251
|
Niddam DM, Lai KL, Tsai SY, Lin YR, Chen WT, Fuh JL, Wang SJ. Neurochemical changes in the medial wall of the brain in chronic migraine. Brain 2017; 141:377-390. [DOI: 10.1093/brain/awx331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Municipal Gandau Hospital. Taipei, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
252
|
Abstract
Effective pharmaceutical treatments for age-related cognitive decline have proved elusive. There is, however, compelling evidence that nutritional status and supplementation could play crucial roles in modifying the expression of cognitive change through the lifespan. Subjective memory impairment and mild cognitive impairment can be harbingers of dementia but this is by no means inevitable. Neurocognitive change is influenced by a variety of processes, many of which are involved in other aspects of systemic health, including cardiovascular function. Importantly, many of these processes are governed by mechanisms which may be modified by specific classes of bioactive nutrients. There is increasing, converging evidence from controlled trials that nutritional interventions can improve mood and cognitive function in both clinical and healthy populations. Specific examples include selected botanical extracts such as the flavonoids. Some nutritional supplements (e.g. broad-spectrum micronutrient supplementation) appear to support improved cognitive function, possibly through redressing insufficient nutrient status (i.e. suboptimal but above the threshold for frank deficiency). Recent mechanistic research has unveiled physiologically plausible, modifiable, cognition-relevant targets for nutrition and nutraceuticals. These include processes involved in both systemic and central vascular function, inflammation, metabolism, central activation, improved neural efficiency and angiogenesis. The advent and development of human neuroimaging methodology have greatly aided our understanding of the core central mechanisms of cognitive change. Different imaging modalities can provide insights into modifiable central mechanisms which may be targeted by bioactive nutrients. The latter may contribute to slowing age-related decline through supporting neurocognitive scaffolding mechanisms.
Collapse
|
253
|
Assessment of intra- and inter-regional interrelations between GABA+, Glx and BOLD during pain perception in the human brain – A combined 1H fMRS and fMRI study. Neuroscience 2017; 365:125-136. [DOI: 10.1016/j.neuroscience.2017.09.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 11/22/2022]
|
254
|
Medial Frontal Lobe Neurochemistry in Autism Spectrum Disorder is Marked by Reduced N-Acetylaspartate and Unchanged Gamma-Aminobutyric Acid and Glutamate + Glutamine Levels. J Autism Dev Disord 2017; 48:1467-1482. [PMID: 29177616 DOI: 10.1007/s10803-017-3406-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
255
|
de Matos NM, Hock A, Wyss M, Ettlin DA, Brügger M. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex. Neuroimage 2017; 162:162-172. [DOI: 10.1016/j.neuroimage.2017.08.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/25/2023] Open
|
256
|
Jensen JE, Auerbach RP, Pisoni A, Pizzagalli DA. Localized MRS reliability of in vivo glutamate at 3 T in shortened scan times: a feasibility study. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3771. [PMID: 28731544 PMCID: PMC5774335 DOI: 10.1002/nbm.3771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 05/22/2023]
Abstract
Glutamate is the prime excitatory neurotransmitter in the mammalian brain and has been implicated in a wide range of psychiatric conditions. To improve the applicability and clinical reach of magnetic resonance spectroscopy (MRS), research is needed to develop shortened, yet reliable, MRS scanning procedures for standard 1.5-3-T clinical magnetic resonance imaging (MRI) systems, particularly with young or vulnerable populations unable to tolerate longer protocols. To this end, we evaluated the test-retest reliability of a shortened J-resolved MRS sequence in healthy adolescents (n = 22) aged 12-14 years. Participants underwent a series of sequential 6-min MRS scans, with the participants remaining in situ between successive scans. Glutamate and other metabolites were acquired from the rostral anterior cingulate cortex, as glutamatergic function in this region has been implicated in a number of psychiatric illnesses. Thirteen neurochemicals were quantified as ratios to total creatine, and reliability scores were expressed as the percentage difference between the two scans for each metabolite. Test-retest assessment of glutamate was reliable, as scores were less than 10% different (7.1 ± 4.2%), and glutamate values across scans were significantly correlated (Pearson r = 0.680, p < 10-4 ). Several other neurochemicals demonstrated satisfactory reliability, including choline (Cho) (7.4 ± 5.6%), glutathione (GSH) (8.6 ± 4.1%), myo-inositol (mI) (6.5 ± 7.1%) and N-acetylaspartate (NAA) (3.5 ± 3.6%), with test-retest correlations ranging from 0.747 to 0.953. A number of metabolites, however, did not demonstrate acceptable test-retest reliability using the current J-resolved MRS sequence, ranging from 13.8 ± 13.7% (aspartate, Asp) to 45.9 ± 38.3% (glycine, Gly). Collectively, test-retest analyses suggest that clinically viable quantitative data can be obtained on standard MRI systems for glutamate, as well as the other metabolites, during short scan times in a traditionally challenging brain region.
Collapse
Affiliation(s)
- J. Eric Jensen
- McLean Imaging Center, McLean Hospital
- Harvard Medical School
| | - Randy P. Auerbach
- Center for Anxiety and Stress Research, McLean Hospital
- Harvard Medical School
| | - Angela Pisoni
- Center for Anxiety and Stress Research, McLean Hospital
- Harvard Medical School
| | - Diego A. Pizzagalli
- McLean Imaging Center, McLean Hospital
- Center for Anxiety and Stress Research, McLean Hospital
- Harvard Medical School
- Address correspondence to: Diego A. Pizzagalli, Ph.D., McLean Hospital/Harvard Medical School, Mailstop 331, 115 Mill Street, Belmont, MA 02478-9106;
| |
Collapse
|
257
|
Donadieu M, Le Fur Y, Maarouf A, Gherib S, Ridley B, Pini L, Rapacchi S, Confort-Gouny S, Guye M, Schad LR, Maudsley AA, Pelletier J, Audoin B, Zaaraoui W, Ranjeva JP. Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain 23Na-MRI and fast 1H-MRSI study. Mult Scler 2017; 25:39-47. [DOI: 10.1177/1352458517736146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Increase of brain total sodium concentrations (TSC) is present in multiple sclerosis (MS), but its pathological involvement has not been assessed yet. Objective: To determine in vivo the metabolic counterpart of brain sodium accumulation. Materials/methods: Whole brain 23Na-MR imaging and 3D-1H-EPSI data were collected in 21 relapsing-remitting multiple sclerosis (RRMS) patients and 20 volunteers. Metabolites and sodium levels were extracted from several regions of grey matter (GM), normal-appearing white matter (NAWM) and white matter (WM) T2 lesions. Metabolic and ionic levels expressed as Z-scores have been averaged over the different compartments and used to explain sodium accumulations through stepwise regression models. Results: MS patients showed significant 23Na accumulations with lower choline and glutamate–glutamine (Glx) levels in GM; 23Na accumulations with lower N-acetyl aspartate (NAA), Glx levels and higher Myo-Inositol (m-Ins) in NAWM; and higher 23Na, m-Ins levels with lower NAA in WM T2 lesions. Regression models showed associations of TSC increase with reduced NAA in GM, NAWM and T2 lesions, as well as higher total-creatine, and smaller decrease of m-Ins in T2 lesions. GM Glx levels were associated with clinical scores. Conclusion: Increase of TSC in RRMS is mainly related to neuronal mitochondrial dysfunction while dysfunction of neuro-glial interactions within GM is linked to clinical scores.
Collapse
Affiliation(s)
- Maxime Donadieu
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/Siemens Healthineers, Saint-Denis, France
| | - Yann Le Fur
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Adil Maarouf
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Soraya Gherib
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Lauriane Pini
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Stanislas Rapacchi
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - Jean Pelletier
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France/APHM, Timone University Hospital, Department of Neurology, Marseille, FranceCNRS, CRMBM UMR 7339, Medical School of Marseille, Aix-Marseille University, Marseille, France/AP-HM, CHU Timone, Department of Imaging, CEMEREM, Marseille, France/AP-HM, CHU Timone, Pole de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Wafaa Zaaraoui
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille University, CNRS, CRMBM, APHM, Marseille, France/Timone University Hospital, CEMEREM, Marseille, France
| |
Collapse
|
258
|
Schmidt-Wilcke T, Fuchs E, Funke K, Vlachos A, Müller-Dahlhaus F, Puts NAJ, Harris RE, Edden RAE. GABA-from Inhibition to Cognition: Emerging Concepts. Neuroscientist 2017; 24:501-515. [PMID: 29283020 DOI: 10.1177/1073858417734530] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neural functioning and plasticity can be studied on different levels of organization and complexity ranging from the molecular and synaptic level to neural circuitry of whole brain networks. Across neuroscience different methods are being applied to better understand the role of various neurotransmitter systems in the evolution of perception and cognition. GABA is the main inhibitory neurotransmitter in the adult mammalian brain and, depending on the brain region, up to 25% of the total number of cortical neurons are GABAergic interneurons. At the one end of the spectrum, GABAergic neurons have been accurately described with regard to cell morphological, molecular, and electrophysiological properties; at the other end researchers try to link GABA concentrations in specific brain regions to human behavior using magnetic resonance spectroscopy. One of the main challenges of modern neuroscience currently is to integrate knowledge from highly specialized subfields at distinct biological scales into a coherent picture that bridges the gap between molecules and behavior. In the current review, recent findings from different fields of GABA research are summarized delineating a potential strategy to develop a more holistic picture of the function and role of GABA.
Collapse
Affiliation(s)
- T Schmidt-Wilcke
- 1 Institute of Clinical Neuroscience and Medical Psychology, University of Düsseldorf, Düsseldorf, Germany.,2 Mauritius Therapieklinik Meerbusch, Meerbusch, Germany
| | - E Fuchs
- 3 Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - K Funke
- 4 Department of Neurophysiology, Medical Faculty of Ruhr-University Bochum, Bochum, Germany
| | - A Vlachos
- 5 Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Müller-Dahlhaus
- 6 Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,7 Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - N A J Puts
- 8 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,9 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - R E Harris
- 10 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - R A E Edden
- 8 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,9 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
259
|
Cao G, Edden RAE, Gao F, Li H, Gong T, Chen W, Liu X, Wang G, Zhao B. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis. Eur Radiol 2017; 28:1140-1148. [PMID: 28986640 DOI: 10.1007/s00330-017-5064-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. METHODS Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. RESULTS In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). CONCLUSIONS This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. KEY POINTS • GABA levels may decrease in patients with RRMS. • Lower GABA levels correlated with worse cognitive performance in patients with RRMS. • Dysfunctional GABAergic neurotransmission may have a role in cognitive impairment in RRMS.
