251
|
Jayaram AK, Pappa AM, Ghosh S, Manzer ZA, Traberg WC, Knowles TPJ, Daniel S, Owens RM. Biomembranes in bioelectronic sensing. Trends Biotechnol 2021; 40:107-123. [PMID: 34229865 DOI: 10.1016/j.tibtech.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Cell membranes are integral to the functioning of the cell and are therefore key to drive fundamental understanding of biological processes for downstream applications. Here, we review the current state-of-the-art with respect to biomembrane systems and electronic substrates, with a view of how the field has evolved towards creating biomimetic conditions and improving detection sensitivity. Of particular interest are conducting polymers, a class of electroactive polymers, which have the potential to create the next step-change for bioelectronics devices. Lastly, we discuss the impact these types of devices could have for biomedical applications.
Collapse
Affiliation(s)
- A K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0JH, UK
| | - A M Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - S Ghosh
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - Z A Manzer
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - W C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - T P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0JH, UK
| | - S Daniel
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - R M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK.
| |
Collapse
|
252
|
Ferro LMM, Merces L, de Camargo DHS, Bof Bufon CC. Ultrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101518. [PMID: 34061409 DOI: 10.1002/adma.202101518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Organic electrochemical transistors (OECTs) are technologically relevant devices presenting high susceptibility to physical stimulus, chemical functionalization, and shape changes-jointly to versatility and low production costs. The OECT capability of liquid-gating addresses both electrochemical sensing and signal amplification within a single integrated device unit. However, given the organic semiconductor time-consuming doping process and their usual low field-effect mobility, OECTs are frequently considered low-end category devices. Toward high-performance OECTs, microtubular electrochemical devices based on strain-engineering are presented here by taking advantage of the exclusive shape features of self-curled nanomembranes. Such novel OECTs outperform the state-of-the-art organic liquid-gated transistors, reaching lower operating voltage, improved ion doping, and a signal amplification with a >104 intrinsic gain. The multipurpose OECT concept is validated with different electrolytes and distinct nanometer-thick molecular films, namely, phthalocyanine and thiophene derivatives. The OECTs are also applied as transducers to detect a biomarker related to neurological diseases, the neurotransmitter dopamine. The self-curled OECTs update the premises of electrochemical energy conversion in liquid-gated transistors, yielding a substantial performance improvement and new chemical sensing capabilities within picoliter sampling volumes.
Collapse
Affiliation(s)
- Letícia M M Ferro
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, 13083-970, Brazil
| | - Leandro Merces
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
| | - Davi H S de Camargo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
| | - Carlos C Bof Bufon
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia, Campinas, 13083-100, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, 13083-970, Brazil
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
| |
Collapse
|
253
|
Hallani RK, Paulsen BD, Petty AJ, Sheelamanthula R, Moser M, Thorley KJ, Sohn W, Rashid RB, Savva A, Moro S, Parker JP, Drury O, Alsufyani M, Neophytou M, Kosco J, Inal S, Costantini G, Rivnay J, McCulloch I. Regiochemistry-Driven Organic Electrochemical Transistor Performance Enhancement in Ethylene Glycol-Functionalized Polythiophenes. J Am Chem Soc 2021; 143:11007-11018. [PMID: 34192463 DOI: 10.1021/jacs.1c03516] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel p-type semiconducting polymers that can facilitate ion penetration, and operate in accumulation mode are much desired in bioelectronics. Glycol side chains have proven to be an efficient method to increase bulk electrochemical doping and optimize aqueous swelling. One early polymer which exemplifies these design approaches was p(g2T-TT), employing a bithiophene-co-thienothiophene backbone with glycol side chains in the 3,3' positions of the bithiophene repeat unit. In this paper, the analogous regioisomeric polymer, namely pgBTTT, was synthesized by relocating the glycol side chains position on the bithiophene unit of p(g2T-TT) from the 3,3' to the 4,4' positions and compared with the original p(g2T-TT). By changing the regio-positioning of the side chains, the planarizing effects of the S-O interactions were redistributed along the backbone, and the influence on the polymer's microstructure organization was investigated using grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements. The newly designed pgBTTT exhibited lower backbone disorder, closer π-stacking, and higher scattering intensity in both the in-plane and out-of-plane GIWAXS measurements. The effect of the improved planarity of pgBTTT manifested as higher hole mobility (μ) of 3.44 ± 0.13 cm2 V-1 s-1. Scanning tunneling microscopy (STM) was in agreement with the GIWAXS measurements and demonstrated, for the first time, that glycol side chains can also facilitate intermolecular interdigitation analogous to that of pBTTT. Electrochemical quartz crystal microbalance with dissipation of energy (eQCM-D) measurements revealed that pgBTTT maintains a more rigid structure than p(g2T-TT) during doping, minimizing molecular packing disruption and maintaining higher hole mobility in operation mode.
Collapse
Affiliation(s)
- Rawad K Hallani
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anthony J Petty
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rajendar Sheelamanthula
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Karl J Thorley
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Wonil Sohn
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Achilleas Savva
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Stefania Moro
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Joseph P Parker
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Oscar Drury
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Maryam Alsufyani
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Marios Neophytou
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jan Kosco
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Iain McCulloch
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
254
|
Zozoulenko I, Franco-Gonzalez JF, Gueskine V, Mehandzhiyski A, Modarresi M, Rolland N, Tybrandt K. Electronic, Optical, Morphological, Transport, and Electrochemical Properties of PEDOT: A Theoretical Perspective. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Viktor Gueskine
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | | | - Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, PO Box 91775-1436, Iran
| | - Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
255
|
Akkiraju S, Vergados J, Hoagland L, Lu Z, Anandan V, Boudouris BW. Design of Mixed Electron- and Ion-Conducting Radical Polymer-Based Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Siddhartha Akkiraju
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - John Vergados
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Laura Hoagland
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zijie Lu
- Ford Motor Company, Dearborn, Michigan 48124, United States
| | | | - Bryan W. Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
256
|
Alessandri R, Grünewald F, Marrink SJ. The Martini Model in Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008635. [PMID: 33956373 PMCID: PMC11468591 DOI: 10.1002/adma.202008635] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
Collapse
Affiliation(s)
- Riccardo Alessandri
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
- Present address:
Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fabian Grünewald
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | - Siewert J. Marrink
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| |
Collapse
|
257
|
Khot A, Savoie BM. Top–Down Coarse-Grained Framework for Characterizing Mixed Conducting Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aditi Khot
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M. Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
258
|
Guilbert AAY, Parr ZS, Kreouzis T, Woods DJ, Sprick RS, Abrahams I, Nielsen CB, Zbiri M. Effect of substituting non-polar chains with polar chains on the structural dynamics of small organic molecule and polymer semiconductors. Phys Chem Chem Phys 2021; 23:7462-7471. [PMID: 33876106 DOI: 10.1039/d1cp00670c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The processability and optoelectronic properties of organic semiconductors can be tuned and manipulated via chemical design. The substitution of the popular alkyl side chains by oligoethers has recently been successful for applications such as bioelectronic sensors and photocatalytic hydrogen evolution. Beyond the differences in polarity, the carbon-oxygen bond in oligoethers is likely to render the system softer and more prone to dynamical disorder that can be detrimental to charge transport for example. In this context, we use neutron spectroscopy as a master method of probe, in addition to characterisation techniques such as X-ray diffraction, differential scanning calorimetry and polarized optical microscopy to study the effect of the substitution of n-hexyl (Hex) chains by triethylene glycol (TEG) chains on the structural dynamics of two organic semiconducting materials: a phenylene-bithiophene-phenylene (PTTP) small molecule and a fluorene-co-dibenzothiophene (FS) polymer. Counterintuitively, inelastic neutron scattering (INS) reveals a general softening of the modes of PTTP and FS materials with Hex chains, pointing towards an increased dynamical disorder in the Hex-based systems. However, temperature-dependent X-ray and neutron diffraction as well as INS and differential scanning calorimetry evidence an extra reversible transition close to room temperature for PTTP with TEG chains. The observed extra structural transition, which is not accompanied by a change in birefringence, can also be observed by quasi-elastic neutron scattering (QENS). A fastening of the TEG chains dynamics is observed in the case of PTTP and not FS. We therefore assign this transition to the melt of the TEG chains. Overall the TEG chains are promoting dynamical order at room temperature, but if crystallising, may introduce an extra reversible structural transition above room temperature leading to thermal instabilities. Ultimately, a deeper understanding of chain polarity and structural dynamics can help guide new materials design and navigate the intricate balance between electronic charge transport and aqueous swelling that is being sought for a number of emerging organic electronic and bioelectronic applications.
