251
|
Recabal A, Caprile T, García-Robles MDLA. Hypothalamic Neurogenesis as an Adaptive Metabolic Mechanism. Front Neurosci 2017; 11:190. [PMID: 28424582 PMCID: PMC5380718 DOI: 10.3389/fnins.2017.00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
In the adult brain, well-characterized neurogenic niches are located in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the hippocampus. In both regions, neural precursor cells (NPCs) share markers of embryonic radial glia and astroglial cells, and in vitro clonal expansion of these cells leads to neurosphere formation. It has also been more recently demonstrated that neurogenesis occurs in the adult hypothalamus, a brain structure that integrates peripheral signals to control energy balance and dietary intake. The NPCs of this region, termed tanycytes, are ependymal-glial cells, which comprise the walls of the infundibular recess of the third ventricle and contact the median eminence. Thus, tanycytes are in a privileged position to detect hormonal, nutritional and mitogenic signals. Recent studies reveal that in response to nutritional signals, tanycytes are capable of differentiating into orexigenic or anorexigenic neurons, suggesting that these cells are crucial for control of feeding behavior. In this review, we discuss evidence, which suggests that hypothalamic neurogenesis may act as an additional adaptive mechanism in order to respond to changes in diet.
Collapse
Affiliation(s)
- Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile.,Laboratorio de Guía Axonal, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - Teresa Caprile
- Laboratorio de Guía Axonal, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - María de Los Angeles García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| |
Collapse
|
252
|
Oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics: Immunofluorescent localization in the mouse hypothalamus. Brain Res 2017; 1664:1-8. [PMID: 28347670 DOI: 10.1016/j.brainres.2017.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/07/2017] [Accepted: 03/20/2017] [Indexed: 11/24/2022]
Abstract
This study describes the localization of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, synthetic peptide leptin mimetics, in the hypothalamus of Swiss Webster and C57BL/6J wild-type mice, leptin-deficient ob/ob mice, and leptin-resistant diet-induced obese (DIO) mice. The mice were given [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in 0.3% dodecyl maltoside by oral gavage. Once peak serum concentrations were reached, the mice received a lethal dose of pentobarbital and were subjected to intracardiac perfusion fixation. The brains were excised, post-fixed in paraformaldehyde, and cryo-protected in sucrose. Free-floating frozen coronal sections were cut at 25-µm and processed for imaging by immunofluorescence microscopy. In all four strains of mice, dense staining was concentrated in the area of the median eminence, at the base and/or along the inner wall of the third ventricle, and in the brain parenchyma at the level of the arcuate nucleus. These results indicate that [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 cross the blood-brain barrier and concentrate in an area of the hypothalamus known to regulate energy balance and glucose homeostasis. Most noteworthy is the localization of [D-Leu-4]-OB3 immunoreactivity within the hypothalamus of DIO mice via a conduit that is closed to leptin in this rodent model, and in most cases of human obesity. Together with our previous studies describing the effects of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on energy balance, glucose regulation, and signal transduction pathway activation, these findings are consistent with a central mechanism of action for these synthetic peptide leptin mimetics, and suggest their potential usefulness in the management of leptin-resistant obesity and type 2 diabetes in humans.
Collapse
|
253
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
254
|
Lewis JE, Ebling FJP. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol 2017; 8:79. [PMID: 28344570 PMCID: PMC5344904 DOI: 10.3389/fneur.2017.00079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting temperate and polar regions. Examples in mammals include changes in appetite and body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and seasonal reproduction. The timing of these seasonal cycles reflects an interaction of changing environmental signals, such as daylength, and intrinsic rhythmic processes: circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the focus of most mechanistic studies has been on neuronal systems in the hypothalamus. Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tanycytes as key pathways in seasonal timing. The pars tuberalis expresses a high density of melatonin receptors, so is highly responsive to changes in the nocturnal secretion of melatonin from the pineal gland as photoperiod changes across the year. The pars tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, and they also send elaborate projections through the arcuate nucleus, many of which terminate on capillaries in the median eminence. This anatomy underlies their function as sensors of nutrients in the circulation, and as regulators of transport of hormones and metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal changes in gene expression in tanycytes, for example, those controlling transport and metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role in the initial development of the brain, and experimental manipulation of thyroid hormone availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse of developmental mechanisms in the adult hypothalamus and that tanycytes are key orchestrators of these processes.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
255
|
Frago LM, Chowen JA. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin. Int J Mol Sci 2017; 18:ijms18030536. [PMID: 28257088 PMCID: PMC5372552 DOI: 10.3390/ijms18030536] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 12/31/2022] Open
Abstract
Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin's actions within the brain.
Collapse
Affiliation(s)
- Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain.
| |
Collapse
|
256
|
Dorfman MD, Krull JE, Douglass JD, Fasnacht R, Lara-Lince F, Meek TH, Shi X, Damian V, Nguyen HT, Matsen ME, Morton GJ, Thaler JP. Sex differences in microglial CX3CR1 signalling determine obesity susceptibility in mice. Nat Commun 2017; 8:14556. [PMID: 28223698 PMCID: PMC5322503 DOI: 10.1038/ncomms14556] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
Female mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression. Female Cx3cr1 knockout mice develop 'male-like' hypothalamic microglial accumulation and activation, accompanied by a marked increase in their susceptibility to diet-induced obesity. Conversely, increasing brain CX3CL1 levels in male mice through central pharmacological administration or virally mediated hypothalamic overexpression converts them to a 'female-like' metabolic phenotype with reduced microglial activation and body-weight gain. These data implicate sex differences in microglial activation in the modulation of energy homeostasis and identify CX3CR1 signalling as a potential therapeutic target for the treatment of obesity.
