251
|
Hall VG, Nguyen THO, Allen LF, Rowntree LC, Kedzierski L, Chua BY, Lim C, Saunders NR, Klimevski E, Tennakoon GS, Seymour JF, Wadhwa V, Cain N, Vo KL, Nicholson S, Karapanagiotidis T, Williamson DA, Thursky KA, Spelman T, Yong MK, Slavin MA, Kedzierska K, Teh BW. Evolution of Humoral and Cellular Immunity Post-Breakthrough Coronavirus Disease 2019 in Vaccinated Patients With Hematologic Malignancy Receiving Tixagevimab-Cilgavimab. Open Forum Infect Dis 2023; 10:ofad550. [PMID: 38023562 PMCID: PMC10644824 DOI: 10.1093/ofid/ofad550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background In-depth immunogenicity studies of tixagevimab-cilgavimab (T-C) are lacking, including following breakthrough coronavirus disease 2019 (COVID-19) in vaccinated patients with hematologic malignancy (HM) receiving T-C as pre-exposure prophylaxis. Methods We performed a prospective, observational cohort study and detailed immunological analyses of 93 patients with HM who received T-C from May 2022, with and without breakthrough infection, during a follow-up period of 6 months and dominant Omicron BA.5 variant. Results In 93 patients who received T-C, there was an increase in Omicron BA.4/5 receptor-binding domain (RBD) immunoglobulin G (IgG) antibody titers that persisted for 6 months and was equivalent to 3-dose-vaccinated uninfected healthy controls at 1 month postinjection. Omicron BA.4/5 neutralizing antibody was lower in patients receiving B-cell-depleting therapy within 12 months despite receipt of T-C. COVID-19 vaccination during T-C treatment did not incrementally improve RBD or neutralizing antibody levels. In 16 patients with predominantly mild breakthrough infection, no change in serum neutralization of Omicron BA.4/5 postinfection was detected. Activation-induced marker assay revealed an increase in CD4+ (but not CD8+) T cells post infection, comparable to previously infected healthy controls. Conclusions Our study provides proof-of-principle for a pre-exposure prophylaxis strategy and highlights the importance of humoral and cellular immunity post-breakthrough COVID-19 in vaccinated patients with HM.
Collapse
Affiliation(s)
- Victoria G Hall
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chhay Lim
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Natalie R Saunders
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Emily Klimevski
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Gayani S Tennakoon
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - John F Seymour
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Vikas Wadhwa
- Department of Ambulatory Services, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Natalie Cain
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kim L Vo
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Karin A Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Timothy Spelman
- Department of Biostatistics and Epidemiology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Centre for Population Health, Burnet Institute, Melbourne, Australia
| | - Michelle K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
252
|
Neto TAP, Sidney J, Grifoni A, Sette A. Correlative CD4 and CD8 T-cell immunodominance in humans and mice: Implications for preclinical testing. Cell Mol Immunol 2023; 20:1328-1338. [PMID: 37726420 PMCID: PMC10616275 DOI: 10.1038/s41423-023-01083-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Antigen-specific T-cell recognition is restricted by Major Histocompatibility Complex (MHC) molecules, and differences between CD4 and CD8 immunogenicity in humans and animal species used in preclinical vaccine testing are yet to be fully understood. In this study, we addressed this matter by analyzing experimentally identified epitopes based on published data curated in the Immune Epitopes DataBase (IEDB) database. We first analyzed SARS-CoV-2 spike (S) and nucleoprotein (N), which are two common targets of the immune response and well studied in both human and mouse systems. We observed a weak but statistically significant correlation between human and H-2b mouse T-cell responses (CD8 S specific (r = 0.206, p = 1.37 × 10-13); CD4 S specific (r = 0.118, p = 2.63 × 10-5) and N specific (r = 0.179, p = 2.55 × 10-4)). Due to intrinsic differences in MHC molecules across species, we also investigated the association between the immunodominance of common Human Leukocyte Antigen (HLA) alleles for which HLA transgenic mice are available, namely, A*02:01, B*07:02, DRB1*01:01, and DRB1*04:01, and found higher significant correlations for both CD8 and CD4 (maximum r = 0.702, p = 1.36 × 10-31 and r = 0.594, p = 3.04-122, respectively). Our results further indicated that some regions are commonly immunogenic between humans and mice (either H-2b or HLA transgenic) but that others are human specific. Finally, we noted a significant correlation between CD8 and CD4 S- (r = 0.258, p = 7.33 × 1021) and N-specific (r = 0.369, p = 2.43 × 1014) responses, suggesting that discrete protein subregions can be simultaneously recognized by T cells. These findings were confirmed in other viral systems, providing general guidance for the use of murine models to test T-cell immunogenicity of viral antigens destined for human use.
Collapse
Affiliation(s)
- Tertuliano Alves Pereira Neto
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
253
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
254
|
Neale I, Ali M, Kronsteiner B, Longet S, Abraham P, Deeks AS, Brown A, Moore SC, Stafford L, Dobson SL, Plowright M, Newman TAH, Wu MY, Crick COVID Immunity Pipeline, Carr EJ, Beale R, Otter AD, Hopkins S, Hall V, Tomic A, Payne RP, Barnes E, Richter A, Duncan CJA, Turtle L, de Silva TI, Carroll M, Lambe T, Klenerman P, Dunachie S, On behalf of the PITCH Consortium. CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study. mBio 2023; 14:e0121223. [PMID: 37655880 PMCID: PMC10653804 DOI: 10.1128/mbio.01212-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough.
Collapse
Affiliation(s)
- Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alexandra S. Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Shona C. Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lizzie Stafford
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Susan L. Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Thomas A. H. Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Mary Y. Wu
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
| | - Crick COVID Immunity Pipeline
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Rupert Beale
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
| | | | | | | | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Rebecca P. Payne
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher J. A. Duncan
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Miles Carroll
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Teresa Lambe
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - On behalf of the PITCH Consortium
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Covid Surveillance Unit, The Francis Crick Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- UCL Department of Renal Medicine, Royal Free Hospital, London, United Kingdom
- UK Health Security Agency, Porton Down, United Kingdom
- UK Health Security Agency, London, United Kingdom
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
- Translational and Clinical Research Institute Immunity and Inflammation Theme, Newcastle University, Newcastle, United Kingdom
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
255
|
Corsini CA, Filgueiras PS, Almeida NB, Miranda DAD, Gomes SV, Lourenço AJ, Bicalho CM, Assis JVD, Amorim RN, Silva RA, Vilela RV, Lima TM, Abreu DPD, Alvim RG, Castilho LR, Martins-Filho OA, Otta DA, Grenfell RF. Antibody response and soluble mediator profile in the first six months following acute SARS-CoV-2 infection. Sci Rep 2023; 13:18606. [PMID: 37903875 PMCID: PMC10616118 DOI: 10.1038/s41598-023-43263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023] Open
Abstract
The COVID-19 pandemic has caused a severe global health and economic crisis, with significant consequences for human mortality and morbidity. Therefore, there is an urgent need for more studies on the immune response to SARS-CoV-2 infection, both to enhance its effectiveness and prevent its deleterious effects. This study presents the chronology of antibodies during six months after infection in hospitalized patients and the kinetics of serum soluble mediators of the cellular response triggered by SARS-CoV-2. Samples and clinical data from 330 patients hospitalized at the Hospital da Baleia in Belo Horizonte, Brazil, who were suspected of having COVID-19, were collected at the time of hospitalization and during 6 months after infection. The immune response was analyzed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. There was a significant difference in IgM specific antibody titers from the 7th to 60th days after infection between COVID-19 negative and positive patients. Soon after 60 days after infection, antibody levels started to reduce, becoming similar to the antibody levels of the COVID-19 negative patients. IgG specific antibodies started to be detectable after 9 days of infection and antibody levels were comparatively higher in positive patients as soon as after 7 days. Furthermore, IgG levels remained higher in these patients during the complete period of 180 days after infection. The study observed similar antibody profiles between different patient groups. The soluble systemic biomarkers evaluated showed a decrease during the six months after hospitalization, except for CCL11, CXCL8, CCL3, CCL4, CCL5, IL-6, IFN-g, IL-17, IL-5, FGF-basic, PDGF, VEGF, G-CSF, and GM-CSF. The results indicate that IgM antibodies are more prominent in the early stages of infection, while IgG antibodies persist for a longer period. Additionally, the study identified that patients with COVID-19 have elevated levels of biomarkers after symptom onset, which decrease over time.
Collapse
Affiliation(s)
- Camila A Corsini
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Priscilla S Filgueiras
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
- Department of Pathology, College of Medicine, Federal University of Minas Gerais, 6627 Avenida Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Nathalie Bf Almeida
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Daniel Ap de Miranda
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Sarah Vc Gomes
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Adelina Junia Lourenço
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
- Hospital da Baleia, Benjamin Guimarães Foundation, 1464 Juramento Street, Belo Horizonte, Minas Gerais, 30285-408, Brazil
| | - Cecilia Mf Bicalho
- Hospital da Baleia, Benjamin Guimarães Foundation, 1464 Juramento Street, Belo Horizonte, Minas Gerais, 30285-408, Brazil
| | - Jessica V de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
- Department of Pathology, College of Medicine, Federal University of Minas Gerais, 6627 Avenida Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Raquel Nh Amorim
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Raphael A Silva
- Hospital da Baleia, Benjamin Guimarães Foundation, 1464 Juramento Street, Belo Horizonte, Minas Gerais, 30285-408, Brazil
| | - Raquel Vr Vilela
- Hospital da Baleia, Benjamin Guimarães Foundation, 1464 Juramento Street, Belo Horizonte, Minas Gerais, 30285-408, Brazil
| | - Tulio M Lima
- Cell Culture Engineering Laboratory, COPPE, Universidade Federal do Rio de Janeiro, 550 Pedro Calmon Avenue, Rio de Janeiro, Rio de Janeiro, 21941-598, Brazil
| | - Daniel Pb de Abreu
- Cell Culture Engineering Laboratory, COPPE, Universidade Federal do Rio de Janeiro, 550 Pedro Calmon Avenue, Rio de Janeiro, Rio de Janeiro, 21941-598, Brazil
| | - Renata Gf Alvim
- Cell Culture Engineering Laboratory, COPPE, Universidade Federal do Rio de Janeiro, 550 Pedro Calmon Avenue, Rio de Janeiro, Rio de Janeiro, 21941-598, Brazil
| | - Leda R Castilho
- Cell Culture Engineering Laboratory, COPPE, Universidade Federal do Rio de Janeiro, 550 Pedro Calmon Avenue, Rio de Janeiro, Rio de Janeiro, 21941-598, Brazil
| | - Olindo A Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Dayane A Otta
- Grupo Integrado de Pesquisa em Biomarcadores, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Rafaella Fq Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, Oswaldo Cruz Foundation (FIOCRUZ), 1715 Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil.
- Department of Pathology, College of Medicine, Federal University of Minas Gerais, 6627 Avenida Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602-7387, USA.
| |
Collapse
|
256
|
Choy C, Chen J, Li J, Gallagher DT, Lu J, Wu D, Zou A, Hemani H, Baptiste BA, Wichmann E, Yang Q, Ciffelo J, Yin R, McKelvy J, Melvin D, Wallace T, Dunn C, Nguyen C, Chia CW, Fan J, Ruffolo J, Zukley L, Shi G, Amano T, An Y, Meirelles O, Wu WW, Chou CK, Shen RF, Willis RA, Ko MSH, Liu YT, De S, Pierce BG, Ferrucci L, Egan J, Mariuzza R, Weng NP. SARS-CoV-2 infection establishes a stable and age-independent CD8 + T cell response against a dominant nucleocapsid epitope using restricted T cell receptors. Nat Commun 2023; 14:6725. [PMID: 37872153 PMCID: PMC10593757 DOI: 10.1038/s41467-023-42430-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.