Collapse
Affiliation(s)
- Anne A Y Guilbert
- Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Chen X, Marks A, Paulsen BD, Wu R, Rashid RB, Chen H, Alsufyani M, Rivnay J, McCulloch I. n
‐Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for High‐Performance Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xingxing Chen
- Department of Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Adam Marks
- Department of Chemistry and Centre for Plastic Electronics Imperial College London London W12 0BZ UK
| | - Bryan D. Paulsen
- Department of Biomedical Engineering Northwestern University 2145 Sheridan Rd Evanston IL 60208 USA
| | - Ruiheng Wu
- Department of Chemistry Northwestern University 2145 Sheridan Rd Evanston IL 60208 USA
| | - Reem B. Rashid
- Department of Biomedical Engineering Northwestern University 2145 Sheridan Rd Evanston IL 60208 USA
| | - Hu Chen
- Department of Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Maryam Alsufyani
- Department of Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jonathan Rivnay
- Department of Biomedical Engineering Northwestern University 2145 Sheridan Rd Evanston IL 60208 USA
- Simpson Querrey Institute Northwestern University Chicago IL 60611 USA
| | - Iain McCulloch
- Department of Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Department of Chemistry and Centre for Plastic Electronics Imperial College London London W12 0BZ UK
- Department of Chemistry Chemistry Research Laboratory University of Oxford Oxford OX1 3TA UK
| |
Collapse
|
260
|
Chen X, Marks A, Paulsen BD, Wu R, Rashid RB, Chen H, Alsufyani M, Rivnay J, McCulloch I. n-Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for High-Performance Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2021; 60:9368-9373. [PMID: 33368944 DOI: 10.1002/anie.202013998] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Indexed: 01/01/2023]
Abstract
N-type conjugated polymers as the semiconducting component of organic electrochemical transistors (OECTs) are still undeveloped with respect to their p-type counterparts. Herein, we report two rigid n-type conjugated polymers bearing oligo(ethylene glycol) (OEG) side chains, PgNaN and PgNgN, which demonstrated an essentially torsion-free π-conjugated backbone. The planarity and electron-deficient rigid structures enable the resulting polymers to achieve high electron mobility in an OECT device of up to the 10-3 cm2 V-1 s-1 range, with a deep-lying LUMO energy level lower than -4.0 eV. Prominently, the polymers exhibited a high device performance with a maximum dimensionally normalized transconductance of 0.212 S cm-1 and the product of charge-carrier mobility μ and volumetric capacitance C* of 0.662±0.113 F cm-1 V-1 s-1 , which are among the highest in n-type conjugated polymers reported to date. Moreover, the polymers are synthesized via a metal-free aldol-condensation polymerization, which is beneficial to their application in bioelectronics.
Collapse
Affiliation(s)
- Xingxing Chen
- Department of Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Adam Marks
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, W12 0BZ, UK
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Hu Chen
- Department of Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maryam Alsufyani
- Department of Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.,Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Iain McCulloch
- Department of Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, W12 0BZ, UK.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
261
|
Zhang YQ, Lin HA, Pan QC, Qian SH, Zhang SY, Zhuang A, Zhang SH, Qiu G, Cieplak M, Sharma PS, Zhang Y, Zhao H, Zhu B. A trade-off between antifouling and the electrochemical stabilities of PEDOTs. J Mater Chem B 2021; 9:2717-2726. [PMID: 33683271 DOI: 10.1039/d0tb01797c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Strong nonspecific protein/cell adhesion on conducting polymer (CP)-based bioelectronic devices can cause an increase in the impedance or the malfunction of the devices. Incorporating oligo(ethylene glycol) or zwitterionic functionalities with CPs has demonstrated superior performance in the reduction of nonspecific adhesion. However, there is no report on the evaluation of the antifouling stability of oligo(ethylene glycol) and zwitterion-functionalized CPs under electrical stimulation as a simulation of the real situation of device operation. Moreover, there is a lack of understanding of the correlation between the molecular structure of antifouling CPs and the antifouling and electrochemical stabilities of the CP-based electrodes. To address the aforementioned issue, we fabricated a platform with antifouling poly(3,4-ethylenedioxythiophene) (PEDOT) featuring tri(ethylene glycol), tetra(ethylene glycol), sulfobetaine, or phosphorylcholine (PEDOT-PC) to evaluate the stability of the antifouling/electrochemical properties of antifouling PEDOTs before and after electrical stimulation. The results reveal that the PEDOT-PC electrode not only exhibits good electrochemical stability, low impedance, and small voltage excursion, but also shows excellent resistance toward proteins and HAPI microglial cells, as a cell model of inflammation, after the electrical stimulation. The stable antifouling/electrochemical properties of zwitterionic PEDOT-PC may aid its diverse applications in bioelectronic devices in the future.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Kim Y, Noh H, Paulsen BD, Kim J, Jo IY, Ahn H, Rivnay J, Yoon MH. Strain-Engineering Induced Anisotropic Crystallite Orientation and Maximized Carrier Mobility for High-Performance Microfiber-Based Organic Bioelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007550. [PMID: 33538016 DOI: 10.1002/adma.202007550] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/20/2020] [Indexed: 05/23/2023]
Abstract
Despite the importance of carrier mobility, recent research efforts have been mainly focused on the improvement of volumetric capacitance in order to maximize the figure-of-merit, μC* (product of carrier mobility and volumetric capacitance), for high-performance organic electrochemical transistors. Herein, high-performance microfiber-based organic electrochemical transistors with unprecedentedly large μC* using highly ordered crystalline poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) microfibers with very high carrier mobilities are reported. The strain engineering via uniaxial tension is employed in combination with solvent-mediated crystallization in the course of drying coagulated fibers, resulting in the permanent preferential alignment of crystalline PEDOT:PSS domains along the fiber direction, which is verified by atomic force microscopy and transmission wide-angle X-ray scattering. The resultant strain-engineered microfibers exhibit very high carrier mobility (12.9 cm2 V-1 s-1 ) without the trade-off in volumetric capacitance (122 F cm-3 ) and hole density (5.8 × 1020 cm-3 ). Such advantageous electrical and electrochemical characteristics offer the benchmark parameter of μC* over ≈1500 F cm-1 V-1 s-1 , which is the highest metric ever reported in the literature and can be beneficial for realizing a new class of substrate-free fibrillar and/or textile bioelectronics in the configuration of electrochemical transistors and/or electrochemical ion pumps.
Collapse
Affiliation(s)
- Youngseok Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyebin Noh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jiwoong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Il-Young Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - HyungJu Ahn
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
263
|
Moser M, Savva A, Thorley K, Paulsen BD, Hidalgo TC, Ohayon D, Chen H, Giovannitti A, Marks A, Gasparini N, Wadsworth A, Rivnay J, Inal S, McCulloch I. Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Achilleas Savva
- King Abdullah University of Science and Technology (KAUST) Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Karl Thorley
- University of Kentucky Department of Chemistry Lexington KY 40506-0055 USA
| | - Bryan D. Paulsen
- Northwestern University Department of Biomedical Engineering Chicago IL 60208 USA
| | - Tania Cecilia Hidalgo
- King Abdullah University of Science and Technology (KAUST) Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST) Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Hu Chen
- King Abdullah University of Science and Technology (KAUST) Physical Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | | | - Adam Marks
- Imperial College London Department of Chemistry and Center for Plastic Electronics London W12 0BZ UK
| | - Nicola Gasparini
- Imperial College London Department of Chemistry and Center for Plastic Electronics London W12 0BZ UK
| | | | - Jonathan Rivnay
- Northwestern University Department of Biomedical Engineering Chicago IL 60208 USA
- Northwestern University Simpson Querrey Institute Chicago IL 60611 USA
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST) Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Iain McCulloch
- University of Oxford Department of Chemistry Oxford OX1 3TA UK
- King Abdullah University of Science and Technology (KAUST) Physical Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
264
|
Moser M, Savva A, Thorley K, Paulsen BD, Hidalgo TC, Ohayon D, Chen H, Giovannitti A, Marks A, Gasparini N, Wadsworth A, Rivnay J, Inal S, McCulloch I. Polaron Delocalization in Donor-Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angew Chem Int Ed Engl 2021; 60:7777-7785. [PMID: 33259685 DOI: 10.1002/anie.202014078] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Indexed: 01/25/2023]
Abstract
Donor-acceptor (D-A) polymers are promising materials for organic electrochemical transistors (OECTs), as they minimize detrimental faradaic side-reactions during OECT operation, yet their steady-state OECT performance still lags far behind their all-donor counterparts. We report three D-A polymers based on the diketopyrrolopyrrole unit that afford OECT performances similar to those of all-donor polymers, hence representing a significant improvement to the previously developed D-A copolymers. In addition to improved OECT performance, DFT simulations of the polymers and their respective hole polarons also reveal a positive correlation between hole polaron delocalization and steady-state OECT performance, providing new insights into the design of OECT materials. Importantly, we demonstrate how polaron delocalization can be tuned directly at the molecular level by selection of the building blocks comprising the polymers' conjugated backbone, thus paving the way for the development of even higher performing OECT polymers.