Collapse
Affiliation(s)
- Mauricio D. Dorfman
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Jordan E. Krull
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - John D. Douglass
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Rachael Fasnacht
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Fernando Lara-Lince
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Thomas H. Meek
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Xiaogang Shi
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Vincent Damian
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Hong T. Nguyen
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Miles E. Matsen
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Gregory J. Morton
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Joshua P. Thaler
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
257
|
Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans-Borgmeyer I, Liu B, Meyerhof W, Kasparov S, Dale N. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia 2017; 65:773-789. [PMID: 28205335 PMCID: PMC5363357 DOI: 10.1002/glia.23125] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/01/2023]
Abstract
Hypothalamic tanycytes are glial‐like glucosensitive cells that contact the cerebrospinal fluid of the third ventricle, and send processes into the hypothalamic nuclei that control food intake and body weight. The mechanism of tanycyte glucosensing remains undetermined. While tanycytes express the components associated with the glucosensing of the pancreatic β cell, they respond to nonmetabolisable glucose analogues via an ATP receptor‐dependent mechanism. Here, we show that tanycytes in rodents respond to non‐nutritive sweeteners known to be ligands of the sweet taste (Tas1r2/Tas1r3) receptor. The initial sweet tastant‐evoked response, which requires the presence of extracellular Ca2+, leads to release of ATP and a larger propagating Ca2+ response mediated by P2Y1 receptors. In Tas1r2 null mice the proportion of glucose nonresponsive tanycytes was greatly increased in these mice, but a subset of tanycytes retained an undiminished sensitivity to glucose. Our data demonstrate that the sweet taste receptor mediates glucosensing in about 60% of glucosensitive tanycytes while the remaining 40% of glucosensitive tanycytes use some other, as yet unknown mechanism.
Collapse
Affiliation(s)
- Heather Benford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Matei Bolborea
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eric Pollatzek
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kristina Lossow
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Beihui Liu
- School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Sergey Kasparov
- School of Physiology and Pharmacology, University of Bristol, United Kingdom
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
258
|
Douglass JD, Dorfman MD, Thaler JP. Glia: silent partners in energy homeostasis and obesity pathogenesis. Diabetologia 2017; 60:226-236. [PMID: 27986987 PMCID: PMC5253392 DOI: 10.1007/s00125-016-4181-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
Body weight stability requires homeostatic regulation to balance energy intake and energy expenditure. Research on this system and how it is affected by obesity has largely focused on the role of hypothalamic neurons as integrators of information about long-term fuel storage, short-term nutrient availability and metabolic demand. Recent studies have uncovered glial cells as additional contributors to energy balance regulation and obesity pathogenesis. Beginning with early work on leptin signalling in astrocytes, this area of research rapidly emerged after the discovery of hypothalamic inflammation and gliosis in obese rodents and humans. Current studies have revealed the involvement of a wide variety of glial cell types in the modulation of neuronal activity, regulation of hormone and nutrient availability, and participation in the physiological regulation of feeding behaviour. In addition, one glial type, microglia, has recently been implicated in susceptibility to diet-induced obesity. Together, these exciting new findings deepen our understanding of energy homeostasis regulation and raise the possibility of identifying novel mechanisms that contribute to the pathogenesis of obesity.
Collapse
Affiliation(s)
- John D Douglass
- UW Diabetes Institute and Department of Medicine, University of Washington, 850 Republican St, S248, Box 358055, Seattle, WA, 98109, USA
| | - Mauricio D Dorfman
- UW Diabetes Institute and Department of Medicine, University of Washington, 850 Republican St, S248, Box 358055, Seattle, WA, 98109, USA
| | - Joshua P Thaler
- UW Diabetes Institute and Department of Medicine, University of Washington, 850 Republican St, S248, Box 358055, Seattle, WA, 98109, USA.
| |
Collapse
|
259
|
Mirzadeh Z, Kusne Y, Duran-Moreno M, Cabrales E, Gil-Perotin S, Ortiz C, Chen B, Garcia-Verdugo JM, Sanai N, Alvarez-Buylla A. Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories. Nat Commun 2017; 8:13759. [PMID: 28067220 PMCID: PMC5477523 DOI: 10.1038/ncomms13759] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Multiciliated ependymal (E1) cells line the brain ventricles and are essential for brain homeostasis. We previously identified in the lateral ventricles a rare ependymal subpopulation (E2) with only two cilia and unique basal bodies. Here we show that E2 cells form a distinct biciliated epithelium extending along the ventral third into the fourth ventricle. In the third ventricle floor, apical profiles with only primary cilia define an additional uniciliated (E3) epithelium. E2 and E3 cells' ultrastructure, marker expression and basal processes indicate that they correspond to subtypes of tanycytes. Using sonic hedgehog lineage tracing, we show that the third and fourth ventricle E2 and E3 epithelia originate from the anterior floor plate. E2 and E3 cells complete their differentiation 2-3 weeks after birth, suggesting a link to postnatal maturation. These data reveal discrete bands of E2 and E3 cells that may relay information from the CSF to underlying neural circuits along the ventral midline.
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - Yael Kusne
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - Maria Duran-Moreno
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, CIBERNED, Universidad de Valencia, Valencia 46980, Spain
| | - Elaine Cabrales
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - Sara Gil-Perotin
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, CIBERNED, Universidad de Valencia, Valencia 46980, Spain
| | - Christian Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, CIBERNED, Universidad de Valencia, Valencia 46980, Spain
| | - Nader Sanai
- Division of Neurological Surgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, 35 Medical Center Way, Room RMB-1036, Campus Box 0525, San Francisco, California 94143, USA
| |
Collapse
|
260
|
Jais A, Brüning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 2017; 127:24-32. [PMID: 28045396 DOI: 10.1172/jci88878] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last years, hypothalamic inflammation has been linked to the development and progression of obesity and its sequelae. There is accumulating evidence that this inflammation not only impairs energy balance but also contributes to obesity-associated insulin resistance. Elevated activation of key inflammatory mediators such as JNK and IκB kinase (IKK) occurs rapidly upon consumption of a high-fat diet, even prior to significant weight gain. This activation of hypothalamic inflammatory pathways results in the uncoupling of caloric intake and energy expenditure, fostering overeating and further weight gain. In addition, these inflammatory processes contribute to obesity-associated insulin resistance and deterioration of glucose metabolism via altered neurocircuit functions. An understanding of the contributions of different neuronal and non-neuronal cell types to hypothalamic inflammatory processes, and delineation of the differences and similarities between acute and chronic activation of these inflammatory pathways, will be critical for the development of novel therapeutic strategies for the treatment of obesity and metabolic syndrome.