Collapse
Affiliation(s)
- Cecily Choy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joseph Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jiangyuan Li
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - D Travis Gallagher
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Jian Lu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Ainslee Zou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Humza Hemani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Emily Wichmann
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Qian Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeffrey Ciffelo
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Julia McKelvy
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Denise Melvin
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Tonya Wallace
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher Dunn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cuong Nguyen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Chee W Chia
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeannie Ruffolo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Linda Zukley
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | | | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Osorio Meirelles
- Laboratory of Epidemiology & Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Richard A Willis
- NIH Tetramer Core Facility at Emory University, Atlanta, GA, USA
| | | | | | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Roy Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
257
|
Wan EYF, Mok AHY, Yan VKC, Chan CIY, Wang B, Lai FTT, Chui CSL, Li X, Wong CKH, Yiu KH, Tse HF, Lau CS, Wong ICK, Chan EWY. Association between BNT162b2 and CoronaVac vaccination and risk of CVD and mortality after COVID-19 infection: A population-based cohort study. Cell Rep Med 2023; 4:101195. [PMID: 37716352 PMCID: PMC10591029 DOI: 10.1016/j.xcrm.2023.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
It is unknown if vaccination affects the risk of post-COVID-19 cardiovascular diseases (CVDs). Therefore, this retrospective cohort study examines the short-term and long-term risks of post-infection CVD among COVID-19 patients with different vaccination status utilizing data from electronic health databases in Hong Kong. Cox proportional hazards regression adjusted with inverse probability of treatment weighting is used to evaluate the risks of incident CVD (coronary heart disease, stroke, heart failure) and all-cause mortality in COVID-19 patients. Compared with unvaccinated patients, vaccinated patients have a lower risk of CVD and all-cause mortality, and the lowest risk is observed in those who completed three doses of vaccine. Similar patterns in the subgroups of different vaccine platforms, age, gender, Charlson comorbidity index, and disease severity are observed. These findings highlight a positive dose-response relationship between overall CVD risk reduction and the number of vaccine doses received.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D(2)4H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anna Hoi Ying Mok
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent Ka Chun Yan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cheyenne I Ying Chan
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Boyuan Wang
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Francisco Tsz Tsun Lai
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D(2)4H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D(2)4H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xue Li
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D(2)4H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D(2)4H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kai Hang Yiu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hung Fat Tse
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Centre for Stem Cell Translational Biology, Hong Kong Special Administrative Region, China; Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D(2)4H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK; Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK; Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory of Data Discovery for Health (D(2)4H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
258
|
Arientová S, Matúšková K, Bartoš O, Holub M, Beran O. Specific immune responses after BNT162b2 mRNA vaccination and COVID-19 infection. Front Immunol 2023; 14:1271353. [PMID: 37920457 PMCID: PMC10619853 DOI: 10.3389/fimmu.2023.1271353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Although vaccines against COVID-19 are effective tools in preventing severe disease, recent studies have shown enhanced protection after vaccine boosters. The aim of our study was to examine the dynamics and duration of both humoral and cellular immune responses following a three-dose regimen of the BNT162b2 mRNA vaccine. In a longitudinal prospective study we enrolled 86 adults who received the BNT162b2 vaccine, 35 unvaccinated individuals with a history of mild COVID-19 and a control group of 30 healthy SARS-CoV-2 seronegative persons. We assessed the SARS-CoV-2-specific T cell responses and IgG production up to 12 months post the third BNT162b2 dose in 24 subjects. The vaccinated group had significantly higher IgG antibody levels after two doses compared to the convalescent group (p<0.001). After the third dose, IgG levels surged beyond those detected after the second dose (p<0.001). Notably, these elevated IgG levels were maintained 12 months post the third dose. After two doses, specific T cell responses were detected in 87.5% of the vaccinated group. Additionally, there was a significant decrease before the third dose. However, post the third dose, specific T cell responses surged and remained stable up to the 12-month period. Our findings indicate that the BNT162b2 vaccine induces potent and enduring humoral and cellular responses, which are notably enhanced by the third dose and remain persistant without a significant decline a year after the booster. Further research is essential to understand the potential need for subsequent boosters.
Collapse
Affiliation(s)
- Simona Arientová
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Kateřina Matúšková
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Prague, Czechia
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Ondřej Beran
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| |
Collapse
|
259
|
Soni MK, Migliori E, Fu J, Assal A, Chan HT, Pan J, Khatiwada P, Ciubotariu R, May MS, Pereira MR, De Giorgi V, Sykes M, Mapara MY, Muranski PJ. The prospect of universal coronavirus immunity: characterization of reciprocal and non-reciprocal T cell responses against SARS-CoV2 and common human coronaviruses. Front Immunol 2023; 14:1212203. [PMID: 37901229 PMCID: PMC10612330 DOI: 10.3389/fimmu.2023.1212203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
T cell immunity plays a central role in clinical outcomes of Coronavirus Infectious Disease 2019 (COVID-19) and T cell-focused vaccination or cellular immunotherapy might provide enhanced protection for some immunocompromised patients. Pre-existing T cell memory recognizing SARS-CoV-2 antigens antedating COVID-19 infection or vaccination, may have developed as an imprint of prior infections with endemic non-SARS human coronaviruses (hCoVs) OC43, HKU1, 229E, NL63, pathogens of "common cold". In turn, SARS-CoV-2-primed T cells may recognize emerging variants or other hCoV viruses and modulate the course of subsequent hCoV infections. Cross-immunity between hCoVs and SARS-CoV-2 has not been well characterized. Here, we systematically investigated T cell responses against the immunodominant SARS-CoV-2 spike, nucleocapsid and membrane proteins and corresponding antigens from α- and β-hCoVs among vaccinated, convalescent, and unexposed subjects. Broad T cell immunity against all tested SARS-CoV-2 antigens emerged in COVID-19 survivors. In convalescent and in vaccinated individuals, SARS-CoV-2 spike-specific T cells reliably recognized most SARS-CoV-2 variants, however cross-reactivity against the omicron variant was reduced by approximately 47%. Responses against spike, nucleocapsid and membrane antigens from endemic hCoVs were significantly more extensive in COVID-19 survivors than in unexposed subjects and displayed cross-reactivity between α- and β-hCoVs. In some, non-SARS hCoV-specific T cells demonstrated a prominent non-reciprocal cross-reactivity with SARS-CoV-2 antigens, whereas a distinct anti-SARS-CoV-2 immunological repertoire emerged post-COVID-19, with relatively limited cross-recognition of non-SARS hCoVs. Based on this cross-reactivity pattern, we established a strategy for in-vitro expansion of universal anti-hCoV T cells for adoptive immunotherapy. Overall, these results have implications for the future design of universal vaccines and cell-based immune therapies against SARS- and non-SARS-CoVs.
Collapse
Affiliation(s)
- Mithil K. Soni
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Edoardo Migliori
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Amer Assal
- Department of Medicine, Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY, United States
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Hei Ton Chan
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Jian Pan
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Prabesh Khatiwada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Rodica Ciubotariu
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Michael S. May
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Marcus R. Pereira
- Department of Medicine, Division of Infectious Disease, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Valeria De Giorgi
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Markus Y. Mapara
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Pawel J. Muranski
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
260
|
Khadri L, Ziraksaz MH, Barekzai AB, Ghauri B. T cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:183-217. [PMID: 38237986 DOI: 10.1016/bs.pmbts.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.
Collapse
Affiliation(s)
- Laiqha Khadri
- Department of Biotechnology, Immune Inspired, Bangalore.
| | | | | | - Baber Ghauri
- Department of Biotechnology, Immune Inspired, Bangalore
| |
Collapse
|
261
|
He R, Zheng X, Zhang J, Liu B, Wang Q, Wu Q, Liu Z, Chang F, Hu Y, Xie T, Liu Y, Chen J, Yang J, Teng S, Lu R, Pan D, Wang Y, Peng L, Huang W, Terzieva V, Liu W, Wang Y, Li YP, Qu X. SARS-CoV-2 spike-specific T FH cells exhibit unique responses in infected and vaccinated individuals. Signal Transduct Target Ther 2023; 8:393. [PMID: 37802996 PMCID: PMC10558553 DOI: 10.1038/s41392-023-01650-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Long-term humoral immunity to SARS-CoV-2 is essential for preventing reinfection. The production of neutralizing antibody (nAb) and B cell differentiation are tightly regulated by T follicular help (TFH) cells. However, the longevity and functional role of TFH cell subsets in COVID-19 convalescents and vaccine recipients remain poorly defined. Here, we show that SARS-CoV-2 infection and inactivated vaccine elicited both spike-specific CXCR3+ TFH cell and CXCR3- TFH cell responses, which showed distinct response patterns. Spike-specific CXCR3+ TFH cells exhibit a dominant and more durable response than CXCR3- TFH cells that positively correlated with antibody responses. A third booster dose preferentially expands the spike-specific CXCR3+ TFH cell subset induced by two doses of inactivated vaccine, contributing to antibody maturation and potency. Functionally, spike-specific CXCR3+ TFH cells have a greater ability to induce spike-specific antibody secreting cells (ASCs) differentiation compared to spike-specific CXCR3- TFH cells. In conclusion, the persistent and functional role of spike-specific CXCR3+ TFH cells following SARS-CoV-2 infection and vaccination may play an important role in antibody maintenance and recall response, thereby conferring long-term protection. The findings from this study will inform the development of SARS-CoV-2 vaccines aiming to induce long-term protective immune memory.
Collapse
Affiliation(s)
- Rongzhang He
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, 421001, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, 421001, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Jian Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Bo Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, 422000, Shaoyang, China
| | - Qian Wu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, 501180, Guangzhou, China
| | - Ziyan Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, 501180, Guangzhou, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Ting Xie
- The Central Hospital of Shaoyang, 422000, Shaoyang, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, 501180, Guangzhou, China
| | - Jun Chen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Jing Yang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Shishan Teng
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Rui Lu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Dong Pan
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - You Wang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
- School of Public Health, University of South China, 421001, Hengyang, China
| | - Liting Peng
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Weijin Huang
- National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Key Laboratory of Biological Product Quality Research and Evaluation of National Medical Products Administration, 102629, Beijing, China
| | - Velislava Terzieva
- Laboratory of OMICs Technologies, Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, 421001, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Youchun Wang
- National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Key Laboratory of Biological Product Quality Research and Evaluation of National Medical Products Administration, 102629, Beijing, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, 501180, Guangzhou, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, 421001, Hengyang, China.
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China.
| |
Collapse
|
262
|
Silva-Moraes V, Souquette A, Sautto GA, Paciello I, Antonelli G, Andreano E, Rappuoli R, Teixeira-Carvalho A, Ross TM. Prior SARS-CoV-2 Infection Enhances Initial mRNA Vaccine Response with a Lower Impact on Long-Term Immunity. Immunohorizons 2023; 7:635-651. [PMID: 37819998 PMCID: PMC10615651 DOI: 10.4049/immunohorizons.2300041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
Spike-encoding mRNA vaccines in early 2021 effectively reduced SARS-CoV-2-associated morbidity and mortality. New booster regimens were introduced due to successive waves of distinct viral variants. Therefore, people now have a diverse immune memory resulting from multiple SARS-CoV-2 Ag exposures, from infection to following vaccination. This level of community-wide immunity can induce immunological protection from SARS-CoV-2; however, questions about the trajectory of the adaptive immune responses and long-term immunity with respect to priming and repeated Ag exposure remain poorly explored. In this study, we examined the trajectory of adaptive immune responses following three doses of monovalent Pfizer BNT162b2 mRNA vaccination in immunologically naive and SARS-CoV-2 preimmune individuals without the occurrence of breakthrough infection. The IgG, B cell, and T cell Spike-specific responses were assessed in human blood samples collected at six time points between a moment before vaccination and up to 6 mo after the third immunization. Overall, the impact of repeated Spike exposures had a lower improvement on T cell frequency and longevity compared with IgG responses. Natural infection shaped the responses following the initial vaccination by significantly increasing neutralizing Abs and specific CD4+ T cell subsets (circulating T follicular helper, effector memory, and Th1-producing cells), but it had a small benefit at long-term immunity. At the end of the three-dose vaccination regimen, both SARS-CoV-2-naive and preimmune individuals had similar immune memory quality and quantity. This study provides insights into the durability of mRNA vaccine-induced immunological memory and the effects of preimmunity on long-term responses.
Collapse
Affiliation(s)
- Vanessa Silva-Moraes
- Center for Vaccines and Immunology, University of Georgia, Athens, GA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL
| | - Aisha Souquette
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL
| | - Ida Paciello
- Monoclonal Antibody Discovery Lab, Foundation Toscana Life Sciences, Siena, Italy
| | - Giada Antonelli
- Monoclonal Antibody Discovery Lab, Foundation Toscana Life Sciences, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery Lab, Foundation Toscana Life Sciences, Siena, Italy
| | | | | | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL
- Department of Infectious Diseases, University of Georgia, Athens, GA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
263
|
Quan Z, Qi A, Ma S, Li Y, Chen H, Yu X, Dong T, Li K, Qiu Y. Altered T-cell receptor β repertoire in adults with SARS CoV-2 inactivated vaccine of BBIBP-CorV. Mol Immunol 2023; 162:54-63. [PMID: 37647774 DOI: 10.1016/j.molimm.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the prolonged and widespread epidemic of coronavirus disease 2019 (COVID-19). The inactivated BBIBP-CorV vaccine has shown safety, efficacy and immunogenicity against COVID-19 in in-vitro studies and clinical trials. However, the characteristics changes of the TCRβ repertoire in patients receiving BBIBP-CorV remain unclear. METHODS TCRβ repertoire difference were analyzed between 54 uninfected subjects who received a third dose of the enhanced BBIBP-CorV vaccine and the 16 healthy donors who did not receive the vaccine and 44 COVID-19 patients with different courses of disease (asymptomatic, symptomatic and convalescent). Furthermore, antibody response, anti-inflammatory and pro-inflammatory cytokines also were examined. RESULTS We found that the third dose inactivated coronavirus vaccine induced widespread changes including the increased TCRβ repertoire diversity, a much shorter CDR3 length and high usage of V-J genes segments. Meanwhile, the vaccine-responding clones were also predicted. The results of the antibody response showed that 90.7 % of the vaccinated individuals were positive for NAb seroconversion and 88.9 % for IgG antibody about 60 days after the third dose. The concentration of IL-2 increased significantly compared to baseline inoculation. CONCLUSION Altered TCRβ repertoire in adults with SARS CoV-2 inactivated vaccine of BBIBP-CorV clarified the specific immunity induced by inactivated vaccines. Our research provides insights into the adaptive immune response induced by the new inactivated SARS-CoV-2 vaccine and strengthens the development of immunotherapy.
