251
|
Ramerth A, Chapple B, Winter J, Moore W. The Other Side of the Perfect Cup: Coffee-Derived Non-Polyphenols and Their Roles in Mitigating Factors Affecting the Pathogenesis of Type 2 Diabetes. Int J Mol Sci 2024; 25:8966. [PMID: 39201652 PMCID: PMC11354961 DOI: 10.3390/ijms25168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
The global prevalence of type 2 diabetes (T2D) is 10.5% among adults in the age range of 20-79 years. The primary marker of T2D is persistent fasting hyperglycemia, resulting from insulin resistance and β-cell dysfunction. Multiple factors can promote the development of T2D, including obesity, inflammation, and oxidative stress. In contrast, dietary choices have been shown to prevent the onset of T2D. Oatmeal, lean proteins, fruits, and non-starchy vegetables have all been reported to decrease the likelihood of T2D onset. One of the most widely consumed beverages in the world, coffee, has also demonstrated an impressive ability to reduce T2D risk. Coffee contains a diverse array of bioactive molecules. The antidiabetic effects of coffee-derived polyphenols have been thoroughly described and recently reviewed; however, several non-polyphenolic molecules are less prominent but still elicit potent physiological actions. This review summarizes the effects of select coffee-derived non-polyphenols on various aspects of T2D pathogenesis.
Collapse
Affiliation(s)
| | | | | | - William Moore
- School of Health Sciences, Department of Biology and Chemistry, Liberty University, Lynchburg, VA 24515, USA; (A.R.); (B.C.); (J.W.)
| |
Collapse
|
252
|
Niechoda A, Roslan M, Milewska K, Szoka P, Maciorowska K, Holownia A. Signalling Pathways of Inflammation and Cancer in Human Mononuclear Cells: Effect of Nanoparticle Air Pollutants. Cells 2024; 13:1367. [PMID: 39195257 DOI: 10.3390/cells13161367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Fine inhalable particulate matter (PM) triggers an inflammatory response in the airways and activates mononuclear cells, mediators of tissue homeostasis, and tumour-promoting inflammation. We have assessed ex vivo responses of human monocytes and monocyte-derived macrophages to standardised air pollutants: carbon black, urban dust, and nanoparticulate carbon black, focusing on their pro-inflammatory and DNA-damaging properties. None of the PM (100 μg/mL/24 h) was significantly toxic to the cells, aside from inducing oxidative stress, fractional DNA damage, and inhibiting phagocytosis. TNFα was only slightly increased. PM nanoparticles increase the expression and activate DNA-damage-related histone H2A.X as well as pro-inflammatory NF-κB. We have shown that the urban dust stimulates the pathway of DNA damage/repair via the selective post-translational phosphorylation of H2A.X while nanoparticulate carbon black increases inflammation via activation of NF-κB. Moreover, the inflammatory response to lipopolysaccharide was significantly stronger in macrophages pre-exposed to urban dust or nanoparticulate carbon black. Our data show that airborne nanoparticles induce PM-specific, epigenetic alterations in the subsets of cultured mononuclear cells, which may be quantified using binary fluorescence scatterplots. Such changes intercede with inflammatory signalling and highlight important molecular and cell-specific epigenetic mechanisms of tumour-promoting inflammation.
Collapse
Affiliation(s)
- Agata Niechoda
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Maciej Roslan
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Katarzyna Milewska
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Piotr Szoka
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Katarzyna Maciorowska
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| |
Collapse
|
253
|
Chauhan KS, Dunlap MD, Akter S, Gupta A, Ahmed M, Rosa BA, Dela Peña NB, Mitreva M, Khader SA. Nuclear Factor κB Signaling Deficiency in CD11c-Expressing Phagocytes Mediates Early Inflammatory Responses and Enhances Mycobacterium tuberculosis Control. J Infect Dis 2024; 230:336-345. [PMID: 38324907 PMCID: PMC11326832 DOI: 10.1093/infdis/jiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Early innate immune responses play an important role in determining the protective outcome of Mycobacterium tuberculosis (Mtb) infection. Nuclear factor κB (NF-κB) signaling in immune cells regulates the expression of key downstream effector molecules that mount early antimycobacterial responses. Using conditional knockout mice, we studied the effect of abrogation of NF-κB signaling in different myeloid cell types and its impact on Mtb infection. Our results show that the absence of IKK2-mediated signaling in all myeloid cells resulted in increased susceptibility to Mtb infection. In contrast, the absence of IKK2-mediated signaling in CD11c+ myeloid cells induced early proinflammatory cytokine responses, enhanced the recruitment of myeloid cells, and mediated early resistance to Mtb. Abrogation of IKK2 in MRP8-expressing neutrophils did not affect disease pathology or Mtb control. Thus, we describe an early immunoregulatory role for NF-κB signaling in CD11c-expressing phagocytes and a later protective role for NF-κB in LysM-expressing cells during Mtb infection.
Collapse
Affiliation(s)
| | - Micah D Dunlap
- Department of Molecular Microbiology, Washington University in St Louis, Missouri
| | - Sadia Akter
- Department of Microbiology, University of Chicago, Illinois
| | - Ananya Gupta
- Department of Microbiology, University of Chicago, Illinois
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, Illinois
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Internal Medicine, Washington University in St Louis, Missouri
- McDonnell Genome Institute, Washington University in St Louis, Missouri
| | | | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Internal Medicine, Washington University in St Louis, Missouri
- McDonnell Genome Institute, Washington University in St Louis, Missouri
| | - Shabaana A Khader
- Department of Microbiology, University of Chicago, Illinois
- Department of Molecular Microbiology, Washington University in St Louis, Missouri
| |
Collapse
|
254
|
Macias SL, Palmer O, Simonovich JA, Clark RA, Hudalla GA, Keselowsky BG. Immunometabolic Approaches Mitigating Foreign Body Response and Transcriptome Characterization of the Foreign Body Capsule. Adv Healthc Mater 2024:e2400602. [PMID: 39148172 DOI: 10.1002/adhm.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Directing immunometabolism presents new opportunities to modulate key cell types associated with the formation of foreign body response (FBR) capsule. Contrasting approaches directing immunometabolism are investigated to mitigate FBR: a broadly suppressive metabolic inhibitor (MI) cocktail comprised of 2-deoxyglucose (2-DG), metformin, and 6-diazo-5-oxo-l-norleucine (DON) with daily systemic dosing regimen, and local weekly injection of the more narrowly focused tryptophan catabolizing IDO-Gal3 fusion protein. Treatments significantly decrease FBR capsule formed around subcutaneously implanted cellulose disks. MI cocktail results in a substantially thinner FBR capsule (40% of control), while weekly local injection of IDO-Gal3 also results in a thinner FBR capsule (69% of control). RNA-sequencing capsule transcripts reveal MI cocktail promotes quiescence, with decreased antigen processing and presentation, T helper subset differentiation, and cytokine-cytokine receptor pathway. IDO-Gal3 promotes pro-regenerative, alternatively activated M2-like macrophages and T helper 2 cells, with increased expression of type 2 response-associated genes (Il4, Il13, Arg1, Mrc1, Chil3, Gata3). IDO-Gal3 decreases pro-inflammatory innate sensing pathways, and C-type lectin receptor, NOD-like receptor, RIG-I-like receptor, and Toll-like receptor signaling. This work helps define key gene targets and pathways concomitantly regulated in the FBR capsule during immunometabolic modulation compared to control FBR capsule.
Collapse
Affiliation(s)
- Sabrina L Macias
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Olivia Palmer
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer A Simonovich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan A Clark
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
255
|
Adıgüzel E, Ülger TG. A marine-derived antioxidant astaxanthin as a potential neuroprotective and neurotherapeutic agent: A review of its efficacy on neurodegenerative conditions. Eur J Pharmacol 2024; 977:176706. [PMID: 38843946 DOI: 10.1016/j.ejphar.2024.176706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Astaxanthin is a potent lipid-soluble carotenoid produced by several different freshwater and marine microorganisms, including microalgae, bacteria, fungi, and yeast. The proven therapeutic effects of astaxanthin against different diseases have made this carotenoid popular in the nutraceutical market and among consumers. Recently, astaxanthin is also receiving attention for its effects in the co-adjuvant treatment or prevention of neurological pathologies. In this systematic review, studies evaluating the efficacy of astaxanthin against different neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebrovascular diseases, and spinal cord injury are analyzed. Based on the current literature, astaxanthin shows potential biological activity in both in vitro and in vivo models. In addition, its preventive and therapeutic activities against the above-mentioned diseases have been emphasized in studies with different experimental designs. In contrast, none of the 59 studies reviewed reported any safety concerns or adverse health effects as a result of astaxanthin supplementation. The preventive or therapeutic role of astaxanthin may vary depending on the dosage and route of administration. Although there is a consensus in the literature regarding its effectiveness against the specified diseases, it is important to determine the safe intake levels of synthetic and natural forms and to determine the most effective forms for oral intake.
Collapse
Affiliation(s)
- Emre Adıgüzel
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 70100, Karaman, Turkey.
| | - Taha Gökmen Ülger
- Bolu Abant İzzet Baysal University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu, Turkey
| |
Collapse
|
256
|
Li Y, Qiang R, Cao Z, Wu Q, Wang J, Lyu W. NLRP3 Inflammasomes: Dual Function in Infectious Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:407-417. [PMID: 39102612 PMCID: PMC11299487 DOI: 10.4049/jimmunol.2300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/11/2024] [Indexed: 08/07/2024]
Abstract
The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome has been the most distinctive polymer protein complex. After recognizing the endogenous and exogenous danger signals, NLRP3 can cause inflammation by pyroptosis and secretion of mature, bioactive forms of IL-1β and IL-18. The NLRP3 inflammasome is essential in the genesis and progression of infectious illnesses. Herein, we provide a comprehensive review of the NLRP3 inflammasome in infectious diseases, focusing on its two-sided effects. As an essential part of host defense with a protective impact, abnormal NLRP3 inflammasome activation, however, result in a systemic high inflammatory response, leading to subsequent damage. In addition, scientific evidence of small molecules, biologics, and phytochemicals acting on the NLRP3 inflammasome has been reviewed. We believe that the NLRP3 inflammasome helps us understand the pathological mechanism of different stages of infectious diseases and that inhibitors targeting the NLRP3 inflammasome will become a new and valuable research direction for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Qingjuan Wu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing
| |
Collapse
|
257
|
Carús-Cadavieco M, González de la Fuente S, Berenguer López I, Serrano-Lope MA, Aguado B, Guix F, Palomer E, Dotti CG. Loss of Cldn5 -and increase in Irf7-in the hippocampus and cerebral cortex of diabetic mice at the early symptomatic stage. Nutr Diabetes 2024; 14:64. [PMID: 39147772 PMCID: PMC11327336 DOI: 10.1038/s41387-024-00325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Analyzing changes in gene expression within specific brain regions of individuals with Type 2 Diabetes (T2DM) who do not exhibit significant cognitive deficits can yield valuable insights into the mechanisms underlying the progression towards a more severe phenotype. In this study, transcriptomic analysis of the cortex and hippocampus of mice with long-term T2DM revealed alterations in the expression of 28 genes in the cerebral cortex and 15 genes in the hippocampus. Among these genes, six displayed consistent changes in both the cortex and hippocampus: Interferon regulatory factor 7 (Irf7), Hypoxia-inducible factor 3 alpha (Hif-3α), period circadian clock 2 (Per2), xanthine dehydrogenase (Xdh), and Transforming growth factor β-stimulated clone 22/TSC22 (Tsc22d3) were upregulated, while Claudin-5 (Cldn5) was downregulated. Confirmation of these changes was achieved through RT-qPCR. At the protein level, CLDN5 and IRF7 exhibited similar alterations, with CLDN5 being downregulated and IRF7 being upregulated. In addition, the hippocampus and cortex of the T2DM mice showed decreased levels of IκBα, implying the involvement of NF-κB pathways as well. Taken together, these results suggest that the weakening of the blood-brain barrier and an abnormal inflammatory response via the Interferon 1 and NF-κB pathways underlie cognitive impairment in individuals with long-standing T2DM.