Collapse
Affiliation(s)
- Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Achilleas Savva
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Karl Thorley
- University of Kentucky, Department of Chemistry, Lexington, KY, 40506-0055, USA
| | - Bryan D Paulsen
- Northwestern University, Department of Biomedical Engineering, Chicago, IL, 60208, USA
| | - Tania Cecilia Hidalgo
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Hu Chen
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Alexander Giovannitti
- Stanford University, TomKatCenter for Sustainable Energy, Stanford, CA, 94305-4125, USA
| | - Adam Marks
- Imperial College London, Department of Chemistry and Center for Plastic Electronics, London, W12 0BZ, UK
| | - Nicola Gasparini
- Imperial College London, Department of Chemistry and Center for Plastic Electronics, London, W12 0BZ, UK
| | - Andrew Wadsworth
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK
| | - Jonathan Rivnay
- Northwestern University, Department of Biomedical Engineering, Chicago, IL, 60208, USA.,Northwestern University, Simpson Querrey Institute, Chicago, IL, 60611, USA
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, OX1 3TA, UK.,King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
265
|
Jasenská D, Kašpárková V, Radaszkiewicz KA, Capáková Z, Pacherník J, Trchová M, Minařík A, Vajďák J, Bárta T, Stejskal J, Lehocký M, Truong TH, Moučka R, Humpolíček P. Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr Polym 2021; 253:117244. [PMID: 33278999 DOI: 10.1016/j.carbpol.2020.117244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
Novel composite films combining biocompatible polysaccharides with conducting polyaniline (PANI) were prepared via the in-situ polymerization of aniline hydrochloride in the presence of sodium hyaluronate (SH) or chitosan (CH). The composite films possess very good cytocompatibility in terms of adhesion and proliferation of two lines of human induced pluripotent stem cells (hiPSC). Moreover, the cardiomyogenesis and even formation of beating clusters were successfully induced on the films. The proportion of formed cardiomyocytes demonstrated excellent properties of composites for tissue engineering of stimuli-responsive tissues. The testing also demonstrated antibacterial activity of the films against E. coli and PANI-SH was able to reduce bacterial growth from 2 × 105 to < 1 cfu cm-2. Physicochemical characterization revealed that the presence of polysaccharides did not notably influence conductivities of the composites being ∼1 and ∼2 S cm-1 for PANI-SH and PANI-CH respectively; however, in comparison with neat PANI, it modified their topography making the films smoother with mean surface roughness of 4 (PANI-SH) and 14 nm (PANI-CH). The combination of conductivity, antibacterial activity and mainly cytocompatibility with hiPSC opens wide application potential of these polysaccharide-based composites.
Collapse
Affiliation(s)
- Daniela Jasenská
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Věra Kašpárková
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | | | - Zdenka Capáková
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Jiří Pacherník
- Masaryk University, Faculty of Science, 625 00 Brno, Czech Republic.
| | - Miroslava Trchová
- University of Chemistry and Technology Prague, Central Laboratories, 166 28 Prague 6, Czech Republic.
| | - Antonín Minařík
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Jan Vajďák
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Tomáš Bárta
- Masaryk University, Faculty of Science, 625 00 Brno, Czech Republic.
| | - Jaroslav Stejskal
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic.
| | - Marián Lehocký
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Thanh Huong Truong
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Robert Moučka
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| | - Petr Humpolíček
- Centre of Polymer Systems and Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic.
| |
Collapse
|
266
|
Ohayon D, Savva A, Du W, Paulsen BD, Uguz I, Ashraf RS, Rivnay J, McCulloch I, Inal S. Influence of Side Chains on the n-Type Organic Electrochemical Transistor Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4253-4266. [PMID: 33439636 DOI: 10.1021/acsami.0c18599] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
n-Type (electron transporting) polymers can make suitable interfaces to transduce biological events that involve the generation of electrons. However, n-type polymers that are stable when electrochemically doped in aqueous media are relatively scarce, and the performance of the existing ones lags behind their p-type (hole conducting) counterparts. Here, we report a new family of donor-acceptor-type polymers based on a naphthalene-1,4,5,8-tetracarboxylic-diimide-bi-thiophene (NDI-T2) backbone where the NDI unit always bears an ethylene glycol (EG) side chain. We study how small variations in the side chains tethered to the acceptor as well as the donor unit affect the performance of the polymer films in the state-of-the-art bioelectronic device, the organic electrochemical transistor (OECT). First, we find that substitution of the T2 core with an electron-withdrawing group (i.e., methoxy) or an EG side chain leads to ambipolar charge transport properties and causes significant changes in film microstructure, which overall impairs the n-type OECT performance. We thus show that the best n-type OECT performer is the polymer that has no substitution on the T2 unit. Next, we evaluate the distance of the oxygen from the NDI unit as a design parameter by varying the length of the carbon spacer placed between the EG unit and the backbone. We find that the distance of the EG from the backbone affects the film order and crystallinity, and thus, the electron mobility. Consequently, our work reports the best-performing NDI-T2-based n-type OECT material to date, i.e., the polymer without the T2 substitution and bearing a six-carbon spacer between the EG and the NDI units. Our work provides new guidelines for the side-chain engineering of n-type polymers for OECTs and insights on the structure-performance relationships for mixed ionic-electronic conductors, crucial for devices where the film operates at the aqueous electrolyte interface.
Collapse
Affiliation(s)
- David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Achilleas Savva
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Weiyuan Du
- KAUST Solar Center (KSC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ilke Uguz
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Raja S Ashraf
- KAUST Solar Center (KSC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Iain McCulloch
- KAUST Solar Center (KSC), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
267
|
Diacci C, Abedi T, Lee JW, Gabrielsson EO, Berggren M, Simon DT, Niittylä T, Stavrinidou E. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensors. iScience 2021; 24:101966. [PMID: 33474535 PMCID: PMC7803653 DOI: 10.1016/j.isci.2020.101966] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Bioelectronic devices that convert biochemical signals to electronic readout enable biosensing with high spatiotemporal resolution. These technologies have been primarily applied in biomedicine while in plants sensing is mainly based on invasive methods that require tissue sampling, hindering in-vivo detection and having poor spatiotemporal resolution. Here, we developed enzymatic biosensors based on organic electrochemical transistors (OECTs) for in-vivo and real-time monitoring of sugar fluctuations in the vascular tissue of trees. The glucose and sucrose OECT-biosensors were implanted into the vascular tissue of trees and were operated through a low-cost portable unit for 48hr. Our work consists a proof-of-concept study where implantable OECT-biosensors not only allow real-time monitoring of metabolites in plants but also reveal new insights into diurnal sugar homeostasis. We anticipate that this work will contribute to establishing bioelectronic technologies as powerful minimally invasive tools in plant science, agriculture and forestry.