Collapse
Affiliation(s)
- Zhihui Quan
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China; Translational Medicine Institute of Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Aihong Qi
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China
| | - Shuwen Ma
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China
| | - Yanling Li
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China; Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Hui Chen
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China; Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Xue Yu
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China; Translational Medicine Institute of Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China
| | - Tingyan Dong
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China; Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China.
| | - Kui Li
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China; Translational Medicine Institute of Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China.
| | - Yurong Qiu
- Guangzhou Huayin Medical Laboratory Center Co., Ltd, Guangzhou, China; Guangzhou Huayin Health Medical Group Co., Ltd, Guangzhou, China.
| |
Collapse
|
264
|
Painter MM, Johnston TS, Lundgreen KA, Santos JJS, Qin JS, Goel RR, Apostolidis SA, Mathew D, Fulmer B, Williams JC, McKeague ML, Pattekar A, Goode A, Nasta S, Baxter AE, Giles JR, Skelly AN, Felley LE, McLaughlin M, Weaver J, Kuthuru O, Dougherty J, Adamski S, Long S, Kee M, Clendenin C, da Silva Antunes R, Grifoni A, Weiskopf D, Sette A, Huang AC, Rader DJ, Hensley SE, Bates P, Greenplate AR, Wherry EJ. Prior vaccination promotes early activation of memory T cells and enhances immune responses during SARS-CoV-2 breakthrough infection. Nat Immunol 2023; 24:1711-1724. [PMID: 37735592 DOI: 10.1038/s41590-023-01613-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mark M Painter
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Timothy S Johnston
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jefferson J S Santos
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Juliana S Qin
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bria Fulmer
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Justine C Williams
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michelle L McKeague
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ahmad Goode
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sean Nasta
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashwin N Skelly
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura E Felley
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maura McLaughlin
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joellen Weaver
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Macy Kee
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Cynthia Clendenin
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn Medicine Biobank, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
265
|
Coelho FF, da Silva MA, Lopes TB, Polatto JM, de Castro NS, Andrade LAF, Lourenço KL, Sato HI, de Carvalho AF, Coelho HP, Bagno FF, Luz D, Viala VL, Cattony PQ, Melo BDS, Moro AM, Quintilio W, Barbosa AP, Bomfim CG, Soares CP, Guzzo CR, Fonseca FG, Durigon EL, Gazzinelli RT, Ribeiro Teixeira SM, Piazza RMF, Fernandes AP. SARS-CoV-2 Rapid Antigen Test Based on a New Anti-Nucleocapsid Protein Monoclonal Antibody: Development and Real-Time Validation. Microorganisms 2023; 11:2422. [PMID: 37894080 PMCID: PMC10608853 DOI: 10.3390/microorganisms11102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/29/2023] Open
Abstract
SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants-Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients' follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.
Collapse
Affiliation(s)
- Fabiana Fioravante Coelho
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Hospital da Polícia Militar de Minas Gerais, Polícia Militar de Minas Gerais, Belo Horizonte 30110-013, Brazil
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Miriam Aparecida da Silva
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Thiciany Blener Lopes
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Juliana Moutinho Polatto
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Natália Salazar de Castro
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Luis Adan Flores Andrade
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Karine Lima Lourenço
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Hugo Itaru Sato
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Alex Fiorini de Carvalho
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Helena Perez Coelho
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Flávia Fonseca Bagno
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Daniela Luz
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Vincent Louis Viala
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Pedro Queiroz Cattony
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Bruna de Sousa Melo
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Ana Maria Moro
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Wagner Quintilio
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Ana Paula Barbosa
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Camila Gasque Bomfim
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (C.G.B.); (C.P.S.); (C.R.G.); (E.L.D.)
| | - Camila Pereira Soares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (C.G.B.); (C.P.S.); (C.R.G.); (E.L.D.)
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (C.G.B.); (C.P.S.); (C.R.G.); (E.L.D.)
| | - Flavio Guimarães Fonseca
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (C.G.B.); (C.P.S.); (C.R.G.); (E.L.D.)
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Santuza M. Ribeiro Teixeira
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Roxane Maria Fontes Piazza
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Ana Paula Fernandes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| |
Collapse
|
266
|
Imbiakha B, Ezzatpour S, Buchholz DW, Sahler J, Ye C, Olarte-Castillo XA, Zou A, Kwas C, O’Hare K, Choi A, Adeleke RA, Khomandiak S, Goodman L, Jager MC, Whittaker GR, Martinez-Sobrido L, August A, Aguilar HC. Age-dependent acquisition of pathogenicity by SARS-CoV-2 Omicron BA.5. SCIENCE ADVANCES 2023; 9:eadj1736. [PMID: 37738347 PMCID: PMC10516498 DOI: 10.1126/sciadv.adj1736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Pathology studies of SARS-CoV-2 Omicron variants of concern (VOC) are challenged by the lack of pathogenic animal models. While Omicron BA.1 and BA.2 replicate in K18-hACE2 transgenic mice, they cause minimal to negligible morbidity and mortality, and less is known about more recent Omicron VOC. Here, we show that in contrast to Omicron BA.1, BA.5-infected mice exhibited high levels of morbidity and mortality, correlating with higher early viral loads. Neither Omicron BA.1 nor BA.5 replicated in brains, unlike most prior VOC. Only Omicron BA.5-infected mice exhibited substantial weight loss, high pathology scores in lungs, and high levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid, and 5- to 8-month-old mice exhibited 100% fatality. These results identify a rodent model for pathogenesis or antiviral countermeasure studies for circulating SARS-CoV-2 Omicron BA.5. Further, differences in morbidity and mortality between Omicron BA.1 and BA.5 provide a model for understanding viral determinants of pathogenicity.
Collapse
Affiliation(s)
- Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ximena A. Olarte-Castillo
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Anna Zou
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Cole Kwas
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Katelyn O’Hare
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Richard Ayomide Adeleke
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Laura Goodman
- James A. Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public & Ecosystem Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public & Ecosystem Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | | | - Avery August
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| |
Collapse
|
267
|
Baerends EA, Hvidt AK, Reekie J, Søgaard OS, Stærke NB, Raben D, Nielsen H, Petersen KT, Juhl MR, Johansen IS, Lindvig SO, Madsen LW, Wiese L, Knudsen LS, Iversen MB, Benfield T, Iversen KK, Andersen SD, Juhl AK, Dietz LL, Andreasen SR, Fischer TK, Erikstrup C, Valentiner-Branth P, Lundgren J, Østergaard L, Tolstrup M. SARS-CoV-2 vaccine-induced antibodies protect against Omicron breakthrough infection. iScience 2023; 26:107621. [PMID: 37682631 PMCID: PMC10481355 DOI: 10.1016/j.isci.2023.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
SARS-CoV-2 Omicron quickly spread globally, also in regions with high vaccination coverage, emphasizing the importance of exploring the immunological requirements for protection against Omicron breakthrough infection. The test-negative matched case-control study (N = 964) characterized Omicron breakthrough infections in triple-vaccinated individuals from the ENFORCE cohort. Within 60 days before a PCR test spike-specific IgG levels were significantly lower in cases compared to controls (GMR [95% CI] for BA.2: 0.83 [0.73-0.95], p = 0.006). Multivariable logistic regression showed significant associations between high antibody levels and lower odds of infection (aOR [95% CI] for BA.2 spike-specific IgG: 0.65 [0.48-0.88], p = 0.006 and BA.2 ACE2-blocking antibodies: 0.46 [0.30-0.69], p = 0.0002). A sex-stratified analysis showed more pronounced associations for females than males. High levels of vaccine-induced antibodies provide partial protection against Omicron breakthrough infections. This is important knowledge to further characterize a threshold for protection against new variants and to estimate the necessity and timing of booster vaccination.
Collapse
Affiliation(s)
- Eva A.M. Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Astrid K. Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B. Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T. Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Maria R. Juhl
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone W. Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Lene S. Knudsen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Mette B. Iversen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K. Iversen
- Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Department of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Sidsel D. Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K. Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L. Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe R. Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea K. Fischer
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research, Nordsjællands University Hospital, Hillerød, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Palle Valentiner-Branth
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
268
|
Zhao J, Xu X, Gao Y, Yu Y, Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int J Mol Sci 2023; 24:14133. [PMID: 37762435 PMCID: PMC10531760 DOI: 10.3390/ijms241814133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virus, causing the devastating COVID-19 pandemic, has been reported to affect platelets and cause increased thrombotic events, hinting at the possible bidirectional interactions between platelets and the virus. In this review, we discuss the potential mechanisms underlying the increased thrombotic events as well as altered platelet count and activity in COVID-19. Inspired by existing knowledge on platelet-pathogen interactions, we propose several potential antiviral strategies that platelets might undertake to combat SARS-CoV-2, including their abilities to internalize the virus, release bioactive molecules to interfere with viral infection, and modulate the functions of immune cells. Moreover, we discuss current and potential platelet-targeted therapeutic strategies in controlling COVID-19, including antiplatelet drugs, anticoagulants, and inflammation-targeting treatments. These strategies have shown promise in clinical settings to alleviate the severity of thrombo-inflammatory complications and reduce the mortality rate among COVID-19 patients. In conclusion, an in-depth understanding of platelet-SARS-CoV-2 interactions may uncover novel mechanisms underlying severe COVID-19 complications and could provide new therapeutic avenues for managing this disease.
Collapse
Affiliation(s)
| | | | | | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| |
Collapse
|
269
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
270
|
Ma Y, Deng C, Zhou Y, Zhang Y, Qiu F, Jiang D, Zheng G, Li J, Shuai J, Zhang Y, Yang J, Su J. Polygenic regression uncovers trait-relevant cellular contexts through pathway activation transformation of single-cell RNA sequencing data. CELL GENOMICS 2023; 3:100383. [PMID: 37719150 PMCID: PMC10504677 DOI: 10.1016/j.xgen.2023.100383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Advances in single-cell RNA sequencing (scRNA-seq) techniques have accelerated functional interpretation of disease-associated variants discovered from genome-wide association studies (GWASs). However, identification of trait-relevant cell populations is often impeded by inherent technical noise and high sparsity in scRNA-seq data. Here, we developed scPagwas, a computational approach that uncovers trait-relevant cellular context by integrating pathway activation transformation of scRNA-seq data and GWAS summary statistics. scPagwas effectively prioritizes trait-relevant genes, which facilitates identification of trait-relevant cell types/populations with high accuracy in extensive simulated and real datasets. Cellular-level association results identified a novel subpopulation of naive CD8+ T cells related to COVID-19 severity and oligodendrocyte progenitor cell and microglia subsets with critical pathways by which genetic variants influence Alzheimer's disease. Overall, our approach provides new insights for the discovery of trait-relevant cell types and improves the mechanistic understanding of disease variants from a pathway perspective.
