251
|
Pankow RM, Thompson BC. The development of conjugated polymers as the cornerstone of organic electronics. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
252
|
|
253
|
Ohayon D, Inal S. Organic Bioelectronics: From Functional Materials to Next-Generation Devices and Power Sources. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001439. [PMID: 32691880 DOI: 10.1002/adma.202001439] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Conjugated polymers (CPs) possess a unique set of features setting them apart from other materials. These properties make them ideal when interfacing the biological world electronically. Their mixed electronic and ionic conductivity can be used to detect weak biological signals, deliver charged bioactive molecules, and mechanically or electrically stimulate tissues. CPs can be functionalized with various (bio)chemical moieties and blend with other functional materials, with the aim of modulating biological responses or endow specificity toward analytes of interest. They can absorb photons and generate electronic charges that are then used to stimulate cells or produce fuels. These polymers also have catalytic properties allowing them to harvest ambient energy and, along with their high capacitances, are promising materials for next-generation power sources integrated with bioelectronic devices. In this perspective, an overview of the key properties of CPs and examination of operational mechanism of electronic devices that leverage these properties for specific applications in bioelectronics is provided. In addition to discussing the chemical structure-functionality relationships of CPs applied at the biological interface, the development of new chemistries and form factors that would bring forth next-generation sensors, actuators, and their power sources, and, hence, advances in the field of organic bioelectronics is described.
Collapse
Affiliation(s)
- David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
254
|
Wang S, Easley AD, Thakur RM, Ma T, Yun J, Zhang Y, Ober CK, Lutkenhaus JL. Quantifying internal charge transfer and mixed ion-electron transfer in conjugated radical polymers. Chem Sci 2020; 11:9962-9970. [PMID: 34094258 PMCID: PMC8162116 DOI: 10.1039/d0sc03567j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/28/2020] [Indexed: 01/16/2023] Open
Abstract
Macromolecular radicals are receiving growing interest as functional materials in energy storage devices and in electronics. With the need for enhanced conductivity, researchers have turned to macromolecular radicals bearing conjugated backbones, but results thus far have yielded conjugated radical polymers that are inferior in comparison to their non-conjugated partners. The emerging explanation is that the radical unit and the conjugated backbone (both being redox active) transfer electrons between each other, essentially "quenching" conductivity or capacity. Here, the internal charge transfer process is quantified using a polythiophene loaded with 0, 25, or 100% nitroxide radicals (2,2,6,6-tetramethyl-1-piperidinyloxy [TEMPO]). Importantly, deconvolution of the cyclic voltammograms shows mixed faradaic and non-faradaic contributions that contribute to the internal charge transfer process. Further, mixed ion-electron transfer is determined for the 100% TEMPO-loaded conjugated radical polymer, from which it is estimated that one triflate anion and one propylene carbone molecule are exchanged for every electron. Although these findings indicate the reason behind their poor conductivity and capacity, they point to how these materials might be used as voltage regulators in the future.