Collapse
Affiliation(s)
- Guanmei Cao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21287, USA
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| | - Hao Li
- Air Force General Hospital PLA, Beijing, 100142, China
| | - Tao Gong
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| | | | - Xiaohui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China.
| | - Bin Zhao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| |
Collapse
|
260
|
Mikkelsen M, Barker PB, Bhattacharyya PK, Brix MK, Buur PF, Cecil KM, Chan KL, Chen DYT, Craven AR, Cuypers K, Dacko M, Duncan NW, Dydak U, Edmondson DA, Ende G, Ersland L, Gao F, Greenhouse I, Harris AD, He N, Heba S, Hoggard N, Hsu TW, Jansen JFA, Kangarlu A, Lange T, Lebel RM, Li Y, Lin CYE, Liou JK, Lirng JF, Liu F, Ma R, Maes C, Moreno-Ortega M, Murray SO, Noah S, Noeske R, Noseworthy MD, Oeltzschner G, Prisciandaro JJ, Puts NAJ, Roberts TPL, Sack M, Sailasuta N, Saleh MG, Schallmo MP, Simard N, Swinnen SP, Tegenthoff M, Truong P, Wang G, Wilkinson ID, Wittsack HJ, Xu H, Yan F, Zhang C, Zipunnikov V, Zöllner HJ, Edden RAE. Big GABA: Edited MR spectroscopy at 24 research sites. Neuroimage 2017; 159:32-45. [PMID: 28716717 PMCID: PMC5700835 DOI: 10.1016/j.neuroimage.2017.07.021] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community.
Collapse
Affiliation(s)
- Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Pallab K Bhattacharyya
- Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; Radiology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Maiken K Brix
- Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Pieter F Buur
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly L Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Y-T Chen
- Department of Radiology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT - Norwegian Center for Mental Disorders Research, University of Bergen, Bergen, Norway
| | - Koen Cuypers
- Department of Kinesiology, KU Leuven, Leuven, Belgium; REVAL Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Michael Dacko
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Niall W Duncan
- Brain and Consciousness Research Centre, Taipei Medical University, Taipei, Taiwan
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - David A Edmondson
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Gabriele Ende
- Department of Neuroimaging, Central Institute of Mental Health, Mannheim, Germany
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT - Norwegian Center for Mental Disorders Research, University of Bergen, Bergen, Norway; Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Ian Greenhouse
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Stefanie Heba
- Department of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Nigel Hoggard
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Tun-Wei Hsu
- Department of Radiology, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Jacobus F A Jansen
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alayar Kangarlu
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Thomas Lange
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | | | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Jy-Kang Liou
- Department of Radiology, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Feng Liu
- New York State Psychiatric Institute, New York, NY, USA
| | - Ruoyun Ma
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Celine Maes
- Department of Kinesiology, KU Leuven, Leuven, Belgium
| | | | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Sean Noah
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Michael D Noseworthy
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - James J Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Timothy P L Roberts
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Markus Sack
- Department of Neuroimaging, Central Institute of Mental Health, Mannheim, Germany
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Muhammad G Saleh
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | | | - Nicholas Simard
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Stephan P Swinnen
- Department of Kinesiology, KU Leuven, Leuven, Belgium; Leuven Research Institute for Neuroscience & Disease (LIND), KU Leuven, Leuven, Belgium
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Hongmin Xu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Helge J Zöllner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
261
|
Berger HR, Nyman AKG, Morken TS, Vettukattil R, Brubakk AM, Widerøe M. Early metabolite changes after melatonin treatment in neonatal rats with hypoxic-ischemic brain injury studied by in-vivo1H MR spectroscopy. PLoS One 2017; 12:e0185202. [PMID: 28934366 PMCID: PMC5608359 DOI: 10.1371/journal.pone.0185202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
Melatonin is a promising neuroprotective agent after perinatal hypoxic-ischemic (HI) brain injury. We used in-vivo1H magnetic resonance spectroscopy to investigate effects of melatonin treatment on brain metabolism after HI. Postnatal day 7 Sprague-Dawley rats with unilateral HI brain injury were treated with either melatonin 10 mg/kg dissolved in phosphate-buffered saline (PBS) with 5% dimethyl sulfoxide (DMSO) or vehicle (5% DMSO and/or PBS) directly and at 6 hours after HI. 1H MR spectra from the thalamus in the ipsilateral and contralateral hemisphere were acquired 1 day after HI. Our results showed that injured animals had a distinct metabolic profile in the ipsilateral thalamus compared to sham with low concentrations of total creatine, choline, N-acetyl aspartate (NAA), and high concentrations of lipids. A majority of the melatonin-treated animals had a metabolic profile characterized by higher total creatine, choline, NAA and lower lipid levels than other HI animals. When comparing absolute concentrations, melatonin treatment resulted in higher glutamine levels and lower lipid concentrations compared to DMSO treatment as well as higher macromolecule levels compared to PBS treatment day 1 after HI. DMSO treated animals had lower concentrations of glucose, creatine, phosphocholine and macromolecules compared to sham animals. In conclusion, the neuroprotective effects of melatonin were reflected in a more favorable metabolic profile including reduced lipid levels that likely represents reduced cell injury. Neuroprotective effects may also be related to the influence of melatonin on glutamate/glutamine metabolism. The modulatory effects of the solvent DMSO on cerebral energy metabolism might have masked additional beneficial effects of melatonin.
Collapse
Affiliation(s)
- Hester Rijkje Berger
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, St. Olavs University Hospital HF, Trondheim, Norway
- * E-mail:
| | - Axel K. G. Nyman
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tora Sund Morken
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Ophthalmology, St. Olavs University Hospital HF, Trondheim, Norway
| | - Riyas Vettukattil
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children’s and Women’s Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
262
|
Changes in spectroscopic biomarkers after transcranial direct current stimulation in children with perinatal stroke. Brain Stimul 2017; 11:94-103. [PMID: 28958737 DOI: 10.1016/j.brs.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Perinatal stroke causes lifelong motor disability, affecting independence and quality of life. Non-invasive neuromodulation interventions such as transcranial direct current stimulation (tDCS) combined with intensive therapy may improve motor function in adult stroke hemiparesis but is under-explored in children. Measuring cortical metabolites with proton magnetic resonance spectroscopy (MRS) can inform cortical neurobiology in perinatal stroke but how these change with neuromodulation is yet to be explored. METHODS A double-blind, sham-controlled, randomized clinical trial tested whether tDCS could enhance intensive motor learning therapy in hemiparetic children. Ten days of customized, goal-directed therapy was paired with cathodal tDCS over contralesional primary motor cortex (M1, 20 min, 1.0 mA, 0.04 mA/cm2) or sham. Motor outcomes were assessed using validated measures. Neuronal metabolites in both M1s were measured before and after intervention using fMRI-guided short-echo 3T MRS. RESULTS Fifteen children [age(range) = 12.1(6.6-18.3) years] were studied. Motor performance improved in both groups and tDCS was associated with greater goal achievement. After cathodal tDCS, the non-lesioned M1 showed decreases in glutamate/glutamine and creatine while no metabolite changes occurred with sham tDCS. Lesioned M1 metabolite concentrations did not change post-intervention. Baseline function was highly correlated with lesioned M1 metabolite concentrations (N-acetyl-aspartate, choline, creatine, glutamate/glutamine). These correlations consistently increased in strength following intervention. Metabolite changes were not correlated with motor function change. Baseline lesioned M1 creatine and choline levels were associated with clinical response. CONCLUSIONS MRS metabolite levels and changes may reflect mechanisms of tDCS-related M1 plasticity and response biomarkers in hemiparetic children with perinatal stroke undergoing intensive neurorehabilitation.
Collapse
|
263
|
Sampedro F, de la Fuente Revenga M, Valle M, Roberto N, Domínguez-Clavé E, Elices M, Luna LE, Crippa JAS, Hallak JEC, de Araujo DB, Friedlander P, Barker SA, Álvarez E, Soler J, Pascual JC, Feilding A, Riba J. Assessing the Psychedelic "After-Glow" in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities. Int J Neuropsychopharmacol 2017; 20:698-711. [PMID: 28525587 PMCID: PMC5581489 DOI: 10.1093/ijnp/pyx036] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca.
Collapse
Affiliation(s)
- Frederic Sampedro
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Mario de la Fuente Revenga
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Marta Valle
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Natalia Roberto
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Elisabet Domínguez-Clavé
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Matilde Elices
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Luís Eduardo Luna
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - José Alexandre S Crippa
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Jaime E C Hallak
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Draulio B de Araujo
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Pablo Friedlander
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Steven A Barker
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Enrique Álvarez
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Joaquim Soler
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Juan C Pascual
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Amanda Feilding
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| | - Jordi Riba
- School of Medicine, Autonomous University of Barcelona, Barcelona, Spain (Mr Sampedro); Human Neuropsychopharmacology Research Group, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr de la Fuente Revenga, Ms Roberto, and Dr Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, Sant Pau Institute of Biomedical Research, Barcelona, Spain (Dr Valle); Centre d’Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain (Drs Valle, Elices, Álvarez, Soler, Pascual, and Riba); Department of Pharmacology and Therapeutics, Autonomous University of Barcelona, Barcelona, Spain (Dr Valle); Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, Soler, and Pascual); Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain (Ms Domínguez-Clavé and Drs Elices, Álvarez, and Pascual); Research Center for the Study of Psychointegrator Plants, Visionary Art and Consciousness, Florianópolis, Santa Catarina, Brazil (Dr Luna); Department of Neuroscience and Behavior, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil and National Institute for Translational Medicine, Ribeirão Preto, Brazil (Drs Crippa and Hallak); Brain Institute/Hospital Universitario Onofre Lopes, Natal, Brazil (Dr de Araujo); The Beckley Foundation, Beckley Park, Oxford, United Kingdom (Mr Friedlander and Mrs Feilding); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, Louisiana (Dr Barker); Department of Clinical and Health Psychology, School of Psychology, Autonomous University of Barcelona, Barcelona, Spain (Dr Soler)
| |
Collapse
|
264
|
Divergent influences of anterior cingulate cortex GABA concentrations on the emotion circuitry. Neuroimage 2017; 158:136-144. [DOI: 10.1016/j.neuroimage.2017.06.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/18/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023] Open
|
265
|
Delli Pizzi S, Chiacchiaretta P, Mantini D, Bubbico G, Edden RA, Onofrj M, Ferretti A, Bonanni L. GABA content within medial prefrontal cortex predicts the variability of fronto-limbic effective connectivity. Brain Struct Funct 2017; 222:3217-3229. [PMID: 28386778 PMCID: PMC5630505 DOI: 10.1007/s00429-017-1399-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/05/2017] [Indexed: 12/13/2022]
Abstract
The amygdala-medial prefrontal cortex (mPFC) circuit plays a key role in social behavior. The amygdala and mPFC are bidirectionally connected, functionally and anatomically, via the uncinate fasciculus. Recent evidence suggests that GABA-ergic neurotransmission within the mPFC could be central to the regulation of amygdala activity related to emotions and anxiety processing. However, the functional and neurochemical interactions within amygdala-mPFC circuits are unclear. In the current study, multimodal magnetic resonance imaging techniques were combined to investigate effective connectivity within the amygdala-mPFC network and its relationship with mPFC neurotransmission in 22 healthy subjects aged between 41 and 88 years. Effective connectivity in the amygdala-mPFC circuit was assessed on resting-state functional magnetic resonance imaging data using spectral dynamic causal modelling. State and trait anxiety were also assessed. The mPFC was shown to be the target of incoming outputs from the amygdalae and the source of exciting inputs to the limbic system. The amygdalae were reciprocally connected by excitatory projections. About half of the variance relating to the strength of top-down endogenous connection between right amygdala and mPFC was explained by mPFC GABA levels. State anxiety was correlated with the strength of the endogenous connections between right amygdala and mPFC. We suggest that mPFC GABA content predicts variability in the effective connectivity within the mPFC-amygdala circuit, providing new insights on emotional physiology and the underlying functional and neurochemical interactions.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
- Center of Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Dante Mantini
- Research Centre for Motor Control and Neuroplasticity, KU Leuven, Heverlee, Belgium
- Department of Health Sciences and Technology, Neural Control of Movement Lab, Zurich, Switzerland
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | - Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Richard A Edden
- Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Center of Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy.