Collapse
Affiliation(s)
- Marta Carús-Cadavieco
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | | | - Inés Berenguer López
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Miguel A Serrano-Lope
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Begoña Aguado
- Genomics and NGS Facility, Centro de Biología Molecular Severo Ochoa (CBM) CSIC-UAM, Madrid, Spain
| | - Francesc Guix
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
- Department of Bioengineering, Institut Químic de Sarrià (IQS) - Universitat Ramón Llull (URL), Barcelona, Spain
| | - Ernest Palomer
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain.
| | - Carlos G Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain.
| |
Collapse
|
258
|
Khan MZ, Li L, Wang T, Liu X, Chen W, Ma Q, Zahoor M, Wang C. Bioactive Compounds and Probiotics Mitigate Mastitis by Targeting NF-κB Signaling Pathway. Biomolecules 2024; 14:1011. [PMID: 39199398 PMCID: PMC11352841 DOI: 10.3390/biom14081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis is a significant inflammatory condition of the mammary gland in dairy cows. It is caused by bacterial infections and leads to substantial economic losses worldwide. The disease can be either clinical or sub-clinical and presents challenges such as reduced milk yield, increased treatment costs, and the need to cull affected cows. The pathogenic mechanisms of mastitis involve the activation of Toll-like receptors (TLRs), specifically TLR2 and TLR4. These receptors play crucial roles in recognizing pathogen-associated molecular patterns (PAMPs) and initiating immune responses through the NF-κB signaling pathway. Recent in vitro studies have emphasized the importance of the TLR2/TLR4/NF-κB signaling pathway in the development of mastitis, suggesting its potential as a therapeutic target. This review summarizes recent research on the role of the TLR2/TLR4/NF-κB signaling pathway in mastitis. It focuses on how the activation of TLRs leads to the production of proinflammatory cytokines, which, in turn, exacerbate the inflammatory response by activating the NF-κB signaling pathway in mammary gland tissues. Additionally, the review discusses various bioactive compounds and probiotics that have been identified as potential therapeutic agents for preventing and treating mastitis by targeting TLR2/TLR4/NF-κB signaling pathway. Overall, this review highlights the significance of targeting the TLR2/TLR4/NF-κB signaling pathway to develop effective therapeutic strategies against mastitis, which can enhance dairy cow health and reduce economic losses in the dairy industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Qingshan Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
259
|
Yamaguchi T, Ozawa R, Minato T, Hoshizaki M, Kammura Y, Okawara K, Khalil YA, Nakamura M, Yamaura K, Fukuda M, Imai Y, Kuba K. Haploinsufficiency of Cnot3 Aggravates Acid-Induced Acute Lung Injury Likely Through Transcriptional and Post-Transcriptional Upregulation of Pro-Inflammatory Genes. J Inflamm Res 2024; 17:5415-5425. [PMID: 39161681 PMCID: PMC11332416 DOI: 10.2147/jir.s468612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024] Open
Abstract
Background Acute lung injury (ALI) is caused by a variety of illnesses, including aspiration pneumonia and sepsis. The CCR4-NOT complex is a large multimeric protein complex that degrades mRNA through poly(A) tail shortening, whereas it also contributes to regulation of transcription and translation. Cnot3 is a scaffold component of the CCR4-NOT complex and is essential for the integrity of the complex; loss of Cnot3 leads to depletion of whole complex. While the significance of cytokine mRNA degradation in limiting inflammation has been established, the roles of CCR4-NOT complex-mediated in ALI remain elusive. Methods The effects of Cnot3 haploinsufficiency in the pathology and cytokine expression were analyzed in the mouse lungs of acid aspiration-induced acute lung injury. The decay rate and transcription activity of cytokine mRNAs under Cnot3 heterozygous deletion were analyzed in lipopolysaccharide (LPS) -stimulated mouse embryonic fibroblasts (MEFs). Results Tamoxifen-induced heterozygous deletion of Cnot3 in adult mice (Cnot3 Hetz) did not show body weight loss or any apparent abnormality. Under acid aspiration-induced acute lung injury, Cnot3 Hetz mice exhibited increased pulmonary edema, worse lung pathologies and more severe inflammation compared with wild type mice. mRNA expression of pro-inflammatory genes Il1b and Nos2 were significantly upregulated in the lungs of Cnot3 Hetz mice. Consistently, mRNA expression of Il1b and Nos2 was upregulated in LPS-stimulated Cnot3 Hetz MEFs. Mechanistically, while heterozygous depletion of Cnot3 stabilized both Il1b and Nos2 mRNAs, the nascent pre-mRNA level of Il1b was upregulated in Cnot3 Hetz MEFs, implicating Cnot3-mediated transcriptional repression of Il1b expression in addition to destabilization of Il1b and Nos2 mRNAs. PU.1 (Spi1) was identified as a causative transcription factor to promote Il1b expression under Cnot3 haploinsufficient conditions. Conclusion CNOT3 plays a protective role in ALI by suppressing expression of pro-inflammatory genes Il1b and Nos2 through both post-transcriptional and transcriptional mechanisms, including mRNA stability control of Spi1.
Collapse
Affiliation(s)
- Tomokazu Yamaguchi
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Ryo Ozawa
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Takafumi Minato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Midori Hoshizaki
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Yutaro Kammura
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuma Okawara
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yousef A Khalil
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masayuki Fukuda
- Department of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yumiko Imai
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Keiji Kuba
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
260
|
Wan H, Yang X, Zhang Y, Liu X, Li Y, Qin Y, Yan H, Gui L, Li K, Zhang L, Yang L, Zhang B, Wang Y. Polyphenol-Reinforced Glycocalyx-Like Hydrogel Coating Induced Myocardial Regeneration and Immunomodulation. ACS NANO 2024; 18:21512-21522. [PMID: 39096486 DOI: 10.1021/acsnano.4c06332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Although minimally invasive interventional occluders can effectively seal heart defect tissue, they still have some limitations, including poor endothelial healing, intense inflammatory response, and thrombosis formation. Herein, a polyphenol-reinforced medicine/peptide glycocalyx-like coating was prepared on cardiac occluders. A coating consisting of carboxylated chitosan, epigallocatechin-3-gallate (EGCG), tanshinone IIA sulfonic sodium (TSS), and hyaluronic acid grafted with 3-aminophenylboronic acid was prepared. Subsequently, the mercaptopropionic acid-GGGGG-Arg-Glu-Asp-Val peptide was grafted by the thiol-ene "click" reaction. The coating showed good hydrophilicity and free radical-scavenging ability and could release EGCG-TSS. The results of biological experiments suggested that the coating could reduce thrombosis by promoting endothelialization, and promote myocardial repair by regulating the inflammatory response. The functions of regulating cardiomyocyte apoptosis and metabolism were confirmed, and the inflammatory regulatory functions of the coating were mainly dependent on the NF-kappa B and TNF signaling pathway.
Collapse
Affiliation(s)
- Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaohui Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yutong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lan Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ke Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Longjian Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
261
|
Sanchez KL, Shin SD, Rajagopal NP, White JB, Currais A, Soriano-Castell D, Maher P, Soriano S. A Potential Role for the Amyloid Precursor Protein in the Regulation of Interferon Signaling, Cholesterol Homeostasis, and Tau Phosphorylation in Niemann-Pick Disease Type C. Genes (Basel) 2024; 15:1066. [PMID: 39202426 PMCID: PMC11354009 DOI: 10.3390/genes15081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Niemann-Pick disease type C (NPC) is a rare and fatal neurological disorder caused by mutations in Npc1 or Npc2, with Npc1 accounting for 95% of cases. These mutations result in the functional loss of their respective proteins, causing cellular abnormalities characterized by disrupted lipid dysregulation, calcium dysfunction, elevated damage associated molecular patterns (DAMPs), and a pro-inflammatory environment. This cellular pathology ultimately triggers neurodegeneration, with the cerebellum being the earliest and most affected region. We have recently shown atypical activation of interferon signaling in the presymptomatic Npc1-/- mouse cerebellum and, to a lesser extent, in the cerebral cortex. In addition, we reported that the Amyloid Precursor Protein (APP) is an NPC disease modifier. Loss of APP function leads to widespread neurodegeneration in the NPC brain, including exacerbated interferon signaling in the cerebellum. To better understand the role of APP as a disease modifier throughout the NPC brain, here we carried out a transcriptomic analysis of the cerebral cortex and cerebellum from 3-week-old Npc1-/- mice as well as age-matched controls in the presence and absence of APP. We report differential effects of APP loss of function in the cerebral cortex and cerebellum, including cholesterol and tau dysregulation, in both brain regions. Our findings demonstrate a novel link between APP loss and early pathogenic mechanisms in NPC.
Collapse
Affiliation(s)
- Kayla L. Sanchez
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.L.S.); (S.D.S.); (N.P.R.); (J.B.W.)
| | - Samuel D. Shin
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.L.S.); (S.D.S.); (N.P.R.); (J.B.W.)
| | - Naren P. Rajagopal
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.L.S.); (S.D.S.); (N.P.R.); (J.B.W.)
| | - Jacob B. White
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.L.S.); (S.D.S.); (N.P.R.); (J.B.W.)
| | - Antonio Currais
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.C.); (D.S.-C.)
| | - David Soriano-Castell
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.C.); (D.S.-C.)
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.C.); (D.S.-C.)
| | - Salvador Soriano
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (K.L.S.); (S.D.S.); (N.P.R.); (J.B.W.)
| |
Collapse
|
262
|
Luo Y, Su B, Hung V, Luo Y, Shi Y, Wang G, de Graaf D, Dinarello CA, Spaner DE. IL-1 receptor antagonism reveals a yin-yang relationship between NFκB and interferon signaling in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2024; 121:e2405644121. [PMID: 39121163 PMCID: PMC11331101 DOI: 10.1073/pnas.2405644121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 08/11/2024] Open
Abstract
Nuclear factor kappa B (NFκB) is a pathogenic factor in chronic lymphocytic leukemia (CLL) that is not addressed specifically by current therapies. NFκB is activated by inflammatory factors that stimulate toll-like receptors (TLRs) and receptors for interleukin-1 (IL-1) family members. IL-1 is considered a master regulator of inflammation, and IL-1 receptor signaling is inhibited by the IL-1 receptor antagonist anakinra. These considerations suggested that anakinra might have a role in the treatment of CLL. Consistent with this idea, anakinra inhibited spontaneous and TLR7-mediated activation of the canonical NFκB pathway in CLL cells in vitro. However, CLL cells exhibited only weak signaling responses to IL-1 itself, and anakinra was found to inhibit NFκB along with oxidative stress in an IL-1 receptor-independent manner. Anakinra was then administered with minimal toxicity to 11 previously untreated CLL patients in a phase I dose-escalation trial (NCT04691765). A stereotyped clinical response was observed in all patients. Anakinra lowered blood lymphocytes and lymph node sizes within the first month that were associated with downregulation of NFκB and oxidative stress in the leukemia cells. However, inhibition of NFκB was accompanied by upregulation of type 1 interferon (IFN) signaling, c-MYC-regulated genes and proteins, and loss of the initial clinical response. Anakinra increased IFN signaling and survival of CLL cells in vitro that were, respectively, phenocopied by mitochondrial antioxidants and reversed by IFN receptor blocking antibodies. These observations suggest that anakinra has activity in CLL and may be a useful adjunct for conventional therapies as long as compensatory IFN signaling is blocked at the same time.