Collapse
|
261
|
Chen W, Balland E, Cowley MA. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology 2017; 104:364-381. [PMID: 28122381 DOI: 10.1159/000455865] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Physiology/Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
262
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
263
|
Leon-Mercado L, Herrera Moro Chao D, Basualdo MDC, Kawata M, Escobar C, Buijs RM. The Arcuate Nucleus: A Site of Fast Negative Feedback for Corticosterone Secretion in Male Rats. eNeuro 2017; 4:ENEURO.0350-16.2017. [PMID: 28275717 PMCID: PMC5334455 DOI: 10.1523/eneuro.0350-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/04/2022] Open
Abstract
Variations in circulating corticosterone (Cort) are driven by the paraventricular nucleus of the hypothalamus (PVN), mainly via the sympathetic autonomic nervous system (ANS) directly stimulating Cort release from the adrenal gland and via corticotropin-releasing hormone targeting the adenohypophysis to release adrenocorticotropic hormone (ACTH). Cort feeds back through glucocorticoid receptors (GRs). Here we show in male Wistar rats that PVN neurons projecting to the adrenal gland do not express GRs, leaving the question of how the ANS in the PVN gets information about circulating Cort levels to control the adrenal. Since the arcuate nucleus (ARC) shows a less restrictive blood-brain barrier, expresses GRs, and projects to the PVN, we investigated whether the ARC can detect and produce fast adjustments of circulating Cort. In low Cort conditions (morning), local microdialysis in the ARC with type I GR antagonist produced a fast and sustained increase of Cort. This was not observed with a type II antagonist. At the circadian peak levels of Cort (afternoon), a type II GR antagonist, but not a type I antagonist, increased Cort levels but not ACTH levels. Antagonist infusions in the PVN did not modify circulating Cort levels, demonstrating the specificity of the ARC to give Cort negative feedback. Furthermore, type I and II GR agonists in the ARC prevented the increase of Cort after stress, demonstrating the role of the ARC as sensor to modulate Cort release. Our findings show that the ARC may be essential to sense blood levels of Cort and adapt Cort secretion depending on such conditions as stress or time of day.
Collapse
Affiliation(s)
- Luis Leon-Mercado
- Departamento De Biología Celular y Fisiología, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, 04510 Mexico City, Mexico
| | - Daniela Herrera Moro Chao
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - María del Carmen Basualdo
- Departamento De Biología Celular y Fisiología, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, 04510 Mexico City, Mexico
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- School of Health Sciences, Bukkyo University, Kyoto 603-8301, Japan
| | - Carolina Escobar
- Departamento De Anatomía, Facultad De Medicina, Universidad Nacional Autónoma De México, 04510 Mexico City, Mexico
| | - Ruud M. Buijs
- Departamento De Biología Celular y Fisiología, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, 04510 Mexico City, Mexico
| |
Collapse
|
264
|
Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, Argente J, Chowen JA. Glial cells and energy balance. J Mol Endocrinol 2017; 58:R59-R71. [PMID: 27864453 DOI: 10.1530/jme-16-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Guerra-Cantera
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Argente
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
265
|
Abstract
Many of the neurocircuits and hormones known to underlie the sensations of hunger and satiety also substantially alter the activity of the dopaminergic reward system. Much interest lies in the ways that hunger, satiety, and reward tie together, as the epidemic of obesity seems tied to the recent development and mass availability of highly palatable foods. In this review, we will first discuss the basic neurocircuitry of the midbrain and basal forebrain reward system. We will elaborate how several important mediators of hunger-the agouti-related protein neurons of the arcuate nucleus, the lateral hypothalamic nucleus, and ghrelin-enhance the sensitivity of the dopaminergic reward system. Then, we will elaborate how mediators of satiety-the nucleus tractus solitarius, pro-opiomelanocortin neurons of the arcuate nucleus, and its peripheral hormonal influences such as leptin-reduce the reward system sensitivity. We hope to provide a template by which future research may identify the ways in which highly rewarding foods bypass this balanced system to produce excessive food consumption.
Collapse
Affiliation(s)
- Ryan Michael Cassidy
- Brown Foundation of the Institute of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, Neuroscience Program MD Anderson Cancer Center and UTHealth Graduate School of Biological Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- *Correspondence: Ryan Michael Cassidy,
| | - Qingchun Tong
- Brown Foundation of the Institute of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, Neuroscience Program MD Anderson Cancer Center and UTHealth Graduate School of Biological Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
266
|
Burnett LC, Skowronski AA, Rausch R, LeDuc CA, Leibel RL. Determination of the half-life of circulating leptin in the mouse. Int J Obes (Lond) 2016; 41:355-359. [PMID: 28025576 PMCID: PMC5340585 DOI: 10.1038/ijo.2016.238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/16/2016] [Accepted: 12/11/2016] [Indexed: 01/01/2023]
Abstract
Background The adipokine hormone, leptin, is a major component of body weight homeostasis. Numerous studies have been performed administering recombinant mouse leptin as an experimental reagent; however, the half life of circulating leptin following exogenous administration of recombinant mouse leptin has not been carefully evaluated. Methods Exogenous leptin was administered (3 mg leptin/kg body weight) to ten week old fasted non-obese male mice and plasma was serially collected at seven time points; plasma leptin concentration was measured by ELISA at each time point to estimate the circulating half life of mouse leptin. Results Under the physiological circumstances tested, the half life of mouse leptin was 40.2 (+/− 2.2) minutes. Circulating leptin concentrations up to one hour following exogenous leptin administration were 170-fold higher than endogenous levels at fasting. Conclusions The half life of mouse leptin was determined to be 40.2 minutes. These results should be useful in planning and interpreting experiments employing exogenous leptin. The unphysiological elevations in circulating leptin resulting from widely used dosing regimens for exogenous leptin are likely to confound inferences regarding some aspects of the hormone’s clinical biology.