- Center of Aging Sciences and Translational Medicine (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
266
|
Miller CB, Rae CD, Green MA, Yee BJ, Gordon CJ, D’Rozario AL, Kyle SD, Espie CA, Grunstein RR, Bartlett DJ. An Objective Short Sleep Insomnia Disorder Subtype Is Associated With Reduced Brain Metabolite Concentrations In Vivo: A Preliminary Magnetic Resonance Spectroscopy Assessment. Sleep 2017; 40:4093919. [DOI: 10.1093/sleep/zsx148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
267
|
Mudd AT, Berding K, Wang M, Donovan SM, Dilger RN. Serum cortisol mediates the relationship between fecal Ruminococcus and brain N-acetylaspartate in the young pig. Gut Microbes 2017; 8:589-600. [PMID: 28703640 PMCID: PMC5730385 DOI: 10.1080/19490976.2017.1353849] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A dynamic relationship between the gut microbiota and brain is pivotal in neonatal development. Dysbiosis of the microbiome may result in altered neurodevelopment; however, it is unclear which specific members of microbiota are most influential and what factors might mediate the relationship between the gut and the brain. Twenty-four vaginally-derived male piglets were subjected to magnetic resonance spectroscopy at 30 d of age. Ascending colon contents, feces, and blood were collected and analyzed for volatile fatty acids, microbiota relative abundance by 16s rRNA, and serum metabolites, respectively. A mediation analysis was performed to assess the mediatory effect of serum biomarkers on the relationship between microbiota and neurometabolites. Results indicated fecal Ruminococcus and Butyricimonas predicted brain N-acetylaspartate (NAA). Analysis of serum biomarkers indicated Ruminococcus independently predicted serum serotonin and cortisol. A 3-step mediation indicated: i) Ruminococcus negatively predicted NAA, ii) Ruminococcus negatively predicted cortisol, and iii) a significant indirect effect (i.e., the effect of fecal Ruminococcus through cortisol on NAA) was observed and the direct effect became insignificant. Thus, serum cortisol fully mediated the relationship between fecal Ruminococcus and brain NAA. Using magnetic resonance spectroscopy, this study used a statistical mediation analysis and provides a novel perspective into the potential underlying mechanisms through which the microbiota may shape brain development. This is the first study to link Ruminococcus, cortisol, and NAA in vivo, and these findings are substantiated by previous literature indicating these factors may be influential in the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Austin T. Mudd
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, USA,Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Kirsten Berding
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA,Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Ryan N. Dilger
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, USA,Neuroscience Program, University of Illinois, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA,CONTACT Ryan N. Dilger 186 Animal Sciences Laboratory, 1207 W. Gregory Street, Urbana, IL, 61801, USA
| |
Collapse
|
268
|
Naylor B, Boag S, Gustin SM. New evidence for a pain personality? A critical review of the last 120 years of pain and personality. Scand J Pain 2017; 17:58-67. [PMID: 28850375 DOI: 10.1016/j.sjpain.2017.07.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Personality traits may influence development and adjustment to ongoing pain. Over the past 120 years, there has been considerable research into the relationship between pain and personality. This paper presents new evidence for common personality traits found amongst chronic pain sufferers. In particular, it evaluates evidence for Cloninger's biopsychosocial model of personality in distinguishing typical personality features of chronic pain sufferers. It evaluates this evidence in the context of the past 120 years of research including psychodynamic formulations, MMPI studies, personality disorder investigations, and the influence of neuroticism on chronic pain. METHODS A literature search was conducted using PubMed, Medline, PsycINFO, SCOPUS and Cochrane library. Search terms included chronic pain, pain, personality, neuroticism, harm avoidance, self-directedness, attachment, Temperament and Character Inventory (TCI-R), MMPI, MMPI-2, NEO-PI, EPI, Millon Clinical Multiaxial Inventory, Millon Behavioral Health Inventory, Millon Behavioral Medicine Diagnostic, the Personality Assessment Inventory, the Locus of Control Construct and different combinations of these terms. CONCLUSIONS Recent descriptive studies using Cloninger's Temperament and Character Inventory (TCI-R) suggest that higher harm avoidance and lower self-directedness may be the most distinguishing personality features of chronic pain sufferers. High harm avoidance refers to a tendency to be fearful, pessimistic, sensitive to criticism, and requiring high levels of re-assurance. Low self-directedness often manifests as difficulty with defining and setting meaningful goals, low motivation, and problems with adaptive coping. Evidence for this personality profile is found across a wide variety of chronic pain conditions including fibromyalgia, headache and migraine, temporomandibular disorder, trigeminal neuropathy, musculo-skeletal disorders and heterogeneous pain groups. Limitations are also discussed. For example, high harm avoidance is also found in those suffering anxiety and depression. While many studies control for such factors, some do not and thus future research should address such confounds carefully. The evidence is also evaluated within the context of past research into the existence of 'a pain personality'. Psychodynamic formulations are found to be deficient in objective scientific methods. MMPI studies lack sufficient evidence to support 'a pain personality' and may be confounded by somatic items in the instrument. More recent neuroticism studies suggest a relationship between neuroticism and pain, particularly for adjustment to chronic pain. Personality disorders are more prevalent in chronic pain populations than non-pain samples. CLINICAL IMPLICATIONS Because harm avoidance reflects a tendency to developed conditioned fear responses, we suggest that higher harm avoidance may create more vulnerability to developing a fear-avoidance response to chronic pain. Furthermore, lower self-directedness may contribute to keeping a sufferer within this vicious cycle of fear, avoidance and suffering. Moreover, we suggest that harm avoidance and self-directedness are broader and more complex constructs than current clinical targets of CBT such as fear-avoidance and self-efficacy. Thus, assessing such personality traits may help to address the complexity of chronic pain presentations. For example, it may help to identify and treat sufferers more resistant to treatment, more prone to comorbidity and more vulnerable to entering the vicious cycle of chronic pain, suffering and disability.
Collapse
Affiliation(s)
- Brooke Naylor
- Neuroscience Research Australia, Australia; School of Psychology, Macquarie University, Australia
| | - Simon Boag
- School of Psychology, Macquarie University, Australia
| | - Sylvia Maria Gustin
- Neuroscience Research Australia, Australia; School of Psychology, University of New South Wales, Australia.
| |
Collapse
|
269
|
Lanz B, Rackayova V, Braissant O, Cudalbu C. MRS studies of neuroenergetics and glutamate/glutamine exchange in rats: Extensions to hyperammonemic models. Anal Biochem 2017; 529:245-269. [DOI: 10.1016/j.ab.2016.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 01/27/2023]
|
270
|
Bustillo JR, Patel V, Jones T, Jung R, Payaknait N, Qualls C, Canive JM, Liu J, Perrone-Bizzozero NI, Calhoun VD, Turner JA, Gasparovic C. Risk-Conferring Glutamatergic Genes and Brain Glutamate Plus Glutamine in Schizophrenia. Front Psychiatry 2017; 8:79. [PMID: 28659829 PMCID: PMC5466972 DOI: 10.3389/fpsyt.2017.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/24/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The proton magnetic resonance spectroscopy (1H-MRS) signals from glutamate (or the combined glutamate and glutamine signal-Glx) have been found to be greater in various brain regions in people with schizophrenia. Recently, the Psychiatric Genetics Consortium reported that several common single-nucleotide polymorphisms (SNPs) in glutamate-related genes confer increased risk of schizophrenia. Here, we examined the relationship between presence of these risk polymorphisms and brain Glx levels in schizophrenia. METHODS 1H-MRS imaging data from an axial, supraventricular tissue slab were acquired in 56 schizophrenia patients and 67 healthy subjects. Glx was measured in gray matter (GM) and white matter (WM) regions. The genetic data included six polymorphisms genotyped across an Illumina 5M SNP array. Only three of six glutamate as well as calcium-related SNPs were available for examination. These included three glutamate-related polymorphisms (rs10520163 in CLCN3, rs12704290 in GRM3, and rs12325245 in SLC38A7), and three calcium signaling polymorphisms (rs1339227 in RIMS1, rs7893279 in CACNB2, and rs2007044 in CACNA1C). Summary risk scores for the three glutamate and the three calcium polymorphisms were calculated. RESULTS Glx levels in GM positively correlated with glutamate-related genetic risk score but only in younger (≤36 years) schizophrenia patients (p = 0.01). Glx levels did not correlate with calcium risk scores. Glx was higher in the schizophrenia group compared to levels in controls in GM and WM regardless of age (p < 0.001). CONCLUSION Elevations in brain Glx are in part, related to common allelic variants of glutamate-related genes known to increase the risk for schizophrenia. Since the glutamate risk scores did not differ between groups, some other genetic or environmental factors likely interact with the variability in glutamate-related risk SNPs to contribute to an increase in brain Glx early in the illness.