Collapse
Affiliation(s)
- Shaoyang Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
| | - Alexandra D Easley
- Department of Materials Science and Engineering, Texas A&M University College Station TX USA
| | - Ratul M Thakur
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
| | - Ting Ma
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
| | - Junyeong Yun
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
| | - Yiren Zhang
- Materials Science and Engineering, Cornell University Ithaca New York USA
| | - Christopher K Ober
- Materials Science and Engineering, Cornell University Ithaca New York USA
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
- Department of Materials Science and Engineering, Texas A&M University College Station TX USA
| |
Collapse
|
255
|
Del Olmo R, Casado N, Olmedo-Martínez JL, Wang X, Forsyth M. Mixed Ionic-Electronic Conductors Based on PEDOT:PolyDADMA and Organic Ionic Plastic Crystals. Polymers (Basel) 2020; 12:E1981. [PMID: 32878189 PMCID: PMC7563752 DOI: 10.3390/polym12091981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022] Open
Abstract
Mixed ionic-electronic conductors, such as poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) are postulated to be the next generation materials in energy storage and electronic devices. Although many studies have aimed to enhance the electronic conductivity and mechanical properties of these materials, there has been little focus on ionic conductivity. In this work, blends based on PEDOT stabilized by the polyelectrolyte poly(diallyldimethylammonium) (PolyDADMA X) are reported, where the X anion is either chloride (Cl), bis(fluorosulfonyl)imide (FSI), bis(trifluoromethylsulfonyl)imide (TFSI), triflate (CF3SO3) or tosylate (Tos). Electronic conductivity values of 0.6 S cm-1 were achieved in films of PEDOT:PolyDADMA FSI (without any post-treatment), with an ionic conductivity of 5 × 10-6 S cm-1 at 70 °C. Organic ionic plastic crystals (OIPCs) based on the cation N-ethyl-N-methylpyrrolidinium (C2mpyr+) with similar anions were added to synergistically enhance both electronic and ionic conductivities. PEDOT:PolyDADMA X / [C2mpyr][X] composites (80/20 wt%) resulted in higher ionic conductivity values (e.g., 2 × 10-5 S cm-1 at 70 °C for PEDOT:PolyDADMA FSI/[C2mpyr][FSI]) and improved electrochemical performance versus the neat PEDOT:PolyDADMA X with no OIPC. Herein, new materials are presented and discussed including new PEDOT:PolyDADMA and organic ionic plastic crystal blends highlighting their promising properties for energy storage applications.
Collapse
Affiliation(s)
- Rafael Del Olmo
- Joxe Mari Korta Center, POLYMAT University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; (R.D.O.); (J.L.O.-M.)
| | - Nerea Casado
- Joxe Mari Korta Center, POLYMAT University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; (R.D.O.); (J.L.O.-M.)
| | - Jorge L. Olmedo-Martínez
- Joxe Mari Korta Center, POLYMAT University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; (R.D.O.); (J.L.O.-M.)
| | - Xiaoen Wang
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC 3217, Australia;
| | - Maria Forsyth
- Joxe Mari Korta Center, POLYMAT University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; (R.D.O.); (J.L.O.-M.)
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC 3217, Australia;
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC 3125, Australia
| |
Collapse
|
256
|
Romero M, Mombrú D, Pignanelli F, Faccio R, Mombrú AW. Mini-Review: Mixed Ionic-Electronic Charge Carrier Localization and Transport in Hybrid Organic-Inorganic Nanomaterials. Front Chem 2020; 8:537. [PMID: 32760697 PMCID: PMC7372086 DOI: 10.3389/fchem.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023] Open
Abstract
In this mini-review, a comprehensive discussion on the state of the art of hybrid organic–inorganic mixed ionic–electronic conductors (hOI-MIECs) is given, focusing on conducting polymer nanocomposites comprising inorganic nanoparticles ranging from ceramic-in-polymer to polymer-in-ceramic concentration regimes. First, a brief discussion on fundamental aspects of mixed ionic–electronic transport phenomena considering the charge carrier transport at bulk regions together with the effect of the organic–inorganic interphase of hybrid nanocomposites is presented. We also make a recount of updated instrumentation techniques to characterize structure, microstructure, chemical composition, and mixed ionic–electronic transport with special focus on those relevant for hOI-MIECs. Raman imaging and impedance spectroscopy instrumentation techniques are particularly discussed as relatively simple and versatile tools to study the charge carrier localization and transport at different regions of hOI-MIECs including both bulk and interphase regions to shed some light on the mixed ionic–electronic transport mechanism. In addition, we will also refer to different device assembly configurations and in situ/operando measurements experiments to analyze mixed ionic–electronic conduction phenomena for different specific applications. Finally, we will also review the broad range of promising applications of hOI-MIECs, mainly in the field of energy storage and conversion, but also in the emerging field of electronics and bioelectronics.
