251
|
Jawalagatti V, Kirthika P, Hewawaduge C, Yang MS, Park JY, Oh B, Lee JH. Bacteria-enabled oral delivery of a replicon-based mRNA vaccine candidate protects against ancestral and delta variant SARS-CoV-2. Mol Ther 2022; 30:1926-1940. [PMID: 35123065 PMCID: PMC8810265 DOI: 10.1016/j.ymthe.2022.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolution has resulted in many variants, contributing to the striking drop in vaccine efficacy and necessitating the development of next-generation vaccines to tackle antigenic diversity. Herein we developed a multivalent Semliki Forest virus replicon-based mRNA vaccine targeting the receptor binding domain (RBD), heptad repeat domain (HR), membrane protein (M), and epitopes of non-structural protein 13 (nsp13) of SARS-CoV-2. The bacteria-mediated gene delivery offers the rapid production of large quantities of vaccine at a highly economical scale and notably allows needle-free mass vaccination. Favorable T-helper (Th) 1-dominated potent antibody and cellular immune responses were detected in the immunized mice. Further, immunization induced strong cross-protective neutralizing antibodies (NAbs) against the B.1.617.2 delta variant (clade G). We recorded a difference in induction of immunoglobulin (Ig) A response by the immunization route, with the oral route eliciting a strong mucosal secretory IgA (sIgA) response, which possibly has contributed to the enhanced protection conferred by oral immunization. Hamsters immunized orally were completely protected against viral replication in the lungs and the nasal cavity. Importantly, the vaccine protected the hamsters against SARS-CoV-2-induced pneumonia. The study provides proof-of-principle findings for the development of a feasible and efficacious oral mRNA vaccine against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Vijayakumar Jawalagatti
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Perumalraja Kirthika
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Chamith Hewawaduge
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Myeon-Sik Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Ji-Young Park
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Byungkwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea.
| |
Collapse
|
252
|
Becker J, Stanifer ML, Leist SR, Stolp B, Maiakovska O, West A, Wiedtke E, Börner K, Ghanem A, Ambiel I, Tse LV, Fackler OT, Baric RS, Boulant S, Grimm D. Ex vivo and in vivo suppression of SARS-CoV-2 with combinatorial AAV/RNAi expression vectors. Mol Ther 2022; 30:2005-2023. [PMID: 35038579 PMCID: PMC8758558 DOI: 10.1016/j.ymthe.2022.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Megan Lynn Stanifer
- Department of Infectious Diseases/Molecular Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Sarah Rebecca Leist
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Bettina Stolp
- Department of Infectious Diseases/Integrative Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Olena Maiakovska
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ande West
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Department of Infectious Diseases/Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Ali Ghanem
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ina Ambiel
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Longping Victor Tse
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Oliver Till Fackler
- Department of Infectious Diseases/Integrative Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Ralph Steven Baric
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Department of Infectious Diseases/Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
253
|
Seow J, Graham C, Hallett SR, Lechmere T, Maguire TJA, Huettner I, Cox D, Khan H, Pickering S, Roberts R, Waters A, Ward CC, Mant C, Pitcher MJ, Spencer J, Fox J, Malim MH, Doores KJ. ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants. Cell Rep 2022; 39:110757. [PMID: 35477023 PMCID: PMC9010245 DOI: 10.1016/j.celrep.2022.110757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Although the antibody response to COVID-19 vaccination has been studied extensively at the polyclonal level using immune sera, little has been reported on the antibody response at the monoclonal level. Here, we isolate a panel of 44 anti-SARS-CoV-2 monoclonal antibodies (mAbs) from an individual who received two doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine at a 12-week interval. We show that, despite a relatively low serum neutralization titer, Spike-reactive IgG+ B cells are still detectable 9 months post-boost. Furthermore, mAbs with potent neutralizing activity against the current SARS-CoV-2 variants of concern (Alpha, Gamma, Beta, Delta, and Omicron) are present. The vaccine-elicited neutralizing mAbs form eight distinct competition groups and bind epitopes overlapping with neutralizing mAbs elicited following SARS-CoV-2 infection. AZD1222-elicited mAbs are more mutated than mAbs isolated from convalescent donors 1-2 months post-infection. These findings provide molecular insights into the AZD1222 vaccine-elicited antibody response.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sadie R Hallett
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Cox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Hataf Khan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Anele Waters
- Harrison Wing, Guy's and St Thomas' NHS Trust, London, UK
| | - Christopher C Ward
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Christine Mant
- Infectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Julie Fox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Harrison Wing, Guy's and St Thomas' NHS Trust, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
254
|
Meyer B, Martinez-Murillo PA, Lemaitre B, Blanchard-Rohner G, Didierlaurent AM, Fontannaz P, Eugercios Manzanas C, Lambert PH, Loevy N, Kaiser L, Sartoretti J, Tougne C, Villard J, Huttner A, Siegrist CA, Eberhardt CS. Fitness of B-Cell Responses to SARS-CoV-2 WT and Variants Up to One Year After Mild COVID-19 – A Comprehensive Analysis. Front Immunol 2022; 13:841009. [PMID: 35585978 PMCID: PMC9108245 DOI: 10.3389/fimmu.2022.841009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo comprehensively evaluate SARS-CoV-2 specific B-cell and antibody responses up to one year after mild COVID-19.MethodsIn 31 mildly symptomatic COVID-19 participants SARS-CoV-2-specific plasmablasts and antigen-specific memory B cells were measured by ELISpot. Binding antibodies directed against the proteins spike (S), domain S1, and nucleocapsid (N) were estimated using rIFA, ELISA, and commercially available assays, and avidity measured using thiocyanate washout. Neutralizing antibodies against variants of concern were measured using a surrogate-neutralization test.ResultsPlasmablast responses were assessed in all participants who gave sequential samples during the first two weeks after infection; they preceded the rise in antibodies and correlated with antibody titers measured at one month. S1 and N protein-specific IgG memory B-cell responses remained stable during the first year, whereas S1-specific IgA memory B-cell responses declined after 6 months. Antibody titers waned over time, whilst potent affinity maturation was observed for anti-RBD antibodies. Neutralizing antibodies against wild-type (WT) and variants decayed during the first 6 months but titers significantly increased for Alpha, Gamma and Delta between 6 months and one year. Therefore, near-similar titers were observed for WT and Alpha after one year, and only slightly lower antibody levels for the Delta variant compared to WT. Anti-RBD antibody responses correlated with the neutralizing antibody titers at all time points, however the predicted titers were 3-fold lower at one year compared to one month.ConclusionIn mild COVID-19, stable levels of SARS-CoV-2 specific memory B cells and antibodies neutralizing current variants of concern are observed up to one year post infection. Care should be taken when predicting neutralizing titers using commercial assays that measure binding antibodies.
Collapse
Affiliation(s)
- Benjamin Meyer
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- *Correspondence: Christiane S. Eberhardt, ; Benjamin Meyer,
| | - Paola Andrea Martinez-Murillo
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Barbara Lemaitre
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Géraldine Blanchard-Rohner
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Arnaud M. Didierlaurent
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Paola Fontannaz
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Chloé Eugercios Manzanas
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Paul-Henri Lambert
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Natasha Loevy
- Pediatric Platform for Clinical Research, Department of Woman, Child and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Julie Sartoretti
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Woman, Child and Adolescent Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chantal Tougne
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jean Villard
- Immunology and Transplant Unit, Division of Nephology and Hypertension, Geneva University Hospital and Faculty, Geneva, Switzerland
| | - Angela Huttner
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Center for Clinical Research, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
| | - Christiane S. Eberhardt
- Center for Vaccinology and Neonatal Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Woman, Child and Adolescent Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
- *Correspondence: Christiane S. Eberhardt, ; Benjamin Meyer,
| |
Collapse
|
255
|
Yavarian J, Nejati A, Salimi V, Shafiei Jandaghi NZ, Sadeghi K, Abedi A, Sharifi Zarchi A, Gouya MM, Mokhtari-Azad T. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS One 2022; 17:e0267847. [PMID: 35499994 PMCID: PMC9060343 DOI: 10.1371/journal.pone.0267847] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Whole genome sequencing of SARS-CoV2 is important to find useful information about the viral lineages, variants of interests and variants of concern. As there are not enough data about the circulating SARS-CoV2 variants in Iran, we sequenced 54 SARS-CoV2 genomes during the 5 waves of pandemic in Iran. METHODS After viral RNA extraction from clinical samples collected during the COVID-19 pandemic, next generation sequencing was performed using the Nextseq platform. The sequencing data were analyzed and compared with reference sequences. RESULTS During the 1st wave, V and L clades were detected. The second wave was recognized by G, GH and GR clades. Circulating clades during the 3rd wave were GH and GR. In the fourth wave GRY (alpha variant), GK (delta variant) and one GH clade (beta variant) were detected. All viruses in the fifth wave were in clade GK (delta variant). There were different mutations in all parts of the genomes but Spike-D614G, NSP12-P323L, N-R203K and N-G204R were the most frequent mutants in these studied viruses. CONCLUSIONS These findings display the significance of SARS-CoV2 monitoring to help on time detection of possible variants for pandemic control and vaccination plans.
Collapse
Affiliation(s)
- Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Sadeghi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Adel Abedi
- Mathematics Department, Shahid Beheshti University, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
256
|
Peter AS, Roth E, Schulz SR, Fraedrich K, Steinmetz T, Damm D, Hauke M, Richel E, Mueller‐Schmucker S, Habenicht K, Eberlein V, Issmail L, Uhlig N, Dolles S, Grüner E, Peterhoff D, Ciesek S, Hoffmann M, Pöhlmann S, McKay PF, Shattock RJ, Wölfel R, Socher E, Wagner R, Eichler J, Sticht H, Schuh W, Neipel F, Ensser A, Mielenz D, Tenbusch M, Winkler TH, Grunwald T, Überla K, Jäck H. A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARS-CoV-2 infection model. Eur J Immunol 2022; 52:770-783. [PMID: 34355795 PMCID: PMC8420377 DOI: 10.1002/eji.202149374] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.
Collapse
|
257
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
258
|
Guo Y, Han J, Zhang Y, He J, Yu W, Zhang X, Wu J, Zhang S, Kong Y, Guo Y, Lin Y, Zhang J. SARS-CoV-2 Omicron Variant: Epidemiological Features, Biological Characteristics, and Clinical Significance. Front Immunol 2022; 13:877101. [PMID: 35572518 PMCID: PMC9099228 DOI: 10.3389/fimmu.2022.877101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 Omicron (B.1.1529) variant was designated as a variant of concern (VOC) by the World Health Organization (WHO) on November 26, 2021. Within two months, it had replaced the Delta variant and had become the dominant circulating variant around the world. The Omicron variant possesses an unprecedented number of mutations, especially in the spike protein, which may be influencing its biological and clinical aspects. Preliminary studies have suggested that increased transmissibility and the reduced protective effects of neutralizing antibodies have contributed to the rapid spread of this variant, posing a significant challenge to control the coronavirus disease 2019 (COVID-19) pandemic. There is, however, a silver lining for this wave of the Omicron variant. A lower risk of hospitalization and mortality has been observed in prevailing countries. Booster vaccination also has ameliorated a significant reduction in neutralization. Antiviral drugs are minimally influenced. Moreover, the functions of Fc-mediated and T-cell immunity have been retained to a great extent, both of which play a key role in preventing severe disease.