Collapse
Affiliation(s)
- Yunlong Ma
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| | - Chunyu Deng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
| | - Yijun Zhou
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| | - Yaru Zhang
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| | - Fei Qiu
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dingping Jiang
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gongwei Zheng
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jingjing Li
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianwei Shuai
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| | - Yan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310012, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jianzhong Su
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| |
Collapse
|
271
|
Curtis NC, Shin S, Hederman AP, Connor RI, Wieland-Alter WF, Ionov S, Boylston J, Rose J, Sakharkar M, Dorman DB, Dessaint JA, Gwilt LL, Crowley AR, Feldman J, Hauser BM, Schmidt AG, Ashare A, Walker LM, Wright PF, Ackerman ME, Lee J. Characterization of SARS-CoV-2 Convalescent Patients' Serological Repertoire Reveals High Prevalence of Iso-RBD Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556349. [PMID: 37745524 PMCID: PMC10515772 DOI: 10.1101/2023.09.08.556349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While our understanding of SARS-CoV-2 pathogenesis and antibody responses following infection and vaccination has improved tremendously since the outbreak in 2019, the sequence identities and relative abundances of the individual constituent antibody molecules in circulation remain understudied. Using Ig-Seq, we proteomically profiled the serological repertoire specific to the whole ectodomain of SARS-CoV-2 prefusion-stabilized spike (S) as well as to the receptor binding domain (RBD) over a 6-month period in four subjects following SARS-CoV-2 infection before SARS-CoV-2 vaccines were available. In each individual, we identified between 59 and 167 unique IgG clonotypes in serum. To our surprise, we discovered that ∼50% of serum IgG specific for RBD did not recognize prefusion-stabilized S (referred to as iso-RBD antibodies), suggesting that a significant fraction of serum IgG targets epitopes on RBD inaccessible on the prefusion-stabilized conformation of S. On the other hand, the abundance of iso-RBD antibodies in nine individuals who received mRNA-based COVID-19 vaccines encoding prefusion-stabilized S was significantly lower (∼8%). We expressed a panel of 12 monoclonal antibodies (mAbs) that were abundantly present in serum from two SARS-CoV-2 infected individuals, and their binding specificities to prefusion-stabilized S and RBD were all in agreement with the binding specificities assigned based on the proteomics data, including 1 iso-RBD mAb which bound to RBD but not to prefusion-stabilized S. 2 of 12 mAbs demonstrated neutralizing activity, while other mAbs were non-neutralizing. 11 of 12 mAbs also bound to S (B.1.351), but only 1 maintained binding to S (B.1.1.529). This particular mAb binding to S (B.1.1.529) 1) represented an antibody lineage that comprised 43% of the individual's total S-reactive serum IgG binding titer 6 months post-infection, 2) bound to the S from a related human coronavirus, HKU1, and 3) had a high somatic hypermutation level (10.9%), suggesting that this antibody lineage likely had been elicited previously by pre-pandemic coronavirus and was re-activated following the SARS-CoV-2 infection. All 12 mAbs demonstrated their ability to engage in Fc-mediated effector function activities. Collectively, our study provides a quantitative overview of the serological repertoire following SARS-CoV-2 infection and the significant contribution of iso-RBD antibodies, demonstrating how vaccination strategies involving prefusion-stabilized S may have reduced the elicitation of iso-RBD serum antibodies which are unlikely to contribute to protection.
Collapse
|
272
|
KARABİBER E, ATİK Ö, TEPETAM F, ERGAN B, İLKİ A, KARAKOÇ AYDINER E, ÖZEN A, ÖZYER F, BARIŞ S. Clinical and immunological outcomes of SARS-CoV-2 infection in patients with inborn errors of immunity receiving different brands and doses of COVID-19 vaccines. Tuberk Toraks 2023; 71:236-249. [PMID: 37740627 PMCID: PMC10912874 DOI: 10.5578/tt.20239705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023] Open
Abstract
Introduction Vaccines against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) provide successful control of the coronavirus-2019 (COVID-19) pandemic. The safety and immunogenicity studies are encouraging in patients with inborn errors of immunity (IEI); however, data about mortality outcomes and severe disease after vaccination still need to be fully addressed. Therefore, we aimed to determine the clinical and immunological outcomes of SARS-CoV-2 infection in patients with IEI who have received vaccination. Materials and Methods Eighty-eight patients with a broad range of molecular etiologies were studied; 45 experienced SARS-CoV-2 infection. Infection outcomes were analyzed in terms of genetic etiology, background clinical characteristics, and immunization history, including the type and number of doses received and the time elapsed since vaccination. In addition, anti-SARS-CoV-2 antibodies were quantified using electrochemiluminescent immunoassay. Results Patients were immunized using one of the three regimens: inactivated (Sinovac, Coronavac®), mRNA (BNT162b2, Comirnaty®, Pfizer-Biontech), and a combination. All three regimens induced comparable anti-SARS-CoV-2 IgG levels, with no differences in the adverse events. Among 45 patients with COVID-19, 26 received a full course of vaccination, while 19 were vaccine-naive or received incomplete dosing. No patients died due to COVID-19 infection. The fully immunized group had a lower hospitalization rate (23% vs. 31.5%) and a shorter symptomatic phase than the others. Among the fully vaccinated patients, serum IgM and E levels were significantly lower in hospitalized patients than non-hospitalized patients. Conclusion COVID-19 vaccines were well-tolerated by the IEI patients, and a full course of immunization was associated with lower hospitalization rates and a shorter duration of COVID-19 symptoms.
Collapse
Affiliation(s)
- E. KARABİBER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - Ö. ATİK
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - F.M. TEPETAM
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Süreyyapaşa Training and Research Hospital, İstanbul, Türkiye
| | - B. ERGAN
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - A. İLKİ
- Department of Medical Microbiology, Marmara University Faculty of
Medicine, İstanbul, Türkiye
| | - E. KARAKOÇ AYDINER
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - A. ÖZEN
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| | - F. ÖZYER
- Division of Adult Immunology and Allergy, Department of Chest Diseases,
Marmara University Pendik Training and Research Hospital, İstanbul, Türkiye
| | - S. BARIŞ
- Department of Pediatric Allergy and Immunology, Marmara University
Faculty of Medicine, İstanbul, Türkiye
- İstanbul Jeffrey Modell Diagnostic and Research Center for Primary
Immunodeficiencies, İstanbul, Türkiye
- Işıl Berat Barlan Center for Translational Medicine, İstanbul, Türkiye
| |
Collapse
|
273
|
Peleman C, Van Coillie S, Ligthart S, Choi SM, De Waele J, Depuydt P, Benoit D, Schaubroeck H, Francque SM, Dams K, Jacobs R, Robert D, Roelandt R, Seurinck R, Saeys Y, Rajapurkar M, Jorens PG, Hoste E, Vanden Berghe T. Ferroptosis and pyroptosis signatures in critical COVID-19 patients. Cell Death Differ 2023; 30:2066-2077. [PMID: 37582864 PMCID: PMC10482958 DOI: 10.1038/s41418-023-01204-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Critical COVID-19 patients admitted to the intensive care unit (ICU) frequently suffer from severe multiple organ dysfunction with underlying widespread cell death. Ferroptosis and pyroptosis are two detrimental forms of regulated cell death that could constitute new therapeutic targets. We enrolled 120 critical COVID-19 patients in a two-center prospective cohort study to monitor systemic markers of ferroptosis, iron dyshomeostasis, pyroptosis, pneumocyte cell death and cell damage on the first three consecutive days after ICU admission. Plasma of 20 post-operative ICU patients (PO) and 39 healthy controls (HC) without organ failure served as controls. Subsets of COVID-19 patients displayed increases in individual biomarkers compared to controls. Unsupervised clustering was used to discern latent clusters of COVID-19 patients based on biomarker profiles. Pyroptosis-related interleukin-18 accompanied by high pneumocyte cell death was independently associated with higher odds at mechanical ventilation, while the subgroup with high interleuking-1 beta (but limited pneumocyte cell death) displayed reduced odds at mechanical ventilation and lower mortality hazard. Meanwhile, iron dyshomeostasis with a tendency towards higher ferroptosis marker malondialdehyde had no association with outcome, except for the small subset of patients with very high catalytic iron independently associated with reduced survival. Forty percent of patients did not have a clear signature of the cell death mechanisms studied in this cohort. Moreover, repeated moderate levels of soluble receptor of advanced glycation end products and growth differentiation factor 15 during the first three days after ICU admission are independently associated with adverse clinical outcome compared to sustained lower levels. Altogether, the data point towards distinct subgroups in this cohort of critical COVID-19 patients with different systemic signatures of pyroptosis, iron dyshomeostasis, ferroptosis or pneumocyte cell death markers that have different outcomes in ICU. The distinct groups may allow 'personalized' treatment allocation in critical COVID-19 based on systemic biomarker profiles.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Samya Van Coillie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Symen Ligthart
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Pieter Depuydt
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dominique Benoit
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hannah Schaubroeck
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Karolien Dams
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Rita Jacobs
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Dominique Robert
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Ria Roelandt
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Mohan Rajapurkar
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Philippe G Jorens
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eric Hoste
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
274
|
Okuyama H, Weyand CM, Goronzy JJ. Generation and durability of immune memory in older adults. J Allergy Clin Immunol 2023; 152:601-603. [PMID: 37119870 PMCID: PMC10663087 DOI: 10.1016/j.jaci.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Affiliation(s)
| | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic, Rochester, Minn; Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, Minn
| | - Jörg J Goronzy
- Department of Immunology, Mayo Clinic, Rochester, Minn; Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
275
|
Harky A, Ala'Aldeen A, Butt S, Duric B, Roy S, Zeinah M. COVID-19 and Multiorgan Response: The Long-Term Impact. Curr Probl Cardiol 2023; 48:101756. [PMID: 37088175 PMCID: PMC10122551 DOI: 10.1016/j.cpcardiol.2023.101756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
In late December 2019, severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) was discovered following a cluster of pneumonia cases in Wuhan, China. During the early stages of the COVID-19 pandemic in 2020, it was unclear how this virus would manifest into a multiorgan impacting disease. After over 750 million cases worldwide, it has become increasingly evident that SARS-CoV-2 is a complex multifaceted disease we continue to develop our understanding of the pathophysiology of COVID-19 and how it affects these systems has many theories, ranging from direct viral infection via ACE2 receptor binding, to indirect coagulation dysfunction, cytokine storm, and pathological activation of the complement system. Since the onset of the pandemic, disease presentation, management, and manifestation have changed significantly. This paper intends to expand on the long-term impacts of COVID-19 on the cardiovascular, respiratory, urinary, gastrointestinal, and vascular systems of the body and the changes in clinical management. It is evident that the pharmacological, nonpharmacological and psychological management of COVID-19 patients require clearer guidelines to improve the survival odds and long-term clinical outcomes of those presenting with severe disease.
Collapse
Affiliation(s)
- Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.
| | - Avesta Ala'Aldeen
- Department of Medical Education, St George's Hospital Medical School, University of London, London, United Kingdom
| | - Sundas Butt
- Department of Thoracic Surgery, Nottingham City Hospital, Nottingham, United Kingdom
| | - Bea Duric
- Department of Medical Education, King's College London GKT School of Medical Education, London, United Kingdom
| | - Sakshi Roy
- Department of Medical Education, Queen's University Belfast, School of Medicine, Belfast, Northern Ireland, United Kingdom
| | - Mohamed Zeinah
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Al-Shams University, Cairo, Egypt
| |
Collapse
|
276
|
Liu H, Aviszus K, Zelarney P, Liao SY, Gerber AN, Make B, Wechsler ME, Marrack P, Reinhardt RL. Vaccine-elicited B- and T-cell immunity to SARS-CoV-2 is impaired in chronic lung disease patients. ERJ Open Res 2023; 9:00400-2023. [PMID: 37583809 PMCID: PMC10423317 DOI: 10.1183/23120541.00400-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Background While vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides significant protection from coronavirus disease 2019, the protection afforded to individuals with chronic lung disease is less well established. This study seeks to understand how chronic lung disease impacts SARS-CoV-2 vaccine-elicited immunity. Methods Deep immune phenotyping of humoral and cell-mediated responses to the SARS-CoV-2 vaccine was performed in patients with asthma, COPD and interstitial lung disease (ILD) compared to healthy controls. Results 48% of vaccinated patients with chronic lung diseases had reduced antibody titres to the SARS-CoV-2 vaccine antigen relative to healthy controls. Vaccine antibody titres were significantly reduced among asthma (p<0.035), COPD (p<0.022) and a subset of ILD patients as early as 3-4 months after vaccination, correlating with decreased vaccine-specific memory B-cells in circulation. Vaccine-specific memory T-cells were significantly reduced in patients with asthma (CD8+ p<0.004; CD4+ p<0.023) and COPD (CD8+ p<0.008) compared to healthy controls. Impaired T-cell responsiveness was also observed in a subset of ILD patients (CD8+ 21.4%; CD4+ 42.9%). Additional heterogeneity between healthy and disease cohorts was observed among bulk and vaccine-specific follicular T-helper cells. Conclusions Deep immune phenotyping of the SARS-CoV-2 vaccine response revealed the complex nature of vaccine-elicited immunity and highlights the need for more personalised vaccination schemes in patients with underlying lung conditions.
Collapse
Affiliation(s)
- Haolin Liu
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Katja Aviszus
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | | | - Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony N. Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Barry Make
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Michael E. Wechsler
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Philippa Marrack
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R. Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
277
|
Deepika G, Adarsh S, Sadhana Y, Srihitha M, Veeraiah N, Reddy DN. Effect of COVID-19 Vaccination on the Levels of SARS-CoV-2 Neutralizing Antibodies in COVID-19 Naive, Hybrid, and Breakthrough SARS-CoV-2 Recovered Indian Individuals. J Lab Physicians 2023; 15:377-382. [PMID: 37564232 PMCID: PMC10411225 DOI: 10.1055/s-0043-1761454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Introduction Vaccination has shown to be protective against severe coronavirus disease 2019 by various studies. However, the vaccine efficacy was demonstrated to be less against the emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Both vaccine- and infection-induced immunity against SARS-CoV-2 may prevent reinfection and severity. Our study aims to assess and compare the humoral response in heterogeneous population based on infection and vaccination status along with hybrid immunity. Methods A retrospective, observational study of 2,545 adults was conducted. The study groups comprised of group I ( n = 309) naive with a single dose of vaccination, group II ( n = 357) infected and unvaccinated, group III ( n = 590) completely vaccinated with two doses of vaccine, group IV ( n = 70) booster dose, group V ( n = 602) with hybrid immunity (pre-vaccination infection), and group VI ( n = 617) with breakthrough infection (post-vaccination infection). Data pertaining to demographic details, clinical presentations, reverse transcription-polymerase chain reaction, anti-SARS-CoV-2 total antibodies immunoglobulin G (IgG), neutralizing antibodies by anti SARS-CoV-2 sVNT (surrogate virus neutralization test), S1/S2IgG, S-RBD (receptor-binding domain), and ChAdOx1-nCov-19 (Covishield) vaccination were retrieved from electronic health records. Results The mean levels of neutralizing antibodies of group V were S1/S2, RBD (10.5/14.3 times), and sVNT (84.44%) and group VI had S1/S2, RBD (11.4/11.8 times), and sVNT (78.07%) when compared to group III. We also observed a statistically significant higher immune response in group V and VI than group I and II. A higher percentage (18.2%) of group II individuals had severe disease when compared to group V and VI (6.5/10.8%). Conclusion A single dose of ChAdOx1 vaccine gives robust antibody responses in previously infected individuals and may confer long-term hybrid immunity following booster vaccination.