Collapse
Affiliation(s)
- Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Dominique Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Fernando Pignanelli
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alvaro W Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
257
|
Lill AT, Cao DX, Schrock M, Vollbrecht J, Huang J, Nguyen-Dang T, Brus VV, Yurash B, Leifert D, Bazan GC, Nguyen TQ. Organic Electrochemical Transistors Based on the Conjugated Polyelectrolyte PCPDTBT-SO 3 K (CPE-K). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908120. [PMID: 32656778 DOI: 10.1002/adma.201908120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
PCPDTBT-SO3 K (CPE-K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated. Such characteristics are highly desired in applications such as neural-activity sensing, where the device area must be minimized to reduce invasiveness. The physical and electrical properties of CPE-K are fully characterized to allow a direct comparison to other top performing OECT materials. CPE-K demonstrates an electrical performance that is among the best reported in the literature for OECT materials. In addition, CPE-K OECTs operate in the accumulation mode, which allows for much lower energy consumption in comparison to commonly used depletion mode devices.
Collapse
Affiliation(s)
- Alexander T Lill
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - David X Cao
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Max Schrock
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Joachim Vollbrecht
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jianfei Huang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tung Nguyen-Dang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Viktor V Brus
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Brett Yurash
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dirk Leifert
- Organisch-Chemisches Institut, Münster University, Münster, 48149, Germany
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
258
|
Affiliation(s)
- Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics (MOE), Department of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics (MOE), Department of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
259
|
Yang H, Wang Z, Guo X, Su H, Sun K, Yang D, Xiao W, Wang Q, He D. Controlled Growth of Fine Multifilaments in Polymer-Based Memristive Devices Via the Conduction Control. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34370-34377. [PMID: 32627526 DOI: 10.1021/acsami.0c07533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid polymer electrolyte (SPE) is one of the choices for many ionic devices, including organic transistors, ion batteries, memristors, and more. However, uncontrollable conductive filament formation seriously affects the performance of the device. In this paper, the PEDOT:PSS was doped to improve the electronic and ionic conductivity of amorphous polymer electrolyte poly(vinylpyrrolidone) (PVP), realizing the transition of the filaments growth from cathode to anode in atomic switch memristors. Based on the difference in ion and electron mobility and scanning electron microscope observation, the in situ reductions of metal ions inside the dielectric layer can effectively prevent the formation of uncontrollable filaments. The formation of uniformly distributed metal particles in the dielectric layer is similar to co-sputter doping technology, which enables the device to exhibit excellent performance, such as smaller set/reset bias distribution, endurance, and retention. Obviously, this innovative way improves the conductive mechanism of ionic devices.
Collapse
Affiliation(s)
- Huiyong Yang
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zheng Wang
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiangyu Guo
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hao Su
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kai Sun
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dongliang Yang
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei Xiao
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qi Wang
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Deyan He
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
260
|
Modarresi M, Mehandzhiyski A, Fahlman M, Tybrandt K, Zozoulenko I. Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00877] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mats Fahlman
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
261
|
Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat Commun 2020; 11:3004. [PMID: 32532975 PMCID: PMC7293298 DOI: 10.1038/s41467-020-16648-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/15/2020] [Indexed: 11/08/2022] Open
Abstract
From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors – critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N’-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2’-bithiophene-co-N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices. Improving electron transport and stability of n-type organic electrochemical transistors (OECTs) is required to realize a commercially-viable technology for bioelectronics applications. Here, the authors report water-stable doped n-type OECTs with enhanced transconductance and record stability.