Collapse
Affiliation(s)
- Juan R. Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, United States
- Department of Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Veena Patel
- Mind Research Network, Albuquerque, NM, United States
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, United States
- Department of Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Rex Jung
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM, United States
| | - Nattida Payaknait
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, United States
- Department of Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Clifford Qualls
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - Jose M. Canive
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, United States
- Department of Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
- The New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Jingyu Liu
- Mind Research Network, Albuquerque, NM, United States
- Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Nora Irma Perrone-Bizzozero
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, United States
- Department of Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Vince D. Calhoun
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, United States
- Department of Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
- Mind Research Network, Albuquerque, NM, United States
- Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Jessica A. Turner
- Mind Research Network, Albuquerque, NM, United States
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | | |
Collapse
|
271
|
Cleve M, Krämer M, Gussew A, Reichenbach JR. Difference optimization: Automatic correction of relative frequency and phase for mean non-edited and edited GABA 1H MEGA-PRESS spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 279:16-21. [PMID: 28431306 DOI: 10.1016/j.jmr.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/28/2023]
Abstract
Phase and frequency corrections of magnetic resonance spectroscopic data are of major importance to obtain reliable and unambiguous metabolite estimates as validated in recent research for single-shot scans with the same spectral fingerprint. However, when using the J-difference editing technique 1H MEGA-PRESS, misalignment between mean edited (ON‾) and non-edited (OFF‾) spectra that may remain even after correction of the corresponding individual single-shot scans results in subtraction artefacts compromising reliable GABA quantitation. We present a fully automatic routine that iteratively optimizes simultaneously relative frequencies and phases between the mean ON‾ and OFF‾1H MEGA-PRESS spectra while minimizing the sum of the magnitude of the difference spectrum (L1 norm). The proposed method was applied to simulated spectra at different SNR levels with deliberately preset frequency and phase errors. Difference optimization proved to be more sensitive to small signal fluctuations, as e.g. arising from subtraction artefacts, and outperformed the alternative spectral registration approach, that, in contrast to our proposed linear approach, uses a nonlinear least squares minimization (L2 norm), at all investigated levels of SNR. Moreover, the proposed method was applied to 47 MEGA-PRESS datasets acquired in vivo at 3T. The results of the alignment between the mean OFF‾ and ON‾ spectra were compared by applying (a) no correction, (b) difference optimization or (c) spectral registration. Since the true frequency and phase errors are not known for in vivo data, manually corrected spectra were used as the gold standard reference (d). Automatically corrected data applying both, method (b) or method (c), showed distinct improvements of spectra quality as revealed by the mean Pearson correlation coefficient between corresponding real part mean DIFF‾ spectra of Rbd=0.997±0.003 (method (b) vs. (d)), compared to Rad=0.764±0.220 (method (a) vs. (d)) with no alignment between OFF‾ and ON‾. Method (c) revealed a slightly lower correlation coefficient of Rcd=0.972±0.028 compared to Rbd, that can be ascribed to small remaining subtraction artefacts in the final DIFF‾ spectrum. In conclusion, difference optimization performs robustly with no restrictions regarding the input data range or user intervention and represents a complementary tool to optimize the final DIFF‾ spectrum following the mandatory frequency and phase corrections of single ON and OFF scans prior to averaging.
Collapse
Affiliation(s)
- Marianne Cleve
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3 (Gebäude 5, MRT am Steiger), 07743 Jena, Germany.
| | - Martin Krämer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3 (Gebäude 5, MRT am Steiger), 07743 Jena, Germany.
| | - Alexander Gussew
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3 (Gebäude 5, MRT am Steiger), 07743 Jena, Germany.
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3 (Gebäude 5, MRT am Steiger), 07743 Jena, Germany.
| |
Collapse
|
272
|
McIntosh AL, Gormley S, Tozzi L, Frodl T, Harkin A. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression. Front Cell Neurosci 2017; 11:150. [PMID: 28596724 PMCID: PMC5442179 DOI: 10.3389/fncel.2017.00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/09/2017] [Indexed: 12/28/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.
Collapse
Affiliation(s)
| | - Shane Gormley
- Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Leonardo Tozzi
- Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Thomas Frodl
- Institute of Neuroscience, Trinity College DublinDublin, Ireland.,Universitätsklinikum A.ö.R, Universitätsklinik für Psychiatrie und Psychotherapie, Medizinische Fakultät, Otto von Guericke UniversitätMagdeburg, Germany
| | - Andrew Harkin
- Institute of Neuroscience, Trinity College DublinDublin, Ireland.,School of Pharmacy and Pharmaceutical sciences, Trinity College DublinDublin, Ireland
| |
Collapse
|
273
|
El-Ansary A, Al-Salem HS, Asma A, Al-Dbass A. Glutamate excitotoxicity induced by orally administered propionic acid, a short chain fatty acid can be ameliorated by bee pollen. Lipids Health Dis 2017; 16:96. [PMID: 28532421 PMCID: PMC5440900 DOI: 10.1186/s12944-017-0485-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rodent models may guide investigations towards identifying either environmental neuro-toxicants or drugs with neuro-therapeutic effects. This work aims to study the therapeutic effects of bee pollen on brain glutamate excitotoxicity and the impaired glutamine-glutamate- gamma amino butyric acid (GABA) circuit induced by propionic acid (PPA), a short chain fatty acid, in rat pups. METHODS Twenty-four young male Western Albino rats 3-4 weeks of age, and 45-60 g body weight were enrolled in the present study. They were grouped into four equal groups: Group 1, the control received phosphate buffered saline at the same time of PPA adminstration; Group 2, received 750 mg/kg body weight divided into 3 equal daily doses and served as acute neurotoxic dose of PPA; Group 3, received 750 mg/kg body weight divided in 10 equal doses of 75 mg/kg body weight/day, and served as the sub-acute group; and Group 4, the therapeutic group, was treated with bee pollen (50 mg/kg body weight) for 30 days after acute PPA intoxication. GABA, glutamate and glutamine were measured in the brain homogenates of the four groups. RESULTS The results showed that PPA caused multiple signs of excitotoxicity, as measured by the elevation of glutamate and the glutamate/glutamine ratio and the decrease of GABA, glutamine and the GABA/glutamate ratio. Bee pollen was effective in counteracting the neurotoxic effects of PPA to a certain extent. CONCLUSION In conclusion, bee pollen demonstrates ameliorating effects on glutamate excitotoxicity and the impaired glutamine-glutamate-GABA circuit as two etiological mechanisms in PPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia. .,Autism Research and Treatment Center, Riyadh, Saudi Arabia. .,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia. .,Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Huda S Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alqahtani Asma
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Dbass
- Department of Biochemistry, Science College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
274
|
Activation induced changes in GABA: Functional MRS at 7T with MEGA-sLASER. Neuroimage 2017; 156:207-213. [PMID: 28533117 DOI: 10.1016/j.neuroimage.2017.05.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022] Open
Abstract
Functional magnetic resonance spectroscopy (fMRS) has been used to assess the dynamic metabolic responses of the brain to a physiological stimulus non-invasively. However, only limited information on the dynamic functional response of γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is available. We aimed to measure the activation-induced changes in GABA unambiguously using a spectral editing method, instead of the conventional direct detection techniques used in previous fMRS studies. The Mescher-Garwood-semi-localised by adiabatic selective refocusing (MEGA-sLASER) sequence was developed at 7T to obtain the time course of GABA concentration without macromolecular contamination. A significant decrease (-12±5%) in the GABA to total creatine ratio (GABA/tCr) was observed in the motor cortex during a period of 10min of hand-clenching, compared to an initial baseline level (GABA/tCr =0.11±0.02) at rest. An increase in the Glx (glutamate and glutamine) to tCr ratio was also found, which is in agreement with previous findings. In contrast, no significant changes in NAA/tCr and tCr were detected. With consistent and highly efficient editing performance for GABA detection and the advantage of visually identifying GABA resonances in the spectra, MEGA-sLASER is demonstrated to be an effective method for studying of dynamic changes in GABA at 7T.
Collapse
|
275
|
Harris AD, Puts NAJ, Wijtenburg SA, Rowland LM, Mikkelsen M, Barker PB, Evans CJ, Edden RAE. Normalizing data from GABA-edited MEGA-PRESS implementations at 3 Tesla. Magn Reson Imaging 2017; 42:8-15. [PMID: 28479342 DOI: 10.1016/j.mri.2017.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/21/2017] [Accepted: 04/30/2017] [Indexed: 12/12/2022]
Abstract
Standardization of results is an important milestone in the maturation of any truly quantitative methodology. For instance, a lack of measurement agreement across imaging platforms limits multisite studies, between-study comparisons based on the literature, and inferences based on and the generalizability of results. In GABA-edited MEGA-PRESS, two key sources of differences between implementations are: differences in editing efficiency of GABA and the degree of co-editing of macromolecules (MM). In this work, GABA editing efficiency κ and MM-co-editing μ constants are determined for three widely used MEGA-PRESS implementations (on the most common MRI platforms; GE, Philips, and Siemens) by phantom experiments. Implementation-specific κ,μ-corrections were then applied to two in vivo datasets, one consisted of 8 subject scanned on the three platforms and the other one subject scanned eight times on each platform. Manufacturer-specific κ and μ values were determined as: κGE=0.436, κSiemens=0.366 and κPhilips=0.394 and μGE=0.83, μSiemens=0.625 and μPhilips=0.75. Applying the κ,μ-correction on the Cr-referenced data decreased the coefficient of variation (CV) of the data for both in vivo data sets (multisubjects: uncorrected CV=13%, κ,μ-corrected CV=5%, single subject: uncorrected CV=23%, κ,μ-corrected CV=13%) but had no significant effect on mean GABA levels. For the water-referenced results, CV increased in the multisubject data (uncorrected CV=6.7%, κ,μ-corrected CV=14%) while it decreased in the single subject data (uncorrected CV=24%, κ,μ-corrected CV=21%) and manufacturer was a significant source of variance in the κ,μ-corrected data. Applying a correction for editing efficiency and macromolecule contamination decreases the variance between different manufacturers for creatine-referenced data, but other sources of variance remain.
Collapse
Affiliation(s)
- Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research (CAIR) Program, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laura M Rowland
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - C John Evans
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
276
|
Marjańska M, McCarten JR, Hodges J, Hemmy LS, Grant A, Deelchand DK, Terpstra M. Region-specific aging of the human brain as evidenced by neurochemical profiles measured noninvasively in the posterior cingulate cortex and the occipital lobe using 1H magnetic resonance spectroscopy at 7 T. Neuroscience 2017; 354:168-177. [PMID: 28476320 DOI: 10.1016/j.neuroscience.2017.04.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 12/16/2022]
Abstract
The concentrations of fourteen neurochemicals associated with metabolism, neurotransmission, antioxidant capacity, and cellular structure were measured noninvasively from two distinct brain regions using 1H magnetic resonance spectroscopy. Seventeen young adults (age 19-22years) and sixteen cognitively normal older adults (age 70-88years) were scanned. To increase sensitivity and specificity, 1H magnetic resonance spectra were obtained at the ultra-high field of 7T and at ultra-short echo time. The concentrations of neurochemicals were determined using water as an internal reference and accounting for gray matter, white matter, and cerebrospinal fluid content of the volume of interest. In the posterior cingulate cortex (PCC), the concentrations of neurochemicals associated with energy (i.e., creatine plus phosphocreatine), membrane turnover (i.e., choline containing compounds), and gliosis (i.e., myo-inositol) were higher in the older adults while the concentrations of N-acetylaspartylglutamate (NAAG) and phosphorylethanolamine (PE) were lower. In the occipital cortex (OCC), the concentration of N-acetylaspartate (NAA), a marker of neuronal viability, concentrations of the neurotransmitters Glu and NAAG, antioxidant ascorbate (Asc), and PE were lower in the older adults while the concentration of choline containing compounds was higher. Altogether, these findings shed light on how the human brain ages differently depending on region.