Collapse
Affiliation(s)
- L C Burnett
- Columbia University Institute of Human Nutrition, New York, NY, USA.,Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA
| | - A A Skowronski
- Columbia University Institute of Human Nutrition, New York, NY, USA.,Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA
| | - R Rausch
- Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA
| | - C A LeDuc
- Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA.,New York Obesity Research Center, New York, NY, USA
| | - R L Leibel
- Columbia University Department of Pediatrics, Division of Molecular Genetics, New York, NY, USA.,Naomi Berrie Diabetes Center, New York, NY, USA.,New York Obesity Research Center, New York, NY, USA
| |
Collapse
|
267
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
268
|
Endospanin1 affects oppositely body weight regulation and glucose homeostasis by differentially regulating central leptin signaling. Mol Metab 2016; 6:159-172. [PMID: 28123946 PMCID: PMC5220283 DOI: 10.1016/j.molmet.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
The hypothalamic arcuate nucleus (ARC) is a major integration center for energy and glucose homeostasis that responds to leptin. Resistance to leptin in the ARC is an important component of the development of obesity and type 2 diabetes. Recently, we showed that Endospanin1 (Endo1) is a negative regulator of the leptin receptor (OBR) that interacts with OBR and retains the receptor inside the cell, leading to a decreased activation of the anorectic STAT3 pathway. Endo1 is up-regulated in the ARC of high fat diet (HFD)-fed mice, and its silencing in the ARC of lean and obese mice prevents and reverses the development of obesity. OBJECTIVE Herein we investigated whether decreased Endo1 expression in the hypothalamic ARC, associated with reduced obesity, could also ameliorate glucose homeostasis accordingly. METHODS We studied glucose homeostasis in lean or obese mice silenced for Endo1 in the ARC via stereotactic injection of shRNA-expressing lentiviral vectors. RESULTS We observed that despite being leaner, Endo1-silenced mice showed impaired glucose homeostasis on HFD. Mechanistically, we show that Endo1 interacts with p85, the regulatory subunit of PI3K, and mediates leptin-induced PI3K activation. CONCLUSIONS Our results thus define Endo1 as an important hypothalamic integrator of leptin signaling, and its silencing differentially regulates the OBR-dependent functions.
Collapse
Key Words
- ARC, arcuate nucleus
- BW, body weight
- CD, chow diet
- DIO, diet-induced obesity
- Diabetes
- Endo1, Endospanin1
- GTT, glucose tolerance test
- HFD, high fat diet
- Insulin
- LIF, leukemia inhibitory factor
- Leptin receptor
- OB-RGRP/Endospanin1
- OBR, leptin receptor
- Obesity
- PLA, proximity ligation assay
- T2D, type 2 diabetes
- ip, intraperitoneal
Collapse
|
269
|
Abstract
Chemo- or radiotherapy against dividing cells in the brain can promote obesity. Djogo et al. (2016) suggest that the loss of NG2 glia and diminished leptin action in the median eminence underlie this response, likely due to the loss of dendrites originating in the adjacent arcuate nucleus.
Collapse
Affiliation(s)
- Warren Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
270
|
Kim DW, Glendining KA, Grattan DR, Jasoni CL. Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring. Endocrinology 2016; 157:2229-42. [PMID: 27054554 DOI: 10.1210/en.2016-1014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The arcuate nucleus (ARC) regulates body weight in response to blood-borne signals of energy balance. Blood-brain barrier (BBB) permeability in the ARC is determined by capillary endothelial cells (ECs) and tanycytes. Tight junctions between ECs limit paracellular entry of blood-borne molecules into the brain, whereas EC transporters and fenestrations regulate transcellular entry. Tanycytes appear to form a barrier that prevents free diffusion of blood-borne molecules. Here we tested the hypothesis that gestation in an obese mother alters BBB permeability in the ARC of offspring. A maternal high-fat diet model was used to generate offspring from normal-weight (control) and obese dams (OffOb). Evans Blue diffusion into the ARC was higher in OffOb compared with controls, indicating that ARC BBB permeability was altered. Vessels investing the ARC in OffOb had more fenestrations than controls, although the total number of vessels was not changed. A reduced number of tanycytic processes in the ARC of OffOb was also observed. The putative transporters, Lrp1 and dysferlin, were up-regulated and tight junction components were differentially expressed in OffOb compared with controls. These data suggest that maternal obesity during pregnancy can compromise BBB formation in the fetus, leading to altered BBB function in the ARC after birth.
Collapse
Affiliation(s)
- Dong Won Kim
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - Kelly A Glendining
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| |
Collapse
|
271
|
Duquenne M, Dehouck B, Prevot V. Programming the Brain from the Womb: Maternal Obesity Perturbs the Hypothalamic Blood-Brain Barrier. Endocrinology 2016; 157:2201-3. [PMID: 27258761 DOI: 10.1210/en.2016-1262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Manon Duquenne
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, and University of Lille, Fédération Hospitalo-Universitaire 1,000 Days for Health, School of Medicine, F-59000 Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, and University of Lille, Fédération Hospitalo-Universitaire 1,000 Days for Health, School of Medicine, F-59000 Lille, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, and University of Lille, Fédération Hospitalo-Universitaire 1,000 Days for Health, School of Medicine, F-59000 Lille, France
| |
Collapse
|
272
|
Djogo T, Robins SC, Schneider S, Kryzskaya D, Liu X, Mingay A, Gillon CJ, Kim JH, Storch KF, Boehm U, Bourque CW, Stroh T, Dimou L, Kokoeva MV. Adult NG2-Glia Are Required for Median Eminence-Mediated Leptin Sensing and Body Weight Control. Cell Metab 2016; 23:797-810. [PMID: 27166944 DOI: 10.1016/j.cmet.2016.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/12/2016] [Accepted: 04/13/2016] [Indexed: 12/31/2022]
Abstract
While leptin is a well-known regulator of body fat mass, it remains unclear how circulating leptin is sensed centrally to maintain energy homeostasis. Here we show that genetic and pharmacological ablation of adult NG2-glia (also known as oligodendrocyte precursors), but not microglia, leads to primary leptin resistance and obesity in mice. We reveal that NG2-glia contact the dendritic processes of arcuate nucleus leptin receptor (LepR) neurons in the median eminence (ME) and that these processes degenerate upon NG2-glia elimination, which explains the consequential attenuation of these neurons' molecular and electrical responses to leptin. Our data therefore indicate that LepR dendrites in the ME represent the principal conduits of leptin's anorexigenic action and that NG2-glia are essential for their maintenance. Given that ME-directed X-irradiation confirmed the pharmacological and genetically mediated ablation effects on body weight, our findings provide a rationale for the known obesity risk associated with cranial radiation therapy.