Collapse
|
262
|
Mariani F, Quast T, Andronescu C, Gualandi I, Fraboni B, Tonelli D, Scavetta E, Schuhmann W. Needle-type organic electrochemical transistor for spatially resolved detection of dopamine. Mikrochim Acta 2020; 187:378. [PMID: 32518976 PMCID: PMC7283208 DOI: 10.1007/s00604-020-04352-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
In this work, the advantages of carbon nanoelectrodes (CNEs) and orgonic electrochemical transistors (OECTs) were merged to realise nanometre-sized, spearhead OECTs based on single- and double-barrel CNEs functionalised with a conducting polymer film. The needle-type OECT shows a high aspect ratio that allows its precise positioning by means of a macroscopic handle and its size is compatible with single-cell analysis. The device was characterised with respect to its electrolyte-gated behaviour and was employed as electrochemical sensor for the proof-of-concept detection of dopamine (DA) over a wide concentration range (10-12-10-6 M). Upon application of fixed drain and gate voltages (Vd = - 0.3 V, Vg = - 0.9 V, respectively), the nano-sized needle-type OECT sensor exhibited a linear response in the low pM range and from 0.002 to 7 μM DA, with a detection limit of 1 × 10-12 M. Graphical abstract.
Collapse
Affiliation(s)
- Federica Mariani
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and Center for Nanointegration (CENIDE), University Duisburg Essen, Carl-Benz-Str. 201, D-47057, Duisburg, Germany
| | - Isacco Gualandi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Domenica Tonelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Erika Scavetta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
263
|
Chung J, Khot A, Savoie BM, Boudouris BW. 100th Anniversary of Macromolecular Science Viewpoint: Recent Advances and Opportunities for Mixed Ion and Charge Conducting Polymers. ACS Macro Lett 2020; 9:646-655. [PMID: 35648568 DOI: 10.1021/acsmacrolett.0c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecules that exhibit both electron transport and ionic mass transport (i.e., mixed conducting polymers) are ascendant with respect to both emerging application spaces and the elucidation of their fundamental physical principles. The unique coupling between the two modes of conduction puts these materials at the center of many next-generation organic electronic applications. The molecular details of this coupling are also at the epicenter of outstanding questions about how these materials function; how monomer and macromolecular chemistry dictates observable properties; and ultimately, how these macromolecular materials can be rationally designed, processed, and implemented into high-performance devices. Here, we focus on what is currently known about coupled ionic-electronic transport in these polymers and where there are open opportunities in the field. These opportunities include the syntheses of designer macromolecules, the need for significant simulation efforts that provide molecular-level insights into the mixed conduction mechanism, and the need for advanced characterization techniques for real-time monitoring of polymer morphology, as this is critical to coupled ion-charge transport processes. Considering the early stage of this important subfield of polymer science, we also present our view of how the development of mixed conductors can benefit from the lessons learned from previous polymer-based electronic devices.
Collapse
Affiliation(s)
- Jaeyub Chung
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aditi Khot
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M. Savoie
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bryan W. Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
264
|
Affiliation(s)
- Ilhwan Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Daeyoung Jeon
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Bryan Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47906, United States
| | - Yongho Joo
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| |
Collapse
|
265
|
Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. NATURE MATERIALS 2020; 19:491-502. [PMID: 32296138 DOI: 10.1038/s41563-020-0647-2] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Conjugated polymers and molecular semiconductors are emerging as a viable semiconductor technology in industries such as displays, electronics, renewable energy, sensing and healthcare. A key enabling factor has been significant scientific progress in improving their charge transport properties and carrier mobilities, which has been made possible by a better understanding of the molecular structure-property relationships and the underpinning charge transport physics. Here we aim to present a coherent review of how we understand charge transport in these high-mobility van der Waals bonded semiconductors. Specific questions of interest include estimates for intrinsic limits to the carrier mobilities that might ultimately be achievable; a discussion of the coupling between charge and structural dynamics; the importance of molecular conformations and mesoscale structural features; how the transport physics of conjugated polymers and small molecule semiconductors are related; and how the incorporation of counterions in doped films-as used, for example, in bioelectronics and thermoelectric devices-affects the electronic structure and charge transport properties.