Collapse
Affiliation(s)
| | - Singamsetty Adarsh
- Department of Critical Care Medicine, AIG Hospitals, Hyderabad, Telangana, India
| | | | - Mahavadi Srihitha
- Department of Biochemistry, AIG Hospitals, Hyderabad, Telangana, India
| | - Namburu Veeraiah
- Department of Biochemistry, AIG Hospitals, Hyderabad, Telangana, India
| | | |
Collapse
|
278
|
Mora-Buch R, Tomás-Marín M, Enrich E, Antón-Iborra M, Martorell L, Valdivia E, Lara-de-León AG, Aran G, Piron M, Querol S, Rudilla F. Virus-Specific T Cells From Cryopreserved Blood During an Emergent Virus Outbreak for a Potential Off-the-Shelf Therapy. Transplant Cell Ther 2023; 29:572.e1-572.e13. [PMID: 37290691 DOI: 10.1016/j.jtct.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
During the first outbreak of an emergent virus, methods need to be developed to rapidly establish suitable therapies for patients with high risk of severe disease caused by the pathogen. Considering the importance of the T-cell response in controlling viral infections, adoptive cell therapy with virus-specific T cells has been used as a safe and effective antiviral prophylaxis and treatment for immunocompromised patients. The main objective of this study was to establish an effective and safe method to cryostore whole blood as starting material and to adapt a T-cell activation and expansion protocol to generate an off-the-shelf antiviral therapeutic option. Additionally, we studied how memory T-cell phenotype, clonality based on T-cell receptor, and antigen specificity could condition characteristics of the final expanded T-cell product. Twenty-nine healthy blood donors were selected from a database of convalescent plasma donors with a confirmed history of SARS-CoV-2 infection. Blood was processed using a fully automated, clinical-grade, and 2-step closed system. Eight cryopreserved bags were advanced to the second phase of the protocol to obtain purified mononucleated cells. We adapted the T-cell activation and expansion protocol, without specialized antigen-presenting cells or presenting molecular structures, in a G-Rex culture system with IL-2, IL-7, and IL-15 cytokine stimulation. The adapted protocol successfully activated and expanded virus-specific T cells to generate a T-cell therapeutic product. We observed no major impact of post-symptom onset time of donation on the initial memory T-cell phenotype or clonotypes resulting in minor differences in the final expanded T-cell product. We showed that antigen competition in the expansion of T-cell clones affected the T-cell clonality based on the T-cell receptor β repertoire. We demonstrated that good manufacturing practice of blood preprocessing and cryopreserving is a successful procedure to obtain an initial cell source able to activate and expand without a specialized antigen-presenting agent. Our 2-step blood processing allowed recruitment of the cell donors independently of the expansion cell protocol timing, facilitating donor, staff, and facility needs. Moreover, the resulting virus-specific T cells could be also banked for further use, notably maintaining viability and antigen specificity after cryopreservation.
Collapse
Affiliation(s)
- Rut Mora-Buch
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain.
| | - Maria Tomás-Marín
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Emma Enrich
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Mireia Antón-Iborra
- Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lluís Martorell
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Elena Valdivia
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Ana Gabriela Lara-de-León
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Immunogenetics Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Aran
- Cell Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Maria Piron
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Transfusion Safety Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Sergi Querol
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain; Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Francesc Rudilla
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain; Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain.
| |
Collapse
|
279
|
Sapna F, Deepa F, Sakshi F, Sonam F, Kiran F, Perkash RS, Bendari A, Kumar A, Rizvi Y, Suraksha F, Varrassi G. Unveiling the Mysteries of Long COVID Syndrome: Exploring the Distinct Tissue and Organ Pathologies Linked to Prolonged COVID-19 Symptoms. Cureus 2023; 15:e44588. [PMID: 37795061 PMCID: PMC10545886 DOI: 10.7759/cureus.44588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/02/2023] [Indexed: 10/06/2023] Open
Abstract
The ongoing battle against the coronavirus disease 2019 (COVID-19) pandemic has encountered a complex aspect with the emergence of long COVID syndrome. There has been a growing prevalence of COVID-19-affected individuals experiencing persistent and diverse symptoms that extend beyond the initial infection phase. The phenomenon known as long COVID syndrome raises significant questions about the underlying mechanisms driving these enduring symptoms. This comprehensive analysis explores the complex domain of long COVID syndrome with a view to shed light on the specific tissue and organ pathologies contributing to its intricate nature. This review aims to analyze the various clinical manifestations of this condition across different bodily systems and explore potential mechanisms such as viral persistence, immune dysregulation, autoimmunity, and molecular mimicry. The goal is to gain a better understanding of the intricate network of pathologies contributing to long COVID syndrome. Understanding these distinct pathological indicators provides valuable insights into comprehending the complexities of long COVID and presents opportunities for developing more accurate diagnostic and therapeutic strategies, thereby improving the quality of patient care by effectively addressing the ever-changing medical challenge in a more focused manner.
Collapse
Affiliation(s)
- Fnu Sapna
- Pathology and Laboratory Medicine, Albert Einstein College of Medicine, Bronx, USA
| | - Fnu Deepa
- Internal Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Fnu Sakshi
- Internal Medicine, Peoples University of Medical and Health Sciences for Women, Nawabshah, PAK
| | - Fnu Sonam
- Pathology and Laboratory Medicine, Dr. Ziauddin Hospital, Karachi, PAK
- Medicine, Mustafai Trust Central Hospital, Sukkur, PAK
| | - Fnu Kiran
- Pathology, University of Missouri School of Medicine, Columbia, USA
| | | | - Ahmed Bendari
- Pathology and Laboratory Medicine, Lenox Hill Hospital, New York, USA
| | - Anish Kumar
- Internal Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Yusra Rizvi
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Fnu Suraksha
- Internal Medicine, People University of Medical and Health Science for Women Nawabshah, Nawabshah, PAK
| | | |
Collapse
|
280
|
Huang CT, Lee CP, Chen TY, Liu YC, Cho SF, Du JS, Yu ML, Huang CF, Wang SF, Hsiao HH. Serological Responses and Predictive Factors of Booster COVID-19 Vaccines in Patients with Hematologic Malignancies. J Clin Med 2023; 12:5647. [PMID: 37685720 PMCID: PMC10488979 DOI: 10.3390/jcm12175647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Patients with hematologic malignancies are reported to have a more severe course of coronavirus disease 2019 (COVID-19) and be less responsive to vaccination. In this prospective study, we aimed to evaluate the serological responses to booster COVID-19 vaccines of Taiwanese patients with hematologic malignancies and identify potential predictive markers for effective neutralizing immunity. This study enrolled 68 patients with hematologic malignancies and 68 age- and gender-matched healthy control subjects who received three doses of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from 1 January 2022 to 31 October 2022. The SARS-CoV-2 immunoglobulin G (IgG) spike antibody level was measured with the Abbott assay. The effective neutralization capacity was defined as an anti-spike IgG level of ≥4160 AU/mL. Among the 68 patients with hematologic malignancies, 89.7% achieved seroconversion after booster doses. Seven patients with actively treated lymphoma remained seronegative and had the lowest humoral responses among patients with different types of hematologic malignancies. Despite comparable antibody titers between patients and healthy individuals, rates of effective neutralization (66.2% vs. 86.8%, respectively; p = 0.005) were significantly reduced in patients with hematologic malignancies. In a multivariate analysis, the independent predictors for effective neutralization were a lack of B-cell-targeted agents within six months of vaccination (odds ratio, 15.2; 95% confidence interval, 2.7-84.2; p = 0.002) and higher immunoglobulin levels (odds ratio, 4.4; 95% confidence interval, 1.3-14.7; p = 0.017). In conclusion, the majority of patients with hematologic malignancies achieved seroconversion after booster vaccination. Patients with ongoing B-cell depletion and hypogammaglobinemia were identified as having negative predictive markers for effective neutralization.
Collapse
Affiliation(s)
- Chien-Tzu Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Ping Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
| | - Tzu-Yin Chen
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.Y.); (C.-F.H.)
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chung-Feng Huang
- Division of Hepatobiliary, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.Y.); (C.-F.H.)
- Ph.D. Program in Translational Medicine, College of Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung 807, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-T.H.); (C.-P.L.); (Y.-C.L.); (S.-F.C.); (J.-S.D.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
281
|
Monzen K, Watanabe T, Okabe T, Sekino H, Nakagami H, Morishita R. Acquisition of Humoral Immune Responses in Convalescent Japanese People with SARS-CoV-2 (COVID-19) Infection in 2021. Viruses 2023; 15:1842. [PMID: 37766249 PMCID: PMC10536507 DOI: 10.3390/v15091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
We investigated humoral immune responses in 222 unvaccinated Japanese people after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2021. Anti-spike-protein IgG antibody levels and neutralizing antibody titers were measured in serum samples obtained within 20-180 days after diagnosis. The geometric mean of antibody titers was 1555 ELU/mL (95% confidence interval (CI) = 1257-1923), and the neutralizing activity (50% inhibitory dilution) was 253 (95% CI = 204-313). The antibody titer and neutralizing activity both increased with increasing disease severity, and both values were approximately fourfold higher for hospitalized patients than for non-hospitalized patients. However, these differences were smaller in older patients. The humoral immune response, which increased with increasing disease severity, gradually decreased over time after SARS-CoV-2 infection. Most patients with mild or moderate symptoms sustained neutralizing activity for up to 180 days after the infection; the decay of the neutralizing activity in the asymptomatic patients was rather faster than in the other groups. Around 11.7% (26/222) of patients had very low neutralizing activity, and half of these were aged in their 20s. Our study's results show the importance of measuring the neutralizing activity to confirm the immune status and to estimate the timing of vaccines.
Collapse
Affiliation(s)
- Koshiro Monzen
- Shinjuku Tsurukame Clinic, 2-11-15 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Takanori Watanabe
- Uehonmachi Watanabe Clinic, 1-15 Uenomiya-cho, Tennoji-ku, Osaka 543-0037, Osaka, Japan
| | - Toshihiro Okabe
- Ueda Hospital, 1-7-1 Inazu-cho, Toyonaka 561-0854, Osaka, Japan
| | - Hisakuni Sekino
- Sekino Hospital, 3-28-3 Ikebukuro, Toshima-ku, Tokyo 171-0014, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
282
|
Muik A, Lui BG, Quandt J, Diao H, Fu Y, Bacher M, Gordon J, Toker A, Grosser J, Ozhelvaci O, Grikscheit K, Hoehl S, Kohmer N, Lustig Y, Regev-Yochay G, Ciesek S, Beguir K, Poran A, Vogler I, Türeci Ö, Sahin U. Progressive loss of conserved spike protein neutralizing antibody sites in Omicron sublineages is balanced by preserved T cell immunity. Cell Rep 2023; 42:112888. [PMID: 37527039 DOI: 10.1016/j.celrep.2023.112888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/27/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023] Open
Abstract
Evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has led to the emergence of sublineages with different patterns of neutralizing antibody evasion. We report that Omicron BA.4/BA.5 breakthrough infection of individuals immunized with SARS-CoV-2 wild-type-strain-based mRNA vaccines results in a boost of Omicron BA.4.6, BF.7, BQ.1.1, and BA.2.75 neutralization but does not efficiently boost BA.2.75.2, XBB, or XBB.1.5 neutralization. In silico analyses showed that the Omicron spike glycoprotein lost most neutralizing B cell epitopes, especially in sublineages BA.2.75.2, XBB, and XBB.1.5. In contrast, T cell epitopes are conserved across variants including XBB.1.5. T cell responses of mRNA-vaccinated, SARS-CoV-2-naive individuals against the wild-type strain, Omicron BA.1, and BA.4/BA.5 were comparable, suggesting that T cell immunity against recent sublineages including XBB.1.5 may remain largely unaffected. While some Omicron sublineages effectively evade B cell immunity, spike-protein-specific T cell immunity, due to the nature of polymorphic cell-mediated immune responses, may continue to contribute to prevention/limitation of severe COVID-19 manifestation.