Collapse
Affiliation(s)
- Chiara Diacci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Tayebeh Abedi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
| | - Jee Woong Lee
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, 601 74 Norrköping, Sweden
| | - Erik O. Gabrielsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, 601 74 Norrköping, Sweden
| | - Daniel T. Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
268
|
Bargigia I, Savagian LR, Österholm AM, Reynolds JR, Silva C. Charge-Transfer Intermediates in the Electrochemical Doping Mechanism of Conjugated Polymers. J Am Chem Soc 2021; 143:294-308. [PMID: 33373233 DOI: 10.1021/jacs.0c10692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We address the nature of electrochemically induced charged states in conjugated polymers, their evolution as a function of electrochemical potential, and their coupling to their local environment by means of transient absorption and Raman spectroscopies synergistically performed in situ throughout the electrochemical doping process. In particular, we investigate the fundamental mechanism of electrochemical doping in an oligoether-functionalized 3,4-propylenedioxythiophene (ProDOT) copolymer. The changes embedded in both linear and transient absorption features allow us to identify a precursor electronic state with charge-transfer (CT) character that precedes polaron formation and bulk electronic conductivity. This state is shown to contribute to the ultrafast quenching of both neutral molecular excitations and polarons. Raman spectra relate the electronic transition of this precursor state predominantly to the Cβ-Cβ stretching mode of the thiophene heterocycle. We characterize the coupling of the CT-like state with primary excitons and electrochemically induced charge-separated states, providing insight into the energetic landscape of a heterogeneous polymer-electrolyte system and demonstrating how such coupling depends on environmental parameters, such as polymer structure, electrolyte composition, and environmental polarity.
Collapse
Affiliation(s)
- Ilaria Bargigia
- School of Chemistry and Biochemistry, Georgia Tech Polymer Network, Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Lisa R Savagian
- School of Material Science and Engineering, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Anna M Österholm
- School of Chemistry and Biochemistry, Georgia Tech Polymer Network, Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - John R Reynolds
- School of Chemistry and Biochemistry, Georgia Tech Polymer Network, Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States.,School of Material Science and Engineering, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Carlos Silva
- School of Chemistry and Biochemistry, Georgia Tech Polymer Network, Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States.,School of Material Science and Engineering, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States.,School of Physics, Georgia Institute of Technology, Center for Organic Photonics and Electronics, 837 State Street NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
269
|
Mandelli JS, Koepp J, Hama A, Sanaur S, Rae GA, Rambo CR. Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C. Biomed Microdevices 2021; 23:2. [PMID: 33386434 DOI: 10.1007/s10544-020-00542-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
This study reports on the fabrication of biocompatible organic devices by means of inkjet printing with a novel combination of materials. The devices were fabricated on Parylene C (PaC), a biocompatible and flexible polymer substrate. The contact tracks were inkjet-printed using a silver nanoparticle ink, while the active sites were inkjet-printed using a poly (3,4ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) solution. To insulate the final device, a polyimide ink was used to print a thick film, leaving small open windows upon the active sites. Electrical characterization of the final device revealed conductivities in the order of 103 and 102 S.cm-1 for Ag and PEDOT based inks, respectively. Cell adhesion assays performed with PC-12 cells after 96 h of culture, and B16F10 cells after 24 h of culture, demonstrated that the cells adhered on top of the inks and cell differentiation occurred, which indicates Polyimide and PEDOT:PSS inks are non-toxic to these cells. The results indicate that PaC, along with its surface-treated variants, is a potentially useful material for fabricating cell-based microdevices.
Collapse
Affiliation(s)
- Jaqueline S Mandelli
- Department of Electrical and Electronic Engineering, Graduate Program on Materials Science and Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Janice Koepp
- Department of Pharmacology, Graduate Program on Pharmacology, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.,Biocelltis Biotechnology SA, Rod. SC 401 km 05, 5326, 88032-005, Florianópolis, Brazil
| | - Adel Hama
- Department of Bioelectronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France
| | - Sébastien Sanaur
- Department of Bioelectronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France.,Department of Flexible Electronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France
| | - Giles A Rae
- Department of Pharmacology, Graduate Program on Pharmacology, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Carlos R Rambo
- Department of Electrical and Electronic Engineering, Graduate Program on Materials Science and Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
| |
Collapse
|
270
|
Tropp J, Rivnay J. Design of biodegradable and biocompatible conjugated polymers for bioelectronics. JOURNAL OF MATERIALS CHEMISTRY C 2021; 9:13543-13556. [DOI: 10.1039/d1tc03600a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Blueprints for the chemical design of biodegradability and biocompatibility for organic semiconductors. Recent trends and future areas of interest are discussed.
Collapse
Affiliation(s)
- Joshua Tropp
- Department of Biomedical Engineering, Center for Advanced Regenerative Engineering, and Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Center for Advanced Regenerative Engineering, and Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
271
|
Zokaei S, Kroon R, Gladisch J, Paulsen BD, Sohn W, Hofmann AI, Persson G, Stamm A, Syrén P, Olsson E, Rivnay J, Stavrinidou E, Lund A, Müller C. Toughening of a Soft Polar Polythiophene through Copolymerization with Hard Urethane Segments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002778. [PMID: 33511014 PMCID: PMC7816697 DOI: 10.1002/advs.202002778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Indexed: 05/30/2023]
Abstract
Polar polythiophenes with oligoethylene glycol side chains are exceedingly soft materials. A low glass transition temperature and low degree of crystallinity prevents their use as a bulk material. The synthesis of a copolymer comprising 1) soft polythiophene blocks with tetraethylene glycol side chains, and 2) hard urethane segments is reported. The molecular design is contrary to that of other semiconductor-insulator copolymers, which typically combine a soft nonconjugated spacer with hard conjugated segments. Copolymerization of polar polythiophenes and urethane segments results in a ductile material that can be used as a free-standing solid. The copolymer displays a storage modulus of 25 MPa at room temperature, elongation at break of 95%, and a reduced degree of swelling due to hydrogen bonding. Both chemical doping and electrochemical oxidation reveal that the introduction of urethane segments does not unduly reduce the hole charge-carrier mobility and ability to take up charge. Further, stable operation is observed when the copolymer is used as the active layer of organic electrochemical transistors.
Collapse
Affiliation(s)
- Sepideh Zokaei
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Renee Kroon
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Johannes Gladisch
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Bryan D. Paulsen
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Wonil Sohn
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Anna I. Hofmann
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Gustav Persson
- Department of PhysicsChalmers University of TechnologyGöteborg41296Sweden
| | - Arne Stamm
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholm11428Sweden
| | - Per‐Olof Syrén
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholm11428Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholm11428Sweden
| | - Eva Olsson
- Department of PhysicsChalmers University of TechnologyGöteborg41296Sweden
- Wallenberg Wood Science CenterChalmers University of TechnologyGöteborg41296Sweden
| | - Jonathan Rivnay
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Eleni Stavrinidou
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Anja Lund
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
| | - Christian Müller
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborg41296Sweden
- Wallenberg Wood Science CenterChalmers University of TechnologyGöteborg41296Sweden
| |
Collapse
|
272
|
Aggas JR, Walther BK, Abasi S, Kotanen CN, Karunwi O, Wilson AM, Guiseppi-Elie A. On the intersection of molecular bioelectronics and biosensors: 20 Years of C3B. Biosens Bioelectron 2020; 176:112889. [PMID: 33358581 DOI: 10.1016/j.bios.2020.112889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Formed in 2000 at Virginia Commonwealth University, the Center for Bioelectronics, Biosensors and Biochips (C3B®) has subsequently been located at Clemson University and at Texas A&M University. Established as an industry-university collaborative center of excellence, the C3B has contributed new knowledge and technology in the areas of i) molecular bioelectronics, ii) responsive polymers, iii) multiplexed biosensor systems, and iv) bioelectronic biosensors. Noteworthy contributions in these areas include i) being the first to report direct electron transfer of oxidoreductase enzymes enabled by single walled carbon nanotubes and colloidal clays, ii) the molecular level integration of inherently conductive polymers with bioactive hydrogels using bi-functional monomers such as poly(pyrrole-co-3-pyrrolylbutyrate-conj-aminoethylmethacrylate) [PyBA-conj-AEMA] and 3-(1-ethyl methacryloylate)aniline to yield hetero-ladder electroconductive hydrogels, iii) the development of a multi-analyte physiological status monitoring biochip, and iv) the development of a bioanalytical Wien-bridge oscillator for the fused measurement to lactate and glucose. The present review takes a critical look of these contributions over the past 20 years and offers some perspective on the future of bioelectronics-based biosensors and systems. Particular attention is given to multiplexed biosensor systems and data fusion for rapid decision making.