Collapse
Affiliation(s)
| | - Mark Nikolka
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
266
|
The biocompatibility of polyaniline and polypyrrole 2: Doping with organic phosphonates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110986. [PMID: 32487402 DOI: 10.1016/j.msec.2020.110986] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022]
Abstract
Conducting polymers (CP) can be used as pH- and/or electro-responsive components in various bioapplications, for example, in 4D smart scaffolds. The ability of CP to maintain conductivity under physiological conditions is, therefore, their crucial property. Unfortunately, the conductivity of the CP rapidly decreases in physiological environment, as their conducting salts convert to non-conducting bases. One of the promising solutions how to cope with this shortcoming is the use of alternative "doping" process that is not based on the protonation of CP with acids but on interactions relying in acidic hydrogen bonding. Therefore, the phosphonates (dimethyl phosphonate, diethyl phosphonate, dibutyl phosphonate, or diphenyl phosphonate) were used to re-dope two most common representatives of CP, polyaniline (PANI) and polypyrrole (PPy) bases. As a result, PANI doped with organic phosphonates proved to have significantly better stability of conductivity under different pH. It has also been shown that cytotoxicity of studied materials determined on embryonic stem cells and their embryotoxicity, determined as the impact on cardiomyogenesis and erythropoiesis, depend both on the polymer and phosphonate types used. With the exception of PANI doped with dibutyl phosphonate, all PPy-based phosphonates showed better biocompatibility than the phosphonates based on PANI.
Collapse
|
267
|
Keef CV, Kayser LV, Tronboll S, Carpenter CW, Root NB, Finn M, O’Connor TF, Abuhamdieh SN, Davies DM, Runser R, Meng YS, Ramachandran VS, Lipomi DJ. Virtual Texture Generated using Elastomeric Conductive Block Copolymer in Wireless Multimodal Haptic Glove. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 2:2000018. [PMID: 32656536 PMCID: PMC7351316 DOI: 10.1002/aisy.202000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 05/03/2023]
Abstract
Haptic devices are in general more adept at mimicking the bulk properties of materials than they are at mimicking the surface properties. This paper describes a haptic glove capable of producing sensations reminiscent of three types of near-surface properties: hardness, temperature, and roughness. To accomplish this mixed mode of stimulation, three types of haptic actuators were combined: vibrotactile motors, thermoelectric devices, and electrotactile electrodes made from a stretchable conductive polymer synthesized in our laboratory. This polymer consisted of a stretchable polyanion which served as a scaffold for the polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The scaffold was synthesized using controlled radical polymerization to afford material of low dispersity, relatively high conductivity (0.1 S cm-1), and low impedance relative to metals. The glove was equipped with flex sensors to make it possible to control a robotic hand and a hand in virtual reality (VR). In psychophysical experiments, human participants were able to discern combinations of electrotactile, vibrotactile, and thermal stimulation in VR. Participants trained to associate these sensations with roughness, hardness, and temperature had an overall accuracy of 98%, while untrained participants had an accuracy of 85%. Sensations could similarly be conveyed using a robotic hand equipped with sensors for pressure and temperature.
Collapse
Affiliation(s)
- Colin V. Keef
- Department of Electrical and Computer Engineering,
University of California, San Diego, Mail Code 0407, La Jolla, CA 92093-0407
| | - Laure V. Kayser
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Stazia Tronboll
- Department of Electrical and Computer Engineering,
University of California, San Diego, Mail Code 0407, La Jolla, CA 92093-0407
| | - Cody W. Carpenter
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Nicholas B. Root
- Department of Psychology, University of California, San
Diego, Mail Code 0109, La Jolla, CA 92093-0109
| | - Mickey Finn
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Timothy F. O’Connor
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Sami N. Abuhamdieh
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Daniel M. Davies
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Rory Runser
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Y. Shirley Meng
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Vilayanur S. Ramachandran
- Department of Psychology, University of California, San
Diego, Mail Code 0109, La Jolla, CA 92093-0109
| | - Darren J. Lipomi
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| |
Collapse
|
268
|
Giovannitti A, Rashid RB, Thiburce Q, Paulsen BD, Cendra C, Thorley K, Moia D, Mefford JT, Hanifi D, Weiyuan D, Moser M, Salleo A, Nelson J, McCulloch I, Rivnay J. Energetic Control of Redox-Active Polymers toward Safe Organic Bioelectronic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908047. [PMID: 32125736 DOI: 10.1002/adma.201908047] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side-products. This is particularly important for bioelectronic devices, which are designed to operate in biological systems. While redox-active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side-reactions with molecular oxygen during device operation. Here, electrochemical side reactions with molecular oxygen are shown to occur during organic electrochemical transistor (OECT) operation using high-performance, state-of-the-art OECT materials. Depending on the choice of the active material, such reactions yield hydrogen peroxide (H2 O2 ), a reactive side-product, which may be harmful to the local biological environment and may also accelerate device degradation. A design strategy is reported for the development of redox-active organic semiconductors based on donor-acceptor copolymers that prevents the formation of H2 O2 during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte-gated devices in application-relevant environments.