Collapse
Affiliation(s)
| | | | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Yunguan Fu
- InstaDeep, Ltd., 5 Merchant Square, London W2 1AY, UK
| | - Maren Bacher
- BioNTech, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Aras Toker
- BioNTech, An der Goldgrube 12, 55131 Mainz, Germany
| | | | | | - Katharina Grikscheit
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Sebastian Hoehl
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Niko Kohmer
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Yaniv Lustig
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; Central Virology Laboratory, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat Gan, Israel
| | - Gili Regev-Yochay
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; SPRI-Sheba Pandemic Preparedness Research Institute, Sheba Medical Center Tel Hashomer, Ramat Gan, Israel
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; DZIF - German Centre for Infection Research, External Partner Site, 60596 Frankfurt am Main, Germany
| | - Karim Beguir
- InstaDeep, Ltd., 5 Merchant Square, London W2 1AY, UK
| | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Özlem Türeci
- BioNTech, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Ugur Sahin
- BioNTech, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany.
| |
Collapse
|
283
|
Chen Z, Zhan Q, Huang L, Wang C. Coinfection and superinfection in ICU critically ill patients with severe COVID-19 pneumonia and influenza pneumonia: are the pictures different? Front Public Health 2023; 11:1195048. [PMID: 37711242 PMCID: PMC10497876 DOI: 10.3389/fpubh.2023.1195048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Background Similar to influenza, coinfections and superinfections are common and might result in poor prognosis. Our study aimed to compare the characteristics and risks of coinfections and superinfections in severe COVID-19 and influenza virus pneumonia. Methods The data of patients with COVID-19 and influenza admitted to the intensive care unit (ICU) were retrospectively analyzed. The primary outcome was to describe the prevalence and pathogenic distribution of coinfections/ICU-acquired superinfections in the study population. The secondary outcome was to evaluate the independent risk factors for coinfections/ICU-acquired superinfections at ICU admission. Multivariate analysis of survivors and non-survivors was performed to investigate whether coinfections/ICU-acquired superinfections was an independent prognostic factor. Results In the COVID-19 (n = 123) and influenza (n = 145) cohorts, the incidence of coinfections/ICU-acquired superinfections was 33.3%/43.9 and 35.2%/52.4%, respectively. The most common bacteria identified in coinfection cases were Enterococcus faecium, Pseudomonas aeruginosa, and Acinetobacter baumannii (COVID-19 cohort) and A. baumannii, P. aeruginosa, and Klebsiella pneumoniae (influenza cohort). A significant higher proportion of coinfection events was sustained by Aspergillus spp. [(22/123, 17.9% in COVID-19) and (18/145, 12.4% in influenza)]. The COVID-19 group had more cases of ICU-acquired A. baumannii, Corynebacterium striatum and K. pneumoniae. A. baumannii, P. aeruginosa, and K. pneumoniae were the three most prevalent pathogens in the influenza cases with ICU-acquired superinfections. Patients with APACHE II ≥18, CD8+ T cells ≤90/μL, and 50 < age ≤ 70 years were more susceptible to coinfections; while those with CD8+ T cells ≤90/μL, CRP ≥120 mg/L, IL-8 ≥ 20 pg./mL, blood glucose ≥10 mmol/L, hypertension, and smoking might had a higher risk of ICU-acquired superinfections in the COVID-19 group. ICU-acquired superinfection, corticosteroid administration for COVID-19 treatment before ICU admission, and SOFA score ≥ 7 were independent prognostic factors in patients with COVID-19. Conclusion Patients with COVID-19 or influenza had a high incidence of coinfections and ICU-acquired superinfections. The represent agents of coinfection in ICU patients were different from those in the general ward. These high-risk patients should be closely monitored and empirically treated with effective antibiotics according to the pathogen.
Collapse
Affiliation(s)
- Ziying Chen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Linna Huang
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
284
|
Zhuang X, Jiang Y, Yang X, Fu L, Luo L, Dong Z, Zhao J, Hei F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol 2023; 14:1244930. [PMID: 37711624 PMCID: PMC10497773 DOI: 10.3389/fimmu.2023.1244930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by diffuse alveolar damage. The period prevalence of ARDS was 10.4% of ICU admissions in 50 countries. Although great progress has been made in supportive care, the hospital mortality rate of severe ARDS is still up to 46.1%. Moreover, up to now, there is no effective pharmacotherapy for ARDS and most clinical trials focusing on consistently effective drugs have met disappointing results. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have spawned intense interest of a wide range of researchers and clinicians due to their robust anti-inflammatory, anti-apoptotic and tissue regeneration properties. A growing body of evidence from preclinical studies confirmed the promising therapeutic potential of MSCs and their EVs in the treatment of ARDS. Based on the inspiring experimental results, clinical trials have been designed to evaluate safety and efficacy of MSCs and their EVs in ARDS patients. Moreover, trials exploring their optimal time window and regimen of drug administration are ongoing. Therefore, this review aims to present an overview of the characteristics of mesenchymal stem cells and their derived EVs, therapeutic mechanisms for ARDS and research progress that has been made over the past 5 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feilong Hei
- Department of Cardiopulmonary Bypass, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
285
|
Chen Y, Mason GH, Scourfield DO, Greenshields-Watson A, Haigh TA, Sewell AK, Long HM, Gallimore AM, Rizkallah P, MacLachlan BJ, Godkin A. Structural definition of HLA class II-presented SARS-CoV-2 epitopes reveals a mechanism to escape pre-existing CD4 + T cell immunity. Cell Rep 2023; 42:112827. [PMID: 37471227 PMCID: PMC10840515 DOI: 10.1016/j.celrep.2023.112827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
CD4+ T cells recognize a broad range of peptide epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which contribute to immune memory and limit COVID-19 disease. We demonstrate that the immunogenicity of SARS-CoV-2 peptides, in the context of the model allotype HLA-DR1, does not correlate with their binding affinity to the HLA heterodimer. Analyzing six epitopes, some with very low binding affinity, we solve X-ray crystallographic structures of each bound to HLA-DR1. Further structural definitions reveal the precise molecular impact of viral variant mutations on epitope presentation. Omicron escaped ancestral SARS-CoV-2 immunity to two epitopes through two distinct mechanisms: (1) mutations to TCR-facing epitope positions and (2) a mechanism whereby a single amino acid substitution caused a register shift within the HLA binding groove, completely altering the peptide-HLA structure. This HLA-II-specific paradigm of immune escape highlights how CD4+ T cell memory is finely poised at the level of peptide-HLA-II presentation.
Collapse
Affiliation(s)
- Yuan Chen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Georgina H Mason
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - D Oliver Scourfield
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Alexander Greenshields-Watson
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Tracey A Haigh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Pierre Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Andrew Godkin
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Department of Gastroenterology & Hepatology, University Hospital of Wales, Cardiff CF14 4XW, UK.
| |
Collapse
|
286
|
Baird S, Ashley CL, Marsh‐Wakefield F, Alca S, Ashhurst TM, Ferguson AL, Lukeman H, Counoupas C, Post JJ, Konecny P, Bartlett A, Martinello M, Bull RA, Lloyd A, Grey A, Hutchings O, Palendira U, Britton WJ, Steain M, Triccas JA. A unique cytotoxic CD4 + T cell-signature defines critical COVID-19. Clin Transl Immunology 2023; 12:e1463. [PMID: 37645435 PMCID: PMC10461786 DOI: 10.1002/cti2.1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/04/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Objectives SARS-CoV-2 infection causes a spectrum of clinical disease presentation, ranging from asymptomatic to fatal. While neutralising antibody (NAb) responses correlate with protection against symptomatic and severe infection, the contribution of the T-cell response to disease resolution or progression is still unclear. As newly emerging variants of concern have the capacity to partially escape NAb responses, defining the contribution of individual T-cell subsets to disease outcome is imperative to inform the development of next-generation COVID-19 vaccines. Methods Immunophenotyping of T-cell responses in unvaccinated individuals was performed, representing the full spectrum of COVID-19 clinical presentation. Computational and manual analyses were used to identify T-cell populations associated with distinct disease states. Results Critical SARS-CoV-2 infection was characterised by an increase in activated and cytotoxic CD4+ lymphocytes (CTL). These CD4+ CTLs were largely absent in asymptomatic to severe disease states. In contrast, non-critical COVID-19 was associated with high frequencies of naïve T cells and lack of activation marker expression. Conclusion Highly activated and cytotoxic CD4+ T-cell responses may contribute to cell-mediated host tissue damage and progression of COVID-19. Induction of these potentially detrimental T-cell responses should be considered when developing and implementing effective COVID-19 control strategies.
Collapse
Affiliation(s)
- Sarah Baird
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Caroline L Ashley
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Felix Marsh‐Wakefield
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
- Human Cancer and Viral Immunology LaboratoryThe University of SydneyCamperdownNSWAustralia
| | - Sibel Alca
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Thomas M Ashhurst
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Sydney Cytometry Core Research FacilityCharles Perkins Centre, Centenary Institute and The University of SydneyCamperdownNSWAustralia
| | - Angela L Ferguson
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
| | - Hannah Lukeman
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Tuberculosis Research ProgramCentenary InstituteSydneyNSWAustralia
| | - Jeffrey J Post
- Prince of Wales Clinical SchoolUNSWSydneyNSWAustralia
- School of Clinical Medicine, Medicine & HealthUNSWSydneyNSWAustralia
| | - Pamela Konecny
- Prince of Wales Clinical SchoolUNSWSydneyNSWAustralia
- St George HospitalSydneyNSWAustralia
| | - Adam Bartlett
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
- Sydney Children's HospitalSydneyNSWAustralia
| | | | - Rowena A Bull
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
| | - Andrew Lloyd
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
| | - Alice Grey
- RPA Virtual Hospital, Sydney Local Health DistrictSydneyNSWAustralia
| | - Owen Hutchings
- RPA Virtual Hospital, Sydney Local Health DistrictSydneyNSWAustralia
| | - Umaimainthan Palendira
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
| | - Warwick J Britton
- Tuberculosis Research ProgramCentenary InstituteSydneyNSWAustralia
- Department of Clinical ImmunologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Megan Steain
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - James A Triccas
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
287
|
Introcaso G, Galotta A, Salvini L, Faioni EM, Bonomi A, Assanelli E, Biondi ML. Leukocyte cell population data as potential markers of COVID-19 disease characterization. J Med Biochem 2023; 42:454-459. [PMID: 37790201 PMCID: PMC10543122 DOI: 10.5937/jomb0-41589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/07/2023] [Indexed: 10/05/2023] Open
Abstract
Background The usefulness of leukocyte cell population data (CPD) is currently being investigated. In COVID-19 pandemic several reports showed the clinical importance of hematological parameters. Our study aimed to assess CPDs in Sars CoV-2 patients as new disease markers. Methods From February to April 2020 (1st wave) 540 and from September to December 2020 (2nd wave) 2821 patients respectively were enrolled. SARS CoV-2 infection diagnosis was carried out by Multiplex rRT-PCR from nasopharyngeal swabs. CPDs were detected by XN 2000 hematology analyzer (Sysmex Corporation). A comparison between two disease waves was performed. Additionally, C-reactive protein (CRP) and lactate dehydrogenase (LDH) were assayed. Results CPDs were classified into: cell complextity, DNA/RNA content and abnormal sized cells. We detected parameters increased from the reference population for all cell types for both 1st and 2nd wave (p<0.05). However, in the 2nd vs 1st wave 5 CPDs vs 9 CPDs were found. In addition we observed higher CPD values of the 1st compared to 2nd wave: (NE-SFL) (p<0.001), (LY-Y) (p<0.0001), (LY-Z) (p<0.0001), (MO-X) (p<0.0001), (MO-Y) (p<0.0001). These findings were confirmed by the higher concentrations of CRP and LDH in the 1st vs 2nd wave: 17.3 mg/L (8.5-59.3) vs 6.3 mg/L (2.3-17.6) (p<0.001) and 241.5 IU/L (201-345) vs 195 IU/L (174-228) (p< 0.001) (median, interquartile range) respectively. Conclusions CPDs showed increased cell activation in 1st wave patients confirmed by clinical and biochemical data, associated with worse clinical conditions. Results highlighted the CPDs as disease characterization markers or useful for a risk model.