Collapse
Affiliation(s)
- YuXuan Luo
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
| | - BoYang Su
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada
| | - Vincent Hung
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
| | - YuHan Luo
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
| | - Yonghong Shi
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
| | - Guizhi Wang
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
| | - Dennis de Graaf
- Department of Medicine, University of Colorado Denver, Denver, CO 80045
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Denver, CO 80045
- Department of Medicine, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - David E Spaner
- Biological Science Platform, Sunnybrook Research Institute, Sunnybrook hospital, Toronto M4N 3M5, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada
- Department of Hematology, Odette Cancer Center, Toronto M4N 3M5, Canada
- Department of Medicine, University of Toronto, Toronto M5G 2C4, Canada
| |
Collapse
|
263
|
Shang J, Ma Y, Liu X, Sun S, Pang X, Zhou R, Huan S, He Y, Xiong B, Zhang XB. Single-particle rotational microrheology enables pathological staging of macrophage foaming and antiatherosclerotic studies. Proc Natl Acad Sci U S A 2024; 121:e2403740121. [PMID: 39102540 PMCID: PMC11331104 DOI: 10.1073/pnas.2403740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.
Collapse
Affiliation(s)
- Jinhui Shang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xixuan Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Shijie Sun
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xiayun Pang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang712083, China
| | - Rui Zhou
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang712083, China
| | - Shuangyan Huan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| |
Collapse
|
264
|
Subramani M, Lambrecht B, Ahmad I. Human microglia-derived proinflammatory cytokines facilitate human retinal ganglion cell development and regeneration. Stem Cell Reports 2024; 19:1092-1106. [PMID: 39059376 PMCID: PMC11368696 DOI: 10.1016/j.stemcr.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia (μG), the resident immune cells in the central nervous system, surveil the parenchyma to maintain the structural and functional homeostasis of neurons. Besides, they influence neurogenesis and synaptogenesis through complement-mediated phagocytosis. Emerging evidence suggests that μG may also influence development through proinflammatory cytokines. Here, we examined the premise that tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), the two most prominent components of the μG secretome, influence retinal development, specifically the morphological and functional differentiation of human retinal ganglion cells (hRGCs). Using controlled generation of hRGCs and human μG (hμG) from pluripotent stem cells, we demonstrate that TNF-α and IL-1β secreted by unchallenged hμG did not influence hRGC generation. However, their presence significantly facilitated neuritogenesis along with the basal function of hRGCs, which involved the recruitment of the AKT/mTOR pathway. We present ex vivo evidence that proinflammatory cytokines may play an important role in the morphological and physiological maturation of hRGCs, which may be recapitulated for regeneration.
Collapse
Affiliation(s)
- Murali Subramani
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brandon Lambrecht
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
265
|
Elkrewi EZ, Al Abdulqader AA, Khasanov R, Maas-Omlor S, Boettcher M, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Role of Inflammation and the NF-κB Signaling Pathway in Hirschsprung's Disease. Biomolecules 2024; 14:992. [PMID: 39199380 PMCID: PMC11352745 DOI: 10.3390/biom14080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Hirschsprung's disease (HSCR, incidence 1/5000 live births) is caused by the failure of neural crest-derived precursors to migrate, survive, proliferate, or differentiate during the embryonic development of the Enteric Nervous System (ENS), which could be disrupted by many factors, including inflammatory processes. The NF-κB family controls several biological processes, including inflammation, neurogenesis, and cell migration. With the aim of studying the potential role of NF-κB in HSCR, we have analyzed the expression of the NF-κB main subunits and other NF-κB-related genes by RT-qPCR in HSCR tissue samples (sub-divided into ganglionic and aganglionic segments). We found decreased gene expression of the NF-κB main subunit RELA but also of NFKBIA, TNFA, TFGBR2, and ERBB3 in the pathologic distal aganglionic segments compared to the proximal ganglionic segments. Moreover, we could also confirm the lower protein expression of RelA/p65 in the aganglionic distal segments by immunofluorescence staining. Further, we show that the expression of RelA/p65 protein in the proximal segments concurs with lymphocyte infiltration in the bowel tissue, indicating a pro-inflammatory activation of p65 in the proximal ganglionic HSCR tissue in the patients analyzed. All in all, our findings suggest that the modulation of NF-κB signaling in the neuro-enteric system does obviously contribute to the pathological effects of HSCR.
Collapse
Affiliation(s)
- Enas Zoheer Elkrewi
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Ahmad A. Al Abdulqader
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
- Department of Surgery, College of Medicine, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Silke Maas-Omlor
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1,66482 Zweibrücken, Germany (K.-H.S.)
| | - Michael Boettcher
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1,66482 Zweibrücken, Germany (K.-H.S.)
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| |
Collapse
|
266
|
Mesa-Restrepo A, Byers E, Brown JL, Ramirez J, Allain JP, Posada VM. Osteointegration of Ti Bone Implants: A Study on How Surface Parameters Control the Foreign Body Response. ACS Biomater Sci Eng 2024; 10:4662-4681. [PMID: 39078702 DOI: 10.1021/acsbiomaterials.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The integration of titanium (Ti)-based implants with bone is limited, resulting in implant failure. This lack of osteointegration is due to the foreign body response (FBR) that occurs after the implantation of biodevices. The process begins with protein adsorption, which is governed by implant surface properties, e.g., chemistry, charge, wettability, and/or topography. The distribution and composition of the protein layer in turn influence the recruitment, differentiation, and modulation of immune and bone cells. The subsequent events that occur at the bone-material interface will ultimately determine whether the implant is encapsulated or will integrate with bone. Despite the numerous studies evaluating the influence of surface properties in the various stages of the FBR, the factors that affect tissue-material interactions are often studied in isolation or in small correlations due to the technical challenges involved in assessing them in vitro or in vivo. Consequently, the influence of protein conformation on the Ti bone implant surface design remains an unresolved research question. The objective of this review is to comprehensively evaluate the existing literature on the effect of surface parameters of Ti and its alloys in the stages of FBR, with a particular focus on protein adsorption and osteoimmunomodulation. This evaluation aims to systematically describe these effects on bone formation.
Collapse
Affiliation(s)
- Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Justin L Brown
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Juan Ramirez
- Departamento de Ingeniería Mecánica, Universidad Nacional de Colombia, Cra 64C nro 73-120, 050024 Medellin, Colombia
| | - Jean Paul Allain
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Viviana M Posada
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| |
Collapse
|
267
|
Joseph PV, Abbas M, Goodney G, Diallo A, Gaye A. Genomic Study of Taste Perception Genes in African Americans Reveals SNPs Linked to Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607452. [PMID: 39372803 PMCID: PMC11451608 DOI: 10.1101/2024.08.10.607452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background While previous research has shown the potential links between taste perception pathways and brain-related conditions, the area involving Alzheimer's disease remains incompletely understood. Taste perception involves neurotransmitter signaling, including serotonin, glutamate, and dopamine. Disruptions in these pathways are implicated in neurodegenerative diseases. The integration of olfactory and taste signals in flavor perception may impact brain health, evident in olfactory dysfunction as an early symptom in neurodegenerative conditions. Shared immune response and inflammatory pathways may contribute to the association between altered taste perception and conditions like neurodegeneration, present in Alzheimer's disease. Methods This study consists of an exploration of expression-quantitative trait loci (eQTL), utilizing whole-blood transcriptome profiles, of 28 taste perception genes, from a combined cohort of 475 African American subjects. This comprehensive dataset was subsequently intersected with single-nucleotide polymorphisms (SNPs) identified in Genome-Wide Association Studies (GWAS) of Alzheimer's Disease (AD). Finally, the investigation delved into assessing the association between eQTLs reported in GWAS of AD and the profiles of 741 proteins from the Olink Neurological Panel. Results The eQTL analysis unveiled 3,547 statistically significant SNP-Gene associations, involving 412 distinct SNPs that spanned all 28 taste genes. In 17 GWAS studies encompassing various traits, a total of 14 SNPs associated with 12 genes were identified, with three SNPs consistently linked to Alzheimer's disease across four GWAS studies. All three SNPs demonstrated significant associations with the down-regulation of TAS2R41, and two of them were additionally associated with the down-regulation of TAS2R60. In the subsequent pQTL analysis, two of the SNPs linked to TAS2R41 and TAS2R60 genes (rs117771145 and rs10228407) were correlated with the upregulation of two proteins, namely EPHB6 and ADGRB3. Conclusions Our investigation introduces a new perspective to the understanding of Alzheimer's disease, emphasizing the significance of bitter taste receptor genes in its pathogenesis. These discoveries set the stage for subsequent research to delve into these receptors as promising avenues for both intervention and diagnosis. Nevertheless, the translation of these genetic insights into clinical practice requires a more profound understanding of the implicated pathways and their pertinence to the disease's progression across diverse populations.
Collapse
Affiliation(s)
- Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, National Institue of Nursing Research, Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institutes of Health, Bethesda, MD, USA
| | - Malak Abbas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Goodney
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Diallo
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
268
|
Dai K, Agarwal N, Rodriguez-Palacios A, Basson AR. Regulation of Intestinal Inflammation by Walnut-Derived Bioactive Compounds. Nutrients 2024; 16:2643. [PMID: 39203780 PMCID: PMC11357266 DOI: 10.3390/nu16162643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Walnuts (Juglans regia L.) have shown promising effects in terms of ameliorating inflammatory bowel disease (IBD), attributed to their abundant bioactive compounds. This review comprehensively illustrates the key mechanisms underlying the therapeutic potential of walnuts in IBD management, including the modulation of intestinal mucosa permeability, the regulation of inflammatory pathways (such as NF-kB, COX/COX2, MAPCK/MAPK, and iNOS/NOS), relieving oxidative stress, and the modulation of gut microbiota. Furthermore, we highlight walnut-derived anti-inflammatory compounds, such as polyunsaturated fatty acids (PUFA; e.g., ω-3 PUFA), tocopherols, phytosterols, sphingolipids, phospholipids, phenolic compounds, flavonoids, and tannins. We also discuss unique anti-inflammatory compounds such as peptides and polysaccharides, including their extraction and preparation methods. Our review provides a theoretical foundation for dietary walnut supplementation in IBD management and provides guidance for academia and industry. In future, research should focus on the targeted isolation and purification of walnut-derived anti-inflammatory compounds or optimizing extraction methods to enhance their yields, thereby helping the food industry to develop dietary supplements or walnut-derived functional foods tailored for IBD patients.