Collapse
Affiliation(s)
- John R Aggas
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Brandon K Walther
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA.
| | - Sara Abasi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Christian N Kotanen
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD, 20814, USA.
| | - Olukayode Karunwi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Physics, Anderson University, 316 Boulevard, Anderson, SC, 29621, USA.
| | - Ann M Wilson
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, 23219, USA.
| |
Collapse
|
273
|
Tseng CP, Silberg JJ, Bennett GN, Verduzco R. 100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Lett 2020; 9:1590-1603. [PMID: 35617074 DOI: 10.1021/acsmacrolett.0c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioelectronics brings together the fields of biology and microelectronics to create multifunctional devices with the potential to address longstanding technological challenges and change our way of life. Microbial electrochemical devices are a growing subset of bioelectronic devices that incorporate naturally occurring or synthetically engineered microbes into electronic devices and have broad applications including energy harvesting, chemical production, water remediation, and environmental and health monitoring. The goal of this Viewpoint is to highlight recent advances and ongoing challenges in the rapidly developing field of microbial bioelectronic devices, with an emphasis on materials challenges. We provide an overview of microbial bioelectronic devices, discuss the biotic-abiotic interface in these devices, and then present recent advances and ongoing challenges in materials related to electron transfer across the abiotic-biotic interface, microbial adhesion, redox signaling, electronic amplification, and device miniaturization. We conclude with a summary and perspective of the field of microbial bioelectronics.
Collapse
Affiliation(s)
- Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - George N. Bennett
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
274
|
Affiliation(s)
- Anna Herland
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.,Center for the Advancement of Integrated Medical and Engineering Sciences - AIMES, Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
275
|
Organic Electrochemical Transistors (OECTs) Toward Flexible and Wearable Bioelectronics. Molecules 2020; 25:molecules25225288. [PMID: 33202778 PMCID: PMC7698176 DOI: 10.3390/molecules25225288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Organic electronics have emerged as a fascinating area of research and technology in the past two decades and are anticipated to replace classic inorganic semiconductors in many applications. Research on organic light-emitting diodes, organic photovoltaics, and organic thin-film transistors is already in an advanced stage, and the derived devices are commercially available. A more recent case is the organic electrochemical transistors (OECTs), whose core component is a conductive polymer in contact with ions and solvent molecules of an electrolyte, thus allowing it to simultaneously regulate electron and ion transport. OECTs are very effective in ion-to-electron transduction and sensor signal amplification. The use of synthetically tunable, biocompatible, and depositable organic materials in OECTs makes them specially interesting for biological applications and printable devices. In this review, we provide an overview of the history of OECTs, their physical characterization, and their operation mechanism. We analyze OECT performance improvements obtained by geometry design and active material selection (i.e., conductive polymers and small molecules) and conclude with their broad range of applications from biological sensors to wearable devices.
Collapse
|
276
|
Wang X, de Vasconcelos LS, Chen K, Perera K, Mei J, Zhao K. In Situ Measurement of Breathing Strain and Mechanical Degradation in Organic Electrochromic Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50889-50895. [PMID: 33112143 DOI: 10.1021/acsami.0c15390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) are an emerging family of materials crucial in the development of flexible, bio-, and optoelectronics. In electrochromic polymers, the cyclic redox reaction is associated with a mechanical breathing strain, which deforms the OMIECs and degrades the device reliability. We set forth an in situ nanoindentation approach to measure the breathing strain of a poly(3,4-propylenedioxythiophene) (PProDOT) thin film in a customized liquid cell during electrochromic cycles. A breathing volumetric strain of 12-25% is persistent in different sets of electrolytes of various solvents, salts, and salt molarities. The electrochemical conditioning, intermittence time, and cyclic protocol have minor effects on the mechanical response of PProDOT. The mechanical behavior and anion diffusivity measurement further infer the redox kinetics. Heavily cycled PProDOT films show reduced volumetric strain and accumulated mechanical damage of channel cracks and dysfunctional regions of slow and inhomogeneous electrochromic switching. This work is a systematic characterization of mechanical deformation and damage in a model OMIEC and informs the mechanical reliability of organic electrochromic devices.
Collapse
Affiliation(s)
- Xiaokang Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kuluni Perera
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kejie Zhao
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
277
|
Abdullayeva N, Kumtepe A, Altaf CT, Seckin H, Sankir ND, Sankir M. Dual-Ionomer-Based Device: Acetylcholine Transport and Nonenzymatic Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50039-50051. [PMID: 33084309 DOI: 10.1021/acsami.0c13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The malfunctioning in the release of acetylcholine (ACh+), leading to consequential damages in the neural system, has become an impulsion for the development of numerous progressive transport and detection gadgets. However, several challenges, such as laterality and complexity of transport devices, low precision of amperometric detection systems, and sumptuous, multistaged enzymatic quantification methods, have not yet been overcome. Herein, ionomers, because of their selective ion transporting nature, are chosen as suitable candidates for being implemented into both targeted ACh+ delivery and sensing systems. Based on these two approaches, for the very first time in the literature, the disulfonated poly(arylene ether sulfone) membrane is concurrently (i) used in the mimicry of transduction of the electrical-to-ionic signal in a neural network as "Acetylcholine Pen" (ACh+ Pen) and (ii) operated as a highly sensitive, conductivity-based ACh+ quantifier. Our dual device, being able to operate under an actual action potential of 55 mVbias, shows a strong potential of future applicability in real-time ionic delivery-and-sensing systems.
Collapse
Affiliation(s)
- Nazrin Abdullayeva
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| | - Alihan Kumtepe
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| | - Cigdem Tuc Altaf
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| | - Hakan Seckin
- Neurosurgery Clinic, Medicana Bursa Hospital, Izmir Yolu No. 41, Odunluk Nilufer, 16110 Bursa, Turkey
| | - Nurdan Demirci Sankir
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| | - Mehmet Sankir
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, Sogutozu, 06560 Ankara, Turkey
| |
Collapse
|
278
|
Paulsen BD, Wu R, Takacs CJ, Steinrück HG, Strzalka J, Zhang Q, Toney MF, Rivnay J. Time-Resolved Structural Kinetics of an Organic Mixed Ionic-Electronic Conductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003404. [PMID: 32864811 DOI: 10.1002/adma.202003404] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The structure and packing of organic mixed ionic-electronic conductors have an especially significant effect on transport properties. In operating devices, this structure is not fixed but is responsive to changes in electrochemical potential, ion intercalation, and solvent swelling. Toward this end, the steady-state and transient structure of the model organic mixed conductor, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), is characterized using multimodal time-resolved operando techniques. Steady-state operando X-ray scattering reveals a doping-induced lamellar expansion of 1.6 Å followed by 0.4 Å relaxation at high doping levels. Time-resolved operando X-ray scattering reveals asymmetric rates of lamellar structural change during doping and dedoping that do not directly depend on potential or charging transients. Time-resolved spectroscopy establishes a link between structural transients and the complex kinetics of electronic charge carrier subpopulations, in particular the polaron-bipolaron equilibrium. These findings provide insight into the factors limiting the response time of organic mixed-conductor-based devices, and present the first real-time observation of the structural changes during doping and dedoping of a conjugated polymer system via X-ray scattering.
Collapse
Affiliation(s)
- Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiheng Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Hans-Georg Steinrück
- Department Chemie, Universität Paderborn, Warburger Str. 100, Paderborn, 33098, Germany
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Qingteng Zhang
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
279
|
Pankow RM, Thompson BC. The development of conjugated polymers as the cornerstone of organic electronics. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
280
|
|
281
|
Ohayon D, Inal S. Organic Bioelectronics: From Functional Materials to Next-Generation Devices and Power Sources. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001439. [PMID: 32691880 DOI: 10.1002/adma.202001439] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Conjugated polymers (CPs) possess a unique set of features setting them apart from other materials. These properties make them ideal when interfacing the biological world electronically. Their mixed electronic and ionic conductivity can be used to detect weak biological signals, deliver charged bioactive molecules, and mechanically or electrically stimulate tissues. CPs can be functionalized with various (bio)chemical moieties and blend with other functional materials, with the aim of modulating biological responses or endow specificity toward analytes of interest. They can absorb photons and generate electronic charges that are then used to stimulate cells or produce fuels. These polymers also have catalytic properties allowing them to harvest ambient energy and, along with their high capacitances, are promising materials for next-generation power sources integrated with bioelectronic devices. In this perspective, an overview of the key properties of CPs and examination of operational mechanism of electronic devices that leverage these properties for specific applications in bioelectronics is provided. In addition to discussing the chemical structure-functionality relationships of CPs applied at the biological interface, the development of new chemistries and form factors that would bring forth next-generation sensors, actuators, and their power sources, and, hence, advances in the field of organic bioelectronics is described.
