improve the immune response of the host, was also observed. This study confirms the potential of HI and TM fats as antibacterial feed ingredients with a positive influence on the rabbit cecal microbiota, thus supporting the possibility of including HI and TM fats in rabbit diets.
Collapse
Affiliation(s)
- Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.F.); (I.B.); (L.C.); (D.M.N.)
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.F.); (I.B.); (L.C.); (D.M.N.)
- Correspondence:
| | - Achille Schiavone
- Department of Veterinary Science, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (A.S.); (S.M.); (D.S.)
| | - Angela Trocino
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Gerolamo Xiccato
- Department of Agronomy, Food, Natural Resources, Animal, and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, Padova, Italy;
| | - Ana C. Barroeta
- Nutrition and Animal Welfare Service, Department of Animal and Food Science, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Sandra Maione
- Department of Veterinary Science, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (A.S.); (S.M.); (D.S.)
| | - Dominga Soglia
- Department of Veterinary Science, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; (A.S.); (S.M.); (D.S.)
| | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.F.); (I.B.); (L.C.); (D.M.N.)
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.F.); (I.B.); (L.C.); (D.M.N.)
| | - Francesco Gai
- Institute of Sciences of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Daniele Michele Nucera
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.F.); (I.B.); (L.C.); (D.M.N.)
| |
Collapse
|
249
|
Nutri-Epigenetics and Gut Microbiota: How Birth Care, Bonding and Breastfeeding Can Influence and Be Influenced? Int J Mol Sci 2020; 21:ijms21145032. [PMID: 32708742 PMCID: PMC7404045 DOI: 10.3390/ijms21145032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maternal lifestyle is an important factor in the programming of an infant's epigenome, in particular when considered alongside the mode of birth and choice of feeding method (i.e., breastfeeding or formula feeding). Beginning in utero, and during the first two years of an infant's life, cells acquire an epigenetic memory of the neonatal exposome which can be influential across the entire lifespan. Parental lifestyle (e.g., malnutrition, alcohol intake, smoke, stress, exposure to xenobiotics and/or drugs) can modify both the maternal and paternal epigenome, leading to epigenetic inheritance in their offspring. This review aims to outline the origin of early life modulation of the epigenome, and to share this fundamental concept with all the health care professionals involved in the development and provision of care during childbirth in order to inform future parents and clinicians of the importance of the this process and the key role it plays in the programming of a child's health.
Collapse
|
250
|
Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020; 12:nu12071908. [PMID: 32605083 PMCID: PMC7400387 DOI: 10.3390/nu12071908] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cocoa and its products are rich sources of polyphenols such as flavanols. These compounds exert antioxidant and anti-inflammatory activities, accountable for cocoa health-promoting effects. However, cocoa polyphenols are poorly absorbed in the intestine, and most of them cannot reach the systemic circulation in their natural forms. Instead, their secondary bioactive metabolites are bioavailable, enter the circulation, reach the target organs, and exhibit their activities. In fact, once reaching the intestine, cocoa polyphenols interact bidirectionally with the gut microbiota. These compounds can modulate the composition of the gut microbiota exerting prebiotic mechanisms. They enhance the growth of beneficial gut bacteria, such as Lactobacillus and Bifidobacterium, while reducing the number of pathogenic ones, such as Clostridium perfringens. On the other hand, bioactive cocoa metabolites can enhance gut health, displaying anti-inflammatory activities, positively affecting immunity, and reducing the risk of various diseases. This review aims to summarize the available knowledge of the bidirectional interaction between cocoa polyphenols and gut microbiota with their various health outcomes.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
- Correspondence: ; Tel.: +39-3880944215
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| | - Laura Mancin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
- Human Inspired Technology Research Center, University of Padova, 35131 Padova, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (L.M.); (A.P.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy; (S.A.); (S.D.); (G.S.)
| |
Collapse
|