Collapse
Affiliation(s)
- Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6th ST SE, Minneapolis, MN 55455, United States.
| | - J Riley McCarten
- Geriatric Research, Education and Clinical Center, Veterans Affairs Health Care System, 1 Veterans Drive, Minneapolis, MN 55417, United States; Department of Neurology, University of Minnesota, 12-112 PWB, 516 Delaware ST SE, Minneapolis, MN 55455, United States
| | - James Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota, 2221 University Ave, Minneapolis, MN 55414, United States
| | - Laura S Hemmy
- Geriatric Research, Education and Clinical Center, Veterans Affairs Health Care System, 1 Veterans Drive, Minneapolis, MN 55417, United States; Department of Psychiatry, University of Minnesota, F282/2A West, 2450 Riverside Ave S, Minneapolis, MN 55454, United States
| | - Andrea Grant
- Department of Neuroscience, University of Minnesota, 321 Church ST SE, Minneapolis, MN 55455, United States
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6th ST SE, Minneapolis, MN 55455, United States
| | - Melissa Terpstra
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6th ST SE, Minneapolis, MN 55455, United States
| |
Collapse
|
277
|
Bustillo JR, Jones T, Chen H, Lemke N, Abbott C, Qualls C, Stromberg S, Canive J, Gasparovic C. Glutamatergic and Neuronal Dysfunction in Gray and White Matter: A Spectroscopic Imaging Study in a Large Schizophrenia Sample. Schizophr Bull 2017; 43:611-619. [PMID: 27550776 PMCID: PMC5473520 DOI: 10.1093/schbul/sbw122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamine plus glutamate (Glx), as well as N-acetylaspartate compounds (NAAc, N-acetylaspartate plus N-acetyl-aspartyl-glutamate), a marker of neuronal viability, can be quantified with proton magnetic resonance spectroscopy (1H-MRS). We used 1H-MRS imaging to assess Glx and NAAc, as well as total-choline (glycerophospho-choline plus phospho-choline), myo-inositol and total-creatine (creatine plus phosphocreatine) from an axial supraventricular slab of gray matter (GM, medial-frontal and medial-parietal) and white matter (WM, bilateral-frontal and bilateral-parietal) voxels. Schizophrenia subjects (N = 104) and healthy controls (N = 97) with a broad age range (16 to 65) were studied. In schizophrenia, Glx was increased in GM (P < .001) and WM (P = .01), regardless of age. However, with greater age, NAAc increased in GM (P < .001) but decreased in WM (P < .001) in schizophrenia. In patients, total creatine decreased with age in WM (P < .001). Finally, overall cognitive score correlated positively with WM neurometabolites in controls but negatively in the schizophrenia group (NAAc, P < .001; and creatine [only younger], P < .001). We speculate the results support an ongoing process of increased glutamate metabolism in schizophrenia. Later in the illness, disease progression is suggested by increased cortical compaction without neuronal loss (elevated NAAc) and reduced axonal integrity (lower NAAc). Furthermore, this process is associated with fundamentally altered relationships between neurometabolite concentrations and cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Juan R Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Hongji Chen
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Nicholas Lemke
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Clifford Qualls
- Department of Mathematics & Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Shannon Stromberg
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Jose Canive
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry, VA Health Care System, Albuquerque, NM, USA
| | | |
Collapse
|
278
|
Levar N, van Leeuwen JMC, Puts NAJ, Denys D, van Wingen GA. GABA Concentrations in the Anterior Cingulate Cortex Are Associated with Fear Network Function and Fear Recovery in Humans. Front Hum Neurosci 2017; 11:202. [PMID: 28496404 PMCID: PMC5406467 DOI: 10.3389/fnhum.2017.00202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/07/2017] [Indexed: 12/03/2022] Open
Abstract
Relapse of fear after successful treatment is a common phenomenon in patients with anxiety disorders. Animal research suggests that the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a key role in the maintenance of extinguished fear. Here, we combined magnetic resonance spectroscopy and functional magnetic resonance imaging to investigate the role of GABA in fear recovery in 70 healthy male participants. We associated baseline GABA levels in the dorsal anterior cingulate cortex (dACC) to indices of fear recovery as defined by changes in skin conductance responses (SCRs), blood oxygen level dependent responses, and functional connectivity from fear extinction to fear retrieval. The results showed that high GABA levels were associated with increased SCRs, enhanced activation of the right amygdala, and reduced amygdala-ventromedial prefrontal cortex connectivity during fear recovery. Follow-up analyses exclusively for the extinction phase showed that high GABA levels were associated with reduced amygdala activation and enhanced amygdala-ventromedial prefrontal cortex connectivity, despite the absence of correlations between GABA and physiological responses. Follow-up analyses for the retrieval phase did not show any significant associations with GABA. Together, the association between GABA and increases in SCRs from extinction to retrieval, without associations during both phases separately, suggests that dACC GABA primarily inhibits the consolidation of fear extinction. In addition, the opposite effects of GABA on amygdala activity and connectivity during fear extinction compared to fear recovery suggest that dACC GABA may initially facilitate extinction learning.
Collapse
Affiliation(s)
- Nina Levar
- Department of Psychiatry, Academic Medical CenterAmsterdam, Netherlands.,Brain Imaging Center, Academic Medical CenterAmsterdam, Netherlands.,Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands.,Spinoza Center for NeuroimagingAmsterdam, Netherlands
| | - Judith M C van Leeuwen
- Department of Psychiatry, Academic Medical CenterAmsterdam, Netherlands.,Department of Psychiatry, University Medical Center UtrechtUtrecht, Netherlands
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins UniversityBaltimore, MD, USA.,FM Kirby Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical CenterAmsterdam, Netherlands.,Brain Imaging Center, Academic Medical CenterAmsterdam, Netherlands.,Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands.,Spinoza Center for NeuroimagingAmsterdam, Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Academic Medical CenterAmsterdam, Netherlands.,Brain Imaging Center, Academic Medical CenterAmsterdam, Netherlands.,Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands.,Spinoza Center for NeuroimagingAmsterdam, Netherlands
| |
Collapse
|
279
|
Ip IB, Berrington A, Hess AT, Parker AJ, Emir UE, Bridge H. Combined fMRI-MRS acquires simultaneous glutamate and BOLD-fMRI signals in the human brain. Neuroimage 2017; 155:113-119. [PMID: 28433623 PMCID: PMC5519502 DOI: 10.1016/j.neuroimage.2017.04.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/29/2023] Open
Abstract
Combined fMRI-MRS is a novel method to non-invasively investigate functional activation in the human brain using simultaneous acquisition of hemodynamic and neurochemical measures. The aim of the current study was to quantify neural activity using combined fMRI-MRS at 7 T. BOLD-fMRI and semi-LASER localization MRS data were acquired from the visual cortex of 13 participants during short blocks (64 s) of flickering checkerboards. We demonstrate a correlation between glutamate and BOLD-fMRI time courses (R=0.381, p=0.031). In addition, we show increases in BOLD-fMRI (1.43±0.17%) and glutamate concentrations (0.15±0.05 I.U., ~2%) during visual stimulation. In contrast, we observed no change in glutamate concentrations in resting state MRS data during sham stimulation periods. Spectral line width changes generated by the BOLD-response were corrected using line broadening. In summary, our results establish the feasibility of concurrent measurements of BOLD-fMRI and neurochemicals using a novel combined fMRI-MRS sequence. Our findings strengthen the link between glutamate and functional activity in the human brain by demonstrating a significant correlation of BOLD-fMRI and glutamate over time, and by showing ~2% glutamate increases during 64 s of visual stimulation. Our tool may become useful for studies characterizing functional dynamics between neurochemicals and hemodynamics in health and disease. Novel MRI sequence measures hemodynamics and neurochemistry in same TR. Stimulation block duration relevant for functional experiments (64s). BOLD-fMRI and glutamate time courses correlate during functional stimulation. Visual stimulation increases glutamate concentrations. Useful to study fundamental relationship between hemodynamics and neurochemistry.
Collapse
Affiliation(s)
- I Betina Ip
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxfordshire OX1 3PT, UK; Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK.
| | - Adam Berrington
- Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Aaron T Hess
- Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Andrew J Parker
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxfordshire OX1 3PT, UK
| | - Uzay E Emir
- Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| |
Collapse
|
280
|
Bai X, Harris AD, Gong T, Puts NAJ, Wang G, Schär M, Barker PB, Edden RAE. Voxel Placement Precision for GABA-Edited Magnetic Resonance Spectroscopy. ACTA ACUST UNITED AC 2017; 7:35-44. [PMID: 28690923 PMCID: PMC5497851 DOI: 10.4236/ojrad.2017.71004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of the present study was to assess the reproducibility of voxel placement for GABA-edited MRS. GABA-edited MRS data were acquired in 13 healthy volunteers from (3 cm)3 voxel; and within the same session a second acquisition was independently prescribed. A three-dimensional voxel mask image was reconstructed in T1-image-space using the SVMask tool (in house software). Reproducibility of voxel placement was assessed using the Dice overlap coefficient, both within-subject and between-subject following co-registration of T1 images and transformation of voxel mask images to standard space. Within-subject overlap coefficients were 86% ± 5%. Between-subject overlap coefficients were 75% ± 10%. For the two voxel locations considered (occipital and sensorimotor), voxel overlap was very similar. Between-subject values are higher due to between-session effects, anatomical variability and volume mismatch in standard space. While surprisingly low in terms of volume overlap, the overlap coefficients correspond to acceptable linear displacements.
Collapse
Affiliation(s)
- Xue Bai
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ashley D Harris
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tao Gong
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guangbin Wang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
281
|
Ainsley Dean PJ, Arikan G, Opitz B, Sterr A. Potential for use of creatine supplementation following mild traumatic brain injury. ACTA ACUST UNITED AC 2017; 2:CNC34. [PMID: 30202575 PMCID: PMC6094347 DOI: 10.2217/cnc-2016-0016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/07/2017] [Indexed: 01/27/2023]
Abstract
There is significant overlap between the neuropathology of mild traumatic brain injury (mTBI) and the cellular role of creatine, as well as evidence of neural creatine alterations after mTBI. Creatine supplementation has not been researched in mTBI, but shows some potential as a neuroprotective when administered prior to or after TBI. Consistent with creatine’s cellular role, supplementation reduced neuronal damage, protected against the effects of cellular energy crisis and improved cognitive and somatic symptoms. A variety of factors influencing the efficacy of creatine supplementation are highlighted, as well as avenues for future research into the potential of supplementation as an intervention for mTBI. In particular, the slow neural uptake of creatine may mean that greater effects are achieved by pre-emptive supplementation in at-risk groups.