Collapse
Affiliation(s)
- Alexander Giovannitti
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Reem B Rashid
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Bryan D Paulsen
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Camila Cendra
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Karl Thorley
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Davide Moia
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - J Tyler Mefford
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - David Hanifi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Du Weiyuan
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maximilian Moser
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jenny Nelson
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Iain McCulloch
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jonathan Rivnay
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
269
|
Jastrzebska-Perfect P, Spyropoulos GD, Cea C, Zhao Z, Rauhala OJ, Viswanathan A, Sheth SA, Gelinas JN, Khodagholy D. Mixed-conducting particulate composites for soft electronics. SCIENCE ADVANCES 2020; 6:eaaz6767. [PMID: 32494646 PMCID: PMC7182411 DOI: 10.1126/sciadv.aaz6767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/27/2020] [Indexed: 05/29/2023]
Abstract
Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high-spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.
Collapse
Affiliation(s)
| | | | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Onni J. Rauhala
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer N. Gelinas
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
270
|
Bischak CG, Flagg LQ, Yan K, Rehman T, Davies DW, Quezada RJ, Onorato JW, Luscombe CK, Diao Y, Li CZ, Ginger DS. A Reversible Structural Phase Transition by Electrochemically-Driven Ion Injection into a Conjugated Polymer. J Am Chem Soc 2020; 142:7434-7442. [PMID: 32227841 DOI: 10.1021/jacs.9b12769] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Connor G. Bischak
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Lucas Q. Flagg
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kangrong Yan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Tahir Rehman
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Daniel W. Davies
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ramsess J. Quezada
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Jonathan W. Onorato
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christine K. Luscombe
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chang-Zhi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - David S. Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
271
|
Schmode P, Savva A, Kahl R, Ohayon D, Meichsner F, Dolynchuk O, Thurn-Albrecht T, Inal S, Thelakkat M. The Key Role of Side Chain Linkage in Structure Formation and Mixed Conduction of Ethylene Glycol Substituted Polythiophenes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13029-13039. [PMID: 32066232 DOI: 10.1021/acsami.9b21604] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Functionalizing conjugated polymers with polar ethylene glycol side chains enables enhanced swelling and facilitates ion transport in addition to electronic transport in such systems. Here, we investigate three polythiophene homopolymers (P3MEET, P3MEEMT, and P3MEEET) having differently linked (without spacer and with methyl and ethyl spacer, respectively) diethylene glycol side chains. All the polymers were tested in organic electrochemical transistors (OECTs). They show drastic differences in the device performance. The highest μOECT C* product of 11.5 F/cm·V·s was obtained for ethyl-spaced P3MEEET. How the injection and transport of ions is influenced by the side-chain linkage was studied with electrochemical impedance spectroscopy, which shows a dramatic increase in volumetric capacitance from 80 ± 9 up to 242 ± 17 F/cm3 on going from P3MEET to P3MEEET. Thus, ethyl-spaced P3MEEET exhibits one of the highest reported volumetric capacitance values among p-type polymers. Moreover, P3MEEET exhibits in dry thin films an organic field-effect transistor (OFET) hole mobility of 0.005 cm2/V·s, highest among the three, which is one order of magnitude higher than that for P3MEEMT. The extracted hole mobility from OECT (oxidized swollen state) and the hole mobility in solid-state thin films (OFET) show contradictory trends for P3MEEMT and P3MEEET. In order to understand exactly the properties in the hydrated and dry states, the crystal structure of the polymers was investigated with wide-angle X-ray scattering (WAXS) and grazing incidence WAXS, and the water uptake under applied potential was monitored using electrochemical quartz crystal microbalance with dissipation monitoring (E-QCMD). These measurements reveal an amorphous state for P3MEET and a semicrystalline state for P3MEEMT and P3MEEEET. On the other hand, E-QCMD confirms that P3MEEET swells 10 times more than P3MEEMT in the oxidized state. Thus, the importance of the ethyl spacer toward crystallinity and mixed-conduction properties was clearly demonstrated, emphasizing the impact of side chain linkage of diethylene glycol. This detailed study offers a better understanding of how to design high-performance organic mixed conductors.