Collapse
Affiliation(s)
- Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing He
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Weien Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yide Kong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanxue Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
- Department of Infectious Diseases, Jing’An Branch of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
259
|
Liu Z, Wu H, Egland KA, Gilliland TC, Dunn MD, Luke TC, Sullivan EJ, Klimstra WB, Bausch CL, Whelan SPJ. Human immunoglobulin from transchromosomic bovines hyperimmunized with SARS-CoV-2 spike antigen efficiently neutralizes viral variants. Hum Vaccin Immunother 2022; 18:1940652. [PMID: 34228597 PMCID: PMC8290372 DOI: 10.1080/21645515.2021.1940652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with amino-acid substitutions and deletions in spike protein (S) can reduce the effectiveness of monoclonal antibodies (mAbs) and may compromise immunity induced by vaccines. We report a polyclonal, fully human, anti-SARS-CoV-2 immunoglobulin produced in transchromosomic bovines (Tc-hIgG-SARS-CoV-2) hyperimmunized with two doses of plasmid DNA encoding the SARS-CoV-2 Wuhan strain S gene, followed by repeated immunization with S protein purified from insect cells. The resulting Tc-hIgG-SARS-CoV-2, termed SAB-185, efficiently neutralizes SARS-CoV-2, and vesicular stomatitis virus (VSV) SARS-CoV-2 chimeras in vitro. Neutralization potency was retained for S variants including S477N, E484K, and N501Y, substitutions present in recent variants of concern. In contrast to the ease of selection of escape variants with mAbs and convalescent human plasma, we were unable to isolate VSV-SARS-CoV-2 mutants resistant to Tc-hIgG-SARS-CoV-2 neutralization. This fully human immunoglobulin that potently inhibits SARS-CoV-2 infection may provide an effective therapeutic to combat COVID-19.
Collapse
Affiliation(s)
- Zhuoming Liu
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Hua Wu
- , SAB Biotherapeutics Inc, Sioux Fall, SD, USA
| | | | | | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | - Sean P. J. Whelan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
260
|
Morris CP, Luo CH, Amadi A, Schwartz M, Gallagher N, Ray SC, Pekosz A, Mostafa HH. An Update on Severe Acute Respiratory Syndrome Coronavirus 2 Diversity in the US National Capital Region: Evolution of Novel and Variants of Concern. Clin Infect Dis 2022; 74:1419-1428. [PMID: 34272947 PMCID: PMC8406876 DOI: 10.1093/cid/ciab636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants concerning for enhanced transmission, evasion of immune responses, or associated with severe disease have motivated the global increase in genomic surveillance. In the current study, large-scale whole-genome sequencing was performed between November 2020 and the end of March 2021 to provide a phylodynamic analysis of circulating variants over time. In addition, we compared the viral genomic features of March 2020 and March 2021. METHODS A total of 1600 complete SARS-CoV-2 genomes were analyzed. Genomic analysis was associated with laboratory diagnostic volumes and positivity rates, in addition to an analysis of the association of selected variants of concern/variants of interest with disease severity and outcomes. Our real-time surveillance features a cohort of specimens from patients who tested positive for SARS-CoV-2 after completion of vaccination. RESULTS Our data showed genomic diversity over time that was not limited to the spike sequence. A significant increase in the B.1.1.7 lineage (alpha variant) in March 2021 as well as a transient circulation of regional variants that carried both the concerning S: E484K and S: P681H substitutions were noted. Lineage B.1.243 was significantly associated with intensive care unit admission and mortality. Genomes recovered from fully vaccinated individuals represented the predominant lineages circulating at specimen collection time, and people with those infections recovered with no hospitalizations. CONCLUSIONS Our results emphasize the importance of genomic surveillance coupled with laboratory, clinical, and metadata analysis for a better understanding of the dynamics of viral spread and evolution.
Collapse
Affiliation(s)
- C Paul Morris
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| | - Chun Huai Luo
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| | - Adannaya Amadi
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| | - Matthew Schwartz
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| | - Nicholas Gallagher
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| | - Stuart C Ray
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Infectious Disease, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| |
Collapse
|
261
|
McLean G, Kamil J, Lee B, Moore P, Schulz TF, Muik A, Sahin U, Türeci Ö, Pather S. The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. mBio 2022; 13:e0297921. [PMID: 35352979 PMCID: PMC9040821 DOI: 10.1128/mbio.02979-21] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
Collapse
Affiliation(s)
- Gary McLean
- School of Human Sciences, London Metropolitan University and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jeremy Kamil
- Louisiana State University Health, Shreveport, Louisiana, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Penny Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 2155 RESIST, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | | | | | | | |
Collapse
|
262
|
Zhou T, Wang L, Misasi J, Pegu A, Zhang Y, Harris DR, Olia AS, Talana CA, Yang ES, Chen M, Choe M, Shi W, Teng IT, Creanga A, Jenkins C, Leung K, Liu T, Stancofski ESD, Stephens T, Zhang B, Tsybovsky Y, Graham BS, Mascola JR, Sullivan NJ, Kwong PD. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science 2022; 376:eabn8897. [PMID: 35324257 PMCID: PMC9580340 DOI: 10.1126/science.abn8897] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
The rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant and its resistance to neutralization by vaccinee and convalescent sera are driving a search for monoclonal antibodies with potent neutralization. To provide insight into effective neutralization, we determined cryo-electron microscopy structures and evaluated receptor binding domain (RBD) antibodies for their ability to bind and neutralize B.1.1.529. Mutations altered 16% of the B.1.1.529 RBD surface, clustered on an RBD ridge overlapping the angiotensin-converting enzyme 2 (ACE2)-binding surface and reduced binding of most antibodies. Substantial inhibitory activity was retained by select monoclonal antibodies-including A23-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309, and LY-CoV1404-that accommodated these changes and neutralized B.1.1.529. We identified combinations of antibodies with synergistic neutralization. The analysis revealed structural mechanisms for maintenance of potent neutralization against emerging variants.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R. Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia Jenkins
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik-Stephane D. Stancofski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
263
|
Yang K, Wang C, White KI, Pfuetzner RA, Esquivies L, Brunger AT. Structural conservation among variants of the SARS-CoV-2 spike postfusion bundle. Proc Natl Acad Sci U S A 2022; 119:e2119467119. [PMID: 35363556 PMCID: PMC9169775 DOI: 10.1073/pnas.2119467119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies due to structural and dynamic changes of the viral spike glycoprotein (S). The heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains of S drive virus–host membrane fusion by assembly into a six-helix bundle, resulting in delivery of viral RNA into the host cell. We surveyed mutations of currently reported SARS-CoV-2 variants and selected eight mutations, including Q954H, N969K, and L981F from the Omicron variant, in the postfusion HR1HR2 bundle for functional and structural studies. We designed a molecular scaffold to determine cryogenic electron microscopy (cryo-EM) structures of HR1HR2 at 2.2–3.8 Å resolution by linking the trimeric N termini of four HR1 fragments to four trimeric C termini of the Dps4 dodecamer from Nostoc punctiforme. This molecular scaffold enables efficient sample preparation and structure determination of the HR1HR2 bundle and its mutants by single-particle cryo-EM. Our structure of the wild-type HR1HR2 bundle resolves uncertainties in previously determined structures. The mutant structures reveal side-chain positions of the mutations and their primarily local effects on the interactions between HR1 and HR2. These mutations do not alter the global architecture of the postfusion HR1HR2 bundle, suggesting that the interfaces between HR1 and HR2 are good targets for developing antiviral inhibitors that should be efficacious against all known variants of SARS-CoV-2 to date. We also note that this work paves the way for similar studies in more distantly related viruses.
Collapse
Affiliation(s)
- Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - K. Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Department of Photon Science, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
264
|
RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. iScience 2022; 25:104043. [PMID: 35291264 PMCID: PMC8915453 DOI: 10.1016/j.isci.2022.104043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
With the rapid emergence and spread of SARS-CoV-2 variants, development of vaccines with broad and potent protectivity has become a global priority. Here, we designed a lipid nanoparticle-encapsulated, nucleoside-unmodified mRNA (mRNA-LNP) vaccine encoding the trimerized receptor-binding domain (RBD trimer) and showed its robust capability in inducing broad and protective immune responses against wild-type and major variants of concern (VOCs) in the mouse model of SARS-CoV-2 infection. The protectivity was correlated with RBD-specific B cell responses especially the long-lived plasma B cells in bone marrow, strong ability in triggering BCR clustering, and downstream signaling. Monoclonal antibodies isolated from vaccinated animals demonstrated broad and potent neutralizing activity against VOCs tested. Structure analysis of one representative antibody identified a novel epitope with a high degree of conservation among different variants. Collectively, these results demonstrate that the RBD trimer mRNA vaccine serves as a promising vaccine candidate against SARS-CoV-2 variants and beyond. A mRNA vaccine encoding the RBD trimer of wild-type SARS-CoV-2 was designed and studied The vaccine elicited strong RBD-specific memory and plasma B cell responses The vaccine induced broadly serum and monoclonal neutralizing antibodies in mice The vaccine induced strong and protective immunity against major SARS-CoV-2 variants
Collapse
|
265
|
Banho CA, Sacchetto L, Campos GRF, Bittar C, Possebon FS, Ullmann LS, Marques BDC, da Silva GCD, Moraes MM, Parra MCP, Negri AF, Boldrin AC, Barcelos MD, dos Santos TMIL, Milhim BHGA, Rocha LC, Dourado FS, dos Santos AL, Ciconi VB, Patuto C, Versiani AF, da Silva RA, de Oliveira Lobl EE, Hernandes VM, Zini N, Pacca CC, Estofolete CF, Ferreira HL, Rahal P, Araújo JP, Cohen JA, Kerr CC, Althouse BM, Vasilakis N, Nogueira ML. Impact of SARS-CoV-2 Gamma lineage introduction and COVID-19 vaccination on the epidemiological landscape of a Brazilian city. COMMUNICATIONS MEDICINE 2022; 2:41. [PMID: 35603276 PMCID: PMC9053258 DOI: 10.1038/s43856-022-00108-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 12/20/2022] Open
Abstract
Background The emergence of the Brazilian variant of concern, Gamma lineage (P.1), impacted the epidemiological profile of COVID-19 cases due to its higher transmissibility rate and immune evasion ability. Methods We sequenced 305 SARS-CoV-2 whole-genomes and performed phylogenetic analyses to identify introduction events and the circulating lineages. Additionally, we use epidemiological data of COVID-19 cases, severe cases, and deaths to measure the impact of vaccination coverage and mortality risk. Results Here we show that Gamma introduction in São José do Rio Preto, São Paulo, Brazil, was followed by the displacement of seven circulating SARS-CoV-2 variants and a rapid increase in prevalence two months after its first detection in January 2021. Moreover, Gamma variant is associated with increased mortality risk and severity of COVID-19 cases in younger age groups, which corresponds to the unvaccinated population at the time. Conclusions Our findings highlight the beneficial effects of vaccination indicated by a pronounced reduction of severe cases and deaths in immunized individuals, reinforcing the need for rapid and massive vaccination.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Guilherme Rodrigues Fernandes Campos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Cíntia Bittar
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo Brazil
| | - Fábio Sossai Possebon
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Leila Sabrina Ullmann
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Gislaine Ceslestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Marília Mazzi Moraes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | | | - Ana Carolina Boldrin
- Departamento de Vigilância Epidemiológica, São José do Rio Preto, São Paulo Brazil
| | | | - Thayza M. I. L. dos Santos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Leonardo Cecílio Rocha
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Fernanda Simões Dourado
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Andresa Lopes dos Santos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Victoria Bernardi Ciconi
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Caio Patuto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Alice Freitas Versiani
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Rafael Alves da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Edoardo Estevam de Oliveira Lobl
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
- Faculdade Ceres (FACERES), São José do Rio Preto, São Paulo Brazil
| | - Cássia Fernanda Estofolete
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Helena Lage Ferreira
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo Brazil
| | - João Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Jamie A. Cohen
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
| | - Cliff C. Kerr
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
| | - Benjamin M. Althouse
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
- University of Washington, Seattle, WA USA
- New Mexico State University, Las Cruces, NM USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX USA
| | - Mauricio Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
266
|
Nkanga C, Ortega-Rivera OA, Shin MD, Moreno-Gonzalez MA, Steinmetz NF. Injectable Slow-Release Hydrogel Formulation of a Plant Virus-Based COVID-19 Vaccine Candidate. Biomacromolecules 2022; 23:1812-1825. [PMID: 35344365 PMCID: PMC9003890 DOI: 10.1021/acs.biomac.2c00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/09/2022] [Indexed: 01/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a potent immunogenic adjuvant and epitope display platform for the development of vaccines against cancers and infectious diseases, including coronavirus disease 2019. However, the proteinaceous CPMV nanoparticles are rapidly degraded in vivo. Multiple doses are therefore required to ensure long-lasting immunity, which is not ideal for global mass vaccination campaigns. Therefore, we formulated CPMV nanoparticles in injectable hydrogels to achieve slow particle release and prolonged immunostimulation. Liquid formulations were prepared from chitosan and glycerophosphate (GP) before homogenization with CPMV particles at room temperature. The formulations containing high-molecular-weight chitosan and 0-4.5 mg mL-1 CPMV gelled rapidly at 37 °C (5-8 min) and slowly released cyanine 5-CPMV particles in vitro and in vivo. Importantly, when a hydrogel containing CPMV displaying severe acute respiratory syndrome coronavirus 2 spike protein epitope 826 (amino acid 809-826) was administered to mice as a single subcutaneous injection, it elicited an antibody response that was sustained over 20 weeks, with an associated shift from Th1 to Th2 bias. Antibody titers were improved at later time points (weeks 16 and 20) comparing the hydrogel versus soluble vaccine candidates; furthermore, the soluble vaccine candidates retained Th1 bias. We conclude that CPMV nanoparticles can be formulated effectively in chitosan/GP hydrogels and are released as intact particles for several months with conserved immunotherapeutic efficacy. The injectable hydrogel containing epitope-labeled CPMV offers a promising single-dose vaccine platform for the prevention of future pandemics as well as a strategy to develop long-lasting plant virus-based nanomedicines.