Collapse
Affiliation(s)
- Kexin Dai
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| | - Neel Agarwal
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
| | - Alexander Rodriguez-Palacios
- Germfree Mouse Models Core, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106-4909, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| | - Abigail Raffner Basson
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| |
Collapse
|
269
|
Ali W, Choe K, Park JS, Ahmad R, Park HY, Kang MH, Park TJ, Kim MO. Kojic acid reverses LPS-induced neuroinflammation and cognitive impairment by regulating the TLR4/NF-κB signaling pathway. Front Pharmacol 2024; 15:1443552. [PMID: 39185307 PMCID: PMC11341365 DOI: 10.3389/fphar.2024.1443552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Intense neuroinflammation contributes to neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Lipopolysaccharides (LPSs) are an integral part of the cell wall of Gram-negative bacteria that act as pathogen-associated molecular patterns (PAMPs) and potentially activate the central nervous system's (CNS) immune system. Microglial cells are the local macrophages of the CNS and have the potential to induce and control neuroinflammation. This study aims to evaluate the anti-inflammatory and antioxidant effect of kojic acid against the toxic effects of LPSs, such as neuroinflammation-induced neurodegeneration and cognitive decline. The C57BL/6N mice were subjected to LPS injection for 2 weeks on alternate days (each mouse received 0.25 mg/kg/i.p. for a total of seven doses), and kojic acid was administered orally for 3 weeks consecutively (50 mg/kg/mouse, p. o). Bacterial endotoxins, or LPSs, are directly attached to TLR4 surface receptors of microglia and astrocytes and alter the cellular metabolism of immune cells. Intraperitoneal injection of LPS triggers the toll-like receptor 4 (TLR4), phospho-nuclear factor kappa B (p-NFκB), and phospho-c-Jun n-terminal kinase (p-JNK) protein expressions in the LPS-treated group, but these expression levels were significantly downregulated in the LPS + KA-treated mice brains. Prolong neuroinflammation leads to the generation of reactive oxygen species (ROS) followed by a decrease in nuclear factor erythroid-2-related factor 2 (Nrf2) and the enzyme hemeoxygenase 1 (HO-1) expression in LPS-subjected mouse brains. Interestingly, the levels of both Nrf-2 and HO-1 increased in the LPS + KA-treated mice group. In addition, kojic acid inhibited LPS-induced TNF-α and IL-1β production in mouse brains. These results indicated that kojic acid may suppress LPS-induced neuroinflammation and oxidative stress in male wild-type mice brains (in both the cortex and the hippocampus) by regulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Waqar Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Mastricht, Netherlands
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Riaz Ahmad
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Mastricht, Netherlands
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, United Kingdom
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Alz-Dementia Korea Co., Jinju, Republic of Korea
| |
Collapse
|
270
|
Kaur G, Kushwah AS. Sodium orthovanadate protects against ulcerative colitis and associated liver damage in mice: insights into modulations of Nrf2/Keap1 and NF-κB pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03335-w. [PMID: 39120720 DOI: 10.1007/s00210-024-03335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Ulcerative colitis (UC) is a prominent category of disease that is associated with bowel inflammation, it can occur at any period of life and is prevalently rising on a global scale. Dextran sulfate sodium (DSS) has been extensively used to develop colitis due to its ability to mimic human UC, providing consistent and reproducible inflammation, ulceration, and disruption of the epithelial barrier in the colon. Chronic inflammation in the gut can lead to alterations in the gut-liver axis, potentially impacting liver function over time, while direct evidence linking diversion colitis to liver damage is limited. Thus, the present study aims to assess the gut and liver damage against DSS and the possible molecular mechanisms. Forty-seven animals were randomly assigned to six groups. Ulcerative colitis was induced using 2.5% w/v DSS in three alternate cycles, each lasting 7 days, with 1-week remission periods in between. SOV (5 and 10 mg/kg, orally) and the standard drug 5-aminosalicylic acid (100 mg/kg, orally) were administered from the start of the 2nd DSS cycle until the end of the experiment. Biochemical parameters, ELISA, histopathological, and immunohistochemical analyses have been conducted to assess damage in the colon and liver. SOV significantly reduced colitis severity by lowering the DAI score, oxidative stress markers (LPS, IL-1β, MPO, nitrite), and restoring liver biomarkers (SGPT, SGOT). Histopathological findings supported these protective benefits in the liver and gut. Moreover, immunohistochemical analysis showed SOV enhanced the expression of the cytoprotective mediator Nrf2/Keap-1 and reduced the expression of inflammatory mediators NF-κB and IL-6. Present findings concluded that SOV demonstrated a dose-dependent effect against UC through anti-inflammatory and antioxidant pathways, with the highest dose of SOV 10 mg/kg having more significant (p < 0.001) results than the low dose of 5 mg/kg.
Collapse
Affiliation(s)
- Gurpreet Kaur
- IK Gujral Punjab Technical University, Kapurthala, 144601, Jalandhar, Punjab, India
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India.
| |
Collapse
|
271
|
Mercader-Ruiz J, Beitia M, Delgado D, Sánchez P, Porras B, Gimeno I, González S, Benito-Lopez F, Basabe-Desmonts L, Sánchez M. Current Challenges in the Development of Platelet-Rich Plasma-Based Therapies. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6444120. [PMID: 39157212 PMCID: PMC11329313 DOI: 10.1155/2024/6444120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 08/20/2024]
Abstract
Nowadays, biological therapies are booming and more of these formulations are coming to the market. Platelet-rich plasma, or PRP, is one of the most widely used biological therapies due to its ease of obtention and autologous character. Most of the techniques to obtain PRP are focusing on new processes and methods of optimization. However, not enough consideration is being given to modify the molecular components of PRP to generate more effective formulations with the aim of improving PRP treatments. Therefore, this review covers different novel PRP-obtaining methods that attempt to modify the molecular composition of the plasma.
Collapse
Affiliation(s)
- Jon Mercader-Ruiz
- Microfluidics Cluster UPV/EHUBIOMICs Microfluidics GroupLascaray Research CenterUniversity of the Basque Country UPV/EHU 01006, Vitoria-Gasteiz, Spain
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Begoña Porras
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Irene Gimeno
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Sergio González
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHUAnalytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) GroupAnalytical Chemistry DepartmentUniversity of the Basque Country UPV/EHU 48940, Leioa, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHUBIOMICs Microfluidics GroupLascaray Research CenterUniversity of the Basque Country UPV/EHU 01006, Vitoria-Gasteiz, Spain
- Basque Foundation of ScienceIKERBASQUE 48009, Bilbao, Spain
| | - Mikel Sánchez
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| |
Collapse
|
272
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
273
|
Karacabeyli D, Lacaille D, Lu N, McCormick N, Xie H, Choi HK, Aviña-Zubieta JA. Mortality and major adverse cardiovascular events after glucagon-like peptide-1 receptor agonist initiation in patients with immune-mediated inflammatory diseases and type 2 diabetes: A population-based study. PLoS One 2024; 19:e0308533. [PMID: 39116084 PMCID: PMC11309412 DOI: 10.1371/journal.pone.0308533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To assess the risk of all-cause mortality and major adverse cardiovascular events (MACE) in patients with immune-mediated inflammatory diseases (IMIDs) and type 2 diabetes newly initiating glucagon-like peptide-1 receptor agonists (GLP-1-RAs) versus dipeptidyl peptidase-4 inhibitors (DPP-4is). METHODS We performed a population-based cohort study using administrative health data from British Columbia. Patients with an IMID (i.e., rheumatoid arthritis, psoriatic disease, ankylosing spondylitis, inflammatory bowel disease, or a systemic autoimmune rheumatic disease) and type 2 diabetes who newly initiated a GLP-1-RA or DPP-4i between January 1, 2010, and December 31, 2021 were identified using ICD-9/10 codes. The primary outcome was all-cause mortality. Secondary outcomes included MACE and its components (i.e., cardiovascular death, myocardial infarction, and ischemic stroke). Cox proportional hazard regressions were used with propensity score overlap weighting. The analysis was repeated in age- and sex-matched adults without IMIDs. RESULTS We identified 10,855 adults with IMIDs and type 2 diabetes who newly initiated a GLP-1-RA or DPP-4i. All-cause mortality rate was lower among initiators of GLP-1-RAs compared to initiators of DPP-4is, with a weighted hazard ratio (HR) of 0.48 (95% confidence interval [CI], 0.31-0.75) and rate difference (RD) of -9.4 (95% CI, -16.0 to -2.7) per 1000 person-years. Rate of MACE was also lower with GLP-1-RA exposure (HR 0.66 [0.50-0.88], RD -10.5 [-20.4 to -0.8]). Effect sizes were similar in adults without IMIDs. CONCLUSION In patients with IMIDs and type 2 diabetes, GLP-1-RA exposure is associated with a lower risk of all-cause mortality and MACE compared to a cardioneutral active comparator.
Collapse
Affiliation(s)
- Derin Karacabeyli
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Diane Lacaille
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Na Lu
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Natalie McCormick
- Arthritis Research Canada, Vancouver, British Columbia, Canada
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Hui Xie
- Arthritis Research Canada, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hyon K. Choi
- Arthritis Research Canada, Vancouver, British Columbia, Canada
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - J. Antonio Aviña-Zubieta
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| |
Collapse
|
274
|
Mohan S, Krishnan L, Madhusoodanan N, Sobha A, Babysulochana AD, Vankadari N, Purushothaman J, Somappa SB. Ligand-Based Pharmacophoric Design and Anti-inflammatory Evaluation of Triazole Linked Semisynthetic Labdane Conjugates. ACS Med Chem Lett 2024; 15:1260-1268. [PMID: 39140047 PMCID: PMC11318007 DOI: 10.1021/acsmedchemlett.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
This study employed a ligand-based pharmacophoric approach to design and synthesize 33 novel semisynthetic labdane-appended triazolyl isatins to discover potential anti-inflammatory agents. The anti-inflammatory efficacy of the derivatives was evaluated by their ability to inhibit the production of NO, TNF-α, and IL-6, in lipopolysaccharide-induced RAW264.7 macrophages. The initial screening revealed that compound 7a ((1-(2-(2,3-dioxoindolin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl (E)-3-formyl-5-((1S,4aS,8aS)-5,5,8a-trimethyl-2-methylenedecahydronaphthalen-1-yl)pent-3-enoate) exhibited an anti-inflammatory effect (NO inhibition, IC50 = 3.13 μΜ), surpassing both the positive control indomethacin (NO inhibition, IC50 = 7.31 μΜ) and the parent compound labdane dialdehyde. Notably, 7a reduced the levels of pro-inflammatory cytokines TNF-α and IL-6 while increasing the levels of the anti-inflammatory cytokine IL-10. Mechanistic studies revealed that 7a downregulated the expression of COX-2 and iNOS by inhibiting the NF-κB signaling pathway. In silico molecular modeling studies on NF-κB proteins support these findings, suggesting that 7a is a promising candidate for developing into a potent anti-inflammatory clinical agent.