Collapse
Affiliation(s)
- Philip John Ainsley Dean
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Gozdem Arikan
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Bertram Opitz
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Annette Sterr
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
282
|
Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies. Neurosci Bull 2017; 33:219-237. [PMID: 28283808 PMCID: PMC5360855 DOI: 10.1007/s12264-017-0118-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022] Open
Abstract
Searching for effective biomarkers is one of the most challenging tasks in the research field of Autism Spectrum Disorder (ASD). Magnetic resonance imaging (MRI) provides a non-invasive and powerful tool for investigating changes in the structure, function, maturation, connectivity, and metabolism of the brain of children with ASD. Here, we review the more recent MRI studies in young children with ASD, aiming to provide candidate biomarkers for the diagnosis of childhood ASD. The review covers structural imaging methods, diffusion tensor imaging, resting-state functional MRI, and magnetic resonance spectroscopy. Future advances in neuroimaging techniques, as well as cross-disciplinary studies and large-scale collaborations will be needed for an integrated approach linking neuroimaging, genetics, and phenotypic data to allow the discovery of new, effective biomarkers.
Collapse
|
283
|
Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. Neuroimage 2017; 152:360-370. [PMID: 28284797 PMCID: PMC5440178 DOI: 10.1016/j.neuroimage.2017.03.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
Imbalances in glutamatergic (excitatory) and GABA (inhibitory) signalling within key brain networks are thought to underlie many brain and mental health disorders, and for this reason there is considerable interest in investigating how individual variability in localised concentrations of these molecules relate to brain disorders. Magnetic resonance spectroscopy (MRS) provides a reliable means of measuring, in vivo, concentrations of neurometabolites such as GABA, glutamate and glutamine that can be correlated with brain function and dysfunction. However, an issue of much debate is whether the GABA observed and measured using MRS represents the entire pool of GABA available for measurement (i.e., metabolic, intracellular, and extracellular) or is instead limited to only some portion of it. GABA function can also be investigated indirectly in humans through the use of non-invasive transcranial magnetic stimulation (TMS) techniques that can be used to measure cortical excitability and GABA-mediated physiological inhibition. To investigate this issue further we collected in a single session both types of measurement, i.e., TMS measures of cortical excitability and physiological inhibition and ultra-high-field (7 T) MRS measures of GABA, glutamate and glutamine, from the left sensorimotor cortex of the same group of right-handed individuals. We found that TMS and MRS measures were largely uncorrelated with one another, save for the plateau of the TMS IO curve that was negatively correlated with MRS-Glutamate (Glu) and intra-cortical facilitation (10ms ISI) that was positively associated with MRS-Glutamate concentration. These findings are consistent with the view that the GABA concentrations measured using the MRS largely represent pools of GABA that are linked to tonic rather than phasic inhibition and thus contribute to the inhibitory tone of a brain area rather than GABAergic synaptic transmission.
Collapse
|
284
|
Endres D, Tebartz van Elst L, Meyer SA, Feige B, Nickel K, Bubl A, Riedel A, Ebert D, Lange T, Glauche V, Biscaldi M, Philipsen A, Maier SJ, Perlov E. Glutathione metabolism in the prefrontal brain of adults with high-functioning autism spectrum disorder: an MRS study. Mol Autism 2017; 8:10. [PMID: 28316774 PMCID: PMC5351053 DOI: 10.1186/s13229-017-0122-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by difficulties in social communication, unusually restricted, repetitive behavior and interests, and specific abnormalities in language and perception. The precise etiology of ASD is still unknown and probably heterogeneous. In a subgroup of patients, toxic environmental exposure might lead to an imbalance between oxidative stress and anti-oxidant systems. Previous serum and postmortem studies measuring levels of glutathione (GSH), the main cellular free radical scavenger in the brain, have supported the hypothesis that this compound might play a role in the pathophysiology of autism. Methods Using the method of single-voxel proton magnetic resonance spectroscopy (MRS), we analyzed the GSH signal in the dorsal anterior cingulate cortex (dACC) and the dorsolateral prefrontal cortex (DLPFC) of 24 ASD patients with normal or above average IQs and 18 matched control subjects. We hypothesized that we would find decreased GSH concentrations in both regions. Results We did not find overall group differences in neurometabolites including GSH, neither in the dorsal ACC (Wilks’ lambda test; p = 0.429) nor in the DLPFC (p = 0.288). In the dACC, we found a trend for decreased GSH signals in ASD patients (p = 0.076). Conclusions We were unable to confirm our working hypothesis regarding decreased GSH concentrations in the ASD group. Further studies combining MRS, serum, and cerebrospinal fluid measurements of GSH metabolism including other regions of interest or even whole brain spectroscopy are needed.
Collapse
Affiliation(s)
- Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Simon A Meyer
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Bernd Feige
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Anna Bubl
- Department for Psychiatry and Psychotherapy, Saarland University Medical Center, Kirrberger Str. 100, 66421 Homburg, Saar Germany
| | - Andreas Riedel
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Dieter Ebert
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 60a, 79106 Freiburg, Germany
| | - Volkmar Glauche
- Department of Neurology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | - Monica Biscaldi
- Department for Child and Adolescent Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 8, 79104 Freiburg, Germany
| | - Alexandra Philipsen
- School of Medicine and Health Sciences, Psychiatry and Psychotherapy - University Hospital, Karl-Jaspers-Klinik, Medical Campus University of Oldenburg, Hermann-Ehlers-Str. 7, 26160 Bad Zwischenahn, Germany
| | - Simon J Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany.,Clinic for Psychiatry Luzern, Schafmattstrasse 1, 4915 St. Urban, Switzerland
| |
Collapse
|
285
|
Carlson HL, MacMaster FP, Harris AD, Kirton A. Spectroscopic biomarkers of motor cortex developmental plasticity in hemiparetic children after perinatal stroke. Hum Brain Mapp 2017; 38:1574-1587. [PMID: 27859933 PMCID: PMC6866903 DOI: 10.1002/hbm.23472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 01/26/2023] Open
Abstract
Perinatal stroke causes hemiparetic cerebral palsy and lifelong motor disability. Bilateral motor cortices are key hubs within the motor network and their neurophysiology determines clinical function. Establishing biomarkers of motor cortex function is imperative for developing and evaluating restorative interventional strategies. Proton magnetic resonance spectroscopy (MRS) quantifies metabolite concentrations indicative of underlying neuronal health and metabolism in vivo. We used functional magnetic resonance imaging (MRI)-guided MRS to investigate motor cortex metabolism in children with perinatal stroke. Children aged 6-18 years with MRI-confirmed perinatal stroke and hemiparetic cerebral palsy were recruited from a population-based cohort. Metabolite concentrations were assessed using a PRESS sequence (3T, TE = 30 ms, voxel = 4 cc). Voxel location was guided by functional MRI activations during finger tapping tasks. Spectra were analysed using LCModel. Metabolites were quantified, cerebral spinal fluid corrected and compared between groups (ANCOVA) controlling for age. Associations with clinical motor performance (Assisting Hand, Melbourne, Box-and-Blocks) were assessed. Fifty-two participants were studied (19 arterial, 14 venous, 19 control). Stroke participants demonstrated differences between lesioned and nonlesioned motor cortex N-acetyl-aspartate [NAA mean concentration = 10.8 ± 1.9 vs. 12.0 ± 1.2, P < 0.01], creatine [Cre 8.0 ± 0.9 vs. 7.4 ± 0.9, P < 0.05] and myo-Inositol [Ins 6.5 ± 0.84 vs. 5.8 ± 1.1, P < 0.01]. Lesioned motor cortex NAA and creatine were strongly correlated with motor performance in children with arterial but not venous strokes. Interrogation of motor cortex by fMRI-guided MRS is feasible in children with perinatal stroke. Metabolite differences between hemispheres, stroke types and correlations with motor performance support functional relevance. MRS may be valuable in understanding the neurophysiology of developmental neuroplasticity in cerebral palsy. Hum Brain Mapp 38:1574-1587, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helen L. Carlson
- Calgary Pediatric Stroke ProgramAlberta Children's HospitalCalgaryABCanada
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- NeurosciencesAlberta Children's HospitalCalgaryABCanada
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
| | - Frank P. MacMaster
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
- Department of PsychiatryUniversity of CalgaryABCanada
- The Mathison Centre for Mental Health Research and Education, University of CalgaryCalgaryABCanada
- Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's HospitalCalgaryABCanada
- Strategic Clinical Network for Addictions and Mental HealthAlberta Health ServicesCalgaryABCanada
| | - Ashley D. Harris
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
- Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's HospitalCalgaryABCanada
- Department of RadiologyUniversity of CalgaryCalgaryABCanada
| | - Adam Kirton
- Calgary Pediatric Stroke ProgramAlberta Children's HospitalCalgaryABCanada
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- NeurosciencesAlberta Children's HospitalCalgaryABCanada
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
| |
Collapse
|
286
|
Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder. Transl Psychiatry 2017; 7:e1071. [PMID: 28350397 PMCID: PMC5404613 DOI: 10.1038/tp.2017.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/14/2016] [Accepted: 01/15/2017] [Indexed: 12/14/2022] Open
Abstract
We previously reported that higher body mass index (BMI) was associated with greater hippocampal glutamate+glutamine in people with bipolar disorder (BD), but not in non-BD healthy comparator subjects (HSs). In the current report, we extend these findings by examining the impact of BD diagnosis and BMI on hippocampal volumes and the concentrations of several additional neurochemicals in 57 early-stage BD patients and 31 HSs. Using 3-T magnetic resonance imaging and magnetic resonance spectroscopy, we measured bilateral hippocampal volumes and the hippocampal concentrations of four neurochemicals relevant to BD: N-acetylaspartate+N-acteylaspartylglutamate (tNAA), creatine+phosphocreatine (Cre), myoinositol (Ins) and glycerophosphocholine+phosphatidylcholine (Cho). We used multivariate factorial analysis of covariance to investigate the impact of diagnosis (patient vs HS) and BMI category (normal weight vs overweight/obese) on these variables. We found a main effect of diagnosis on hippocampal volumes, with patients having smaller hippocampi than HSs. There was no association between BMI and hippocampal volumes. We found diagnosis and BMI effects on hippocampal neurochemistry, with patients having lower Cre, Ins and Cho, and overweight/obese subjects having higher levels of these chemicals. In patient-only models that controlled for clinical and treatment variables, we detected an additional association between higher BMI and lower tNAA that was absent in HSs. To our knowledge, this was the first study to investigate the relative contributions of BD diagnosis and BMI to hippocampal volumes, and only the second to investigate their contributions to hippocampal chemistry. It provides further evidence that diagnosis and elevated BMI both impact limbic brain areas relevant to BD.