Collapse
Affiliation(s)
- Giovanni Introcaso
- Università di Milano, Centro Cardiologico Monzino IRCCS, Unit of Laboratory Medicine, Milan, Italy
| | - Arianna Galotta
- Centro Cardiologico Monzino IRCCS, Unit of Biostatistics, Milan, Italy
| | - Laura Salvini
- Centro Cardiologico Monzino IRCCS, Emergency Department, Milan, Italy
| | | | - Alice Bonomi
- Centro Cardiologico Monzino IRCCS, Unit of Biostatistics, Milan, Italy
| | - Emilio Assanelli
- Centro Cardiologico Monzino IRCCS, Emergency Department, Milan, Italy
| | - Maria Luisa Biondi
- Università di Milano, Centro Cardiologico Monzino IRCCS, Unit of Laboratory Medicine, Milan, Italy
| |
Collapse
|
288
|
Marty PK, Pathakumari B, Shah M, Keulen VP, Erskine CL, Block MS, Arias-Sanchez P, Escalante P, Peikert T. Convalescent Adaptive Immunity is Highly Heterogenous after SARS-CoV-2 Infection. RESEARCH SQUARE 2023:rs.3.rs-3222112. [PMID: 37674707 PMCID: PMC10479471 DOI: 10.21203/rs.3.rs-3222112/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Optimal detection strategies for effective convalescent immunity after SARS-CoV-2 infection and vaccination remain unclear. The objective of this study was to characterize convalescent immunity targeting the SARS-CoV-2 spike protein using a multiparametric approach. At the beginning of the pandemic, between April 23, 2020, to May 11, 2020, we recruited 30 COVID-19 unvaccinated convalescent donors and 7 unexposed asymptomatic donors. Peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis cones. The humoral immune response was assessed by measuring serum anti-SARS-CoV-2 spike S1 subunit IgG semiquantitative ELISA and T cell immunity against S1 and S2 subunits were studied by IFN-γ Enzyme-Linked Immune absorbent Spot (ELISpot), flow cytometric (FC) activation-induced marker (AIM) assays and the assessment of cytotoxic CD8+ T-cell function (in the subset of HLA-A2 positive patients). No single immunoassay was sufficient in identifying anti-spike convalescent immunity among all patients. There was no consistent correlation between adaptive humoral and cellular anti-spike responses. Our data indicate that the magnitude of anti-spike convalescent humoral and cellular immunity is highly heterogeneous and highlights the need for using multiple assays to comprehensively measure SARS-CoV-2 convalescent immunity. These observations might have implications for COVID-19 surveillance, and optimal vaccination strategies for emerging variants. Further studies are needed to determine the optimal assessment of adaptive humoral and cellular immunity following SARSCoV-2 infection, especially in the context of emerging variants and unclear vaccination schedules.
Collapse
|
289
|
Iwahori K, Nii T, Yamaguchi N, Kawasaki T, Okamura S, Hashimoto K, Matsuki T, Tsujino K, Miki K, Osa A, Goya S, Abe K, Mori M, Takeda Y, Yamada T, Kida H, Kumanogoh A. A randomized phase 2 study on demeclocycline in patients with mild-to-moderate COVID-19. Sci Rep 2023; 13:13809. [PMID: 37612352 PMCID: PMC10447520 DOI: 10.1038/s41598-023-41051-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
Tetracyclines exhibit anti-viral, anti-inflammatory, and immunomodulatory activities via various mechanisms. The present study investigated the efficacy and safety of demeclocycline in patients hospitalized with mild-to-moderate COVID-19 via an open-label, multicenter, parallel-group, randomized controlled phase 2 trial. Primary and secondary outcomes included changes from baseline (day 1, before the study treatment) in lymphocytes, cytokines, and SARS-CoV-2 RNA on day 8. Seven, seven, and six patients in the control, demeclocycline 150 mg daily, and demeclocycline 300 mg daily groups, respectively, were included in the modified intention-to-treat population that was followed until day 29. A significant change of 191.3/μL in the number of CD4+ T cells from day 1 to day 8 was observed in the demeclocycline 150 mg group (95% CI 5.1/μL-377.6/μL) (p = 0.023), whereas that in the control group was 47.8/μL (95% CI - 151.2/μL to 246.8/μL), which was not significant (p = 0.271). The change rates of CD4+ T cells negatively correlated with those of IL-6 in the demeclocycline-treated groups (R = - 0.807, p = 0.009). All treatment-emergent adverse events were of mild-to-moderate severity. The present results indicate that the treatment of mild-to-moderate COVID-19 patients with demeclocycline elicits immune responses conducive to recovery from COVID-19 with good tolerability.Trial registration: This study was registered with the Japan Registry of Clinical Trials (Trial registration number: jRCTs051200049; Date of the first registration: 26/08/2020).
Collapse
Affiliation(s)
- Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Takuro Nii
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Norihiko Yamaguchi
- Department of Respiratory Medicine, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satomi Okamura
- Department of Medical Innovation, Osaka University Hospital, Suita, Osaka, Japan
| | - Kazuki Hashimoto
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Takanori Matsuki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Keisuke Miki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Akio Osa
- Department of Respiratory Medicine, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Sho Goya
- Department of Respiratory Medicine, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Kinya Abe
- Department of Internal Medicine, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomomi Yamada
- Department of Medical Innovation, Osaka University Hospital, Suita, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
290
|
Kanis FM, Meier JP, Guldan H, Niller HH, Dahm M, Dansard A, Zander T, Struck F, Soutschek E, Deml L, Möbus S, Barabas S. Performance of T-Track ® SARS-CoV-2, an Innovative Dual Marker RT-qPCR-Based Whole-Blood Assay for the Detection of SARS-CoV-2-Reactive T Cells. Diagnostics (Basel) 2023; 13:2722. [PMID: 37685260 PMCID: PMC10486492 DOI: 10.3390/diagnostics13172722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
T-cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a central role in the control of the virus. In this study, we evaluated the performance of T-Track® SARS-CoV-2, a novel CE-marked quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels in response to the S1 and NP SARS-CoV-2 antigens, in 335 participants with or without a history of SARS-CoV-2 infection and vaccination, respectively. Of the 62 convalescent donors, 100% responded to S1 and 88.7% to NP antigens. In comparison, of the 68 naïve donors, 4.4% were reactive to S1 and 19.1% to NP. Convalescent donors <50 and ≥50 years of age demonstrated a 100% S1 reactivity and an 89.1% and 87.5% NP reactivity, respectively. T-cell responses by T-Track® SARS-CoV-2 and IgG serology by recomLine SARS-CoV-2 IgG according to the time from the last immunisation (by vaccination or viral infection) were comparable. Both assays showed a persistent cellular and humoral response for at least 36 weeks post immunisation in vaccinated and convalescent donors. Our results demonstrate the very good performance of the T-Track® SARS-CoV-2 molecular assay and suggest that it might be suitable to monitor the SARS-CoV-2-specific T-cell response in COVID-19 vaccinations trials and cross-reactivity studies.
Collapse
Affiliation(s)
| | | | | | - Hans-Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Oyesola OO, Hilligan KL, Namasivayam S, Howard N, Clancy CS, Zhao M, Oland SD, Kiwanuka KN, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Exposure to lung-migrating helminth protects against murine SARS-CoV-2 infection through macrophage-dependent T cell activation. Sci Immunol 2023; 8:eadf8161. [PMID: 37566678 DOI: 10.1126/sciimmunol.adf8161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kasalina N Kiwanuka
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P'ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
292
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
293
|
Dang TTT, Anzurez A, Nakayama-Hosoya K, Miki S, Yamashita K, de Souza M, Matano T, Kawana-Tachikawa A. Breadth and Durability of SARS-CoV-2-Specific T Cell Responses following Long-Term Recovery from COVID-19. Microbiol Spectr 2023; 11:e0214323. [PMID: 37428088 PMCID: PMC10433967 DOI: 10.1128/spectrum.02143-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
T cell immunity is crucial for long-term immunological memory, but the profile of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory T cells in individuals who recovered from COVID-19 (COVID-19-convalescent individuals) is not sufficiently assessed. In this study, the breadth and magnitude of SARS-CoV-2-specific T cell responses were determined in COVID-19-convalescent individuals in Japan. Memory T cells against SARS-CoV-2 were detected in all convalescent individuals, and those with more severe disease exhibited a broader T cell response relative to cases with mild symptoms. Comprehensive screening of T cell responses at the peptide level was conducted for spike (S) and nucleocapsid (N) proteins, and regions frequently targeted by T cells were identified. Multiple regions in S and N proteins were targeted by memory T cells, with median numbers of target regions of 13 and 4, respectively. A maximum of 47 regions were recognized by memory T cells for an individual. These data indicate that SARS-CoV-2-convalescent individuals maintain a substantial breadth of memory T cells for at least several months following infection. Broader SARS-CoV-2-specific CD4+ T cell responses, relative to CD8+ T cell responses, were observed for the S but not the N protein, suggesting that antigen presentation is different between viral proteins. The binding affinity of predicted CD8+ T cell epitopes to HLA class I molecules in these regions was preserved for the Delta variant and at 94 to 96% for SARS-CoV-2 Omicron subvariants, suggesting that the amino acid changes in these variants do not have a major impact on antigen presentation to SARS-CoV-2-specific CD8+ T cells. IMPORTANCE RNA viruses, including SARS-CoV-2, evade host immune responses through mutations. As broader T cell responses against multiple viral proteins could minimize the impact of each single amino acid mutation, the breadth of memory T cells would be one essential parameter for effective protection. In this study, breadth of memory T cells to S and N proteins was assessed in COVID-19-convalescent individuals. While broad T cell responses were induced against both proteins, the ratio of N to S proteins for breadth of T cell responses was significantly higher in milder cases. The breadth of CD4+ and CD8+ T cell responses was also significantly different between S and N proteins, suggesting different contributions of N and S protein-specific T cells for COVID-19 control. Most CD8+ T cell epitopes in the immunodominant regions maintained their HLA binding to SARS-CoV-2 Omicron subvariants. Our study provides insights into understanding the protective efficacy of SARS-CoV-2-specific memory T cells against reinfection.
Collapse
Affiliation(s)
- Thi Thu Thao Dang
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Alitzel Anzurez
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Shoji Miki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Mark de Souza
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
294
|
da Silva Antunes R, Grifoni A, Frazier A, Weiskopf D, Sette A. An update on studies characterizing adaptive immune responses in SARS-CoV-2 infection and COVID-19 vaccination. Int Immunol 2023; 35:353-359. [PMID: 37148294 PMCID: PMC10406159 DOI: 10.1093/intimm/dxad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
In this brief opinion piece, we highlight our studies characterizing adaptive SARS-CoV-2 immune responses in infection and vaccination, and the ability of SARS-CoV-2-specific T cells to recognize emerging variants of concern, and the role of pre-existing cross-reactive T cells. In the context of the debate on correlates of protection, the pandemic's progression in the past 3 years underlined the need to consider how different adaptive immune responses might differentially contribute to protection from SARS-CoV-2 infection versus COVID-19 disease. Lastly, we discuss how cross-reactive T cell responses may be useful in generating a broad adaptive immunity, recognizing different variants and viral families. Considering vaccines with broadly conserved antigens could improve preparedness for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
295
|
Hurst JH, Mohan AA, Dalapati T, George IA, Aquino JN, Lugo DJ, Pfeiffer TS, Rodriguez J, Rotta AT, Turner NA, Burke TW, McClain MT, Henao R, DeMarco CT, Louzao R, Denny TN, Walsh KM, Xu Z, Mejias A, Ramilo O, Woods CW, Kelly MS. Differential host responses within the upper respiratory tract and peripheral blood of children and adults with SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.31.23293337. [PMID: 37577568 PMCID: PMC10418569 DOI: 10.1101/2023.07.31.23293337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Age is among the strongest risk factors for severe outcomes from SARS-CoV-2 infection. We sought to evaluate associations between age and both mucosal and systemic host responses to SARS-CoV-2 infection. We profiled the upper respiratory tract (URT) and peripheral blood transcriptomes of 201 participants (age range of 1 week to 83 years), including 137 non-hospitalized individuals with mild SARS-CoV-2 infection and 64 uninfected individuals. Among uninfected children and adolescents, young age was associated with upregulation of innate and adaptive immune pathways within the URT, suggesting that young children are primed to mount robust mucosal immune responses to exogeneous respiratory pathogens. SARS-CoV-2 infection was associated with broad induction of innate and adaptive immune responses within the URT of children and adolescents. Peripheral blood responses among SARS-CoV-2-infected children and adolescents were dominated by interferon pathways, while upregulation of myeloid activation, inflammatory, and coagulation pathways was observed only in adults. Systemic symptoms among SARS-CoV-2-infected subjects were associated with blunted innate and adaptive immune responses in the URT and upregulation of many of these same pathways within peripheral blood. Finally, within individuals, robust URT immune responses were correlated with decreased peripheral immune activation, suggesting that effective immune responses in the URT may promote local viral control and limit systemic immune activation and symptoms. These findings demonstrate that there are differences in immune responses to SARS-CoV-2 across the lifespan, including between young children and adolescents, and suggest that these varied host responses contribute to observed differences in the clinical presentation of SARS-CoV-2 infection by age. One Sentence Summary Age is associated with distinct upper respiratory and peripheral blood transcriptional responses among children and adults with SARS-CoV-2 infection.