Collapse
Affiliation(s)
- Tina Djogo
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Sarah C Robins
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Sarah Schneider
- Physiological Genomics, Institute of Physiology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Darya Kryzskaya
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Xiaohong Liu
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew Mingay
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Colleen J Gillon
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Joo Hyun Kim
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Charles W Bourque
- Centre for Research in Neuroscience, Montreal General Hospital, McGill University, Montreal, QC H3G 1A4, Canada
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Leda Dimou
- Physiological Genomics, Institute of Physiology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Maia V Kokoeva
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
273
|
Knudsen LB, Secher A, Hecksher-Sørensen J, Pyke C. Long-acting glucagon-like peptide-1 receptor agonists have direct access to and effects on pro-opiomelanocortin/cocaine- and amphetamine-stimulated transcript neurons in the mouse hypothalamus. J Diabetes Investig 2016; 7 Suppl 1:56-63. [PMID: 27186357 PMCID: PMC4854506 DOI: 10.1111/jdi.12463] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
Liraglutide is a glucagon‐like peptide‐1 receptor (GLP‐1R) agonist marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide reduces bodyweight, and has recently also been approved for the obesity indication. Acutely, GLP‐1 markedly reduces gastric emptying, and this effect was previously believed to at least partly explain the effect on bodyweight loss. However, recent studies in both humans and animals have shown that GLP‐1R agonists, such as liraglutide, that lead to pharmacological concentrations for 24 h/day only have a minor effect on gastric emptying; such an effect is unlikely to have lasting effects on appetite reduction. Liraglutide has been shown to have direct effects in the arcuate nucleus of the rodent brain, activating pro‐opiomelanocortin neurons and increasing levels of the cocaine‐ and amphetamine‐stimulated transcript neuropeptide messenger ribonucleic acid, which correlate nicely to clinical studies where liraglutide was shown to increase feelings of satiety. However, despite the lack of a GLP‐1R on agouti‐related peptide/neuropeptide Y neurons, liraglutide also was able to prevent a hunger associated increase in agouti‐related peptide and neuropeptide Y neuropeptide messenger ribonucleic acid, again with a strong correlation to clinical studies that document reduced hunger feelings in patients while taking liraglutide. Studies using fluorescent labeled liraglutide, as well as other GLP‐1R agonists, and analysis using single‐plane illumination microscopy show that such medium‐sized peptide‐based compounds can directly access not only circumventricular organs of the brain, but also directly access discrete regions in the hypothalamus. The direct effects of long‐acting GLP‐1R agonists in the hypothalamus are likely to be an important new pathway in understanding GLP‐1R agonist mediated weight loss.
Collapse
Affiliation(s)
| | - Anna Secher
- Novo Nordisk A/S Novo Nordisk Park Maaloev Denmark
| | | | - Charles Pyke
- Novo Nordisk A/S Novo Nordisk Park Maaloev Denmark
| |
Collapse
|
274
|
Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice. Mol Brain 2016; 9:39. [PMID: 27080240 PMCID: PMC4832494 DOI: 10.1186/s13041-016-0219-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/08/2016] [Indexed: 01/31/2023] Open
Abstract
Background Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. Results RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3rd ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. Conclusion Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0219-1) contains supplementary material, which is available to authorized users.
Collapse
|
275
|
Zhang ZY, Dodd GT, Tiganis T. Protein Tyrosine Phosphatases in Hypothalamic Insulin and Leptin Signaling. Trends Pharmacol Sci 2016; 36:661-674. [PMID: 26435211 DOI: 10.1016/j.tips.2015.07.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/01/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022]
Abstract
The hypothalamus is critical to the coordination of energy balance and glucose homeostasis. It responds to peripheral factors, such as insulin and leptin, that convey to the brain the degree of adiposity and the metabolic status of the organism. The development of leptin and insulin resistance in hypothalamic neurons appears to have a key role in the exacerbation of diet-induced obesity. In rodents, this has been attributed partly to the increased expression of the tyrosine phosphatases Protein Tyrosine Phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase (TCPTP), which attenuate leptin and insulin signaling. Deficiencies in PTP1B and TCPTP in the brain, or specific neurons, promote insulin and leptin signaling and prevent diet-induced obesity, type 2 diabetes mellitus (T2DM), and fatty liver disease. Although targeting phosphatases and hypothalamic circuits remains challenging, recent advances indicate that such hurdles might be overcome. Here, we focus on the roles of PTP1B and TCPTP in insulin and leptin signaling and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Garron T Dodd
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia.
| |
Collapse
|
276
|
Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 2016; 73:1457-77. [PMID: 26786898 PMCID: PMC11108307 DOI: 10.1007/s00018-016-2133-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.
Collapse
Affiliation(s)
- Obin Kwon
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Ki Woo Kim
- Department of Pharmacology, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
| |
Collapse
|
277
|
Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep 2016; 6:23673. [PMID: 27026049 PMCID: PMC4812252 DOI: 10.1038/srep23673] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/07/2016] [Indexed: 01/02/2023] Open
Abstract
Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons.
Collapse
|
278
|
Croizier S, Prevot V, Bouret SG. Leptin Controls Parasympathetic Wiring of the Pancreas during Embryonic Life. Cell Rep 2016; 15:36-44. [PMID: 27052164 DOI: 10.1016/j.celrep.2016.02.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/05/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022] Open
Abstract
The autonomic nervous system plays a critical role in glucose metabolism through both its sympathetic and parasympathetic branches, but the mechanisms that underlie the development of the autonomic innervation of the pancreas remain poorly understood. Here, we report that cholinergic innervation of pancreatic islets develops during mid-gestation under the influence of leptin. Leptin-deficient mice display a greater cholinergic innervation of pancreatic islets beginning in embryonic life, and this increase persists into adulthood. Remarkably, a single intracerebroventricular injection of leptin in embryos caused a permanent reduction in parasympathetic innervation of pancreatic β cells and long-term impairments in glucose homeostasis. These developmental effects of leptin involve a direct inhibitory effect on the outgrowth of preganglionic axons from the hindbrain. These studies reveal an unanticipated regulatory role of leptin on the parasympathetic nervous system during embryonic development and may have important implications for our understanding of the early mechanisms that contribute to diabetes.