Collapse
Affiliation(s)
- Sangeetha Mohan
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Lekshmy Krishnan
- Agro
Processing and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
| | - Nithya Madhusoodanan
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anjali Sobha
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Alansheeja D. Babysulochana
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Department
of Chemistry, Government Arts College, Thiruvananthapuram, Kerala 695 014, India
| | - Naveen Vankadari
- Department
of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria VIC 3052, Australia
| | - Jayamurthy Purushothaman
- Agro
Processing and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sasidhar B. Somappa
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
275
|
Mohamed RH, Abdelrahim DS, Hay NHA, Fawzy NM, M DKM, Yehia DAY, AbdelMaksoud OM, Tamim YM. The role of protein prenylation inhibition through targeting FPPS by zoledronic acid in the prevention of renal fibrosis in rats. Sci Rep 2024; 14:18283. [PMID: 39112499 PMCID: PMC11306734 DOI: 10.1038/s41598-024-68303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Renal fibrosis (RF) represents the most widespread pathological condition in chronic kidney disease (CKD). Recently, protein prenylation has been implicated in the fibrosis's progression. The research examined the renoprotective effect of zoledronic acid (ZA) (50 µg/kg/week) in a rat model of carbon tetrachloride (CCl4)-induced RF through targeting protein prenylation. Forty Wistar male rats were split up into the control group, vehicle-treated group, model-RF group, and RF-ZA group. Mean arterial blood pressure (MBP), BUN, serum creatinine, and urine albumin-creatinine ratio (uACR), protein levels of farnesyl pyrophosphate (FPP), tumour necrosis factor-alpha (TNF-α), transforming growth factor-β (TGF-β), and malondialdehyde (MDA), and catalase and gene expression of farnesyl pyrophosphate synthase (FPPS) and nuclear factor-kB (NF-κB) were measured. Immunohistochemical staining for renal interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and caspase-3, as well as histopathological alterations, were assessed. ZA considerably ceased the reduction in MBP, markedly reduced uACR, serum creatinine, BUN, and expression of FPPS, FPP, NF-κB, TGF-β, TNF-α, and MDA, and significantly increased catalase levels compared to the model-RF rats. ZA ameliorated the CCl4-induced histopathological alterations and suppressed the expression of caspase-3, α-SMA, and IL-6. In conclusion, ZA preserved renal function and prevented renal fibrosis in a rat model. These were achieved through targeting protein prenylation mainly by inhibiting FPPS.
Collapse
Affiliation(s)
- Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt.
| | - Dina S Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern Technology & Information University, Cairo, Egypt
| | - Nesma Hussein Abdel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Mohamed Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Karem M M
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnia M AbdelMaksoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yomna M Tamim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
276
|
Dziulko AK, Allen H, Chuong EB. An endogenous retrovirus regulates tumor-specific expression of the immune transcriptional regulator SP140. Hum Mol Genet 2024; 33:1454-1464. [PMID: 38751339 PMCID: PMC11305685 DOI: 10.1093/hmg/ddae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 07/26/2024] Open
Abstract
Speckled Protein 140 (SP140) is a chromatin reader with critical roles regulating immune cell transcriptional programs, and SP140 splice variants are associated with immune diseases including Crohn's disease, multiple sclerosis, and chronic lymphocytic leukemia. SP140 expression is currently thought to be restricted to immune cells. However, by analyzing human transcriptomic datasets from a wide range of normal and cancer cell types, we found recurrent cancer-specific expression of SP140, driven by an alternative intronic promoter derived from an intronic endogenous retrovirus (ERV). The ERV belongs to the primate-specific LTR8B family and is regulated by oncogenic mitogen-activated protein kinase (MAPK) signaling. The ERV drives expression of multiple cancer-specific isoforms, including a nearly full-length isoform that retains all the functional domains of the full-length canonical isoform and is also localized within the nucleus, consistent with a role in chromatin regulation. In a fibrosarcoma cell line, silencing the cancer-specific ERV promoter of SP140 resulted in increased sensitivity to interferon-mediated cytotoxicity and dysregulation of multiple genes. Our findings implicate aberrant ERV-mediated SP140 expression as a novel mechanism contributing to immune gene dysregulation in a wide range of cancer cells.
Collapse
Affiliation(s)
- Adam K Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Holly Allen
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| |
Collapse
|
277
|
Villalba JJ, Ramsey RD, Athanasiadou S. Review: Herbivory and the power of phytochemical diversity on animal health. Animal 2024:101287. [PMID: 39271413 DOI: 10.1016/j.animal.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Plant secondary compounds (PSCs) were thought to be waste products of plant metabolism when first identified in the mid-1800 s. Since then, many different roles have been recognized for these chemicals. With regard to their function as defense, PSCs can negatively impact different cellular and metabolic processes in the herbivore, causing illness and reductions in feed intake. This penalty on fitness also applies to other trophic levels, like the microorganisms and parasites that infect herbivores and thus, PSCs at certain doses may function as medicines. In turn, herbivores evolved learning mechanisms to cope with the constant variability in their environment and physiological needs. Under this context, foraging can be viewed as the quest for substances in the external environment that provide homeostatic utility to the animal. For instance, herbivores increase preference for PSC-containing feeds that negatively impact infectious agents (i.e., therapeutic self-medication). Given that some classes of PSCs like polyphenols present antioxidant, antiinflammatory, immunomodulatory and prebiotic properties, chronic and sustained consumption of these chemicals results in robust animals that are tolerant to disease (i.e., prophylactic self-medication). Foraging plasticity in terms of the quality and quantity of nutrients ingested in the absence and during sickness may also influence immunocompetence, resistance and resilience to infection, and thus can be interpreted as another form of medication. Finally, self-medicative behaviors can be transmitted through social learning. We suggest that foraging studies will benefit from exploring self-medicative behaviors in chemically diverse plant communities, in particular when considering the vast diversity of PSC structures (more than 200 000) observed in nature. We then lay out a framework for enhancing the medicinal effects of PSCs on grazing herbivores. We propose landscape interventions through the establishment of resource patches or "islands" with a diversity of PSC-containing forages (e.g., legumes, herbs, shrubs) in monotonous rangelands or pasturelands, viewed as a "sea" of low-diversity vegetation devoid of functional biochemicals. Strategies aimed at enhancing the diversity of plant communities lead to heterogeneity in chemical, structural and functional landscape traits that offer options to foragers, and thus allow for balanced diets that maintain and restore health. Beyond animal health, such heterogeneity promotes a broad array of ecosystem services that significantly improve landscape resilience to environmental disturbances.
Collapse
Affiliation(s)
- J J Villalba
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA.
| | - R D Ramsey
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA
| | - S Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin Institute, EH25 9RG Midlothian, UK
| |
Collapse
|
278
|
Kulbay M, Marcotte E, Remtulla R, Lau THA, Paez-Escamilla M, Wu KY, Burnier MN. Uveal Melanoma: Comprehensive Review of Its Pathophysiology, Diagnosis, Treatment, and Future Perspectives. Biomedicines 2024; 12:1758. [PMID: 39200222 PMCID: PMC11352094 DOI: 10.3390/biomedicines12081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. Recent advances highlight the role of tumor-derived extracellular vesicles (TEV) and circulating hybrid cells (CHC) in UM tumorigenesis. Bridged with liquid biopsies, a novel technology that has shown incredible performance in detecting cancer cells or products derived from tumors in bodily fluids, it can significantly impact disease management and outcome. The aim of this comprehensive literature review is to provide a summary of current knowledge and ongoing advances in posterior UM pathophysiology, diagnosis, and treatment. The first section of the manuscript discusses the complex and intricate role of TEVs and CHCs. The second part of this review delves into the epidemiology, etiology and risk factors, clinical presentation, and prognosis of UM. Third, current diagnostic methods, ensued by novel diagnostic tools for the early detection of UM, such as liquid biopsies and artificial intelligence-based technologies, are of paramount importance in this review. The fundamental principles, limits, and challenges associated with these diagnostic tools, as well as their potential as a tracker for disease progression, are discussed. Finally, a summary of current treatment modalities is provided, followed by an overview of ongoing preclinical and clinical research studies to provide further insights on potential biomolecular pathway alterations and therapeutic targets for the management of UM. This review is thus an important resource for all healthcare professionals, clinicians, and researchers working in the field of ocular oncology.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Raheem Remtulla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Tsz Hin Alexander Lau
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Manuel Paez-Escamilla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
279
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
280
|
Ayten M, Straub T, Kaplan L, Hauck SM, Grosche A, Koch SF. CD44 signaling in Müller cells impacts photoreceptor function and survival in healthy and diseased retinas. J Neuroinflammation 2024; 21:190. [PMID: 39095775 PMCID: PMC11297696 DOI: 10.1186/s12974-024-03175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Retinitis pigmentosa (RP), an inherited retinal disease, affects 1,5 million people worldwide. The initial mutation-driven photoreceptor degeneration leads to chronic inflammation, characterized by Müller cell activation and upregulation of CD44. CD44 is a cell surface transmembrane glycoprotein and the primary receptor for hyaluronic acid. It is involved in many pathological processes, but little is known about CD44's retinal functions. CD44 expression is also increased in Müller cells from our Pde6bSTOP/STOP RP mouse model. To gain a more detailed understanding of CD44's role in healthy and diseased retinas, we analyzed Cd44-/- and Cd44-/-Pde6bSTOP/STOP mice, respectively. The loss of CD44 led to enhanced photoreceptor degeneration, reduced retinal function, and increased inflammatory response. To understand the underlying mechanism, we performed proteomic analysis on isolated Müller cells from Cd44-/- and Cd44-/-Pde6bSTOP/STOP retinas and identified a significant downregulation of glutamate transporter 1 (SLC1A2). This downregulation was accompanied by higher glutamate levels, suggesting impaired glutamate homeostasis. These novel findings indicate that CD44 stimulates glutamate uptake via SLC1A2 in Müller cells, which in turn, supports photoreceptor survival and function.
Collapse
Affiliation(s)
- Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, 81377, Germany.
| |
Collapse
|
281
|
Liang W, Liang B, Yan K, Zhang G, Zhuo J, Cai Y. Low-Intensity Pulsed Ultrasound: A Physical Stimulus with Immunomodulatory and Anti-inflammatory Potential. Ann Biomed Eng 2024; 52:1955-1981. [PMID: 38683473 DOI: 10.1007/s10439-024-03523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Ultrasound has expanded into the therapeutic field as a medical imaging and diagnostic technique. Low-intensity pulsed ultrasound (LIPUS) is a kind of therapeutic ultrasound that plays a vital role in promoting fracture healing, wound repair, immunomodulation, and reducing inflammation. Its anti-inflammatory effects are manifested by decreased pro-inflammatory cytokines and chemokines, accelerated regression of immune cell invasion, and accelerated damage repair. Although the anti-inflammatory mechanism of LIPUS is not very clear, many in vitro and in vivo studies have shown that LIPUS may play its anti-inflammatory role by activating signaling pathways such as integrin/Focal adhesion kinase (FAK)/Phosphatidylinositol 3-kinase (PI3K)/Serine threonine kinase (Akt), Vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS), or inhibiting signaling pathways such as Toll-like receptors (TLRs)/Nuclear factor kappa-B (NF-κB) and p38-Mitogen-activated protein kinase (MAPK). As a non-invasive physical therapy, the anti-inflammatory and immunomodulatory effects of LIPUS deserve further exploration.