Collapse
Affiliation(s)
- Philip Schmode
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Achilleas Savva
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Robert Kahl
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - David Ohayon
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Florian Meichsner
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Oleksandr Dolynchuk
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Thomas Thurn-Albrecht
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Sahika Inal
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mukundan Thelakkat
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
272
|
Zhang W, Chu J, Hu M. Coupled Electrical Conduction in Coordination Polymers: From Electrons/Ions to Mixed Charge Carriers. Chem Asian J 2020; 15:1202-1213. [PMID: 32187450 DOI: 10.1002/asia.202000108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Indexed: 01/20/2023]
Abstract
The coupled transport of ions and electrons is of great potential for next-generation sensors, energy storage and conversion devices, optoelectronics, etc. Coordination polymers (CPs) intrinsically have both transport pathways for electrons and ions, however, the practical conductivities are usually low. In recent years, significant advances have been made in electronic or ionic conductive coordination polymers, which also results in progress in mixed ionic-electronic conductive coordination polymers. Here we start from electronic and ionic conductive CPs to mixed ionic-electronic conductive CPs. Recent advances in the design of mixed ionic-electronic conductive CPs are summarized. In addition, devices based on mixed conduction are selected.
Collapse
Affiliation(s)
- Wei Zhang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Junhao Chu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
273
|
Size-Dependent Thermo- and Photoresponsive Plasmonic Properties of Liquid Crystalline Gold Nanoparticles. MATERIALS 2020; 13:ma13040875. [PMID: 32075278 PMCID: PMC7078723 DOI: 10.3390/ma13040875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Achieving remotely controlled, reversibly reconfigurable assemblies of plasmonic nanoparticles is a prerequisite for the development of future photonic technologies. Here, we obtained a series of gold-nanoparticle-based materials which exhibit long-range order, and which are controlled with light or thermal stimuli. The influence of the metallic core size and organic shell composition on the switchability is considered, with emphasis on achieving light-responsive behavior at room temperature and high yield production of nanoparticles. The latter translates to a wide size distribution of metallic cores but does not prevent their assembly into various, switchable 3D and 2D long-range ordered structures. These results provide clear guidelines as to the impact of size, size distribution, and organic shell composition on self-assembly, thus enhancing the smart design process of multi-responsive nanomaterials in a condensed state, hardly attainable by other self-assembly methods which usually require solvents.