Collapse
Affiliation(s)
- Christian
Isalomboto Nkanga
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Oscar A. Ortega-Rivera
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Matthew D. Shin
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Miguel A. Moreno-Gonzalez
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| | - Nicole F. Steinmetz
- Department
of NanoEngineering, University of California
San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Department
of Bioengineering, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Department
of Radiology, University of California San
Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Center
for Nano-ImmunoEngineering, University of
California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman
Dr., La Jolla, California 92039, United States
- Institute
for Materials Discovery and Design, University
of California San Diego, 9500 Gilman Dr., La Jolla, California 92039, United States
| |
Collapse
|
267
|
Yermanos A, Hong KL, Agrafiotis A, Han J, Nadeau S, Valenzuela C, Azizoglu A, Ehling R, Gao B, Spahr M, Neumeier D, Chang CH, Dounas A, Petrillo E, Nissen I, Burcklen E, Feldkamp M, Beisel C, Oxenius A, Savic M, Stadler T, Rudolf F, Reddy ST. DeepSARS: simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. BMC Genomics 2022; 23:289. [PMID: 35410128 PMCID: PMC8995413 DOI: 10.1186/s12864-022-08403-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. RESULTS Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. CONCLUSIONS DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .
Collapse
Affiliation(s)
- Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Botnar Research Centre for Child Health, Basel, Switzerland.
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Botnar Research Centre for Child Health, Basel, Switzerland
| | - Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Botnar Research Centre for Child Health, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Jiami Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Botnar Research Centre for Child Health, Basel, Switzerland
| | - Sarah Nadeau
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cecilia Valenzuela
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Asli Azizoglu
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Beichen Gao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Michael Spahr
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Dounas
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Ezequiel Petrillo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ina Nissen
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elodie Burcklen
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mirjam Feldkamp
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Miodrag Savic
- Department of Health, Economics and Health Directorate Canton Basel-Landschaft, Liestal, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Botnar Research Centre for Child Health, Basel, Switzerland.
| |
Collapse
|
268
|
Singh P, Mukherji S, Basak S, Hoffmann M, Das DK. Dynamic Ca 2+ sensitivity stimulates the evolved SARS-CoV-2 spike strain-mediated membrane fusion for enhanced entry. Cell Rep 2022; 39:110694. [PMID: 35397208 PMCID: PMC8993541 DOI: 10.1016/j.celrep.2022.110694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in the spike protein generated a highly infectious and transmissible D614G variant, which is present in newly evolved fast-spreading variants. The D614G, Alpha, Beta, and Delta spike variants of SARS-CoV-2 appear to expedite membrane fusion process for entry, but the mechanism of spike-mediated fusion is unknown. Here, we reconstituted an in vitro pseudovirus-liposome fusion reaction and report that SARS-CoV-2 wild-type spike is a dynamic Ca2+ sensor, and D614G mutation enhances dynamic calcium sensitivity of spike protein for facilitating membrane fusion. This dynamic calcium sensitivity for fusion is found to be higher in Alpha and Beta variants and highest in Delta spike variant. We find that efficient fusion is dependent on Ca2+ concentration at low pH, and the fusion activity of spike dropped as the Ca2+ level rose beyond physiological levels. Thus, evolved spike variants may control the high fusion probability for entry by increasing Ca2+ sensing ability.
Collapse
Affiliation(s)
- Puspangana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shreya Mukherji
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Swarnendu Basak
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Dibyendu Kumar Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
269
|
Emergence and phenotypic characterization of the global SARS-CoV-2 C.1.2 lineage. Nat Commun 2022; 13:1976. [PMID: 35396511 PMCID: PMC8993834 DOI: 10.1038/s41467-022-29579-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/23/2022] [Indexed: 01/07/2023] Open
Abstract
Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The initial C.1.2 detection is associated with a high substitution rate, and includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 variants of concern or variants of interest. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta show high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2. The SARS-CoV-2 PANGO lineage C.1.2 has been under monitoring by global health authorities as it has spread worldwide. Here, Bhiman and colleagues characterise the emergence of the lineage, and its neutralisation sensitivity using data from vaccinees and previously infected individuals.
Collapse
|
270
|
Yu X, Wei D, Xu W, Liu C, Guo W, Li X, Tan W, Liu L, Zhang X, Qu J, Yang Z, Chen E. Neutralizing activity of BBIBP-CorV vaccine-elicited sera against Beta, Delta and other SARS-CoV-2 variants of concern. Nat Commun 2022; 13:1788. [PMID: 35379815 PMCID: PMC8980020 DOI: 10.1038/s41467-022-29477-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the generation of variants that may diminish host immune responses to vaccine formulations. Here we show a registered observational clinical trial (NCT04795414), we assess the safety and immunogenicity of the inactivated SARS-CoV-2 vaccine BBIBP-CorV in a cohort of 1006 vaccine recipients. No serious adverse events are observed during the term of the study. Detectable virus-specific antibody is measured and determined to be neutralizing in 698/760 (91.84%) vaccine recipients on day 28 post second vaccine dose and in 220/581 (37.87%) vaccine recipients on day 180 post second vaccine dose, whereas vaccine-elicited sera show varying degrees of reduction in neutralization against a range of key SARS-CoV-2 variants, including variant Alpha, Beta, Gamma, Iota, and Delta. Our work show diminished neutralization potency against multiple variants in vaccine-elicited sera, which indicates the potential need for additional boost vaccinations. Variants of SARS-CoV-2 present the potential for differential response and performance to delivered vaccine regimens. Here the authors characterise the neutralising antibody response to the inactivated SARS-CoV-2 vaccine BBIBP-CorV and assess functionality against a range of key SARS-CoV2 variants.
Collapse
|
271
|
Ngo ST. 501Y.V2 spike protein resists the neutralizing antibody in atomistic simulations. Comput Biol Chem 2022; 97:107636. [PMID: 35066438 PMCID: PMC8769535 DOI: 10.1016/j.compbiolchem.2022.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Abstract
SARS-CoV-2 outbreaks worldwide caused COVID-19 pandemic, which is related to several million deaths. In particular, SARS-CoV-2 Spike (S) protein is a major biological target for COVID-19 vaccine design. Unfortunately, recent reports indicated that Spike (S) protein mutations can lead to antibody resistance. However, understanding the process is limited, especially at the atomic scale. The structural change of S protein and neutralizing antibody fragment (FAb) complexes was thus probed using molecular dynamics (MD) simulations. In particular, the backbone RMSD of the 501Y.V2 complex was significantly larger than that of the wild-type one implying a large structural change of the mutation system. Moreover, the mean of Rg, CCS, and SASA are almost the same when compared two complexes, but the distributions of these values are absolutely different. Furthermore, the free energy landscape of the complexes was significantly changed when the 501Y.V2 variant was induced. The binding pose between S protein and FAb was thus altered. The FAb-binding affinity to S protein was thus reduced due to revealing over steered-MD (SMD) simulations. The observation is in good agreement with the respective experiment that the 501Y.V2 SARS-CoV-2 variant can escape from neutralizing antibody (NAb).
Collapse
|
272
|
Wang L, Wu Y, Yao S, Ge H, Zhu Y, Chen K, Chen WZ, Zhang Y, Zhu W, Wang HY, Guo Y, Ma PX, Ren PX, Zhang XL, Li HQ, Ali MA, Xu WQ, Jiang HL, Zhang LK, Zhu LL, Ye Y, Shang WJ, Bai F. Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the spike protein. Acta Pharmacol Sin 2022; 43:788-796. [PMID: 34349236 PMCID: PMC8334341 DOI: 10.1038/s41401-021-00735-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.
Collapse
|
273
|
Walters JN, Schouest B, Patel A, Reuschel EL, Schultheis K, Parzych E, Maricic I, Gary EN, Purwar M, Andrade VM, Doan A, Elwood D, Eblimit Z, Nguyen B, Frase D, Zaidi FI, Kulkarni A, Generotti A, Joseph Kim J, Humeau LM, Ramos SJ, Smith TR, Weiner DB, Broderick KE. Prime-boost vaccination regimens with INO-4800 and INO-4802 augment and broaden immune responses against SARS-CoV-2 in nonhuman primates. Vaccine 2022; 40:2960-2969. [PMID: 35428500 PMCID: PMC8977452 DOI: 10.1016/j.vaccine.2022.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
The enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates. Rhesus macaques primed over one year prior with the first-generation INO-4800 vaccine were boosted with either INO-4800 or INO-4802 in homologous or heterologous prime-boost regimens. Both boosting schedules led to an expansion of T cells and antibody responses which were characterized by improved neutralizing and ACE2 blocking activity across wild-type SARS-CoV-2 as well as multiple variants of concern. These data illustrate the durability of immunity following vaccination with INO-4800 and additionally support the use of either INO-4800 or INO-4802 in prime-boost regimens.
Collapse
|
274
|
Park AK, Rhee JE, Kim I, Kim HM, Lee H, Kim J, Lee CY, Lee N, Woo S, Lee J, No JS, Rhie G, Wang SJ, Lee S, Park YJ, Park G, Kim JY, Gwack J, Yoo C, Kim E. Genomic evidence of SARS-CoV-2 reinfection in the Republic of Korea. J Med Virol 2022; 94:1717-1722. [PMID: 34862628 PMCID: PMC9015470 DOI: 10.1002/jmv.27499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues, reinfection is likely to become increasingly common. However, confirming COVID-19 reinfection is difficult because it requires whole-genome sequencing of both infections to identify the degrees of genetic differences. Since the first reported case of reinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Republic of Korea in April 2020, four additional cases were classified as suspected reinfection cases. We performed whole-genome sequencing of viral RNA extracted from swabs obtained at the initial infection and reinfection stages of these four suspected cases. The interval between initial infection and reinfection of all four suspected cases was more than 3 months. All four patients were young (10-29 years), and they displayed mild symptoms or were asymptomatic during the initial infection and reinfection episodes. The analysis of genome sequences combined with the epidemiological results revealed that only two of the four cases were confirmed as reinfection, and both were reinfected with the Epsilon variant. Due to the prolonged COVID-19 pandemic, the possibility of reinfections with SARS-CoV-2 variants is increasing, as reported in our study. Therefore, continuous monitoring of cases is necessary.