Collapse
Affiliation(s)
- David Ohayon
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
282
|
Wang S, Easley AD, Thakur RM, Ma T, Yun J, Zhang Y, Ober CK, Lutkenhaus JL. Quantifying internal charge transfer and mixed ion-electron transfer in conjugated radical polymers. Chem Sci 2020; 11:9962-9970. [PMID: 34094258 PMCID: PMC8162116 DOI: 10.1039/d0sc03567j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/28/2020] [Indexed: 01/16/2023] Open
Abstract
Macromolecular radicals are receiving growing interest as functional materials in energy storage devices and in electronics. With the need for enhanced conductivity, researchers have turned to macromolecular radicals bearing conjugated backbones, but results thus far have yielded conjugated radical polymers that are inferior in comparison to their non-conjugated partners. The emerging explanation is that the radical unit and the conjugated backbone (both being redox active) transfer electrons between each other, essentially "quenching" conductivity or capacity. Here, the internal charge transfer process is quantified using a polythiophene loaded with 0, 25, or 100% nitroxide radicals (2,2,6,6-tetramethyl-1-piperidinyloxy [TEMPO]). Importantly, deconvolution of the cyclic voltammograms shows mixed faradaic and non-faradaic contributions that contribute to the internal charge transfer process. Further, mixed ion-electron transfer is determined for the 100% TEMPO-loaded conjugated radical polymer, from which it is estimated that one triflate anion and one propylene carbone molecule are exchanged for every electron. Although these findings indicate the reason behind their poor conductivity and capacity, they point to how these materials might be used as voltage regulators in the future.
Collapse
Affiliation(s)
- Shaoyang Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
| | - Alexandra D Easley
- Department of Materials Science and Engineering, Texas A&M University College Station TX USA
| | - Ratul M Thakur
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
| | - Ting Ma
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
| | - Junyeong Yun
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
| | - Yiren Zhang
- Materials Science and Engineering, Cornell University Ithaca New York USA
| | - Christopher K Ober
- Materials Science and Engineering, Cornell University Ithaca New York USA
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX USA
- Department of Materials Science and Engineering, Texas A&M University College Station TX USA
| |
Collapse
|
283
|
Del Olmo R, Casado N, Olmedo-Martínez JL, Wang X, Forsyth M. Mixed Ionic-Electronic Conductors Based on PEDOT:PolyDADMA and Organic Ionic Plastic Crystals. Polymers (Basel) 2020; 12:E1981. [PMID: 32878189 PMCID: PMC7563752 DOI: 10.3390/polym12091981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022] Open
Abstract
Mixed ionic-electronic conductors, such as poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) are postulated to be the next generation materials in energy storage and electronic devices. Although many studies have aimed to enhance the electronic conductivity and mechanical properties of these materials, there has been little focus on ionic conductivity. In this work, blends based on PEDOT stabilized by the polyelectrolyte poly(diallyldimethylammonium) (PolyDADMA X) are reported, where the X anion is either chloride (Cl), bis(fluorosulfonyl)imide (FSI), bis(trifluoromethylsulfonyl)imide (TFSI), triflate (CF3SO3) or tosylate (Tos). Electronic conductivity values of 0.6 S cm-1 were achieved in films of PEDOT:PolyDADMA FSI (without any post-treatment), with an ionic conductivity of 5 × 10-6 S cm-1 at 70 °C. Organic ionic plastic crystals (OIPCs) based on the cation N-ethyl-N-methylpyrrolidinium (C2mpyr+) with similar anions were added to synergistically enhance both electronic and ionic conductivities. PEDOT:PolyDADMA X / [C2mpyr][X] composites (80/20 wt%) resulted in higher ionic conductivity values (e.g., 2 × 10-5 S cm-1 at 70 °C for PEDOT:PolyDADMA FSI/[C2mpyr][FSI]) and improved electrochemical performance versus the neat PEDOT:PolyDADMA X with no OIPC. Herein, new materials are presented and discussed including new PEDOT:PolyDADMA and organic ionic plastic crystal blends highlighting their promising properties for energy storage applications.
Collapse
Affiliation(s)
- Rafael Del Olmo
- Joxe Mari Korta Center, POLYMAT University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; (R.D.O.); (J.L.O.-M.)
| | - Nerea Casado
- Joxe Mari Korta Center, POLYMAT University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; (R.D.O.); (J.L.O.-M.)
| | - Jorge L. Olmedo-Martínez
- Joxe Mari Korta Center, POLYMAT University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; (R.D.O.); (J.L.O.-M.)
| | - Xiaoen Wang
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC 3217, Australia;
| | - Maria Forsyth
- Joxe Mari Korta Center, POLYMAT University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; (R.D.O.); (J.L.O.-M.)
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC 3217, Australia;
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, VIC 3125, Australia
| |
Collapse
|
284
|
Romero M, Mombrú D, Pignanelli F, Faccio R, Mombrú AW. Mini-Review: Mixed Ionic-Electronic Charge Carrier Localization and Transport in Hybrid Organic-Inorganic Nanomaterials. Front Chem 2020; 8:537. [PMID: 32760697 PMCID: PMC7372086 DOI: 10.3389/fchem.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023] Open
Abstract
In this mini-review, a comprehensive discussion on the state of the art of hybrid organic–inorganic mixed ionic–electronic conductors (hOI-MIECs) is given, focusing on conducting polymer nanocomposites comprising inorganic nanoparticles ranging from ceramic-in-polymer to polymer-in-ceramic concentration regimes. First, a brief discussion on fundamental aspects of mixed ionic–electronic transport phenomena considering the charge carrier transport at bulk regions together with the effect of the organic–inorganic interphase of hybrid nanocomposites is presented. We also make a recount of updated instrumentation techniques to characterize structure, microstructure, chemical composition, and mixed ionic–electronic transport with special focus on those relevant for hOI-MIECs. Raman imaging and impedance spectroscopy instrumentation techniques are particularly discussed as relatively simple and versatile tools to study the charge carrier localization and transport at different regions of hOI-MIECs including both bulk and interphase regions to shed some light on the mixed ionic–electronic transport mechanism. In addition, we will also refer to different device assembly configurations and in situ/operando measurements experiments to analyze mixed ionic–electronic conduction phenomena for different specific applications. Finally, we will also review the broad range of promising applications of hOI-MIECs, mainly in the field of energy storage and conversion, but also in the emerging field of electronics and bioelectronics.
Collapse
Affiliation(s)
- Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Dominique Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Fernando Pignanelli
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alvaro W Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones - DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
285
|
Lill AT, Cao DX, Schrock M, Vollbrecht J, Huang J, Nguyen-Dang T, Brus VV, Yurash B, Leifert D, Bazan GC, Nguyen TQ. Organic Electrochemical Transistors Based on the Conjugated Polyelectrolyte PCPDTBT-SO 3 K (CPE-K). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908120. [PMID: 32656778 DOI: 10.1002/adma.201908120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
PCPDTBT-SO3 K (CPE-K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated. Such characteristics are highly desired in applications such as neural-activity sensing, where the device area must be minimized to reduce invasiveness. The physical and electrical properties of CPE-K are fully characterized to allow a direct comparison to other top performing OECT materials. CPE-K demonstrates an electrical performance that is among the best reported in the literature for OECT materials. In addition, CPE-K OECTs operate in the accumulation mode, which allows for much lower energy consumption in comparison to commonly used depletion mode devices.