Collapse
|
274
|
Matta M, Pezzella A, Troisi A. Relation between Local Structure, Electric Dipole, and Charge Carrier Dynamics in DHICA Melanin: A Model for Biocompatible Semiconductors. J Phys Chem Lett 2020; 11:1045-1051. [PMID: 31967830 DOI: 10.1021/acs.jpclett.9b03696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eumelanins are a family of natural and synthetic pigments obtained by oxidative polymerization of their natural precursors: 5,6-dihydroxyindole and its 2-carboxy derivative (DHICA). The simultaneous presence of ionic and electronic charge carriers makes these pigments promising materials for applications in bioelectronics. In this computational study we build a structural model of DHICA melanin considering the interplay between its many degrees of freedom, and then we examine the electronic structure of representative oligomers. We find that a nonvanishing dipole along the polymer chain sets this system apart from conventional polymer semiconductors, determining its electronic structure, reactivity toward oxidation and localization of the charge carriers. Our work sheds light on previously unnoticed features of DHICA melanin that not only fit well with its radical scavenging and photoprotective properties but also open new perspectives toward understanding and tuning charge transport in this class of materials.
Collapse
Affiliation(s)
- Micaela Matta
- University of Liverpool , Department of Chemistry , Crown Street , Liverpool L69 7ZD , U.K
| | - Alessandro Pezzella
- National Interuniversity Consortium of Materials Science and Technology (INSTM) , 50121 Florence , Italy
- Institute for Polymers , Composites and Biomaterials (IPCB) , CNR, Via Campi Flegrei 34 , I-80078 Pozzuoli , NA , Italy
| | - Alessandro Troisi
- University of Liverpool , Department of Chemistry , Crown Street , Liverpool L69 7ZD , U.K
| |
Collapse
|
275
|
Wu Q, Liu X, Du Y, Teng C, Liang F. Nonlinear organic–inorganic halide hybrids containing unprecedented linear [MIX2]− coordination units and quasi-two-dimensional lone pairs. Chem Commun (Camb) 2020; 56:4894-4897. [DOI: 10.1039/d0cc01532f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A first example of monovalent-metal-based hybrid halides [N(CH3)4]MCl2 (M = Ga+, In+) with zero-dimensional configuration containing unprecedented linear [GaCl2]/[InCl2] units have been designed and synthesized.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Xian Liu
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Yeshuang Du
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Chunlin Teng
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
276
|
Su H, Liu HY, Pappa AM, Hidalgo TC, Cavassin P, Inal S, Owens RM, Daniel S. Facile Generation of Biomimetic-Supported Lipid Bilayers on Conducting Polymer Surfaces for Membrane Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43799-43810. [PMID: 31659897 DOI: 10.1021/acsami.9b10303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Membrane biosensors that can rapidly sense pathogen interaction and disrupting agents are needed to identify and screen new drugs to combat antibiotic resistance. Bioelectronic devices have the capability to read out both ionic and electrical signals, but their compatibility with biological membranes is somewhat limited. Supported lipid bilayers (SLBs) have served as useful biomimetics for a myriad of research topics involving biological membranes. However, SLBs are traditionally made on inert, rigid, inorganic surfaces. Here, we demonstrate a versatile and facile method for generating SLBs on a conducting polymer device using a solvent-assisted lipid bilayer (SALB) technique. We use this bioelectronic device to form both mammalian and bacterial membrane mimetics to sense the membrane interactions with a bacterial toxin (α-hemolysin) and an antibiotic compound (polymyxin B), respectively. Our results show that we can form high quality bilayers of both types and sense these particular interactions with them, discriminating between pore formation, in the case of α-hemolysin, and disruption of the bilayer, in the case of polymyxin B. The SALB formation method is compatible with many membrane compositions that will not form via common vesicle fusion methods and works well in microfluidic devices. This, combined with the massive parallelization possible for the fabrication of electronic devices, can lead to miniaturized multiplexed devices for rapid data acquisition necessary to identify antibiotic targets that specifically disrupt bacterial, but not mammalian membranes, or identify bacterial toxins that strongly interact with mammalian membranes.
Collapse
Affiliation(s)
- Hui Su
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Han-Yuan Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Tania Cecilia Hidalgo
- Biological and Environmental Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal , Makkah Province 23955-6900 , Saudi Arabia
| | - Priscila Cavassin
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Sahika Inal
- Biological and Environmental Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal , Makkah Province 23955-6900 , Saudi Arabia
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|