Collapse
Affiliation(s)
- Sophie Croizier
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Vincent Prevot
- INSERM, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille 59045, France
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; INSERM, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille 59045, France.
| |
Collapse
|
279
|
Chowen JA, Argente-Arizón P, Freire-Regatillo A, Frago LM, Horvath TL, Argente J. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog Neurobiol 2016; 144:68-87. [PMID: 27000556 DOI: 10.1016/j.pneurobio.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain.
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
280
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
281
|
Fernandez G, Cabral A, Cornejo MP, De Francesco PN, Garcia-Romero G, Reynaldo M, Perello M. Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin-Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin. J Neuroendocrinol 2016; 28:12349. [PMID: 26661382 DOI: 10.1111/jne.12349] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/12/2015] [Accepted: 12/06/2015] [Indexed: 12/16/2022]
Abstract
Ghrelin is a stomach-derived octanoylated peptide hormone that plays a variety of well-established biological roles acting via its specific receptor known as growth hormone secretagogue receptor (GHSR). In plasma, a des-octanoylated form of ghrelin, named des-acyl ghrelin (DAG), also exists. DAG is suggested to be a signalling molecule that has specific targets, including the brain, and regulates some physiological functions. However, no specific receptor for DAG has been reported until now, and, consequently, the potential role of DAG as a hormone has remained a matter of debate. In the present study, we show that DAG specifically binds to and acts on a subset of arcuate nucleus (ARC) cells in a GHSR-independent manner. ARC cells labelled by a DAG fluorescent tracer include the neuropeptide Y (NPY) and non-NPY neurones. Given the well-established role of the ARC in appetite regulation, we tested the effect of centrally administered DAG on food intake. We found that DAG failed to affect dark phase feeding, as well as food intake, after a starvation period; however, it impaired the orexigenic actions of peripherally administered ghrelin. Thus, we conclude that DAG directly targets ARC neurones and antagonises the orexigenic effects of peripherally administered ghrelin.
Collapse
Affiliation(s)
- G Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - A Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - P N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - G Garcia-Romero
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - M Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology, [IMBICE dependent on the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| |
Collapse
|
282
|
The Effects of Leptin Replacement on Neural Plasticity. Neural Plast 2016; 2016:8528934. [PMID: 26881138 PMCID: PMC4735938 DOI: 10.1155/2016/8528934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Leptin, an adipokine synthesized and secreted mainly by the adipose tissue, has multiple effects on the regulation of food intake, energy expenditure, and metabolism. Its recently-approved analogue, metreleptin, has been evaluated in clinical trials for the treatment of patients with leptin deficiency due to mutations in the leptin gene, lipodystrophy syndromes, and hypothalamic amenorrhea. In such patients, leptin replacement therapy has led to changes in brain structure and function in intra- and extrahypothalamic areas, including the hippocampus. Furthermore, in one of those patients, improvements in neurocognitive development have been observed. In addition to this evidence linking leptin to neural plasticity and function, observational studies evaluating leptin-sufficient humans have also demonstrated direct correlation between blood leptin levels and brain volume and inverse associations between circulating leptin and risk for the development of dementia. This review summarizes the evidence in the literature on the role of leptin in neural plasticity (in leptin-deficient and in leptin-sufficient individuals) and its effects on synaptic activity, glutamate receptor trafficking, neuronal morphology, neuronal development and survival, and microglial function.
Collapse
|
283
|
Valdearcos M, Xu AW, Koliwad SK. Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 2015; 77:131-60. [PMID: 25668019 DOI: 10.1146/annurev-physiol-021014-071656] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.
Collapse
|
284
|
Brown RSE, Wyatt AK, Herbison RE, Knowles PJ, Ladyman SR, Binart N, Banks WA, Grattan DR. Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J 2015; 30:1002-10. [DOI: 10.1096/fj.15-276519] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Rosemary S. E. Brown
- Centre for NeurendocrinologyUniversity of OtagoDunedinNew Zealand
- Department of AnatomyOtago School of Medical SciencesUniversity of OtagoDunedinNew Zealand
| | - Amanda K. Wyatt
- Centre for NeurendocrinologyUniversity of OtagoDunedinNew Zealand
- Department of AnatomyOtago School of Medical SciencesUniversity of OtagoDunedinNew Zealand
| | - Ryan E. Herbison
- Centre for NeurendocrinologyUniversity of OtagoDunedinNew Zealand
- Department of AnatomyOtago School of Medical SciencesUniversity of OtagoDunedinNew Zealand
| | - Penelope J. Knowles
- Centre for NeurendocrinologyUniversity of OtagoDunedinNew Zealand
- Department of AnatomyOtago School of Medical SciencesUniversity of OtagoDunedinNew Zealand
| | - Sharon R. Ladyman
- Centre for NeurendocrinologyUniversity of OtagoDunedinNew Zealand
- Department of AnatomyOtago School of Medical SciencesUniversity of OtagoDunedinNew Zealand
| | - Nadine Binart
- INSERM U1185Faculté de Médecine Paris SudLe Kremlin‐BicêtreFrance
| | - William A. Banks
- Geriatrics Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care CenterSeattleWashingtonUSA
- Division of Gerontology and Geriatric MedicineDepartment of MedicineUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - David R. Grattan
- Centre for NeurendocrinologyUniversity of OtagoDunedinNew Zealand
- Department of AnatomyOtago School of Medical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
285
|
Tasker JG, Chen C, Fisher MO, Fu X, Rainville JR, Weiss GL. Endocannabinoid Regulation of Neuroendocrine Systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:163-201. [PMID: 26638767 DOI: 10.1016/bs.irn.2015.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hypothalamus is a part of the brain that is critical for sustaining life through its homeostatic control and integrative regulation of the autonomic nervous system and neuroendocrine systems. Neuroendocrine function in mammals is mediated mainly through the control of pituitary hormone secretion by diverse neuroendocrine cell groups in the hypothalamus. Cannabinoid receptors are expressed throughout the hypothalamus, and endocannabinoids have been found to exert pronounced regulatory effects on neuroendocrine function via modulation of the outputs of several neuroendocrine systems. Here, we review the physiological regulation of neuroendocrine function by endocannabinoids, focusing on the role of endocannabinoids in the neuroendocrine regulation of the stress response, food intake, fluid homeostasis, and reproductive function. Cannabis sativa (marijuana) has a long history of recreational and/or medicinal use dating back to ancient times. It was used as an analgesic, anesthetic, and antianxiety herb as early as 2600 B.C. The hedonic, anxiolytic, and mood-elevating properties of cannabis have also been cited in ancient records from different cultures. However, it was not until 1964 that the psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol, was isolated and its chemical structure determined (Gaoni & Mechoulam, 1964).