Collapse
|
287
|
Mekle R, Kühn S, Pfeiffer H, Aydin S, Schubert F, Ittermann B. Detection of metabolite changes in response to a varying visual stimulation paradigm using short-TE 1 H MRS at 7 T. NMR IN BIOMEDICINE 2017; 30:e3672. [PMID: 28008663 DOI: 10.1002/nbm.3672] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/30/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
The two-fold benefit of 1 H magnetic resonance spectroscopy (MRS) at high B0 fields - enhanced sensitivity and increased spectral dispersion - has been used previously to study dynamic changes in metabolite concentrations in the human brain in response to visual stimulation. In these studies, a strong visual on/off stimulus was combined with MRS data acquisition in a voxel location in the occipital cortex determined by an initial functional magnetic resonance imaging experiment. However, 1) to exclude the possibility of systemic effects (heartbeat, blood flow, etc.), which tend to be different for on/off conditions, a modified stimulation condition not affecting the target voxel needs to be employed, and 2) to assess important neurotransmitters of low concentration, in particular γ-aminobutyric acid (GABA), it may be advantageous to analyze steady-state, rather than dynamic, conditions. Thus, the aim of this study was to use short-TE 1 H MRS methodology at 7 T to detect differences in steady-state metabolite levels in response to a varying stimulation paradigm in the human visual cortex. The two different stimulation conditions were termed voxel and control activation. Localized MR spectra were acquired using the SPECIAL (spin-echo full-intensity acquired localized) sequence. Data were analyzed using LCModel. Fifteen individual metabolites were reliably quantified. On comparison of steady-state concentrations for voxel versus control activation, a decrease in GABA of 0.05 mmol/L (5%) and an increase in lactate of 0.04 mmol/L (7%) were found to be the only significant effects. The observed reduction in GABA can be interpreted as reduced neuronal inhibition during voxel activation, whereas the increase in lactate hints at an intensification of anaerobic glycolysis. Differences from previous studies, notably the absence of any changes in glutamate, are attributed to the modified experimental conditions. This study demonstrates that the use of advanced 1 H MRS methodology at 7 T allows the detection of subtle changes in metabolite concentrations involved in neuronal activation and inhibition.
Collapse
Affiliation(s)
- Ralf Mekle
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, and Berlin, Germany
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- University Clinic Hamburg-Eppendorf, Clinic and Polyclinic for Psychiatry and Psychotherapy, Hamburg, Germany
| | - Harald Pfeiffer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, and Berlin, Germany
| | - Semiha Aydin
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, and Berlin, Germany
| | - Florian Schubert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, and Berlin, Germany
| |
Collapse
|
288
|
Świątkiewicz M, Fiedorowicz M, Orzeł J, Wełniak-Kamińska M, Bogorodzki P, Langfort J, Grieb P. Increases in Brain 1H-MR Glutamine and Glutamate Signals Following Acute Exhaustive Endurance Exercise in the Rat. Front Physiol 2017; 8:19. [PMID: 28197103 PMCID: PMC5281557 DOI: 10.3389/fphys.2017.00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022] Open
Abstract
Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle may be a result of functional activation caused by forced endurance exercise; the increased rate of ammonia detoxification may also contribute. Increases in glutamate in the cerebellum and hippocampus are suggestive of an anaplerotic increase in glutamate synthesis due to exercise-related stimulation of brain glucose uptake. The disequilibrium in the glutamate-glutamine cycle in brain areas activated during exercise may be a significant contributor to the central fatigue phenomenon.
Collapse
Affiliation(s)
- Maciej Świątkiewicz
- Department of Experimental Pharmacology and Laboratory of Nuclear Magnetic Resonance Imaging, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology and Laboratory of Nuclear Magnetic Resonance Imaging, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Jarosław Orzeł
- Department of Experimental Pharmacology and Laboratory of Nuclear Magnetic Resonance Imaging, Mossakowski Medical Research Centre, Polish Academy of SciencesWarsaw, Poland; Faculty of Electronics, Warsaw University of TechnologyWarsaw, Poland
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology and Laboratory of Nuclear Magnetic Resonance Imaging, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Piotr Bogorodzki
- Department of Experimental Pharmacology and Laboratory of Nuclear Magnetic Resonance Imaging, Mossakowski Medical Research Centre, Polish Academy of SciencesWarsaw, Poland; Faculty of Electronics, Warsaw University of TechnologyWarsaw, Poland
| | - Józef Langfort
- Department of Experimental Pharmacology and Laboratory of Nuclear Magnetic Resonance Imaging, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Paweł Grieb
- Department of Experimental Pharmacology and Laboratory of Nuclear Magnetic Resonance Imaging, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
289
|
Datta G, Violante IR, Scott G, Zimmerman K, Santos-Ribeiro A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, Nicholas R, Matthews PM. Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis. Mult Scler 2016; 23:1469-1478. [PMID: 27903933 DOI: 10.1177/1352458516681504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterised by a diffuse inflammatory response mediated by microglia and astrocytes. Brain translocator protein (TSPO) positron-emission tomography (PET) and [myo-inositol] magnetic resonance spectroscopy (MRS) were used together to assess this. OBJECTIVE To explore the in vivo relationships between MRS and PET [11C]PBR28 in MS over a range of brain inflammatory burden. METHODS A total of 23 patients were studied. TSPO PET imaging with [11C]PBR28, single voxel MRS and conventional magnetic resonance imaging (MRI) sequences were undertaken. Disability was assessed by Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC). RESULTS [11C]PBR28 uptake and [ myo-inositol] were not associated. When the whole cohort was stratified by higher [11C]PBR28 inflammatory burden, [ myo-inositol] was positively correlated to [11C]PBR28 uptake (Spearman's ρ = 0.685, p = 0.014). Moderate correlations were found between [11C]PBR28 uptake and both MRS creatine normalised N-acetyl aspartate (NAA) concentration and grey matter volume. MSFC was correlated with grey matter volume (ρ = 0.535, p = 0.009). There were no associations between other imaging or clinical measures. CONCLUSION MRS [ myo-inositol] and PET [11C]PBR28 measure independent inflammatory processes which may be more commonly found together with more severe inflammatory disease. Microglial activation measured by [11C]PBR28 uptake was associated with loss of neuronal integrity and grey matter atrophy.
Collapse
Affiliation(s)
- Gourab Datta
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Ines R Violante
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Gregory Scott
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Karl Zimmerman
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Andre Santos-Ribeiro
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Eugenii A Rabiner
- Imanova Ltd, Imperial College London, London, UK/Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Roger N Gunn
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK/manova Ltd, Imperial College London, London, UK
| | - Omar Malik
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Institute of Neurology, University College London, London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
290
|
Rackayova V, Braissant O, McLin VA, Berset C, Lanz B, Cudalbu C. 1H and 31P magnetic resonance spectroscopy in a rat model of chronic hepatic encephalopathy: in vivo longitudinal measurements of brain energy metabolism. Metab Brain Dis 2016; 31:1303-1314. [PMID: 26253240 DOI: 10.1007/s11011-015-9715-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022]
Abstract
Chronic liver disease (CLD) leads to a spectrum of neuropsychiatric disorders named hepatic encephalopathy (HE). Even though brain energy metabolism is believed to be altered in chronic HE, few studies have explored energy metabolism in CLD-induced HE, and their findings were inconsistent. The aim of this study was to characterize for the first time in vivo and longitudinally brain metabolic changes in a rat model of CLD-induced HE with a focus on energy metabolism, using the methodological advantages of high field proton and phosphorus Magnetic Resonance Spectroscopy (1H- and 31P-MRS). Wistar rats were bile duct ligated (BDL) and studied before BDL and at post-operative weeks 4 and 8. Glutamine increased linearly over time (+146 %) together with plasma ammonium (+159 %). As a compensatory effect, other brain osmolytes decreased: myo-inositol (-36 %), followed by total choline and creatine. A decrease in the neurotransmitters glutamate (-17 %) and aspartate (-28 %) was measured only at week 8, while no significant changes were observed for lactate and phosphocreatine. Among the other energy metabolites measured by 31P-MRS, we observed a non-significant decrease in ATP together with a significant decrease in ADP (-28 %), but only at week 8 after ligation. Finally, brain glutamine showed the strongest correlations with changes in other brain metabolites, indicating its importance in type C HE. In conclusion, mild alterations in some metabolites involved in energy metabolism were observed but only at the end stage of the disease when edema and neurological changes are already present. Therefore, our data indicate that impaired energy metabolism is not one of the major causes of early HE symptoms in the established model of type C HE.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olivier Braissant
- Service of Biomedicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Valérie A McLin
- Swiss Center for Liver Disease in Children, Department of Pediatrics, University Hospitals Geneva, Geneva, Switzerland
| | - Corina Berset
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
291
|
Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J Neurosci Res 2016; 95:1182-1193. [DOI: 10.1002/jnr.23967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
|
292
|
Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem 2016; 529:144-157. [PMID: 27840053 DOI: 10.1016/j.ab.2016.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Creatine (Cr) is an important organic compound acting as intracellular high-energy phosphate shuttle and in energy storage. While located in most cells where it plays its main roles in energy metabolism and cytoprotection, Cr is highly concentrated in muscle and brain tissues, in which Cr also appears to act in osmoregulation and neurotransmission. This review discusses the basis of Cr metabolism, synthesis and transport within brain cells. The importance of Cr in brain function and the consequences of its impaired metabolism in primary and secondary Cr deficiencies are also discussed. Cr and phosphocreatine (PCr) in living systems can be well characterized using in vivo magnetic resonance spectroscopy (MRS). This review describes how 1H MRS allows the measurement of Cr and PCr, and how 31P MRS makes it possible to estimate the creatine kinase (CK) rate constant and so detect dynamic changes in the Cr/PCr/CK system. Absolute quantification by MRS using creatine as internal reference is also debated. The use of in vivo MRS to study brain Cr in a non-invasive way is presented, as well as its use in clinical and preclinical studies, including diagnosis and treatment follow-up in patients.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
293
|
Dokumacı DŞ, Doğan F, Yıldırım A, Boyacı FN, Bozdoğan E, Koca B. Brain metabolite alterations in Eisenmenger syndrome: Evaluation with MR proton spectroscopy. Eur J Radiol 2016; 86:70-75. [PMID: 28027769 DOI: 10.1016/j.ejrad.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Eisenmenger syndrome (ES) is a life-threatening disease characterized by pulmonary hypertension and cyanosis in patients with congenital heart diseases. The aim of this study was to determine the brain metabolite changes in Eisenmenger syndrome compared with a control group using MR proton spectroscopy. METHODS AND MATERIALS The study included 10 children (3 male, 7 female) with congenital heart diseases and a diagnosis of Eisenmenger syndrome. The control group consisted of 10 healthy volunteer children. All were examined with a 1.5T MRI scanner and single voxel spectroscopy was performed to obtain spectra from three different regions; left frontal subcortical white matter, left lentiform nucleus and left thalamus. Peak integral values obtained from the spectra were used as quantitative data. RESULTS The ages of the children with ES were between 5 and 16 years, and between 5 and 15 years in the control group. Periventricular white matter hyperintensities were observed in 3 patients. On MR spectroscopy study, significantly lower levels of Choline metabolite (Cho) were detected in the frontal subcortical region and thalamus regions of the patients compared with the control group. There was no statistically significant difference between the levels of other metabolites (NAA, Cr, mI and Glx). In the lentiform nucleus, although the average value of Cho in ES patients was lower than that of the control group, it was not statistically significant. CONCLUSION Cho metabolite was determined to have an important role in brain metabolism in Eisenmenger syndrome patients. Oral Cho treatment may help to extend survival.