Collapse
Affiliation(s)
- Ae Kyung Park
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Jee Eun Rhee
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Il‐Hwan Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Heui Man Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Hyeokjin Lee
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Jeong‐Ah Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Chae Young Lee
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Nam‐Joo Lee
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - SangHee Woo
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Jaehee Lee
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Jin Sun No
- Division of High‐Risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Gi‐Eun Rhie
- Division of High‐Risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Seong Jin Wang
- Epidemiological Investigation Team, Epidemiological Investigation and Analysis Task Force, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Sang‐Eun Lee
- Epidemiological Investigation Team, Epidemiological Investigation and Analysis Task Force, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Young Joon Park
- Epidemiological Investigation Team, Epidemiological Investigation and Analysis Task Force, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Gemma Park
- Case and Guideline Management Team, Infection Prevention Support Team, Central Disease Control Headquarters, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Jung Yeon Kim
- Case and Guideline Management Team, Infection Prevention Support Team, Central Disease Control Headquarters, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Jin Gwack
- Case and Guideline Management Team, Infection Prevention Support Team, Central Disease Control Headquarters, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Cheon‐Kwon Yoo
- Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Cheongju‐siChungcheongbuk‐doRepublic of Korea
| | - Eun‐Jin Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA)Osong‐eup, Heungdeok‐guCheongju‐siChungcheongbuk‐doRepublic of Korea
| |
Collapse
|
275
|
Young M, Crook H, Scott J, Edison P. Covid-19: virology, variants, and vaccines. BMJ MEDICINE 2022; 1:e000040. [PMID: 36936563 PMCID: PMC9951271 DOI: 10.1136/bmjmed-2021-000040] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
As of 25 January 2022, over 349 million individuals have received a confirmed diagnosis of covid-19, with over 5.59 million confirmed deaths associated with the SARS-CoV-2 virus. The covid-19 pandemic has prompted an extensive global effort to study the molecular evolution of the virus and develop vaccines to prevent its spread. Although rigorous determination of SARS-CoV-2 infectivity remains elusive, owing to the continuous evolution of the virus, steps have been made to understand its genome, structure, and emerging genetic mutations. The SARS-CoV-2 genome is composed of several open reading frames and structural proteins, including the spike protein, which is essential for entry into host cells. As of 25 January 2022, the World Health Organization has reported five variants of concern, two variants of interest, and three variants under monitoring. Additional sublineages have since been identified, and are being monitored. The mutations harboured in these variants confer an increased transmissibility, severity of disease, and escape from neutralising antibodies compared with the primary strain. The current vaccine strategy, including booster doses, provides protection from severe disease. As of 24 January 2022, 33 vaccines have been approved for use in 197 countries. In this review, we discuss the genetics, structure, and transmission methods of SARS-CoV-2 and its variants, highlighting how mutations provide enhanced abilities to spread and inflict disease. This review also outlines the vaccines currently in use around the world, providing evidence for every vaccine's immunogenicity and effectiveness.
Collapse
Affiliation(s)
- Megan Young
- Faculty of Medicine, Imperial College London, London, UK
| | - Harry Crook
- Faculty of Medicine, Imperial College London, London, UK
| | - Janet Scott
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Paul Edison
- Faculty of Medicine, Imperial College London, London, UK
- School of Medicine, Cardiff University, Cardiff, South Glamorgan, Wales, UK
| |
Collapse
|
276
|
Yang Z, Zhang S, Tang YP, Zhang S, Xu DQ, Yue SJ, Liu QL. Clinical Characteristics, Transmissibility, Pathogenicity, Susceptible Populations, and Re-infectivity of Prominent COVID-19 Variants. Aging Dis 2022; 13:402-422. [PMID: 35371608 PMCID: PMC8947836 DOI: 10.14336/ad.2021.1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to the rapid, global spread of SARS-CoV-2, new and comparatively more contagious variants are of considerable concern. These emerging mutations have become a threat to the global public health, creating COVID-19 surges in different countries. However, information on these emerging variants is limited and scattered. In this review, we discuss new variants that have emerged worldwide and identify several variants of concern, such as B.1.1.7, B.1.351, P.1, B.1.617.2 and B.1.1.529, and their basic characteristics. Other significant variants such as C.37, B.1.621, B.1.525, B.1.526, AZ.5, C.1.2, and B.1.617.1 are also discussed. This review highlights the clinical characteristics of these variants, including transmissibility, pathogenicity, susceptible population, and re-infectivity. It provides the latest information on the recent variants of SARS-CoV-2. The summary of this information will help researchers formulate reasonable strategies to curb the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Yang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shuo Zhang
- 3School of Clinical Medicine (Guang'anmen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ping Tang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Sai Zhang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Ding-Qiao Xu
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shi-Jun Yue
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Qi-Ling Liu
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
277
|
Pavot V, Berry C, Kishko M, Anosova NG, Huang D, Tibbitts T, Raillard A, Gautheron S, Gutzeit C, Koutsoukos M, Chicz RM, Lecouturier V. Protein-based SARS-CoV-2 spike vaccine booster increases cross-neutralization against SARS-CoV-2 variants of concern in non-human primates. Nat Commun 2022; 13:1699. [PMID: 35361754 PMCID: PMC8971430 DOI: 10.1038/s41467-022-29219-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that partly evade neutralizing antibodies raises concerns of reduced vaccine effectiveness and increased infection. We previously demonstrated that the SARS-CoV-2 spike protein vaccine adjuvanted with AS03 (CoV2 preS dTM-AS03) elicits robust neutralizing antibody responses in naïve subjects. Here we show that, in macaques primed with mRNA or protein-based subunit vaccine candidates, one booster dose of CoV2 preS dTM-AS03 (monovalent D614 or B.1.351, or bivalent D614 + B.1.351 formulations), significantly boosts the pre-existing neutralizing antibodies against the parental strain from 177- to 370-fold. Importantly, the booster dose elicits high and persistent cross-neutralizing antibodies covering five former or current SARS-CoV-2 variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and, unexpectedly, SARS-CoV-1. Interestingly, we show that the booster specifically increases the functional antibody responses as compared to the receptor binding domain (RBD)-specific responses. Our findings show that these vaccine candidates, when used as a booster, have the potential to offer cross-protection against a broad spectrum of variants. This has important implications for vaccine control of SARS-CoV-2 variants of concern and informs on the benefit of a booster with the vaccine candidates currently under evaluation in clinical trials.
Collapse
|
278
|
He X, Zeng XX. Immunotherapy and CRISPR Cas Systems: Potential Cure of COVID-19? Drug Des Devel Ther 2022; 16:951-972. [PMID: 35386853 PMCID: PMC8979261 DOI: 10.2147/dddt.s347297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 has plunged the world into a pandemic that affected millions. The continually emerging new variants of concern raise the question as to whether the existing vaccines will continue to provide sufficient protection for individuals from SARS-CoV-2 during natural infection. This narrative review aims to briefly outline various immunotherapeutic options and discuss the potential of clustered regularly interspaced short palindromic repeat (CRISPR Cas system technology against COVID-19 treatment as specific cure. As the development of vaccine, convalescent plasma, neutralizing antibodies are based on the understanding of human immune responses against SARS-CoV-2, boosting human body immune responses in case of SARS-CoV-2 infection, immunotherapeutics seem feasible as specific cure against COVID-19 if the present challenges are overcome. In cell based therapeutics, apart from the high costs, risks and side effects, there are technical problems such as the production of sufficient potent immune cells and antibodies under limited time to treat the COVID-19 patients in mild conditions prior to progression into a more severe case. The CRISPR Cas technology could be utilized to refine the specificity and safety of CAR-T cells, CAR-NK cells and neutralizing antibodies against SARS-CoV-2 during various stages of the COVID-19 disease progression in infected individuals. Moreover, CRISPR Cas technology are proposed in hypotheses to degrade the viral RNA in order to terminate the infection caused by SARS-CoV-2. Thus personalized cocktails of immunotherapeutics and CRISPR Cas systems against COVID-19 as a strategy might prevent further disease progression and circumvent immunity escape.
Collapse
Affiliation(s)
- Xuesong He
- Department of Cardiology, Changzhou Jintan First People’s Hospital, Changzhou City, Jiangsu Province, 213200, People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan City, Guangdong Province, 528000, People’s Republic of China
| |
Collapse
|
279
|
Chibwana MG, Moyo-Gwete T, Kwatra G, Mandolo J, Hermanaus T, Motlou T, Mzindle N, Ayres F, Chaponda M, Tembo G, Mwenechanya P, Mitole N, Jassi C, Kamng'ona R, Afran L, Mzinza D, Mwandumba HC, Gordon SB, Jere K, Madhi S, Moore PL, Heyderman RS, Jambo KC. AstraZeneca COVID-19 vaccine induces robust broadly cross-reactive antibody responses in Malawian adults previously infected with SARS-CoV-2. BMC Med 2022; 20:128. [PMID: 35346184 PMCID: PMC8958481 DOI: 10.1186/s12916-022-02342-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Binding and neutralising anti-Spike antibodies play a key role in immune defence against SARS-CoV-2 infection. Since it is known that antibodies wane with time and new immune-evasive variants are emerging, we aimed to assess the dynamics of anti-Spike antibodies in an African adult population with prior SARS-CoV-2 infection and to determine the effect of subsequent COVID-19 vaccination. METHODS Using a prospective cohort design, we recruited adults with prior laboratory-confirmed mild/moderate COVID-19 in Blantyre, Malawi, and followed them up for 270 days (n = 52). A subset of whom subsequently received a single dose of the AstraZeneca COVID-19 vaccine (ChAdOx nCov-19) (n = 12). We measured the serum concentrations of anti-Spike and receptor-binding domain (RBD) IgG antibodies using a Luminex-based assay. Anti-RBD antibody cross-reactivity across SARS-CoV-2 variants of concern (VOC) was measured using a haemagglutination test. A pseudovirus neutralisation assay was used to measure neutralisation titres across VOCs. Ordinary or repeated measures one-way ANOVA was used to compare log10 transformed data, with p value adjusted for multiple comparison using Šídák's or Holm-Šídák's test. RESULTS We show that neutralising antibodies wane within 6 months post mild/moderate SARS-CoV-2 infection (30-60 days vs. 210-270 days; Log ID50 6.8 vs. 5.3, p = 0.0093). High levels of binding anti-Spike or anti-RBD antibodies in convalescent serum were associated with potent neutralisation activity against the homologous infecting strain (p < 0.0001). A single dose of the AstraZeneca COVID-19 vaccine following mild/moderate SARS-CoV-2 infection induced a 2 to 3-fold increase in anti-Spike and -RBD IgG levels 30 days post-vaccination (both, p < 0.0001). The anti-RBD IgG antibodies from these vaccinated individuals were broadly cross-reactive against multiple VOCs and had neutralisation potency against original D614G, beta, and delta variants. CONCLUSIONS These findings show that the AstraZeneca COVID-19 vaccine is an effective booster for waning cross-variant antibody immunity after initial priming with SARS-CoV-2 infection. The potency of hybrid immunity and its potential to maximise the benefits of COVID-19 vaccines needs to be taken into consideration when formulating vaccination policies in sub-Saharan Africa, where there is still limited access to vaccine doses.
Collapse
Affiliation(s)
- Marah G Chibwana
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Jonathan Mandolo
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Tandile Hermanaus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thopisang Motlou
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonkululeko Mzindle
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mphatso Chaponda
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Godwin Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Percy Mwenechanya
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Ndaona Mitole
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Chisomo Jassi
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Raphael Kamng'ona
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Louise Afran
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - David Mzinza
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
| | - Henry C Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen B Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Khuzwayo Jere
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi
- University of Liverpool, Liverpool, UK
| | - Shabir Madhi
- Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science/ National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research programme (MLW), Blantyre, Malawi.
- Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
280
|
Wolz OO, Kays SK, Junker H, Koch SD, Mann P, Quintini G, von Eisenhart-Rothe P, Oostvogels L. A Third Dose of the COVID-19 Vaccine, CVnCoV, Increased the Neutralizing Activity against the SARS-CoV-2 Wild-Type and Delta Variant. Vaccines (Basel) 2022; 10:508. [PMID: 35455257 PMCID: PMC9025705 DOI: 10.3390/vaccines10040508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
A third dose of CVnCoV, a former candidate mRNA vaccine against SARS-CoV-2, was previously shown to boost neutralizing antibody responses against SARS-CoV-2 wild-type in adults aged 18−60 and >60 years in a phase 2a clinical study. In the present study, we report the neutralizing antibody responses to a wild-type and a variant of concern, Delta, after a third dose of the vaccine on day (D)57 and D180. Neutralization activity was assessed using a microneutralization assay. Comparable levels of neutralizing antibodies against the wild-type and Delta were induced. These were higher than those observed after the first two doses, irrespective of age or pre-SARS-CoV-2-exposure status, indicating that the first two doses induced immune memory. Four weeks after the third dose on D180, the neutralizing titers for wild-type and Delta were two-fold higher in younger participants than in older participants; seroconversion rates were 100% for wild-type and Delta in the younger group and for Delta in the older group. A third CVnCoV dose induced similar levels of neutralizing responses against wild-type virus and the Delta variant in both naïve and pre-exposed participants, aligning with current knowledge from licensed COVID-19 vaccines that a third dose is beneficial against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Olaf-Oliver Wolz
- CureVac AG, Friedrich-Miescher-Straße 15, 72076 Tübingen, Germany; (S.D.K.); (G.Q.); (P.v.E.-R.)
| | - Sarah-Katharina Kays
- CureVac AG, Schumannstr. 27, 60325 Frankfurt, Germany; (S.-K.K.); (H.J.); (P.M.); (L.O.)
| | - Helga Junker
- CureVac AG, Schumannstr. 27, 60325 Frankfurt, Germany; (S.-K.K.); (H.J.); (P.M.); (L.O.)
| | - Sven D. Koch
- CureVac AG, Friedrich-Miescher-Straße 15, 72076 Tübingen, Germany; (S.D.K.); (G.Q.); (P.v.E.-R.)
| | - Philipp Mann
- CureVac AG, Schumannstr. 27, 60325 Frankfurt, Germany; (S.-K.K.); (H.J.); (P.M.); (L.O.)
| | - Gianluca Quintini
- CureVac AG, Friedrich-Miescher-Straße 15, 72076 Tübingen, Germany; (S.D.K.); (G.Q.); (P.v.E.-R.)
| | | | - Lidia Oostvogels
- CureVac AG, Schumannstr. 27, 60325 Frankfurt, Germany; (S.-K.K.); (H.J.); (P.M.); (L.O.)
| |
Collapse
|
281
|
Babajani A, Moeinabadi-Bidgoli K, Niknejad F, Rismanchi H, Shafiee S, Shariatzadeh S, Jamshidi E, Farjoo MH, Niknejad H. Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation. Stem Cell Res Ther 2022; 13:126. [PMID: 35337387 PMCID: PMC8949831 DOI: 10.1186/s13287-022-02794-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin–angiotensin–aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
282
|
Hanke L, Sheward DJ, Pankow A, Vidakovics LP, Karl V, Kim C, Urgard E, Smith NL, Astorga-Wells J, Ekström S, Coquet JM, McInerney GM, Murrell B. Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies. SCIENCE ADVANCES 2022; 8:eabm0220. [PMID: 35333580 PMCID: PMC8956255 DOI: 10.1126/sciadv.abm0220] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Conventional approaches to isolate and characterize nanobodies are laborious. We combine phage display, multivariate enrichment, next-generation sequencing, and a streamlined screening strategy to identify numerous anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nanobodies. We characterize their potency and specificity using neutralization assays and hydrogen/deuterium exchange mass spectrometry (HDX-MS). The most potent nanobodies bind to the receptor binding motif of the receptor binding domain (RBD), and we identify two exceptionally potent members of this category (with monomeric half-maximal inhibitory concentrations around 13 and 16 ng/ml). Other nanobodies bind to a more conserved epitope on the side of the RBD and are able to potently neutralize the SARS-CoV-2 founder virus (42 ng/ml), the Beta variant (B.1.351/501Y.V2) (35 ng/ml), and also cross-neutralize the more distantly related SARS-CoV-1 (0.46 μg/ml). The approach presented here is well suited for the screening of phage libraries to identify functional nanobodies for various biomedical and biochemical applications.
Collapse
Affiliation(s)
- Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Alec Pankow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vivien Karl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Natalie L. Smith
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Astorga-Wells
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Simon Ekström
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Jonathan M. Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
283
|
Kim EH, Nguyen TQ, Casel MAB, Rollon R, Kim SM, Kim YI, Yu KM, Jang SG, Yang J, Poo H, Jung JU, Choi YK. Coinfection with SARS-CoV-2 and Influenza A Virus Increases Disease Severity and Impairs Neutralizing Antibody and CD4 + T Cell Responses. J Virol 2022; 96:e0187321. [PMID: 35107382 PMCID: PMC8941868 DOI: 10.1128/jvi.01873-21] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
Given the current coronavirus disease 2019 (COVID-19) pandemic, coinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) is a major concern for public health. However, the immunopathogenic events occurring with coinfections of SARS-CoV-2 and IAV remain unclear. Here, we report the pathogenic and immunological consequences of SARS-CoV-2 and IAV H1N1 coinfection in the K18-hACE2 transgenic mouse model. Compared with a single infection with SARS-CoV-2 or IAV, coinfections not only prolonged the primary virus infection period but also increased immune cell infiltration and inflammatory cytokine levels in bronchoalveolar lavage fluid leading to severe pneumonia and lung damage. Moreover, coinfections caused severe lymphopenia in peripheral blood, resulting in reduced total IgG, neutralizing antibody titers, and CD4+ T cell responses against each virus. This study sheds light on the immunopathogenesis of SARS-CoV-2 and IAV coinfection, which may guide the development of effective therapeutic strategies for the treatment of patients coinfected with these viruses. IMPORTANCE The cocirculation of influenza virus merging with the COVID-19 pandemic raises a potentially severe threat to public health. Recently, increasing numbers of SARS-CoV-2 and influenza virus coinfection have been reported from many countries. It is a worrisome issue that SARS-CoV-2 coinfection with other pathogens may worsen the clinical outcome and severity of COVID-19 and increase fatality. Here, we evaluated SARS-CoV-2 and IAV coinfection using the K18-hACE2 mouse model. Coinfected mice exhibited increased mortality with prolonged IAV shedding. Furthermore, coinfected mice showed a higher level of cytokines and chemokines than a single infection condition. Interestingly, our data show that coinfected mice showed significantly fewer virus-specific and neutralizing antibodies than the mice with a single infection. Overall, this study suggests that coinfection aggravates viral pathology by impaired neutralizing antibody response.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Thi-Quyen Nguyen
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Se-Mi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| |
Collapse
|
284
|
Zhou P, Yuan M, Song G, Beutler N, Shaabani N, Huang D, He WT, Zhu X, Callaghan S, Yong P, Anzanello F, Peng L, Ricketts J, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Teijaro JR, Rogers TF, Wilson IA, Burton DR, Andrabi R. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med 2022; 14:eabi9215. [PMID: 35133175 PMCID: PMC8939767 DOI: 10.1126/scitranslmed.abi9215] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human β-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in β-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on β-CoV spike proteins for protective antibodies that may facilitate the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Ricketts
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
285
|
Hauser BM, Sangesland M, St Denis KJ, Lam EC, Case JB, Windsor IW, Feldman J, Caradonna TM, Kannegieter T, Diamond MS, Balazs AB, Lingwood D, Schmidt AG. Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting. Cell Rep 2022; 38:110561. [PMID: 35303475 PMCID: PMC8898741 DOI: 10.1016/j.celrep.2022.110561] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
Eliciting antibodies to surface-exposed viral glycoproteins can generate protective responses that control and prevent future infections. Targeting conserved sites may reduce the likelihood of viral escape and limit the spread of related viruses with pandemic potential. Here we leverage rational immunogen design to focus humoral responses on conserved epitopes. Using glycan engineering and epitope scaffolding in boosting immunogens, we focus murine serum antibody responses to conserved receptor binding motif (RBM) and receptor binding domain (RBD) epitopes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike imprinting. Although all engineered immunogens elicit a robust SARS-CoV-2-neutralizing serum response, RBM-focusing immunogens exhibit increased potency against related sarbecoviruses, SARS-CoV, WIV1-CoV, RaTG13-CoV, and SHC014-CoV; structural characterization of representative antibodies defines a conserved epitope. RBM-focused sera confer protection against SARS-CoV-2 challenge. Thus, RBM focusing is a promising strategy to elicit breadth across emerging sarbecoviruses without compromising SARS-CoV-2 protection. These engineering strategies are adaptable to other viral glycoproteins for targeting conserved epitopes.
Collapse
Affiliation(s)
- Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kerri J St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ian W Windsor
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Ty Kannegieter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
286
|
Fung KM, Lai SJ, Lin TL, Tseng TS. Antigen–Antibody Complex-Guided Exploration of the Hotspots Conferring the Immune-Escaping Ability of the SARS-CoV-2 RBD. Front Mol Biosci 2022; 9:797132. [PMID: 35392535 PMCID: PMC8981523 DOI: 10.3389/fmolb.2022.797132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
The COVID-19 pandemic resulting from the spread of SARS-CoV-2 spurred devastating health and economic crises around the world. Neutralizing antibodies and licensed vaccines were developed to combat COVID-19, but progress was slow. In addition, variants of the receptor-binding domain (RBD) of the spike protein confer resistance of SARS-CoV-2 to neutralizing antibodies, nullifying the possibility of human immunity. Therefore, investigations into the RBD mutations that disrupt neutralization through convalescent antibodies are urgently required. In this study, we comprehensively and systematically investigated the binding stability of RBD variants targeting convalescent antibodies and revealed that the RBD residues F456, F490, L452, L455, and K417 are immune-escaping hotspots, and E484, F486, and N501 are destabilizing residues. Our study also explored the possible modes of actions of emerging SARS-CoV-2 variants. All results are consistent with experimental observations of attenuated antibody neutralization and clinically emerging SARS-CoV-2 variants. We identified possible immune-escaping hotspots that could further promote resistance to convalescent antibodies. The results provide valuable information for developing and designing novel monoclonal antibody drugs to combat emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Kit-Man Fung
- Academia Sinica, Institute of Biological Chemistry, Taipei, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tzu-Lu Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Tien-Sheng Tseng,
| |
Collapse
|
287
|
Wang CY, Hwang KP, Kuo HK, Peng WJ, Shen YH, Kuo BS, Huang JH, Liu H, Ho YH, Lin F, Ding S, Liu Z, Wu HT, Huang CT, Lee YJ, Liu MC, Yang YC, Lu PL, Tsai HC, Lee CH, Shi ZY, Liu CE, Liao CH, Chang FY, Cheng HC, Wang FD, Hou KL, Cheng J, Wang MS, Yang YT, Chiu HC, Jiang MH, Shih HY, Shen HY, Chang PY, Lan YR, Chen CT, Lin YL, Liang JJ, Liao CC, Chou YC, Morris MK, Hanson CV, Guirakhoo F, Hellerstein M, Yu HJ, King CC, Kemp T, Heppner DG, Monath TP. A multitope SARS-COV-2 vaccine provides long-lasting B cell and T cell immunity against Delta and Omicron variants. J Clin Invest 2022; 132:157707. [PMID: 35316221 PMCID: PMC9106357 DOI: 10.1172/jci157707] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background The Delta and Omicron variants of SARS-CoV-2 are currently responsible for breakthrough infections due to waning immunity. We report phase I/II trial results of UB-612, a multitope subunit vaccine containing S1-RBD-sFc protein and rationally designed promiscuous peptides representing sarbecovirus conserved helper T cell and cytotoxic T lymphocyte epitopes on the nucleocapsid (N), membrane (M), and spike (S2) proteins. Method We conducted a phase I primary 2-dose (28 days apart) trial of 10, 30, or 100 μg UB-612 in 60 healthy young adults 20 to 55 years old, and 50 of them were boosted with 100 μg of UB-612 approximately 7 to 9 months after the second dose. A separate placebo-controlled and randomized phase II study was conducted with 2 doses of 100 μg of UB-612 (n = 3,875, 18–85 years old). We evaluated interim safety and immunogenicity of phase I until 14 days after the third (booster) dose and of phase II until 28 days after the second dose. Results No vaccine-related serious adverse events were recorded. The most common solicited adverse events were injection site pain and fatigue, mostly mild and transient. In both trials, UB-612 elicited respective neutralizing antibody titers similar to a panel of human convalescent sera. The most striking findings were long-lasting virus-neutralizing antibodies and broad T cell immunity against SARS-CoV-2 variants of concern (VoCs), including Delta and Omicron, and a strong booster-recalled memory immunity with high cross-reactive neutralizing titers against the Delta and Omicron VoCs. Conclusion UB-612 has presented a favorable safety profile, potent booster effect against VoCs, and long-lasting B and broad T cell immunity that warrants further development for both primary immunization and heterologous boosting of other COVID-19 vaccines. Trial Registration ClinicalTrials.gov: NCT04545749, NCT04773067, and NCT04967742. Funding UBI Asia, Vaxxinity Inc., and Taiwan Centers for Disease Control, Ministry of Health and Welfare.