Collapse
Affiliation(s)
- Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA; Neuroscience Program, Tulane University, New Orleans, Louisiana, USA.
| | - Chun Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Marc O Fisher
- Neuroscience Program, Tulane University, New Orleans, Louisiana, USA
| | - Xin Fu
- Neuroscience Program, Tulane University, New Orleans, Louisiana, USA
| | - Jennifer R Rainville
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Grant L Weiss
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
286
|
Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia 2015; 64:425-39. [PMID: 26527258 PMCID: PMC4949630 DOI: 10.1002/glia.22938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/11/2022]
Abstract
Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus.
Collapse
Affiliation(s)
- Patrick N Stoney
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Diana Rodrigues
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Peter McCaffery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| |
Collapse
|
287
|
Santoro A, Mattace Raso G, Meli R. Drug targeting of leptin resistance. Life Sci 2015; 140:64-74. [DOI: 10.1016/j.lfs.2015.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/21/2022]
|
288
|
Friedman JM. Editorial. Life Sci 2015; 140:1-2. [DOI: 10.1016/j.lfs.2015.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
289
|
Goodman T, Hajihosseini MK. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci 2015; 9:387. [PMID: 26578855 PMCID: PMC4624852 DOI: 10.3389/fnins.2015.00387] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
There is a resurgent interest in tanycytes, a radial glial-like cell population occupying the floor and ventro-lateral walls of the third ventricle (3V). Tanycytes reside in close proximity to hypothalamic neuronal nuclei that regulate appetite and energy expenditure, with a subset sending projections into these nuclei. Moreover, tanycytes are exposed to 3V cerebrospinal fluid and have privileged access to plasma metabolites and hormones, through fenestrated capillaries. Indeed, some tanycytes act as conduits for trafficking of these molecules into the brain parenchyma. Tanycytes can also act as neural stem/progenitor cells, supplying the postnatal and adult hypothalamus with new neurons. Collectively, these findings suggest that tanycytes regulate and integrate important trophic and metabolic processes and possibly endow functional malleability to neuronal circuits of the hypothalamus. Hence, manipulation of tanycyte biology could provide a valuable tool for modulating hypothalamic functions such as energy uptake and expenditure in order to tackle prevalent eating disorders such as obesity and anorexia.
Collapse
Affiliation(s)
- Timothy Goodman
- School of Biological Sciences, University of East Anglia Norwich, UK
| | | |
Collapse
|
290
|
Pan W. From blood to brain through BBB and astrocytic signaling. Peptides 2015; 72:121-7. [PMID: 26111490 DOI: 10.1016/j.peptides.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022]
Abstract
In this Festschrift, I discuss the career and guiding principles to which Abba J. Kastin has adhered during the last 20 years we worked together. I briefly describe the history of our joint laboratory group, the context of studies of peptide permeation across the blood-brain barrier (BBB), and newer developments in the BBB Group as Abba steps down after serving 35 years as the founding Editor-in-Chief for Peptides. Abba's BBB studies on peptides have contributed to concepts in the neuroendocrinology of feeding and developed information on molecular trafficking across BBB cells. The astroglial leptin signaling studies and the interactions of sleep and BBB are two major directions, whereas the long-term MIF-1 project demarcates a tortuous road on translational research.
Collapse
Affiliation(s)
- Weihong Pan
- Biopotentials Sleep Center, Baton Rouge, LA 70809, USA.
| |
Collapse
|
291
|
Severi I, Senzacqua M, Mondini E, Fazioli F, Cinti S, Giordano A. Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration. Brain Res 2015; 1622:217-29. [PMID: 26133794 DOI: 10.1016/j.brainres.2015.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/29/2015] [Accepted: 06/21/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Fazioli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Center of Obesity, Università Politecnica delle Marche-United Hospitals, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
292
|
Balland E, Cowley MA. New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol 2015; 39:59-65. [PMID: 26410445 DOI: 10.1016/j.yfrne.2015.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
Abstract
Leptin resistance is one of the main challenges of obesity. To date, two levels of resistance have been identified, first a decreased rate of leptin uptake into the brain and secondly a diminished central response to leptin. New findings have identified the mechanisms of leptin transport and demonstrated that it can be rescued in obesity, but it did not overcome the problem of central resistance. Alteration in the actions of leptin following diet-induced obesity (DIO) appears to be a multifactorial condition. Several phosphatases are inhibiting leptin signaling pathways in a pathological way. Besides, hypothalamic inflammation alters the neuronal circuits that control metabolism. Recent studies describing both mechanisms (inhibition of leptin signaling and inflammation), have provided key insights to potential new targets for treatment. However, recent data showing that DIO mice may conserve a cellular and physiological response to endogenous leptin, highlights the need to redefine the concept of "leptin resistance".
Collapse
Affiliation(s)
- Eglantine Balland
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Michael A Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
293
|
Abstract
PURPOSE OF REVIEW Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these central nervous system responses may provide opportunities to develop new weight loss treatments. RECENT FINDINGS In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. Nevertheless, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. SUMMARY There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- Diabetes and Obesity Center of Excellence and Department of Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
294
|
Liu Y, Huang Y, Lee S, Bookout AL, Castorena CM, Wu H, Gautron L. PPARγ mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges. Front Neuroanat 2015; 9:120. [PMID: 26388745 PMCID: PMC4558427 DOI: 10.3389/fnana.2015.00120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/20/2015] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARγ signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARγ-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARγ mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARγ mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis (VOLT), and the subfornical organ. Within the hypothalamus, PPARγ was present at moderate levels in the suprachiasmatic nucleus (SCh) and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARγ was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARγ mRNA expression was upregulated in the SCh in response to fasting. Double in situ hybridization further demonstrated that PPARγ was primarily expressed in neurons rather than glia. Collectively, our observations provide a comprehensive map of PPARγ distribution in the intact adult mouse hypothalamus.