Collapse
|
296
|
Yin K, Peluso MJ, Luo X, Thomas R, Shin MG, Neidleman J, Andrew A, Young K, Ma T, Hoh R, Anglin K, Huang B, Argueta U, Lopez M, Valdivieso D, Asare K, Deveau TM, Munter SE, Ibrahim R, Ständker L, Lu S, Goldberg SA, Lee SA, Lynch KL, Kelly JD, Martin JN, Münch J, Deeks SG, Henrich TJ, Roan NR. Long COVID manifests with T cell dysregulation, inflammation, and an uncoordinated adaptive immune response to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527892. [PMID: 36798286 PMCID: PMC9934605 DOI: 10.1101/2023.02.09.527892] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Long COVID (LC), a type of post-acute sequelae of SARS-CoV-2 infection (PASC), occurs after at least 10% of SARS-CoV-2 infections, yet its etiology remains poorly understood. Here, we used multiple "omics" assays (CyTOF, RNAseq/scRNAseq, Olink) and serology to deeply characterize both global and SARS-CoV-2-specific immunity from blood of individuals with clear LC and non-LC clinical trajectories, 8 months following infection and prior to receipt of any SARS-CoV-2 vaccine. Our analysis focused on deep phenotyping of T cells, which play important roles in immunity against SARS-CoV-2 yet may also contribute to COVID-19 pathogenesis. Our findings demonstrate that individuals with LC exhibit systemic inflammation and immune dysregulation. This is evidenced by global differences in T cell subset distribution in ways that imply ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. Individuals with LC harbored increased frequencies of CD4+ T cells poised to migrate to inflamed tissues, and exhausted SARS-CoV-2-specific CD8+ T cells. They also harbored significantly higher levels of SARS-CoV-2 antibodies, and in contrast to non-LC individuals, exhibited a mis-coordination between their SARS-CoV-2-specific T and B cell responses. RNAseq/scRNAseq and Olink analyses similarly revealed immune dysregulatory mechanisms, along with non-immune associated perturbations, in individuals with LC. Collectively, our data suggest that proper crosstalk between the humoral and cellular arms of adaptive immunity has broken down in LC, and that this, perhaps in the context of persistent virus, leads to the immune dysregulation, inflammation, and clinical symptoms associated with this debilitating condition.
Collapse
Affiliation(s)
- Kailin Yin
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Xiaoyu Luo
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Reuben Thomas
- Gladstone Institutes, University of California, San Francisco, USA
| | - Min-Gyoung Shin
- Gladstone Institutes, University of California, San Francisco, USA
| | - Jason Neidleman
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Alicer Andrew
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Kyrlia Young
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Tongcui Ma
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Khamal Anglin
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Beatrice Huang
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Urania Argueta
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Monica Lopez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Daisy Valdivieso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Kofi Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Sadie E Munter
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Rania Ibrahim
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Meyerhofstrasse 1, Ulm, Germany
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Sulggi A Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, USA
| | - Kara L Lynch
- Division of Laboratory Medicine, University of California, San Francisco, USA
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Jan Münch
- Core Facility Functional Peptidomics, Ulm University Medical Center, Meyerhofstrasse 1, Ulm, Germany
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, USA
- Department of Urology, University of California, San Francisco, USA
| |
Collapse
|
297
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
298
|
Papadopoulou A, Karavalakis G, Papadopoulou E, Xochelli A, Bousiou Z, Vogiatzoglou A, Papayanni PG, Georgakopoulou A, Giannaki M, Stavridou F, Vallianou I, Kammenou M, Varsamoudi E, Papadimitriou V, Giannaki C, Sileli M, Stergiouda Z, Stefanou G, Kourlaba G, Gounelas G, Triantafyllidou M, Siotou E, Karaglani A, Zotou E, Chatzika G, Boukla A, Papalexandri A, Koutra MG, Apostolou D, Pitsiou G, Morfesis P, Doumas M, Karampatakis T, Kapravelos N, Bitzani M, Theodorakopoulou M, Serasli E, Georgolopoulos G, Sakellari I, Fylaktou A, Tryfon S, Anagnostopoulos A, Yannaki E. SARS-CoV-2-specific T cell therapy for severe COVID-19: a randomized phase 1/2 trial. Nat Med 2023; 29:2019-2029. [PMID: 37460756 DOI: 10.1038/s41591-023-02480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
Despite advances, few therapeutics have shown efficacy in severe coronavirus disease 2019 (COVID-19). In a different context, virus-specific T cells have proven safe and effective. We conducted a randomized (2:1), open-label, phase 1/2 trial to evaluate the safety and efficacy of off-the-shelf, partially human leukocyte antigen (HLA)-matched, convalescent donor-derived severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells (CoV-2-STs) in combination with standard of care (SoC) in patients with severe COVID-19 compared to SoC during Delta variant predominance. After a dose-escalated phase 1 safety study, 90 participants were randomized to receive CoV-2-ST+SoC (n = 60) or SoC only (n = 30). The co-primary objectives of the study were the composite of time to recovery and 30-d recovery rate and the in vivo expansion of CoV-2-STs in patients receiving CoV-2-ST+SoC over SoC. The key secondary objective was survival on day 60. CoV-2-ST+SoC treatment was safe and well tolerated. The study met the primary composite endpoint (CoV-2-ST+SoC versus SoC: recovery rate 65% versus 38%, P = 0.017; median recovery time 11 d versus not reached, P = 0.052, respectively; rate ratio for recovery 1.71 (95% confidence interval 1.03-2.83, P = 0.036)) and the co-primary objective of significant CoV-2-ST expansion compared to SοC (CoV-2-ST+SoC versus SoC, P = 0.047). Overall, in hospitalized patients with severe COVID-19, adoptive immunotherapy with CoV-2-STs was feasible and safe. Larger trials are needed to strengthen the preliminary evidence of clinical benefit in severe COVID-19. EudraCT identifier: 2021-001022-22 .
Collapse
Affiliation(s)
- Anastasia Papadopoulou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - George Karavalakis
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Efthymia Papadopoulou
- Department of Respiratory Medicine, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki, Greece
| | - Zoi Bousiou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - Penelope-Georgia Papayanni
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aphrodite Georgakopoulou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Giannaki
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Fani Stavridou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Ioanna Vallianou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria Kammenou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Evangelia Varsamoudi
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Vasiliki Papadimitriou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Chrysavgi Giannaki
- 'A' Intensive Care Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria Sileli
- 'B' Intensive Care Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Zoi Stergiouda
- Department of Anesthesiology, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, Tripolis, Greece
| | | | - Maria Triantafyllidou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Eleni Siotou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - Eleni Zotou
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Chatzika
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki, Greece
| | - Anna Boukla
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki, Greece
| | - Apostolia Papalexandri
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria-Georgia Koutra
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Dimitra Apostolou
- Department of Respiratory Failure, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Pitsiou
- Department of Respiratory Failure, George Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Morfesis
- 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michalis Doumas
- 2nd Propedeutic Department of Internal Medicine, Hippokrateio Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Militsa Bitzani
- 'A' Intensive Care Unit, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria Theodorakopoulou
- National and Kapodistrian University of Athens, Evaggelismos General Hospital, Athens, Greece
| | - Eva Serasli
- Department of Respiratory Medicine, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Grigorios Georgolopoulos
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Ioanna Sakellari
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki, Greece
| | - Stavros Tryfon
- Department of Respiratory Medicine, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematopoietic Cell Transplantation Unit, Department of Hematology Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
299
|
Feng GW, Wang ZF, He P, Lan QY, Ni L, Yang YZ, Wang CF, Cui TT, Huang LL, Yan YQ, Jiang ZW, Yang Q, Yu BW, Han X, Chen JJ, Yang SY, Yuan L, Zhou LY, Liu G, Li K, Huang Z, Zhao JC, Hu ZY, Xie ZQ. Safety, tolerability, and immunogenicity of a CpG/Alum adjuvanted SARS-CoV-2 recombinant protein vaccine (ZR202-CoV) in healthy adults: Preliminary report of a phase 1, randomized, double-blind, placebo-controlled, dose-escalation trial. Hum Vaccin Immunother 2023; 19:2262635. [PMID: 37881130 PMCID: PMC10644802 DOI: 10.1080/21645515.2023.2262635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
This was a phase 1 dose-escalation study of ZR202-CoV, a recombinant protein vaccine candidate containing a pre-fusion format of the spike (S)-protein (S-trimer) combined with the dual-adjuvant system of Alum/CpG. A total of 230 participants were screened and 72 healthy adults aged 18-59 years were enrolled and randomized to receive two doses at a 28-day interval of three different ZR202-CoV formulations or normal saline. We assessed the safety for 28 days after each vaccination and collected blood samples for immunogenicity evaluation. All formulations of ZR202-CoV were well-tolerated, with no observed solicited adverse events ≥ Grade 3 within 7 days after vaccination. No unsolicited adverse events ≥ Grade 3, or serious adverse events related to vaccination occurred as determined by the investigator. After the first dose, detectable immune responses were observed in all subjects. All subjects that received ZR202-CoV seroconverted at 14 days after the second dose by S-binding IgG antibody, pseudovirus and live-virus based neutralizing antibody assays. S-binding response (GMCs: 2708.7 ~ 4050.0 BAU/mL) and neutralizing activity by pseudovirus (GMCs: 363.1 ~ 627.0 IU/mL) and live virus SARS-CoV-2 (GMT: 101.7 ~ 175.0) peaked at 14 days after the second dose of ZR202-CoV. The magnitudes of immune responses compared favorably with COVID-19 vaccines with reported protective efficacy.
Collapse
Affiliation(s)
- Guang-Wei Feng
- Vaccine Clinical Research Center, Henan Provincial Center for Disease Control and Prevention, Zhenzhou, HA, China
| | - Zhong-Fang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
- Division of Drug and Vaccine Research, Guangzhou Laboratory, Bioland, Guangzhou, GD, China
| | - Peng He
- Department of Hepatitis and Enterovirus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qin-Ying Lan
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Ling Ni
- School of Medicine, Tsinghua University, Beijing, China
| | - Ya-Zheng Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Chen-Fei Wang
- Department of Hepatitis and Enterovirus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Ting-Ting Cui
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
| | - Li-Li Huang
- Vaccine Clinical Research Center, Henan Provincial Center for Disease Control and Prevention, Zhenzhou, HA, China
| | - Yong-Qiang Yan
- Vaccine Program Office, Xiangcheng County Center for Disease Control and Prevention, Xiangcheng, HA, China
| | - Zhi-Wei Jiang
- Statistics and Decision Sicence, Beijing Key Tech Statistical Consulting Co. Ltd, Beijing, China
| | - Qing Yang
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Bang-Wei Yu
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Xi Han
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Jing-Jing Chen
- R&D Department, Walvax Biotechnology Co. Ltd, Kunming, Yunnan, China
| | - Shu-Yuan Yang
- R&D Department, Walvax Biotechnology Co. Ltd, Kunming, Yunnan, China
| | - Lin Yuan
- R&D Department, Walvax Biotechnology Co. Ltd, Kunming, Yunnan, China
| | - Ling-Yun Zhou
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Ge Liu
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Ke Li
- R&D Department, Shanghai Zerun Biotechnology Co. Ltd, Shanghai, China
| | - Zhen Huang
- R&D Department, Walvax Biotechnology Co. Ltd, Kunming, Yunnan, China
| | - Jin-Cun Zhao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
- Division of Drug and Vaccine Research, Guangzhou Laboratory, Bioland, Guangzhou, GD, China
| | - Zhong-Yu Hu
- Department of Hepatitis and Enterovirus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhi-Qiang Xie
- Vaccine Clinical Research Center, Henan Provincial Center for Disease Control and Prevention, Zhenzhou, HA, China
| |
Collapse
|
300
|
Rotulo GA, Palma P. Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatr Res 2023; 94:434-442. [PMID: 36879079 PMCID: PMC9987407 DOI: 10.1038/s41390-023-02549-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Coronavirus disease 2019 in children presents with milder clinical manifestations than in adults. On the other hand, the presence of a wide range of inflammatory manifestations, including multisystem inflammatory syndrome in children (MIS-C), in the period after infection suggests a particular susceptibility of some children toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Both protective factors that prevent evolution to severe forms and risk factors for post-infectious conditions are likely to be found in age-related differences in the immune system. The prompt innate response with type I IFN production and the generation of neutralizing antibodies play a crucial role in containing the infection. The greater number of naive and regulatory cells in children helps to avoid the cytokine storm while the causes of the intense inflammatory response in MIS-C need to be elucidated. This review aims to analyze the main results of the recent literature assessing immune response to SARS-CoV-2 over the pediatric age group. We summarized such observations by dividing them into innate and acquired immunity, then reporting how altered immune responses can determine post-infectious conditions. IMPACT: The main immune markers of acute SARS-CoV-2 infection in children are summarized in this review. This paper reports a broad overview of age-related differences in the immune response to SARS-CoV-2 and emerging post-infection conditions. A summary of currently available therapies for the pediatric age group is provided.
Collapse
Affiliation(s)
- Gioacchino Andrea Rotulo
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", 00185, Rome, Italy.
| |
Collapse
|