Collapse
Affiliation(s)
- Alexander T Lill
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - David X Cao
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Max Schrock
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Joachim Vollbrecht
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jianfei Huang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tung Nguyen-Dang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Viktor V Brus
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Brett Yurash
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dirk Leifert
- Organisch-Chemisches Institut, Münster University, Münster, 48149, Germany
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
286
|
Affiliation(s)
- Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics (MOE), Department of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics (MOE), Department of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
287
|
Yang H, Wang Z, Guo X, Su H, Sun K, Yang D, Xiao W, Wang Q, He D. Controlled Growth of Fine Multifilaments in Polymer-Based Memristive Devices Via the Conduction Control. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34370-34377. [PMID: 32627526 DOI: 10.1021/acsami.0c07533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid polymer electrolyte (SPE) is one of the choices for many ionic devices, including organic transistors, ion batteries, memristors, and more. However, uncontrollable conductive filament formation seriously affects the performance of the device. In this paper, the PEDOT:PSS was doped to improve the electronic and ionic conductivity of amorphous polymer electrolyte poly(vinylpyrrolidone) (PVP), realizing the transition of the filaments growth from cathode to anode in atomic switch memristors. Based on the difference in ion and electron mobility and scanning electron microscope observation, the in situ reductions of metal ions inside the dielectric layer can effectively prevent the formation of uncontrollable filaments. The formation of uniformly distributed metal particles in the dielectric layer is similar to co-sputter doping technology, which enables the device to exhibit excellent performance, such as smaller set/reset bias distribution, endurance, and retention. Obviously, this innovative way improves the conductive mechanism of ionic devices.
Collapse
Affiliation(s)
- Huiyong Yang
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zheng Wang
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiangyu Guo
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hao Su
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kai Sun
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dongliang Yang
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei Xiao
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qi Wang
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Deyan He
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
288
|
Modarresi M, Mehandzhiyski A, Fahlman M, Tybrandt K, Zozoulenko I. Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00877] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohsen Modarresi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mats Fahlman
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
289
|
Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat Commun 2020; 11:3004. [PMID: 32532975 PMCID: PMC7293298 DOI: 10.1038/s41467-020-16648-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/15/2020] [Indexed: 11/08/2022] Open
Abstract
From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors – critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N’-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2’-bithiophene-co-N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices. Improving electron transport and stability of n-type organic electrochemical transistors (OECTs) is required to realize a commercially-viable technology for bioelectronics applications. Here, the authors report water-stable doped n-type OECTs with enhanced transconductance and record stability.
Collapse
|
290
|
Mariani F, Quast T, Andronescu C, Gualandi I, Fraboni B, Tonelli D, Scavetta E, Schuhmann W. Needle-type organic electrochemical transistor for spatially resolved detection of dopamine. Mikrochim Acta 2020; 187:378. [PMID: 32518976 PMCID: PMC7283208 DOI: 10.1007/s00604-020-04352-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
In this work, the advantages of carbon nanoelectrodes (CNEs) and orgonic electrochemical transistors (OECTs) were merged to realise nanometre-sized, spearhead OECTs based on single- and double-barrel CNEs functionalised with a conducting polymer film. The needle-type OECT shows a high aspect ratio that allows its precise positioning by means of a macroscopic handle and its size is compatible with single-cell analysis. The device was characterised with respect to its electrolyte-gated behaviour and was employed as electrochemical sensor for the proof-of-concept detection of dopamine (DA) over a wide concentration range (10-12-10-6 M). Upon application of fixed drain and gate voltages (Vd = - 0.3 V, Vg = - 0.9 V, respectively), the nano-sized needle-type OECT sensor exhibited a linear response in the low pM range and from 0.002 to 7 μM DA, with a detection limit of 1 × 10-12 M. Graphical abstract.
Collapse
Affiliation(s)
- Federica Mariani
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and Center for Nanointegration (CENIDE), University Duisburg Essen, Carl-Benz-Str. 201, D-47057, Duisburg, Germany
| | - Isacco Gualandi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Domenica Tonelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Erika Scavetta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
291
|
Chung J, Khot A, Savoie BM, Boudouris BW. 100th Anniversary of Macromolecular Science Viewpoint: Recent Advances and Opportunities for Mixed Ion and Charge Conducting Polymers. ACS Macro Lett 2020; 9:646-655. [PMID: 35648568 DOI: 10.1021/acsmacrolett.0c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecules that exhibit both electron transport and ionic mass transport (i.e., mixed conducting polymers) are ascendant with respect to both emerging application spaces and the elucidation of their fundamental physical principles. The unique coupling between the two modes of conduction puts these materials at the center of many next-generation organic electronic applications. The molecular details of this coupling are also at the epicenter of outstanding questions about how these materials function; how monomer and macromolecular chemistry dictates observable properties; and ultimately, how these macromolecular materials can be rationally designed, processed, and implemented into high-performance devices. Here, we focus on what is currently known about coupled ionic-electronic transport in these polymers and where there are open opportunities in the field. These opportunities include the syntheses of designer macromolecules, the need for significant simulation efforts that provide molecular-level insights into the mixed conduction mechanism, and the need for advanced characterization techniques for real-time monitoring of polymer morphology, as this is critical to coupled ion-charge transport processes. Considering the early stage of this important subfield of polymer science, we also present our view of how the development of mixed conductors can benefit from the lessons learned from previous polymer-based electronic devices.
Collapse
Affiliation(s)
- Jaeyub Chung
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aditi Khot
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M. Savoie
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bryan W. Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
292
|
Affiliation(s)
- Ilhwan Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Daeyoung Jeon
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Bryan Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47906, United States
| | - Yongho Joo
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| |
Collapse
|
293
|
Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. NATURE MATERIALS 2020; 19:491-502. [PMID: 32296138 DOI: 10.1038/s41563-020-0647-2] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Conjugated polymers and molecular semiconductors are emerging as a viable semiconductor technology in industries such as displays, electronics, renewable energy, sensing and healthcare. A key enabling factor has been significant scientific progress in improving their charge transport properties and carrier mobilities, which has been made possible by a better understanding of the molecular structure-property relationships and the underpinning charge transport physics. Here we aim to present a coherent review of how we understand charge transport in these high-mobility van der Waals bonded semiconductors. Specific questions of interest include estimates for intrinsic limits to the carrier mobilities that might ultimately be achievable; a discussion of the coupling between charge and structural dynamics; the importance of molecular conformations and mesoscale structural features; how the transport physics of conjugated polymers and small molecule semiconductors are related; and how the incorporation of counterions in doped films-as used, for example, in bioelectronics and thermoelectric devices-affects the electronic structure and charge transport properties.
Collapse
Affiliation(s)
| | - Mark Nikolka
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
294
|
The biocompatibility of polyaniline and polypyrrole 2: Doping with organic phosphonates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110986. [PMID: 32487402 DOI: 10.1016/j.msec.2020.110986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022]
Abstract
Conducting polymers (CP) can be used as pH- and/or electro-responsive components in various bioapplications, for example, in 4D smart scaffolds. The ability of CP to maintain conductivity under physiological conditions is, therefore, their crucial property. Unfortunately, the conductivity of the CP rapidly decreases in physiological environment, as their conducting salts convert to non-conducting bases. One of the promising solutions how to cope with this shortcoming is the use of alternative "doping" process that is not based on the protonation of CP with acids but on interactions relying in acidic hydrogen bonding. Therefore, the phosphonates (dimethyl phosphonate, diethyl phosphonate, dibutyl phosphonate, or diphenyl phosphonate) were used to re-dope two most common representatives of CP, polyaniline (PANI) and polypyrrole (PPy) bases. As a result, PANI doped with organic phosphonates proved to have significantly better stability of conductivity under different pH. It has also been shown that cytotoxicity of studied materials determined on embryonic stem cells and their embryotoxicity, determined as the impact on cardiomyogenesis and erythropoiesis, depend both on the polymer and phosphonate types used. With the exception of PANI doped with dibutyl phosphonate, all PPy-based phosphonates showed better biocompatibility than the phosphonates based on PANI.
Collapse
|
295
|
Keef CV, Kayser LV, Tronboll S, Carpenter CW, Root NB, Finn M, O’Connor TF, Abuhamdieh SN, Davies DM, Runser R, Meng YS, Ramachandran VS, Lipomi DJ. Virtual Texture Generated using Elastomeric Conductive Block Copolymer in Wireless Multimodal Haptic Glove. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 2:2000018. [PMID: 32656536 PMCID: PMC7351316 DOI: 10.1002/aisy.202000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 05/03/2023]
Abstract
Haptic devices are in general more adept at mimicking the bulk properties of materials than they are at mimicking the surface properties. This paper describes a haptic glove capable of producing sensations reminiscent of three types of near-surface properties: hardness, temperature, and roughness. To accomplish this mixed mode of stimulation, three types of haptic actuators were combined: vibrotactile motors, thermoelectric devices, and electrotactile electrodes made from a stretchable conductive polymer synthesized in our laboratory. This polymer consisted of a stretchable polyanion which served as a scaffold for the polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The scaffold was synthesized using controlled radical polymerization to afford material of low dispersity, relatively high conductivity (0.1 S cm-1), and low impedance relative to metals. The glove was equipped with flex sensors to make it possible to control a robotic hand and a hand in virtual reality (VR). In psychophysical experiments, human participants were able to discern combinations of electrotactile, vibrotactile, and thermal stimulation in VR. Participants trained to associate these sensations with roughness, hardness, and temperature had an overall accuracy of 98%, while untrained participants had an accuracy of 85%. Sensations could similarly be conveyed using a robotic hand equipped with sensors for pressure and temperature.