Collapse
Affiliation(s)
- Wenxin Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Kaicheng Yan
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Guanxuanzi Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
| | - Jiaju Zhuo
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
282
|
Shah B, Solanki N. Aegeline attenuates TNBS-induced colitis by suppressing the NFƙB-mediated NLRP3 inflammasome pathway in mice. Inflammopharmacology 2024; 32:2589-2599. [PMID: 38767762 DOI: 10.1007/s10787-024-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
A chronic inflammatory condition of the intestine, ulcerative colitis (UC), is challenging to successfully manage once diagnosed. Currently, available medical therapies for UC exhibit minimal efficacy with unacceptable side effects, while inventive biological agents are expensive and yet not well accepted by patients. Discovering more effective and safer treatments to treat UC is therefore essential. One of the primary alkaloids found in Aegle marmelos, aegeline, has anti-inflammatory and antioxidant properties as well as being able to suppress several pro-inflammatory cytokines responsible for inflammation. The study aimed to investigate the effectiveness of aegeline in alleviating 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis through the NFƙB-mediated NLRP3 inflammasome pathway. Mice were randomly allocated into six groups, Normal control (NC), Model control (MC-TNBS, 2,4,6-trinitrobenzene sulfonic acid), STD (TNBS + sulfasalazine 100 mg/kg), AG1, AG2, and AG3 (TNBS + aegeline 5, 10, 20 mg/kg) respectively. Physical parameters such as a change in body weight, stool consistency, rectal bleeding, colon length, myeloperoxidase (MPO) levels and nitric oxide (NO) levels, and disease activity index (DAI) were assessed and supporting gene expression studies of various pro-inflammatory cytokines and enzymes were evaluated and histopathological changes observed. Administration of aegeline (10, 20 mg/kg) was found to be effective in colon protection by lowering the disease activity score and myeloperoxidase level and improving other physical parameters. Aegeline in high dose significantly downregulated the gene expression of NFƙB, iNOS, COX-2, NLRP3, IL-1β, and IL-18, conferring great anti-inflammatory potential. Suggestive of the findings, aegeline reduced the damage to the colon by downregulating transcriptional genes and enzymes leading to inflammation and mitigated TNBS-induced colitis probably through the NFƙB-mediated NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Bhagyabhumi Shah
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, Gujarat, India.
| | - Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, Gujarat, India.
| |
Collapse
|
283
|
Kumar C, Chibber P, Painuli R, Haq SA, Vishwakarma RA, Singh G, Satti NK, Phatake RS. Scoparone chemical modification into semi-synthetic analogues featuring 3-substitution for their anti-inflammatory activity. Mol Divers 2024; 28:2467-2478. [PMID: 37468705 DOI: 10.1007/s11030-023-10687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Natural products (NPs) continue to serve as a structural model for the development of new bioactive molecules and improve the process of identifying novel medicines. The biological effects of coumarins, one of the most researched compounds among NPs, are currently being thoroughly investigated. In the present investigation, we reported the synthesis of nineteen semi-synthetic 3-substituted scoparone analogues, followed by their characterization using analytical methods such as NMR, HPLC, and HRMS. All compounds screened for in vitro and in vivo study for their ability to reduce inflammation. The SAR study worked effectively for this particular scoparone 3-substitution, as compounds 3, 4, 9, 16, 18, and 20 displayed improved in vitro results for TNF-α than the parent molecule. Similarly, compounds 3, and 17 showed a higher percentage of IL-6 inhibition. Compounds 3, 4, and 12 have also been identified by in vivo studies as promising candidates with higher percent inhibition than the parent scoparone molecule. As evident from all in vitro and in vivo studies, compound 3 showed the most potent anti-inflammatory activity among all.
Collapse
Affiliation(s)
- Chetan Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Pankaj Chibber
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ritu Painuli
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Syed Assim Haq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram A Vishwakarma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurdarshan Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Naresh K Satti
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ravindra S Phatake
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
284
|
Singh SK, Yadav P, Patel D, Tanwar SS, Sherawat A, Khurana A, Bhatti JS, Navik U. Betaine ameliorates doxorubicin-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and fibrosis through the modulation of AMPK/Nrf2/TGF-β expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:4134-4147. [PMID: 38651543 DOI: 10.1002/tox.24291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Doxorubicin (DOX) is a broad-spectrum antibiotic with potent anti-cancer activity. Nevertheless, despite having effective anti-neoplasm activity, its use has been clinically restricted due to its life-threatening side effects, such as cardiotoxicity. It is evident that betaine has anti-oxidant, and anti-inflammatory activity and has several beneficial effects, such as decreasing the amyloid-β generation, reducing obesity, improving steatosis and fibrosis, and activating AMP-activated protein kinase (AMPK). However, whether betaine could mitigate DOX-induced cardiomyopathy is still unexplored. Cardiomyopathy was induced in male Sprague Dawley rats using DOX (4 mg/kg dose with a cumulative dose of 20 mg/kg, i.p.). Further, betaine (200 and 400 mg/kg) was co-treated with DOX through oral gavage for 28 days. After the completion of the study, several biochemical, oxidative stress parameters, histopathology, western blotting, and qRT-PCR were performed. Betaine treatment significantly reduced CK-MB, LDH, SGOT, and triglyceride levels, which are associated with cardiotoxicity. DOX-induced increased oxidative stress was also mitigated by betaine intervention as the SOD, catalase, MDA, and nitrite levels were restored. The histopathological investigation also confirmed the cardioprotective effect of betaine against DOX-induced cardiomyopathy as the tissue injury was reversed. Further, molecular analysis revealed that betaine suppressed the DOX-induced increased expression of phospho-p53, phospho-p38 MAPK, NF-kB p65, and PINK 1 with an upregulation of AMPK and downregulation of Nrf2 expression. Interestingly, qRT-PCR experiments show that betaine treatment alleviates the DOX-induced increase in inflammatory (TNF-α, NLRP3, and IL-6) and fibrosis (TGF-β and Acta2) related gene expression, halting the cardiac injury. Interestingly, betaine also improves the mRNA expression of Nrf2, thus modulating the expression of antioxidant proteins and preventing oxidative damage. Here, we provide the first evidence that betaine treatment prevents DOX-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and fibrosis by regulating AMPK/Nrf2/TGF-β expression. We believe that betaine can be utilized as a potential novel therapeutic strategy for preventing DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sumeet Kumar Singh
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Poonam Yadav
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Dhaneshvaree Patel
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Sampat Singh Tanwar
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Abhishek Sherawat
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Khurana
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
285
|
Wu Z, Yu X, Chen P, Pan M, Liu J, Sahandi J, Zhou W, Mai K, Zhang W. Dietary Clostridium autoethanogenum protein has dose-dependent influence on the gut microbiota, immunity, inflammation and disease resistance of abalone Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109737. [PMID: 38960106 DOI: 10.1016/j.fsi.2024.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Clostridium autoethanogenum protein (CAP) is an eco-friendly protein source and has great application potential in aquafeeds. The present study aimed to investigate the effects of dietary CAP inclusion on the anti-oxidation, immunity, inflammation, disease resistance and gut microbiota of abalone Haliotis discus hannai after a 110-day feeding trial. Three isonitrogenous and isolipidic diets were formulated by adding 0 % (control), 4.10 % (CAP4.10) and 16.25 % (CAP16.25) of CAP, respectively. A total of 540 abalones with an initial mean body weight of 22.05 ± 0.19 g were randomly distributed in three groups with three replicates per group and 60 abalones per replicate. Results showed that the activities of superoxide dismutase and glutathione peroxidase in the cell-free hemolymph (CFH) were significantly decreased and the content of malondialdehyde in CFH was significantly increased in the CAP16.25 group. The diet with 4.1 % of CAP significantly increased the activities of lysozyme and acid phosphatase in CFH. The expressions of pro-inflammatory genes such as tumor necrosis factor-α (tnf-α), nuclear factor-κb (nf-κb) and toll-like receptor 4 (tlr4) in digestive gland were downregulated, and the expressions of anti-inflammatory genes such as β-defensin and mytimacin 6 in digestive gland were upregulated in the CAP4.10 group. Dietary CAP inclusion significantly decreased the cumulative mortality of abalone after the challenge test with Vibrio parahaemolyticus for 7 days. Dietary CAP inclusion changed the composition of gut microbiota of abalone. Besides, the balance of the ecological interaction network of bacterial genera in the intestine of abalone was enhanced by dietary CAP. The association analysis showed that two bacterial genera Ruegeria and Bacteroides were closely correlated with the inflammatory genes. In conclusion, the 4.10 % of dietary CAP enhanced the immunity and disease resistance as well as inhibited the inflammation of abalone. The 16.25 % of dietary CAP decreased the anti-oxidative capacity of abalone. The structure of the gut microbiota of abalone changed with dietary CAP levels.
Collapse
Affiliation(s)
- Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiaojun Yu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Peng Chen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Javad Sahandi
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wanyou Zhou
- Weihai JinPai Biological Technology Co., Ltd, Weihai, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
286
|
Al Hamrashdi M, Sanchez Perez C, Haas DA, Vishwakarma J, Pichlmair A, Bowie AG, Brady G. Molluscum contagiosum virus protein MC089 inhibits interferon regulatory factor 3 activation. J Gen Virol 2024; 105:002015. [PMID: 39167082 PMCID: PMC11338640 DOI: 10.1099/jgv.0.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes a highly common but mild infection characterized by distinctive and persistent papular skin lesions. These lesions can persist for long periods without an effective clearance response from the host. MCV, like all poxviruses, encodes multiple known immunosuppressive proteins which target innate immune signalling pathways involved in viral nucleic acid sensing, interferon production and inflammation which should trigger antiviral immunity leading to clearance. Two major families of transcription factors responsible for driving the immune response to viruses are the NF-κB and the interferon regulatory factor (IRF) families. While NF-κB broadly drives pro-inflammatory gene expression and IRFs chiefly drive interferon induction, both collaborate in transactivating many of the same genes in a concerted immune response to viral infection. Here, we report that the MCV protein MC089 specifically inhibits IRF activation from both DNA- and RNA-sensing pathways, making it the first characterized MCV inhibitor to selectively target IRF activation to date. MC089 interacts with proteins required for IRF activation, namely IKKε, TBKBP1 and NAP1. Additionally, MC089 targets RNA sensing by associating with the RNA-sensing adaptor protein mitochondrial antiviral-signalling protein on mitochondria. MC089 displays specificity in its inhibition of IRF3 activation by suppressing immunostimulatory nucleic acid-induced serine 396 phosphorylation without affecting the phosphorylation of serine 386. The selective interaction of MC089 with IRF-regulatory proteins and site-specific inhibition of IRF3 phosphorylation may offer a tool to provide novel insights into the biology of IRF3 regulation.