Collapse
Affiliation(s)
- Dilek Şen Dokumacı
- Harran University School of Medicine, Department of Radiology, Sanliurfa, Turkey.
| | - Ferit Doğan
- Children Hospital, Department of Radiology, Sanliurfa, Turkey
| | - Ali Yıldırım
- Children Hospital, Department of Pediatric Cardiology, Sanliurfa, Turkey
| | | | - Erol Bozdoğan
- Harran University School of Medicine, Department of Radiology, Sanliurfa, Turkey
| | - Bülent Koca
- Harran University School of Medicine, Department of Pediatric Cardiology, Sanliurfa, Turkey
| |
Collapse
|
294
|
van Veenendaal TM, IJff DM, Aldenkamp AP, Lazeron RHC, Puts NAJ, Edden RAE, Hofman PAM, de Louw AJA, Backes WH, Jansen JFA. Glutamate concentrations vary with antiepileptic drug use and mental slowing. Epilepsy Behav 2016; 64:200-205. [PMID: 27744245 DOI: 10.1016/j.yebeh.2016.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Although antiepileptic drugs (AEDs) are effective in suppressing epileptic seizures, they also induce (cognitive) side effects, with mental slowing as a general effect. This study aimed to assess whether concentrations of MR detectable neurotransmitters, glutamate and GABA, are associated with mental slowing in patients with epilepsy taking AEDs. METHODS Cross-sectional data were collected from patients with localization-related epilepsy using a variety of AEDs from three risk categories, i.e., AEDs with low, intermediate, and high risks of developing cognitive problems. Patients underwent 3T MR spectroscopy, including a PRESS (n=55) and MEGA-PRESS (n=43) sequence, to estimate occipital glutamate and GABA concentrations, respectively. The association was calculated between neurotransmitter concentrations and central information processing speed, which was measured using the Computerized Visual Searching Task (CVST) and compared between the different risk categories. RESULTS Combining all groups, patients with lower processing speeds had lower glutamate concentrations. Patients in the high-risk category had a lower glutamate concentration and lower processing speed compared with patients taking low-risk AEDs. Patients taking intermediate-risk AEDs also had a lower glutamate concentration compared with patients taking low-risk AEDs, but processing speed did not differ significantly between those groups. No associations were found between the GABA concentration and risk category or processing speed. CONCLUSIONS For the first time, a relation is shown between glutamate concentration and both mental slowing and AED use. It is suggested that the reduced excitatory action, reflected by lowered glutamate concentrations, may have contributed to the slowing of information processing in patients using AEDs with higher risks of cognitive side effects.
Collapse
Affiliation(s)
- Tamar M van Veenendaal
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Dominique M IJff
- School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands.
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; Department of Neurology, Gent University Hospital, De Pintelaan 185, 9000 Gent, Belgium; Faculty of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Richard H C Lazeron
- Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands.
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 N Caroline St., Baltimore 21287, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore 21205, MD, USA.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 N Caroline St., Baltimore 21287, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore 21205, MD, USA.
| | - Paul A M Hofman
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands.
| | - Anton J A de Louw
- Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; Faculty of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Walter H Backes
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Jacobus F A Jansen
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
295
|
Jacob RM, Mudd AT, Alexander LS, Lai CS, Dilger RN. Comparison of Brain Development in Sow-Reared and Artificially Reared Piglets. Front Pediatr 2016; 4:95. [PMID: 27672632 PMCID: PMC5018487 DOI: 10.3389/fped.2016.00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Provision of adequate nutrients is critical for proper growth and development of the neonate, yet the impact of breastfeeding versus formula feeding on neural maturation has to be fully determined. Using the piglet as a model for the human infant, our objective was to compare neurodevelopment of piglets that were either sow-reared (SR) or artificially reared (AR) in an artificial setting. METHODS Over a 25-day feeding study, piglets (1.5 ± 0.2 kg initial bodyweight) were either SR (n = 10) with ad libitum intake or AR (n = 29) receiving an infant formula modified to mimic the nutritional profile and intake pattern of sow's milk. At study conclusion, piglets were subjected to a standardized set of magnetic resonance imaging (MRI) procedures to quantify structure and composition of the brain. RESULTS Diffusion tensor imaging, an MRI sequence that characterizes brain microstructure, revealed that SR piglets had greater (P < 0.05) average white matter (WM) (generated from a piglet specific brain atlas) fractional anisotropy (FA), and lower (P < 0.05) mean and radial and axial diffusivity values compared with AR piglets, suggesting differences in WM organization. Voxel-based morphometric analysis, a measure of white and gray matter (GM) volumes concentrations, revealed differences (P < 0.05) in bilateral development of GM clusters in the cortical brain regions of the AR piglets compared with SR piglets. Region of interest analysis revealed larger (P < 0.05) whole brain volumes in SR animals compared with AR, and certain subcortical regions to be larger (P < 0.05) as a percentage of whole brain volume in AR piglets compared with SR animals. Quantification of brain metabolites using magnetic resonance spectroscopy revealed SR piglets had higher (P < 0.05) concentrations of myo-inositol, glycerophosphocholine + phosphocholine, and creatine + phosphocreatine compared with AR piglets. However, glutamate + glutamine levels were higher (P < 0.05) in AR piglets when compared with SR animals. CONCLUSION Overall, increases in brain metabolite concentrations, coupled with greater FA values in WM tracts and volume differences in GM of specific brain regions, suggest differences in myelin development and cell proliferation in SR versus AR piglets.
Collapse
Affiliation(s)
- Reeba M. Jacob
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Austin T. Mudd
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Lindsey S. Alexander
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Chron-Si Lai
- Abbott Nutrition, Abbott Laboratories, Columbus, OH, USA
| | - Ryan N. Dilger
- Piglet Nutrition and Cognition Laboratory, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| |
Collapse
|
296
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
297
|
Scavuzzo CJ, Moulton CJ, Larsen RJ. The use of magnetic resonance spectroscopy for assessing the effect of diet on cognition. Nutr Neurosci 2016; 21:1-15. [DOI: 10.1080/1028415x.2016.1218191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claire J. Scavuzzo
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA
- Department of Psychology, University of Alberta, Edmonton, Canada
| | | | - Ryan J. Larsen
- Biomedical Imaging Center, Beckman Institute, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
298
|
Saleh MG, Oeltzschner G, Chan KL, Puts NAJ, Mikkelsen M, Schär M, Harris AD, Edden RAE. Simultaneous edited MRS of GABA and glutathione. Neuroimage 2016; 142:576-582. [PMID: 27534734 DOI: 10.1016/j.neuroimage.2016.07.056] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Edited MRS allows the detection of low-concentration metabolites, whose signals are not resolved in the MR spectrum. Tailored acquisitions can be designed to detect, for example, the inhibitory neurotransmitter γ-aminobutyric acid (GABA), or the reduction-oxidation (redox) compound glutathione (GSH), and single-voxel edited experiments are generally acquired at a rate of one metabolite-per-experiment. We demonstrate that simultaneous detection of the overlapping signals of GABA and GSH is possible using Hadamard Encoding and Reconstruction of Mega-Edited Spectroscopy (HERMES). HERMES applies orthogonal editing encoding (following a Hadamard scheme), such that GSH- and GABA-edited difference spectra can be reconstructed from a single multiplexed experiment. At a TE of 80ms, 20-ms editing pulses are applied at 4.56ppm (on GSH),1.9ppm (on GABA), both offsets (using a dual-lobe cosine-modulated pulse) or neither. Hadamard combinations of the four sub-experiments yield GABA and GSH difference spectra. It is shown that HERMES gives excellent separation of the edited GABA and GSH signals in phantoms, and resulting edited lineshapes agree well with separate Mescher-Garwood Point-resolved Spectroscopy (MEGA-PRESS) acquisitions. In vivo, the quality and signal-to-noise ratio (SNR) of HERMES spectra are similar to those of sequentially acquired MEGA-PRESS spectra, with the benefit of saving half the acquisition time.
Collapse
Affiliation(s)
- Muhammad G Saleh
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kimberly L Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
299
|
Abstract
Cognitive impairment is very common in chronic kidney disease (CKD) and is strongly associated with increased mortality. This review article will discuss the pathophysiology of cognitive impairment in CKD, as well as the effect of dialysis and transplantation on cognitive function. In CKD, uremic toxins, hyperparathyroidism and Klotho deficiency lead to chronic inflammation, endothelial dysfunction and vascular calcifications. This results in an increased burden of cerebrovascular disease in CKD patients, who consistently have more white matter hyperintensities, microbleeds, microinfarctions and cerebral atrophy on magnetic resonance imaging scans. Hemodialysis, although beneficial in terms of uremic toxin clearance, also contributes to cognitive decline by causing rapid fluid and osmotic shifts. Decreasing the dialysate temperature and increasing total dialysis time limits these shifts and helps maintain cognitive function in hemodialysis patients. For many patients, kidney transplantation is the preferred treatment modality, because it reverses the underlying mechanisms causing cognitive impairment in CKD. These positive effects have to be balanced against the possible neurotoxicity of infections and immunosuppressive medications, especially glucocorticosteroids and calcineurin inhibitors. A limited number of studies have addressed the overall effect of transplantation on cognitive function. These have mostly found an improvement after transplantation, but have a limited applicability to daily practice because they have only included relatively young patients.
Collapse
|
300
|
GABA levels in the ventromedial prefrontal cortex during the viewing of appetitive and disgusting food images. Neuroscience 2016; 333:114-22. [PMID: 27436536 DOI: 10.1016/j.neuroscience.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Characterizing how the brain appraises the psychological dimensions of reward is one of the central topics of neuroscience. It has become clear that dopamine neurons are implicated in the transmission of both rewarding information and aversive and alerting events through two different neuronal populations involved in encoding the motivational value and the motivational salience of stimuli, respectively. Nonetheless, there is less agreement on the role of the ventromedial prefrontal cortex (vmPFC) and the related neurotransmitter release during the processing of biologically relevant stimuli. To address this issue, we employed magnetic resonance spectroscopy (MRS), a non-invasive methodology that allows detection of some metabolites in the human brain in vivo, in order to assess the role of the vmPFC in encoding stimulus value rather than stimulus salience. Specifically, we measured gamma-aminobutyric acid (GABA) and, with control purposes, Glx levels in healthy subjects during the observation of appetitive and disgusting food images. We observed a decrease of GABA and no changes in Glx concentration in the vmPFC in both conditions. Furthermore, a comparatively smaller GABA reduction during the observation of appetitive food images than during the observation of disgusting food images was positively correlated with the scores obtained to the body image concerns sub-scale of Body Uneasiness Test (BUT). These results are consistent with the idea that the vmPFC plays a crucial role in processing both rewarding and aversive stimuli, possibly by encoding stimulus salience through glutamatergic and/or noradrenergic projections to deeper mesencephalic and limbic areas.
Collapse
|