Collapse
Affiliation(s)
- Colin V. Keef
- Department of Electrical and Computer Engineering,
University of California, San Diego, Mail Code 0407, La Jolla, CA 92093-0407
| | - Laure V. Kayser
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Stazia Tronboll
- Department of Electrical and Computer Engineering,
University of California, San Diego, Mail Code 0407, La Jolla, CA 92093-0407
| | - Cody W. Carpenter
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Nicholas B. Root
- Department of Psychology, University of California, San
Diego, Mail Code 0109, La Jolla, CA 92093-0109
| | - Mickey Finn
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Timothy F. O’Connor
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Sami N. Abuhamdieh
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Daniel M. Davies
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Rory Runser
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Y. Shirley Meng
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| | - Vilayanur S. Ramachandran
- Department of Psychology, University of California, San
Diego, Mail Code 0109, La Jolla, CA 92093-0109
| | - Darren J. Lipomi
- Department of NanoEngineering and Program in Chemical
Engineering, University of California, San Diego, Mail Code 0448, La Jolla, CA
92093-0448
| |
Collapse
|
296
|
Giovannitti A, Rashid RB, Thiburce Q, Paulsen BD, Cendra C, Thorley K, Moia D, Mefford JT, Hanifi D, Weiyuan D, Moser M, Salleo A, Nelson J, McCulloch I, Rivnay J. Energetic Control of Redox-Active Polymers toward Safe Organic Bioelectronic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908047. [PMID: 32125736 DOI: 10.1002/adma.201908047] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side-products. This is particularly important for bioelectronic devices, which are designed to operate in biological systems. While redox-active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side-reactions with molecular oxygen during device operation. Here, electrochemical side reactions with molecular oxygen are shown to occur during organic electrochemical transistor (OECT) operation using high-performance, state-of-the-art OECT materials. Depending on the choice of the active material, such reactions yield hydrogen peroxide (H2 O2 ), a reactive side-product, which may be harmful to the local biological environment and may also accelerate device degradation. A design strategy is reported for the development of redox-active organic semiconductors based on donor-acceptor copolymers that prevents the formation of H2 O2 during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte-gated devices in application-relevant environments.
Collapse
Affiliation(s)
- Alexander Giovannitti
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Reem B Rashid
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Bryan D Paulsen
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Camila Cendra
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Karl Thorley
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Davide Moia
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - J Tyler Mefford
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - David Hanifi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Du Weiyuan
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maximilian Moser
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jenny Nelson
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Iain McCulloch
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jonathan Rivnay
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
297
|
Jastrzebska-Perfect P, Spyropoulos GD, Cea C, Zhao Z, Rauhala OJ, Viswanathan A, Sheth SA, Gelinas JN, Khodagholy D. Mixed-conducting particulate composites for soft electronics. SCIENCE ADVANCES 2020; 6:eaaz6767. [PMID: 32494646 PMCID: PMC7182411 DOI: 10.1126/sciadv.aaz6767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/27/2020] [Indexed: 05/29/2023]
Abstract
Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high-spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.
Collapse
Affiliation(s)
| | | | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Onni J. Rauhala
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer N. Gelinas
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
298
|
Bischak CG, Flagg LQ, Yan K, Rehman T, Davies DW, Quezada RJ, Onorato JW, Luscombe CK, Diao Y, Li CZ, Ginger DS. A Reversible Structural Phase Transition by Electrochemically-Driven Ion Injection into a Conjugated Polymer. J Am Chem Soc 2020; 142:7434-7442. [PMID: 32227841 DOI: 10.1021/jacs.9b12769] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Connor G. Bischak
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Lucas Q. Flagg
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kangrong Yan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Tahir Rehman
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Daniel W. Davies
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ramsess J. Quezada
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Jonathan W. Onorato
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christine K. Luscombe
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Molecular Engineering and Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chang-Zhi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - David S. Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
299
|
Schmode P, Savva A, Kahl R, Ohayon D, Meichsner F, Dolynchuk O, Thurn-Albrecht T, Inal S, Thelakkat M. The Key Role of Side Chain Linkage in Structure Formation and Mixed Conduction of Ethylene Glycol Substituted Polythiophenes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13029-13039. [PMID: 32066232 DOI: 10.1021/acsami.9b21604] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Functionalizing conjugated polymers with polar ethylene glycol side chains enables enhanced swelling and facilitates ion transport in addition to electronic transport in such systems. Here, we investigate three polythiophene homopolymers (P3MEET, P3MEEMT, and P3MEEET) having differently linked (without spacer and with methyl and ethyl spacer, respectively) diethylene glycol side chains. All the polymers were tested in organic electrochemical transistors (OECTs). They show drastic differences in the device performance. The highest μOECT C* product of 11.5 F/cm·V·s was obtained for ethyl-spaced P3MEEET. How the injection and transport of ions is influenced by the side-chain linkage was studied with electrochemical impedance spectroscopy, which shows a dramatic increase in volumetric capacitance from 80 ± 9 up to 242 ± 17 F/cm3 on going from P3MEET to P3MEEET. Thus, ethyl-spaced P3MEEET exhibits one of the highest reported volumetric capacitance values among p-type polymers. Moreover, P3MEEET exhibits in dry thin films an organic field-effect transistor (OFET) hole mobility of 0.005 cm2/V·s, highest among the three, which is one order of magnitude higher than that for P3MEEMT. The extracted hole mobility from OECT (oxidized swollen state) and the hole mobility in solid-state thin films (OFET) show contradictory trends for P3MEEMT and P3MEEET. In order to understand exactly the properties in the hydrated and dry states, the crystal structure of the polymers was investigated with wide-angle X-ray scattering (WAXS) and grazing incidence WAXS, and the water uptake under applied potential was monitored using electrochemical quartz crystal microbalance with dissipation monitoring (E-QCMD). These measurements reveal an amorphous state for P3MEET and a semicrystalline state for P3MEEMT and P3MEEEET. On the other hand, E-QCMD confirms that P3MEEET swells 10 times more than P3MEEMT in the oxidized state. Thus, the importance of the ethyl spacer toward crystallinity and mixed-conduction properties was clearly demonstrated, emphasizing the impact of side chain linkage of diethylene glycol. This detailed study offers a better understanding of how to design high-performance organic mixed conductors.
Collapse
Affiliation(s)
- Philip Schmode
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Achilleas Savva
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Robert Kahl
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - David Ohayon
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Florian Meichsner
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Oleksandr Dolynchuk
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Thomas Thurn-Albrecht
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Sahika Inal
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mukundan Thelakkat
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
300
|
Zhang W, Chu J, Hu M. Coupled Electrical Conduction in Coordination Polymers: From Electrons/Ions to Mixed Charge Carriers. Chem Asian J 2020; 15:1202-1213. [PMID: 32187450 DOI: 10.1002/asia.202000108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Indexed: 01/20/2023]
Abstract
The coupled transport of ions and electrons is of great potential for next-generation sensors, energy storage and conversion devices, optoelectronics, etc. Coordination polymers (CPs) intrinsically have both transport pathways for electrons and ions, however, the practical conductivities are usually low. In recent years, significant advances have been made in electronic or ionic conductive coordination polymers, which also results in progress in mixed ionic-electronic conductive coordination polymers. Here we start from electronic and ionic conductive CPs to mixed ionic-electronic conductive CPs. Recent advances in the design of mixed ionic-electronic conductive CPs are summarized. In addition, devices based on mixed conduction are selected.
Collapse
Affiliation(s)
- Wei Zhang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Junhao Chu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|