Collapse
Affiliation(s)
- Mariya Al Hamrashdi
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Carla Sanchez Perez
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Darya A. Haas
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Jyoti Vishwakarma
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Centre for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| |
Collapse
|
287
|
Wirth S, Schlößer A, Beiersdorfer A, Schweizer M, Woo MS, Friese MA, Lohr C, Grochowska KM. Astrocytic uptake of posttranslationally modified amyloid-β leads to endolysosomal system disruption and induction of pro-inflammatory signaling. Glia 2024; 72:1451-1468. [PMID: 38629411 DOI: 10.1002/glia.24539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 06/29/2024]
Abstract
The disruption of astrocytic catabolic processes contributes to the impairment of amyloid-β (Aβ) clearance, neuroinflammatory signaling, and the loss of synaptic contacts in late-onset Alzheimer's disease (AD). While it is known that the posttranslational modifications of Aβ have significant implications on biophysical properties of the peptides, their consequences for clearance impairment are not well understood. It was previously shown that N-terminally pyroglutamylated Aβ3(pE)-42, a significant constituent of amyloid plaques, is efficiently taken up by astrocytes, leading to the release of pro-inflammatory cytokine tumor necrosis factor α and synapse loss. Here we report that Aβ3(pE)-42, but not Aβ1-42, gradually accumulates within the astrocytic endolysosomal system, disrupting this catabolic pathway and inducing the formation of heteromorphous vacuoles. This accumulation alters lysosomal kinetics, lysosome-dependent calcium signaling, and upregulates the lysosomal stress response. These changes correlate with the upregulation of glial fibrillary acidic protein (GFAP) and increased activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with a lysosomal protease inhibitor, E-64, rescues GFAP upregulation, NF-κB activation, and synapse loss, indicating that abnormal lysosomal protease activity is upstream of pro-inflammatory signaling and related synapse loss. Collectively, our data suggest that Aβ3(pE)-42-induced disruption of the astrocytic endolysosomal system leads to cytoplasmic leakage of lysosomal proteases, promoting pro-inflammatory signaling and synapse loss, hallmarks of AD-pathology.
Collapse
Affiliation(s)
- Sarah Wirth
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Schlößer
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Beiersdorfer
- Institute of Cell and Systems Biology of Animals, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Institute of Cell and Systems Biology of Animals, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Katarzyna M Grochowska
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
288
|
Jia Y, Dang W, Zhang X, Mi Y, Guo T, Mu D, Zhou D, Chen G, Hou Y, Li N. Characteristic terpenylated coumarins from Ferula ferulaeoides as potential inhibitors on overactivation of microglia. Bioorg Chem 2024; 149:107484. [PMID: 38810482 DOI: 10.1016/j.bioorg.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
A total of 37 characteristic terpenylated coumarins (1-25), including 17 undescribed compounds (1-5, 6a/6b, 7-10, 11a/11b-13a/13b), have been isolated from the root of Ferula ferulaeoides. Meanwhile, twelve pairs of enantiomers (6a/6b, 11a/11b-15a/15b, 17a/17b, 18a/18b, 20a/20b-22a/22b, and 25a/25b) were chirally purified. The structures of these new compounds were elucidated using HRESIMS, UV, NMR, and calculated 13C NMR with a custom DP4 + analysis. The absolute configurations of all the compounds were determined for the first time using electronic circular dichroism (ECD). Then, their inhibitory effects on nitric oxide (NO) production were evaluated with LPS-induced BV-2 microglia. Compared with the positive control minocycline (IC50 = 59.3 μM), ferulaferone B (2) exhibited stronger inhibitory potency with an IC50 value of 12.4 μM. The immunofluorescence investigation indicated that ferulaferone B (2) could inhibit Iba-1 expression in LPS-stimulated BV-2 microglia.
Collapse
Affiliation(s)
- Yewen Jia
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wen Dang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
289
|
Srivichit B, Thonusin C, Aeimlapa R, Arinno A, Chunchai T, Charoenphandhu N, Chattipakorn N, Chattipakorn SC. Melatonin and Metformin Mitigate Doxorubicin-Induced Alveolar Bone Toxicity. J Dent Res 2024; 103:916-925. [PMID: 39101670 DOI: 10.1177/00220345241261980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Evidence concerning the osteotoxic effects of chemotherapy (doxorubicin) has been previously described. Periodontitis also progressively increases in patients receiving chemotherapy; however, the beneficial effects of melatonin and metformin on the alleviation of doxorubicin-induced osteotoxicity have never been investigated. Therefore, we investigated the negative impact of doxorubicin on alveolar bone homeostasis and the benefits of melatonin and metformin on the attenuation of doxorubicin-induced alveolar bone toxicity. Male Wistar rats were divided into 4 groups to receive either 1 mL of normal saline solution as a control group, 3 mg/kg of doxorubicin, 3 mg/kg of doxorubicin plus 10 mg/kg of melatonin, or 3 mg/kg of doxorubicin plus 250 mg/kg of metformin. Doxorubicin treatment was given on days 0, 4, 8, 15, 22, and 29, while interventions were given daily on days 0 to 29. Following euthanasia, blood and alveolar bones were collected for evaluation of oxidative stress, bone remodeling, inflammation, microarchitecture, and periodontal condition. We found that doxorubicin increased systemic oxidative stress, decreased antioxidative capacity, increased inflammation, decreased bone formation, increased bone reabsorption, impaired microarchitecture, and impaired periodontal condition of the alveolar bone. Although cotreatment with melatonin or metformin resulted in some improvement in these parameters, cotreatment with melatonin was more effective than cotreatment with metformin in terms of decreasing oxidative stress, reducing bone resorption, and improving microarchitecture and periodontal condition. All of these findings highlight the potential for antioxidants, especially melatonin, to ameliorate doxorubicin-induced alveolar bone toxicity.
Collapse
Affiliation(s)
- B Srivichit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - C Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - R Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - A Arinno
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - T Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - N Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - N Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - S C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
290
|
Xue R, Yiu WH, Chan KW, Lok SWY, Zou Y, Ma J, Li H, Chan LYY, Huang XR, Lai KN, Lan HY, Tang SCW. Long Non-coding RNA NEAT1 , NOD-Like Receptor Family Protein 3 Inflammasome, and Acute Kidney Injury. J Am Soc Nephrol 2024; 35:998-1015. [PMID: 39088708 PMCID: PMC11377806 DOI: 10.1681/asn.0000000000000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Key Points
Long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) was upregulated in human and murine AKI. It returned to baseline after recovery in humans. Its knockdown preserved kidney function in animals.
In vitro, LPS upregulated NEAT1 by TLR4/NF-κB signaling and caused its translocation into the cytoplasm where it activated nucleotide oligomerization domain-like receptor family protein 3 by binding receptor of activated protein C kinase 1.
Background
AKI is common in hospitalized patients and is associated with high mortality. Inflammation plays a key role in the pathophysiology of AKI. Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of the inflammatory and immune response, but its role in AKI remains unclear.
Methods
We explored the role of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in (1) a cross-sectional and longitudinal cohort of AKI in humans, (2) three murine models of septic and aseptic AKI, and (3) cultured C1.1 mouse kidney tubular cells.
Results
In humans, hospitalized patients with AKI (N=66) demonstrated significantly higher lncRNA NEAT1 levels in urinary sediment cells and buffy coat versus control participants (N=152) from a primary care clinic; among six kidney transplant recipients, NEAT1 levels were the highest immediately after transplant surgery, followed by a prompt decline to normal levels in parallel with recovery of kidney function. In mice with AKI induced by sepsis (by LPS injection or cecal ligation and puncture) and renal ischemia-reperfusion, kidney tubular Neat1 was increased versus sham-operated mice. Knockdown of Neat1 in the kidney using short hairpin RNA preserved kidney function and suppressed overexpression of the AKI biomarker neutrophil gelatinase-associated lipocalin, leukocyte infiltration, and both intrarenal and systemic inflammatory cytokines IL-6, CCL-2, and IL-1β. In LPS-treated C1.1 cells, Neat1 was overexpressed by TLR4/NF-κB signaling and translocated from the cell nucleus into the cytoplasm where it promoted activation of nucleotide oligomerization domain-like receptor family protein 3 inflammasomes by binding with the scaffold protein receptor of activated protein C kinase 1. Silencing Neat1 ameliorated LPS-induced cell inflammation, whereas its overexpression upregulated IL-6 and CCL-2 expression even without LPS stimulation.
Conclusions
Our findings demonstrate a pathogenic role of NEAT1 induction in human and mice during AKI with alleviation of kidney injury in three experimental models of septic and aseptic AKI after knockdown of Neat1. LPS/TLR4-induced Neat1 overexpression in tubular epithelial cells increased the inflammatory response by binding with the scaffold protein, receptor of activated protein C kinase 1, to activate nucleotide oligomerization domain-like receptor family protein 3 inflammasomes.
Collapse
Affiliation(s)
- Rui Xue
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Sarah W Y Lok
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Yixin Zou
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Jingyuan Ma
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Hongyu Li
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Xiao Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
291
|
Alicea-Negrón AJ, González-Barreto RM, González-Chávez JR. Hailey-Hailey Disease Successfully Treated With Adalimumab: A Case Series. Cureus 2024; 16:e67227. [PMID: 39295647 PMCID: PMC11410359 DOI: 10.7759/cureus.67227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2024] [Indexed: 09/21/2024] Open
Abstract
Hailey-Hailey disease is an autosomal dominant disorder caused by a mutation in the ATP2C1 gene and characterized by recurrent blisters, erosions, and crust in intertriginous areas. Currently, there are no curative treatments for Hailey-Hailey disease, and therapeutic strategies are focused on controlling skin microbial colonization, infection, and inflammation. Recent efforts have aimed to find therapies that target the biochemical pathway involved in the pathogenesis of this disease. Several case reports indicate the use of different biological agents to achieve long-term remission in patients with recalcitrant Hailey-Hailey disease. Tumor necrosis factor-alpha inhibitors have been used to treat and maintain remission in recalcitrant Hailey-Hailey disease patients, but additional reporting and studies are required. In this case series, we report three cases of recalcitrant Hailey-Hailey disease whose lesions were successfully controlled with adalimumab.
Collapse
|
292
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Low-Molecular Weight Branched Polyethylenimine Reduces Cytokine Secretion from Human Immune System Monocytes Stimulated with Bacterial and Fungal PAMPs. ChemMedChem 2024; 19:e202400011. [PMID: 38740551 PMCID: PMC11463166 DOI: 10.1002/cmdc.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The innate immune system is an evolutionarily conserved pathogen recognition mechanism that serves as the first line of defense against tissue damage or pathogen invasion. Unlike the adaptive immunity that recruits T-cells and specific antibodies against antigens, innate immune cells express pathogen recognition receptors (PRRs) that can detect various pathogen-associated molecular patterns (PAMPs) released by invading pathogens. Microbial molecular patterns, such as lipopolysaccharide (LPS) from Gram-negative bacteria, trigger signaling cascades in the host that result in the production of pro-inflammatory cytokines. LPS stimulation produces a strong immune response and excessive LPS signaling leads to dysregulation of the immune response. However, dysregulated inflammatory response during wound healing often results in chronic non-healing wounds that are difficult to control. In this work, we present data demonstrating partial neutralization of anionic LPS molecules using cationic branched polyethylenimine (BPEI). The anionic sites on the LPS molecules from Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the lipid A moiety and BPEI binding create steric factors that hinder the binding of PRR signaling co-factors. This reduces the production of pro-inflammatory TNF-α cytokines. However, the anionic sites of Pseudomonas aeruginosa (P. aeruginosa) LPS are in the O-antigen region and subsequent BPEI binding slightly reduces TNF-α cytokine production. Fortunately, BPEI can reduce TNF-α cytokine expression in response to stimulation by intact P. aeruginosa bacterial cells and fungal zymosan PAMPs. Thus low-molecular weight (600 Da) BPEI may be able to counter dysregulated inflammation in chronic wounds and promote successful repair following tissue injury.