Collapse
Affiliation(s)
| | - Kao-Pin Hwang
- Division of Infectious Diseases, China Medical University Children's Hospital, Taichung City, Taiwan
| | - Hui-Kai Kuo
- Designed Vaccine Translation Medical Center, UBI Asia, Hsinchu, Taiwan
| | - Wen-Jiun Peng
- Administrative Management Center, UBI Asia, Hsinchu, Taiwan
| | - Yea-Huei Shen
- Medical and Clinical Operation, StatPlus, Taipei, Taiwan
| | - Be-Sheng Kuo
- Preclinical and ImmunoPharmacology Center, UBI Asia, Hsinchu, Taiwan
| | | | | | - Yu-Hsin Ho
- Regulatory Affairs, UBI Asia, Hsinchu, Taiwan
| | - Feng Lin
- R&D Center, United Bioimedical, Inc., Hauppauge, United States of America
| | - Shuang Ding
- R&D Center, United Biomedical, Inc., Hauppauge, United States of America
| | - Zhi Liu
- R&D Center, United Biomedical, Inc., Hauppauge, United States of America
| | | | - Ching-Tai Huang
- Department of Infectious Disease, Chang Gung University, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yuarn-Jang Lee
- Division of Infectious Diseases, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ming-Che Liu
- R&D, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Ching Yang
- Ministry of Health and Welfare, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Chin Tsai
- School of Medicine, Kaohsiung Veterans General Hospital, Kaoshiung, Taiwan
| | - Chen-Hsiang Lee
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Zhi-Yuan Shi
- Department of Medical Affairs, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Eng Liu
- Department of Medical Affairs, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Hsing Liao
- Department of Medical Affairs, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Feng-Yee Chang
- Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Hsiang-Cheng Cheng
- Department of Medical Affairs, Tri-Service General Hospital, Taipei, Taiwan
| | - Fu-Der Wang
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Liang Hou
- Department of Preclinical Research, UBI Asia, Hsinchu, Taiwan
| | - Jennifer Cheng
- Department of Preclinical Research, UBI Asia, Hsinchu, Taiwan
| | - Min-Sheng Wang
- Department of Clinical Research, UBI Asia, Hsinchu, Taiwan
| | - Ya-Ting Yang
- Department of Preclinical Research, UBI Asia, Hsinchu, Taiwan
| | - Han-Chen Chiu
- Department of Medical Affairs, UBI Asia, Hsinchu, Taiwan
| | - Ming-Han Jiang
- Department of Preclinical Research, UBI Asia, Hsinchu, Taiwan
| | - Hao-Yu Shih
- Department of Preclinical Research, UBI Asia, Hsinchu, Taiwan
| | - Hsuan-Yu Shen
- Department of Clinical Research, UBI Asia, Hsinchu, Taiwan
| | - Po-Yen Chang
- Department of Clinical Research, UBI Asia, Hsinchu, Taiwan
| | - Yu-Rou Lan
- Department of Preclinical Research, UBI Asia, Hsinchu, Taiwan
| | - Chi-Tian Chen
- Biostatistics and Data Management, StatPlus, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Biomedical Translation Research Center (bioTReC) Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Department of Medical Affairs, Biomedical Translation Research Center (bioTReC) Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Department of Statistics, Biomedical Translation Research Center (bioTReC) Academia Sinica, Taipei, Taiwan
| | - Mary Kate Morris
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, United States of America
| | - Carl V Hanson
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, United States of America
| | - Farshad Guirakhoo
- Department of Clinical Research, Vaxxinity Inc., Dallas, United States of America
| | - Michael Hellerstein
- Department of Preclinical Research, Vaxxinity Inc., Dallas, United States of America
| | - Hui Jing Yu
- Department of Clinical Research, Vaxxinity Inc., Dallas, United States of America
| | - Chwan-Chuen King
- Department of Medical, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tracy Kemp
- Department of Clinical Research, Vaxxinity, Inc., Dallas, United States of America
| | - D Gray Heppner
- Department of Clinical Research, Vaxxinity, Inc., Dallas, United States of America
| | - Thomas P Monath
- Department of Clinical Research, Vaxxinity, Inc., Dallas, United States of America
| |
Collapse
|
288
|
Lafuente-Lafuente C, Rainone A, Guérin O, Drunat O, Jeandel C, Hanon O, Belmin J. COVID-19 Outbreaks in Nursing Homes Despite Full Vaccination with BNT162b2 of a Majority of Residents. Gerontology 2022; 68:1384-1392. [PMID: 35313315 PMCID: PMC9058997 DOI: 10.1159/000523701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND It is not known if widespread vaccination can prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in subpopulations at high risk, like older adults in nursing homes (NH). OBJECTIVE The objective of the study was to know if coronavirus disease 2019 (COVID-19) outbreaks can occur in NH with high vaccination coverage among its residents. METHODS We identified, using national professional networks, NH that suffered COVID-19 outbreaks despite having completed a vaccination campaign, and asked them to send data, using predefined collecting forms, on the number of residents exposed, their vaccination status and the number, characteristics, and evolution of patients infected. The main outcome was to identify outbreaks occurring in NH with high vaccine coverage. Secondary outcomes were residents' risk of being infected, developing severe disease, or dying from COVID-19 during the outbreak. SARS-CoV-2 infection was defined by a positive reverse transcriptase-polymerase chain reaction. All residents were serially tested whenever cases appeared in a facility. Unadjusted secondary attack rates, relative risks, and vaccine effectiveness during the outbreak were estimated. RESULTS We identified 31 NH suffering an outbreak during March-April 2021, of which 27 sent data, cumulating 1,768 residents (mean age 88.4, 73.4% women, 78.2% fully vaccinated). BNT162b2 was the vaccine employed in all NH. There were 365 cases of SARS-CoV-2 infection. Median secondary attack rates were 20.0% (IQR 4.4%-50.0%) among unvaccinated residents and 16.7% (IQR 9.5%-29.2%) among fully vaccinated ones. Severe cases developed in 42 of 80 (52.5%) unvaccinated patients, compared with 56 of 248 (22.6%) fully vaccinated ones (relative risks [RR] 4.17, 95% CI: 2.43-7.17). Twenty of the unvaccinated patients (25.0%) and 16 of fully vaccinated ones (6.5%) died from COVID-19 (RR 5.11, 95% CI: 2.49-10.5). Estimated vaccine effectiveness during the outbreak was 34.5% (95% CI: 18.5-47.3) for preventing SARS-CoV-2 infection, 71.8% (58.8-80.7) for preventing severe disease, and 83.1% (67.8-91.1) for preventing death. CONCLUSIONS Outbreaks of COVID-19, including severe cases and deaths, can still occur in NH despite full vaccination of a majority of residents. Vaccine remains highly effective, however, for preventing severe disease and death. Prevention and control measures for SARS-CoV-2 should be maintained in NH at periods of high incidence in the community.
Collapse
Affiliation(s)
- Carmelo Lafuente-Lafuente
- Service de gériatrie à orientation cardiologique et neurologique, APHP, Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Ivry-sur-Seine, France,Faculté de médecine, Sorbonne Université, Paris, France,INSERM, IMRB, Université Paris Est Créteil, Creteil, France,*Carmelo Lafuente-Lafuente,
| | - Antonio Rainone
- Service de gériatrie à orientation cardiologique et neurologique, APHP, Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Ivry-sur-Seine, France,Faculté de médecine, Sorbonne Université, Paris, France
| | - Olivier Guérin
- Service de Médecine Gériatrique et Thérapeutique, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France,Faculté de médecine, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging Nice (IRCAN), Université Côte d'Azur, Nice, France
| | - Olivier Drunat
- Hôpital Bretonneau, APHP, Université de Paris, Paris, France,Collégiale de Gériatrie de l'APHP, Paris, France
| | - Claude Jeandel
- CHU de Montpellier, Université de Montpellier, Montpellier, France,Conseil National Professionnel de Gériatrie, Baillargés, France
| | - Olivier Hanon
- Hôpital Broca, APHP, Université Paris-Descartes, Paris, France,Gérond'If, Gérontopôle d'Ile-de-France, Paris, France
| | - Joël Belmin
- Service de gériatrie à orientation cardiologique et neurologique, APHP, Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Ivry-sur-Seine, France,Faculté de médecine, Sorbonne Université, Paris, France
| | | |
Collapse
|
289
|
Kreiser T, Zaguri D, Sachdeva S, Zamostiano R, Mograbi J, Segal D, Bacharach E, Gazit E. Inhibition of Respiratory RNA Viruses by a Composition of Ionophoric Polyphenols with Metal Ions. Pharmaceuticals (Basel) 2022; 15:ph15030377. [PMID: 35337174 PMCID: PMC8955458 DOI: 10.3390/ph15030377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
Controlling the infectivity of respiratory RNA viruses is critical, especially during the current SARS-CoV-2 pandemic. There is an unmet need for therapeutic agents that can reduce viral replication, preferably independent of the accumulation of viral mutations. Zinc ions have an apparent activity as modulators of intracellular viral RNA replication and thus, appear attractive in reducing viral RNA load and infectivity. However, the intracellular concentration of zinc is usually too low for achieving an optimal inhibitory effect. Various herbal polyphenols serve as excellent zinc ionophores with known antiviral properties. Here, we combined zinc picolinate with a collection of flavonoids, representing commonly used polyphenols. Copper was added to avoid ionic imbalance during treatment and to improve efficacy. Each component separately, as well as their combinations, did not interfere with the viability of cultured A549, H1299, or Vero cells in vitro as determined by MTT assay. The safe combinations were further evaluated to determine antiviral activity. Fluorescence-activated cell sorting and quantitative polymerase chain reaction were used to evaluate antiviral activity of the combinations. They revealed a remarkable (50–95%) decrease, in genome replication levels of a diverse group of respiratory RNA viruses, including the human coronavirus OC43 (HCoV-OC43; a betacoronavirus that causes the common cold), influenza A virus (IAV, strain A/Puerto Rico/8/34 H1N1), and human metapneumovirus (hMPV). Collectively, our results offer an orally bioavailable therapeutic approach that is non-toxic, naturally sourced, applicable to numerous RNA viruses, and potentially insensitive to new mutations and variants.
Collapse
Affiliation(s)
- Topaz Kreiser
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Dor Zaguri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Shreya Sachdeva
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Rachel Zamostiano
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | | | - Daniel Segal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- Correspondence: (E.B.); (E.G.)