Collapse
Affiliation(s)
- Yang Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA ; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ying Huang
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Carlos M Castorena
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
295
|
Steinbusch L, Labouèbe G, Thorens B. Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol Metab 2015; 26:455-66. [PMID: 26163755 DOI: 10.1016/j.tem.2015.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/21/2022]
Abstract
Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Laura Steinbusch
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
296
|
Abstract
The endocrine hypothalamus constitutes those cells which project to the median eminence and secrete neurohormones into the hypophysial portal blood to act on cells of the anterior pituitary gland. The entire endocrine system is controlled by these peptides. In turn, the hypothalamic neuroendocrine cells are regulated by feedback signals from the endocrine glands and other circulating factors. The neuroendocrine cells are found in specific regions of the hypothalamus and are regulated by afferents from higher brain centers. Integrated function is clearly complex and the networks between and amongst the neuroendocrine cells allows fine control to achieve homeostasis. The entry of hormones and other factors into the brain, either via the cerebrospinal fluid or through fenestrated capillaries (in the basal hypothalamus) is important because it influences the extent to which feedback regulation may be imposed. Recent evidence of the passage of factors from the pars tuberalis and the median eminence casts a new layer in our understanding of neuroendocrine regulation. The function of neuroendocrine cells and the means by which pulsatile secretion is achieved is best understood for the close relationship between gonadotropin releasing hormone and luteinizing hormone, which is reviewed in detail. The secretion of other neurohormones is less rigid, so the relationship between hypothalamic secretion and the relevant pituitary hormones is more complex.
Collapse
Affiliation(s)
- I J Clarke
- Monash University, Department of Physiology, Clayton, Australia
| |
Collapse
|
297
|
Peng Y, Zeng W, Ye H, Han K, Dharmarajan V, Novick S, Wilson I, Griffin P, Friedman J, Lerner R. A General Method for Insertion of Functional Proteins within Proteins via Combinatorial Selection of Permissive Junctions. ACTA ACUST UNITED AC 2015; 22:1134-43. [DOI: 10.1016/j.chembiol.2015.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/12/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
|
298
|
Abstract
Obesity ensues from an imbalance between energy intake and expenditure that results from gene-environment interactions, which favour a positive energy balance. A society that promotes unhealthy food and encourages sedentary lifestyle (that is, an obesogenic environment) has become a major contributory factor in excess fat deposition in individuals predisposed to obesity. Energy homeostasis relies upon control of energy intake as well as expenditure, which is in part determined by the themogenesis of brown adipose tissue and mediated by the sympathetic nervous system. Several areas of the brain that constitute cognitive and autonomic brain systems, which in turn form networks involved in the control of appetite and thermogenesis, also contribute to energy homeostasis. These networks include the dopamine mesolimbic circuit, as well as the opioid, endocannabinoid and melanocortin systems. The activity of these networks is modulated by peripheral factors such as hormones derived from adipose tissue and the gut, which access the brain via the circulation and neuronal signalling pathways to inform the central nervous system about energy balance and nutritional status. In this Review, I focus on the determinants of energy homeostasis that have emerged as prominent factors relevant to obesity.
Collapse
Affiliation(s)
- Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada
| |
Collapse
|
299
|
Dalbøge LS, Pedersen SL, Secher T, Holst B, Vrang N, Jelsing J. Neuromedin U inhibits food intake partly by inhibiting gastric emptying. Peptides 2015; 69:56-65. [PMID: 25895852 DOI: 10.1016/j.peptides.2015.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/21/2022]
Abstract
Neuromedin U (NMU) is a gut-brain peptide, implicated in energy and glucose homeostasis via the peripherally expressed NMU receptor 1 (NMUR1) and the central NMUR2. We investigated the effects of a lipidated NMU analog on gastric emptying (GE), glucose homeostasis and food intake to evaluate the use of a NMU analog as drug candidate for treatment of obesity and diabetes. Finally mRNA expression of NMU and NMUR1 in the gut and NMUR2 in the hypothalamus was investigated using a novel chromogen-based in situ hybridization (ISH) assay. Effects on food intake (6 and 18 h post dosing) were addressed in both mice and rats. The effects on GE and glycaemic control were assessed in mice, immediately after the first dose and after seven days of bidaily (BID) dosing. The lipidated NMU analog exerted robust reductions in GE and food intake in mice and improved glycaemic control when measured immediately after the first dose. No effects were observed after seven days BID. In rats, the analog induced only a minor effect on food intake. NMU mRNA was detected in the enteric nervous system throughout the gut, whereas NMUR1 was confined to the lamina propria. NMUR2 was detected in the paraventricular (PVN) and arcuate nuclei (ARC) in mice, with a reduced expression in ARC in rats. In summary, the anorectic effect of the lipidated NMU is partly mediated by a decrease in gastric emptying which is subject to tachyphylaxis after continuous dosing. Susceptibility to NMU appears to be species specific.
Collapse
Affiliation(s)
- Louise S Dalbøge
- Gubra ApS, Agern Alle 1, 2970 Hørsholm, Denmark; University of Copenhagen, The Novo Nordisk Foundation Center for Basic Metabolic Research, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | | | | | - Birgitte Holst
- University of Copenhagen, The Novo Nordisk Foundation Center for Basic Metabolic Research, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Niels Vrang
- Gubra ApS, Agern Alle 1, 2970 Hørsholm, Denmark
| | | |
Collapse
|
300
|
Steyn FJ. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release. J Neuroendocrinol 2015; 27:577-87. [PMID: 25808924 DOI: 10.1111/jne.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 12/14/2022]
Abstract
Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.
Collapse
Affiliation(s)
- F J Steyn
- The University of Queensland Centre for Clinical Research and The School of Biomedical Sciences, University of Queensland, Herston, 4029, Australia
| |
Collapse
|