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (E.B.); (E.G.)
| |
Collapse
|
290
|
Williamson JC, Wierzba TF, Santacatterina M, Munawar I, Seals AL, Pittman Ballard CA, Alexander-Miller M, Runyon MS, McCurdy LH, Gibbs MA, Ahmed A, Lagarde WH, Maguire PD, King-Thiele R, Hamrick T, Ihmeidan A, Henderson S, Gallaher TR, Uschner D, Edelstein SL, Herrington DM, Sanders JW. Analysis of accumulated SARS-CoV-2 seroconversion in North Carolina: The COVID-19 Community Research Partnership. PLoS One 2022; 17:e0260574. [PMID: 35302997 PMCID: PMC8932589 DOI: 10.1371/journal.pone.0260574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The COVID-19 Community Research Partnership is a population-based longitudinal syndromic and sero-surveillance study. The study includes over 17,000 participants from six healthcare systems in North Carolina who submitted over 49,000 serology results. The purpose of this study is to use these serology data to estimate the cumulative proportion of the North Carolina population that has either been infected with SARS-CoV-2 or developed a measurable humoral response to vaccination. METHODS Adult community residents were invited to participate in the study between April 2020 and February 2021. Demographic information was collected and daily symptom screen was completed using a secure, HIPAA-compliant, online portal. A portion of participants were mailed kits containing a lateral flow assay to be used in-home to test for presence of anti-SARS-CoV-2 IgM or IgG antibodies. The cumulative proportion of participants who tested positive at least once during the study was estimated. A standard Cox proportional hazards model was constructed to illustrate the probability of seroconversion over time up to December 20, 2020 (before vaccines available). A separate analysis was performed to describe the influence of vaccines through February 15, 2021. RESULTS 17,688 participants contributed at least one serology result. 68.7% of the population were female, and 72.2% were between 18 and 59 years of age. The average number of serology results submitted per participant was 3.0 (±1.9). By December 20, 2020, the overall probability of seropositivity in the CCRP population was 32.6%. By February 15, 2021 the probability among healthcare workers and non-healthcare workers was 83% and 49%, respectively. An inflection upward in the probability of seropositivity was demonstrated around the end of December, suggesting an influence of vaccinations, especially for healthcare workers. Among healthcare workers, those in the oldest age category (60+ years) were 38% less likely to have seroconverted by February 15, 2021. CONCLUSIONS Results of this study suggest more North Carolina residents may have been infected with SARS-CoV-2 than the number of documented cases as determined by positive RNA or antigen tests. The influence of vaccinations on seropositivity among North Carolina residents is also demonstrated. Additional research is needed to fully characterize the impact of seropositivity on immunity and the ultimate course of the pandemic.
Collapse
Affiliation(s)
- John C. Williamson
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
- Department of Pharmacy, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Thomas F. Wierzba
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Michele Santacatterina
- Department of Biostatistics and Bioinformatics, Biostatistics Center, George Washington University, Rockville, Maryland, United States of America
| | - Iqra Munawar
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Austin L. Seals
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Christine Ann Pittman Ballard
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Martha Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Michael S. Runyon
- Department of Emergency Medicine, Atrium Health’s Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Lewis H. McCurdy
- Department of Internal Medicine, Division of Infectious Diseases, Atrium Health, Charlotte, North Carolina, United States of America
| | - Michael A. Gibbs
- Department of Emergency Medicine, Atrium Health’s Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Amina Ahmed
- Department of Pediatrics, Atrium Health, Charlotte, North Carolina, United States of America
| | - William H. Lagarde
- Department of Pediatrics, WakeMed Health and Hospitals, Raleigh, North Carolina, United States of America
| | - Patrick D. Maguire
- Department of Radiation Oncology, New Hanover Regional Medical Center, Wilmington, North Carolina, United States of America
| | - Robin King-Thiele
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina, United States of America
| | - Terri Hamrick
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina, United States of America
| | - Abdalla Ihmeidan
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina, United States of America
| | - Shakira Henderson
- Center for Research and Grants, Vidant Health, Greenville, North Carolina, United States of America
| | - T. Ryan Gallaher
- Department of Infectious Diseases, Vidant Health, Greenville, North Carolina, United States of America
| | - Diane Uschner
- Department of Biostatistics and Bioinformatics, Biostatistics Center, George Washington University, Rockville, Maryland, United States of America
| | - Sharon L. Edelstein
- Department of Biostatistics and Bioinformatics, Biostatistics Center, George Washington University, Rockville, Maryland, United States of America
| | - David M. Herrington
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - John W. Sanders
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | | |
Collapse
|
291
|
Okoh OS, Nii-Trebi NI, Jakkari A, Olaniran TT, Senbadejo TY, Kafintu-kwashie AA, Dairo EO, Ganiyu TO, Akaninyene IE, Ezediuno LO, Adeosun IJ, Ockiya MA, Jimah EM, Spiro DJ, Oladipo EK, Trovão NS. Epidemiology and genetic diversity of SARS-CoV-2 lineages circulating in Africa. iScience 2022; 25:103880. [PMID: 35156006 PMCID: PMC8817759 DOI: 10.1016/j.isci.2022.103880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
There is a dearth of information on COVID-19 disease dynamics in Africa. To fill this gap, we investigated the epidemiology and genetic diversity of SARS-CoV-2 lineages circulating in the continent. We retrieved 5229 complete genomes collected in 33 African countries from the GISAID database. We investigated the circulating diversity, reconstructed the viral evolutionary divergence and history, and studied the case and death trends in the continent. Almost a fifth (144/782, 18.4%) of Pango lineages found worldwide circulated in Africa, with five different lineages dominating over time. Phylogenetic analysis revealed that African viruses cluster more closely with those from Europe. We also identified two motifs that could function as integrin-binding sites and N-glycosylation domains. These results shed light on the epidemiological and evolutionary dynamics of the circulating viral diversity in Africa. They also emphasize the need to expand surveillance efforts in Africa to help inform and implement better public health measures.
Collapse
Affiliation(s)
| | - Nicholas Israel Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Abdulrokeeb Jakkari
- Department of Microbiology, Faculty of Science, Lagos State University, Ojo, Lagos, Nigeria
| | - Tosin Titus Olaniran
- Department of Pure and Applied Biology (Microbiology Unit), Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Helix Biogen Institute, Ogbomoso, Nigeria
| | - Tosin Yetunde Senbadejo
- Department of Biological Sciences, College of Natural and Applied Sciences, Fountain University, Osogbo, Nigeria
| | - Anna Aba Kafintu-kwashie
- Department of Medical Microbiology, Clinical Virology Unit, University of Ghana Medical School, Accra, Ghana
| | - Emmanuel Oluwatobi Dairo
- Helix Biogen Institute, Ogbomoso, Nigeria
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tajudeen Oladunni Ganiyu
- Department of Biological Sciences, College of Natural and Applied Sciences, Fountain University, Osogbo, Nigeria
| | - Ifiokakaninyene Ekpo Akaninyene
- Department of Pure and Applied Biology (Microbiology Unit), Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Helix Biogen Institute, Ogbomoso, Nigeria
| | - Louis Odinakaose Ezediuno
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin,1515 P.M.B, Ilorin, Nigeria
| | - Idowu Jesulayomi Adeosun
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun, Nigeria
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa
| | - Michael Asebake Ockiya
- Department of Animal Science, Niger Delta University, Wilberforce Island, Bayelsa, Nigeria
| | - Esther Moradeyo Jimah
- Helix Biogen Institute, Ogbomoso, Nigeria
- Department of Medical Microbiology and Parasitology, University of Ilorin 1515, P.M.B, Ilorin, Nigeria
| | - David J. Spiro
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Elijah Kolawole Oladipo
- Helix Biogen Institute, Ogbomoso, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun, Nigeria
| | - Nídia S. Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
292
|
Lyski ZL, Brunton AE, Strnad MI, Sullivan PE, Siegel SAR, Tafesse FG, Slifka MK, Messer WB. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Specific Memory B Cells From Individuals With Diverse Disease Severities Recognize SARS-CoV-2 Variants of Concern. J Infect Dis 2022; 225:947-956. [PMID: 34865053 PMCID: PMC8922005 DOI: 10.1093/infdis/jiab585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
The unprecedented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has called for substantial investigations into the capacity of the human immune system to protect against reinfection and keep pace with the evolution of SARS-CoV-2. We evaluated the magnitude and durability of the SARS-CoV-2-specific antibody responses against parental WA-1 SARS-CoV-2 receptor-binding domain (RBD) and a representative variant of concern (VoC) RBD using antibodies from 2 antibody compartments: long-lived plasma cell-derived plasma antibodies and antibodies encoded by SARS-CoV-2-specific memory B cells (MBCs). Thirty-five participants naturally infected with SARS-CoV-2 were evaluated; although only 25 of 35 participants had VoC RBD-reactive plasma antibodies, 34 of 35 (97%) participants had VoC RBD-reactive MBC-derived antibodies. Our finding that 97% of previously infected individuals have MBCs specific for variant RBDs provides reason for optimism regarding the capacity of vaccination, prior infection, and/or both, to elicit immunity with the capacity to limit disease severity and transmission of VoCs as they arise and circulate.
Collapse
Affiliation(s)
- Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Amanda E Brunton
- Oregon Health and Science University–Portland State University School of Public Health, Portland, Oregon, USA
| | - Matt I Strnad
- Oregon Health and Science University–Portland State University School of Public Health, Portland, Oregon, USA
| | - Peter E Sullivan
- Oregon Health and Science University–Portland State University School of Public Health, Portland, Oregon, USA
| | - Sarah A R Siegel
- Oregon Health and Science University–Portland State University School of Public Health, Portland, Oregon, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
- Oregon Health and Science University–Portland State University School of Public Health, Portland, Oregon, USA
- Department of Medicine, Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
293
|
Greaney AJ, Eguia RT, Starr TN, Khan K, Franko N, Logue JK, Lord SM, Speake C, Chu HY, Sigal A, Bloom JD. The SARS-CoV-2 Delta variant induces an antibody response largely focused on class 1 and 2 antibody epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.12.484088. [PMID: 35313588 PMCID: PMC8936118 DOI: 10.1101/2022.03.12.484088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure histories to SARS-CoV-2 variants and vaccinations will shape the specificity of antibody responses. To understand the specificity of Delta-elicited antibody immunity, we characterize the polyclonal antibody response elicited by primary or mRNA vaccine-breakthrough Delta infections. Both types of infection elicit a neutralizing antibody response focused heavily on the receptor-binding domain (RBD). We use deep mutational scanning to show that mutations to the RBD's class 1 and class 2 epitopes, including sites 417, 478, and 484-486 often reduce binding of these Delta-elicited antibodies. The anti-Delta antibody response is more similar to that elicited by early 2020 viruses than the Beta variant, with mutations to the class 1 and 2, but not class 3 epitopes, having the largest effects on polyclonal antibody binding. In addition, mutations to the class 1 epitope (e.g., K417N) tend to have larger effects on antibody binding and neutralization in the Delta spike than in the D614G spike, both for vaccine- and Delta-infection-elicited antibodies. These results help elucidate how the antigenic impacts of SARS-CoV-2 mutations depend on exposure history.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington; Seattle, WA, USA
| | - Rachel T. Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington; Seattle, WA, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington; Seattle, WA, USA
| | - Sandra M. Lord
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington; Seattle, WA, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| |
Collapse
|
294
|
Protective Immunity of the Primary SARS-CoV-2 Infection Reduces Disease Severity Post Re-Infection with Delta Variants in Syrian Hamsters. Viruses 2022; 14:v14030596. [PMID: 35337002 PMCID: PMC8950956 DOI: 10.3390/v14030596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Delta variant has evolved to become the dominant SARS-CoV-2 lineage with multiple sub-lineages and there are also reports of re-infections caused by this variant. We studied the disease characteristics induced by the Delta AY.1 variant and compared it with the Delta and B.1 variants in Syrian hamsters. We also assessed the potential of re-infection by these variants in Coronavirus disease 2019 recovered hamsters 3 months after initial infection. The variants produced disease characterized by high viral load in the respiratory tract and interstitial pneumonia. The Delta AY.1 variant produced mild disease in the hamster model and did not show any evidence of neutralization resistance due to the presence of the K417N mutation, as speculated. Re-infection with a high virus dose of the Delta and B.1 variants 3 months after B.1 variant infection resulted in reduced virus shedding, disease severity and increased neutralizing antibody levels in the re-infected hamsters. The reduction in viral load and lung disease after re-infection with the Delta AY.1 variant was not marked. Upper respiratory tract viral RNA loads remained similar after re-infection in all the groups. The present findings show that prior infection could not produce sterilizing immunity but that it can broaden the neutralizing response and reduce disease severity in case of reinfection.
Collapse
|
295
|
O’Donnell KL, Gourdine T, Fletcher P, Shifflett K, Furuyama W, Clancy CS, Marzi A. VSV-Based Vaccines Reduce Virus Shedding and Viral Load in Hamsters Infected with SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2022; 10:435. [PMID: 35335067 PMCID: PMC8951568 DOI: 10.3390/vaccines10030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022] Open
Abstract
The continued progression of the COVID-19 pandemic can partly be attributed to the ability of SARS-CoV-2 to mutate and introduce new viral variants. Some of these variants with the potential to spread quickly and conquer the globe are termed variants of concern (VOC). The existing vaccines implemented on a global scale are based on the ancestral strain, which has resulted in increased numbers of breakthrough infections as these VOC have emerged. It is imperative to show protection against VOC infection with newly developed vaccines. Previously, we evaluated two vesicular stomatitis virus (VSV)-based vaccines expressing the SARS-CoV-2 spike protein alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV) and demonstrated their fast-acting potential. Here, we prolonged the time to challenge; we vaccinated hamsters intranasally (IN) or intramuscularly 28 days prior to infection with three SARS-CoV-2 VOC-the Alpha, Beta, and Delta variants. IN vaccination with either the VSV-SARS2 or VSV-SARS2-EBOV resulted in the highest protective efficacy as demonstrated by decreased virus shedding and lung viral load of vaccinated hamsters. Histopathologic analysis of the lungs revealed the least amount of lung damage in the IN-vaccinated animals regardless of the challenge virus. This data demonstrates the ability of a VSV-based vaccine to not only protect from disease caused by SARS-CoV-2 VOC but also reduce viral shedding.
Collapse
Affiliation(s)
- Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Tylisha Gourdine
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Paige Fletcher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| |
Collapse
|
296
|
Jacobson KB, Pinsky BA, Montez Rath ME, Wang H, Miller JA, Skhiri M, Shepard J, Mathew R, Lee G, Bohman B, Parsonnet J, Holubar M. Post-Vaccination Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infections and Incidence of the Presumptive B.1.427/B.1.429 Variant Among Healthcare Personnel at a Northern California Academic Medical Center. Clin Infect Dis 2022; 74:821-828. [PMID: 34137815 PMCID: PMC8344553 DOI: 10.1093/cid/ciab554] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although mRNA-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines report >90% efficacy, breakthrough infections occur. Little is known about their effectiveness against SARS-CoV-2 variants, including the highly prevalent B.1.427/B.1.429 variant. METHODS In this quality improvement project, we collected demographic and clinical information from post-vaccine SARS-CoV-2 cases (PVSCs), defined as healthcare personnel (HCP) with positive SARS-CoV-2 nucleic acid amplification test after receiving ≥1 vaccine dose. Available specimens were tested for L452R, N501Y, and E484K mutations using reverse-transcription polymerase chain reaction. Mutation prevalence was compared among unvaccinated, early post-vaccinated (≤14 days after dose 1), partially vaccinated (positive test >14 days after dose 1 and <14 days after dose 2), and fully vaccinated (>14 days after dose 2) PVSCs. RESULTS From December 2020 to April 2021, ≥23 090 HCP received ≥1 dose of an mRNA-based SARS-CoV-2 vaccine, and 660 HCP cases of SARS-CoV-2 occurred, of which 189 were PVSCs. Among the PVSCs, 114 (60.3%), 49 (25.9%), and 26 (13.8%) were early post-vaccination, partially vaccinated, and fully vaccinated, respectively. Of 261 available samples from vaccinated and unvaccinated HCP, 103 (39.5%), including 42 PVSCs (36.5%), had the L452R mutation presumptive of B.1.427/B.1.429. When adjusted for community prevalence of B.1.427/B.1.429, PVSCs did not have significantly elevated risk of B.1.427/B.1.429 compared with unvaccinated HCP. CONCLUSIONS Most PVSCs occurred prior to expected onset of full, vaccine-derived immunity. Presumptive B.1.427/B.1.429 was not more prevalent in post-vaccine cases than in unvaccinated SARS-CoV-2 HCP. Continued infection control measures, particularly <14 days post-vaccination, and continued variant surveillance in PVSCs are imperative to control future SARS-CoV-2 surges.
Collapse
Affiliation(s)
- Karen B Jacobson
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Maria E Montez Rath
- Department of Medicine, Division of Nephrology, Stanford University School of Medicine, Stanford, California, USA
| | - Hannah Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jacob A Miller
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Mehdi Skhiri
- Department of Medicine, Primary Care and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - John Shepard
- Department of Quality, Patient Safety and Clinical Effectiveness, Stanford Health Care, Stanford, California, USA
| | - Roshni Mathew
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Grace Lee
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Bryan Bohman
- Workforce Health and Wellness, Stanford University School of Medicine, Stanford, California, USA
| | - Julie Parsonnet
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Marisa Holubar
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
297
|
Yépez Y, Marcano-Ruiz M, Bezerra RS, Fam B, Ximenez JPB, Silva WA, Bortolini MC. Evolutionary history of the SARS-CoV-2 Gamma variant of concern (P.1): a perfect storm. Genet Mol Biol 2022; 45:e20210309. [PMID: 35266951 PMCID: PMC8908351 DOI: 10.1590/1678-4685-gmb-2021-0309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Our goal was to describe in more detail the evolutionary history of Gamma and two derived lineages (P.1.1 and P.1.2), which are part of the arms race that SARS-CoV-2 wages with its host. A total of 4,977 sequences of the Gamma strain of SARS-CoV-2 from Brazil were analyzed. We detected 194 sites under positive selection in 12 genes/ORFs: Spike, N, M, E, ORF1a, ORF1b, ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF10. Some diagnostic sites for Gamma lacked a signature of positive selection in our study, but these were not fixed, apparently escaping the action of purifying selection. Our network analyses revealed branches leading to expanding haplotypes with sites under selection only detected when P.1.1 and P.1.2 were considered. The P.1.2 exclusive haplotype H_5 originated from a non-synonymous mutational step (H3509Y) in H_1 of ORF1a. The selected allele, 3509Y, represents an adaptive novelty involving ORF1a of P.1. Finally, we discuss how phenomena such as epistasis and antagonistic pleiotropy could limit the emergence of new alleles (and combinations thereof) in SARS-COV-2 lineages, maintaining infectivity in humans, while providing rapid response capabilities to face the arms race triggered by host immuneresponses.
Collapse
Affiliation(s)
- Yuri Yépez
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Mariana Marcano-Ruiz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Rafael S Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Bibiana Fam
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - João PB Ximenez
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Wilson A Silva
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
- Instituto de Pesquisa do Câncer de Guarapuava, Guarapuava, PR,
Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
298
|
Qi H, Sun Z, Yao Y, Chen L, Su X. Immunogenicity of the Xcl1-SARS-CoV-2 Spike Fusion DNA Vaccine for COVID-19. Vaccines (Basel) 2022; 10:407. [PMID: 35335039 PMCID: PMC8951015 DOI: 10.3390/vaccines10030407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 spike (S) variants that may evade antibody-mediated immunity are emerging. Evidence shows that vaccines with a stronger immune response are still effective against mutant strains. Here, we report a targeted type 1 conventional dendritic (cDC1) cell strategy for improved COVID-19 vaccine design. cDC1 cells specifically express X-C motif chemokine receptor 1 (Xcr1), the only receptor for chemokine Xcl1. We fused the S gene sequence with the Xcl1 gene to deliver the expressed S protein to cDC1 cells. Immunization with a plasmid encoding the S protein fused to Xcl1 showed stronger induction of antibody and antigen-specific T cell immune responses than immunization with the S plasmid alone in mice. The fusion gene-induced antibody also displayed more powerful SARS-CoV-2 wild-type virus and pseudovirus neutralizing activity. Xcl1 also increased long-lived antibody-secreting plasma cells in bone marrow. These preliminary results indicate that Xcl1 serves as a molecular adjuvant for the SARS-CoV-2 vaccine and that our Xcl1-S fusion DNA vaccine is a potential COVID-19 vaccine candidate for use in further translational studies.
Collapse
Affiliation(s)
- Hailong Qi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Zhongjie Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Yanling Yao
- Hebei Immune Cell Application Engineering Research Center, Baoding Newish Technology Co., Ltd./Newish Technology (Beijing) Co., Ltd., Beijing 100176, China;
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (H.Q.); (Z.S.)
| |
Collapse
|
299
|
Agwa SHA, Elghazaly H, El Meteini MS, Yahia YA, Khaled R, Abd Elsamee AM, Darwish RM, Elsayed SM, Hafez H, Mahmoud BS, Em F, Matboli M. Identifying SARS-CoV-2 Lineage Mutation Hallmarks and Correlating Them With Clinical Outcomes in Egypt: A Pilot Study. Front Mol Biosci 2022; 9:817735. [PMID: 35350713 PMCID: PMC8958014 DOI: 10.3389/fmolb.2022.817735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 pandemic has led to over 4.9 million deaths as of October 2021. One of the main challenges of creating vaccines, treatment, or diagnostic tools for the virus is its mutations and emerging variants. A couple of variants were declared as more virulent and infectious than others. Some approaches were used as nomenclature for SARS-CoV-2 variants and lineages. One of the most used is the Pangolin nomenclature. In our study, we enrolled 35 confirmed SARS-CoV-2 patients and sequenced the viral RNA in their samples. We also aimed to highlight the hallmark mutations in the most frequent lineage. We identified a seven-mutation signature for the SARS-CoV-2 C36 lineage, detected in 56 countries and an emerging lineage in Egypt. In addition, we identified one mutation which was highly negatively correlated with the lineage. On the other hand, we found no significant correlation between our clinical outcomes and the C36 lineage. In conclusion, the C36 lineage is an emerging SARS-CoV-2 variant that needs more investigation regarding its clinical outcomes compared to other strains. Our study paves the way for easier diagnosis of variants of concern using mutation signatures.
Collapse
Affiliation(s)
- Sara H A Agwa
- Clinical Pathology and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hesham Elghazaly
- Oncology Department, Medical Ain Shams Research Institute (MASRI), Cairo, Egypt
| | - Mahmoud Shawky El Meteini
- Department of General Surgery, The School of Medicine, University of Ain Shams, Abbassia, Cairo, Egypt
| | - Yahia A Yahia
- Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Aya M Abd Elsamee
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Reham M Darwish
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Shaimaa M Elsayed
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Hala Hafez
- Clinical Pathology Department, Infection Control Unit, University of Ain Shams, Cairo, Egypt
| | - Basma S Mahmoud
- Clinical Pathology Department, Infection Control Unit, University of Ain Shams, Cairo, Egypt
| | - Fouda Em
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Medicinal Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Ain Shams, Cairo, Egypt
| |
Collapse
|
300
|
Zhou P, Song G, He WT, Beutler N, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Yuan M, Liu H, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Wilson IA, Safonova Y, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.04.479488. [PMID: 35291291 PMCID: PMC8923106 DOI: 10.1101/2022.03.04.479488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G. Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|