Collapse
Affiliation(s)
- Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Chase Roedl
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tra D. Nguyen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
293
|
Chesnokova V, Zonis S, Apaydin T, Barrett R, Melmed S. Non-pituitary growth hormone enables colon cell senescence evasion. Aging Cell 2024; 23:e14193. [PMID: 38724466 PMCID: PMC11320355 DOI: 10.1111/acel.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 08/15/2024] Open
Abstract
DNA damage-induced senescence is initially sustained by p53. Senescent cells produce a senescence-associated secretory phenotype (SASP) that impacts the aging microenvironment, often promoting cell transformation. Employing normal non-tumorous human colon cells (hNCC) derived from surgical biopsies and three-dimensional human intestinal organoids, we show that local non-pituitary growth hormone (npGH) induced in senescent cells is a SASP component acting to suppress p53. npGH autocrine/paracrine suppression of p53 results in senescence evasion and cell-cycle reentry, as evidenced by increased Ki67 and BrdU incorporation. Post-senescent cells exhibit activated epithelial-to-mesenchymal transition (EMT), and increased cell motility. Nu/J mice harboring GH-secreting HCT116 xenografts with resultant high GH levels and injected intrasplenic with post-senescent hNCC developed fourfold more metastases than did mice harboring control xenografts, suggesting that paracrine npGH enables post-senescent cell transformation. By contrast, senescent cells with suppressed npGH exhibit downregulated Ki67 and decreased soft agar colony formation. Mechanisms underlying these observations include npGH induction by the SASP chemokine CXCL1, which attracts immune effectors to eliminate senescent cells; GH, in turn, suppresses CXCL1, likely by inhibiting phospho-NFκB, resulting in SASP cytokine downregulation. Consistent with these findings, GH-receptor knockout mice exhibited increased colon phospho-NFκB and CXCL1, while GH excess decreased colon CXCL1. The results elucidate mechanisms for local hormonal regulation of microenvironmental changes in DNA-damaged non-tumorous epithelial cells and portray a heretofore unappreciated GH action favoring age-associated epithelial cell transformation.
Collapse
Affiliation(s)
- Vera Chesnokova
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Svetlana Zonis
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tugce Apaydin
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Robert Barrett
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Shlomo Melmed
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
294
|
Angsusing J, Singh S, Samee W, Tadtong S, Stokes L, O’Connell M, Bielecka H, Toolmal N, Mangmool S, Chittasupho C. Anti-Inflammatory Activities of Yataprasen Thai Traditional Formulary and Its Active Compounds, Beta-Amyrin and Stigmasterol, in RAW264.7 and THP-1 Cells. Pharmaceuticals (Basel) 2024; 17:1018. [PMID: 39204123 PMCID: PMC11357128 DOI: 10.3390/ph17081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Yataprasen (YTPS) remedy formulary, a national Thai traditional medicine formulary, comprises 13 herbal plants. It has been extensively prescribed to relieve osteoarthritis and musculoskeletal pain in the Thai traditional medicine healthcare system. The aim of this study was to investigate the antioxidant and anti-inflammatory properties of the bioactive compounds (β-amyrin and stigmasterol) of YTPS remedy formulary ethanolic extract, along with its composition. The YTPS formulary extract contains 70.30 nM of β-amyrin and 605.76 nM of stigmasterol. The YTPS formulary extract exhibited ABTS and DPPH free radical scavenging activity, with IC50 values of 144.50 ± 2.82 and 31.85 ± 0.18 µg/mL, respectively. The ethanolic extract of YTPS at a concentration of 1000 µg/mL showed a significant (p < 0.01) anti-inflammatory effect, mainly by reducing IL-6 and TNF-α release in response to LPS. NO production was prominently lowered by 50% at 24.76 ± 1.48 µg/mL, 55.52 ± 24.40 µM, and more than 570 µM of YTPS formulary extract, β-amyrin, and stigmasterol, respectively. Major components of YTPS, β-amyrin, and stigmasterol exerted significant anti-inflammatory effects by inhibiting LPS-induced IL-1β, IL-6, TNF-α secretion in THP-1 cells. Our findings suggest that the ethanolic extract from YTPS holds promise as an alternative topical treatment for osteoarthritis and inflammatory disorders, potentially with fewer side effects than non-steroidal anti-inflammatory medications (NSAIDs).
Collapse
Affiliation(s)
- Jaenjira Angsusing
- Ph.D. Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, CMU Presidential Scholarship, Chiang Mai 50200, Thailand;
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Maria O’Connell
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Hanna Bielecka
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Nopparut Toolmal
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
295
|
Bertolini M, Clark D. Periodontal disease as a model to study chronic inflammation in aging. GeroScience 2024; 46:3695-3709. [PMID: 37285008 PMCID: PMC11226587 DOI: 10.1007/s11357-023-00835-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Periodontal disease is a chronic inflammatory condition that results in the destruction of the teeth supporting tissues, eventually leading to the loss of teeth and reduced quality of life. In severe cases, periodontal disease can limit proper nutritional intake, cause acute pain and infection, and cause a withdrawal from social situations due to esthetic and phonetic concerns. Similar to other chronic inflammatory conditions, periodontal disease increases in prevalence with age. Research into what drives periodontal disease pathogenesis in older adults is contributing to our general understanding of age-related chronic inflammation. This review will present periodontal disease as an age-related chronic inflammatory disease and as an effective geroscience model to study mechanisms of age-related inflammatory dysregulation. The current understanding of the cellular and molecular mechanisms that drive inflammatory dysregulation as a function of age will be discussed with a focus on the major pathogenic immune cells in periodontal disease, which include neutrophils, macrophages, and T cells. Research in the aging biology field has shown that the age-related changes in these immune cells result in the cells becoming less effective in the clearance of microbial pathogens, expansion of pathogenic subpopulations, or an increase in pro-inflammatory cytokine secretions. Such changes can be pathogenic and contribute to inflammatory dysregulation that is associated with a myriad of age-related disease including periodontal disease. An improved understanding is needed to develop better interventions that target the molecules or pathways that are perturbed with age in order to improve treatment of chronic inflammatory conditions, including periodontal disease, in older adult populations.
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daniel Clark
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
296
|
Pramanik S, Sil AK. Anti-foam cell activity of metabolites of a bacterium isolated from yogurt. Food Sci Biotechnol 2024; 33:2597-2610. [PMID: 39144201 PMCID: PMC11319708 DOI: 10.1007/s10068-023-01515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 08/16/2024] Open
Abstract
Existing literature documents the beneficial effects of probiotics against atherosclerosis, a major cause of human death. However, it suffers from a serious limitation due to horizontal gene transfer. Therefore, currently, efforts are targeted to examine the beneficial effects of metabolites obtained from probiotics. In this context, the current study isolated a bacterium from yogurt and investigated the effect of its metabolites on foam cell formation, a key event for developing atherosclerosis. Results showed that the cell-free conditioned medium (CM) of this isolate and di-chloro methane extract of CM (CME) not only prevented the formation but also reduced the level of preformed foam cells. To understand the mechanism, the GC-MS study revealed the presence of compounds known to exert anti-atherogenic activities like anti-oxidant, anti-NF-κB, and lipolytic activities. Consistently, CME exhibited substantial anti-oxidant and anti-NF-κB activity. In conclusion, metabolites of this bacterium have anti-atherogenic activities and thus have therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01515-7.
Collapse
Affiliation(s)
- Soudipta Pramanik
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, 700019 India
| | - Alok Kumar Sil
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, 700019 India
| |
Collapse
|
297
|
Lu S, Li Y, Yu Y. Glutathione-Scavenging Celastrol-Cu Nanoparticles Induce Self-Amplified Cuproptosis for Augmented Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404971. [PMID: 38935977 DOI: 10.1002/adma.202404971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Cuproptosis is a novel copper-dependent programmed cell death. The efficacy of cuproptosis is highly dependent on intracellular copper accumulation and counteracted by a high level of glutathione (GSH) in tumor cells. Here, this work develops a self-amplified cuproptosis nanoparticles (Cel-Cu NP) using celastrol (Cel), a natural product isolated from medical plant. In Cel-Cu NP, Cel serves as a versatile copper ionophore, exhibiting an ideal coordination capacity toward copper ions without compromising the cuproptosis induction. Notably, Cel can simultaneously scavenge GSH content to amplify cuproptosis. Moreover, this self-amplified cuproptosis further activates immunogenic cell death (ICD) to elicit robust immune response. Combining with immune checkpoint blockade, Cel-Cu NP effectively eradicates metastatic tumors in a mouse lung metastasis model. This study provides an efficient nanomedicine by inducing self-amplified cuproptosis for robust immunotherapy.
Collapse
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
298
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
299
|
Catalán M, González-Herrera F, Maya JD, Lorenzo O, Pedrozo Z, Olmedo I, Suarez-Rozas C, Molina-Berrios A, Díaz-Araya G, Vivar R. Boldine prevents the inflammatory response of cardiac fibroblasts induced by SGK1-NFκB signaling pathway activation. Cell Signal 2024; 120:111241. [PMID: 38825173 DOI: 10.1016/j.cellsig.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Cardiac fibroblasts (CF) are mesenchymal-type cells responsible for maintaining the homeostasis of the heart's extracellular matrix (ECM). Their dysfunction leads to excessive secretion of ECM proteins, tissue stiffening, impaired nutrient and oxygen exchange, and electrical abnormalities in the heart. Additionally, CF act as sentinel cells in the cardiac tissue microenvironment, responding to various stimuli that may affect heart function. Deleterious stimuli induce an inflammatory response in CF, increasing the secretion of cytokines such as IL-1β and TNF-α and the expression of cell adhesion molecules like ICAM1 and VCAM1, initially promoting damage resolution by recruiting immune cells. However, constant harmful stimuli lead to a chronic inflammatory process and heart dysfunction. Therefore, it is necessary to study the mechanisms that govern CF inflammation. NFκB is a key regulator of the cardiac inflammatory process, making the search for mechanisms of NFκB regulation and CF inflammatory response crucial for developing new treatment options for cardiovascular diseases. SGK1, a serine-threonine protein kinase, is one of the regulators of NFκB and is involved in the fibrotic effects of angiotensin II and aldosterone, as well as in CF differentiation. However, its role in the CF inflammatory response is unknown. On the other hand, many bioactive natural products have demonstrated anti-inflammatory effects, but their role in CF inflammation is unknown. One such molecule is boldine, an alkaloid obtained from Boldo (Peumus boldus), a Chilean endemic tree with proven cytoprotective effects. However, its involvement in the regulation of SGK1 and CF inflammation is unknown. In this study, we evaluated the role of SGK1 and boldine in the inflammatory response in CF isolated from neonatal Sprague-Dawley rats. The involvement of SGK1 was analyzed using GSK650394, a specific SGK1 inhibitor. Our results demonstrate that SGK1 is crucial for LPS- and IFN-γ-induced inflammatory responses in CF (cytokine expression, cell adhesion molecule expression, and leukocyte adhesion). Furthermore, a conditioned medium (intracellular content of CF subject to freeze/thaw cycles) was used to simulate a sterile inflammation condition. The conditioned medium induced a potent inflammatory response in CF, which was completely prevented by the SGK1 inhibitor. Finally, our results indicate that boldine inhibits both SGK1 activation and the CF inflammatory response induced by LPS, IFN-γ, and CF-conditioned medium. Taken together, our results position SGK1 as an important regulator of the CF inflammatory response and boldine as a promising anti-inflammatory drug in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- M Catalán
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - F González-Herrera
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - J D Maya
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - O Lorenzo
- IIS-Fundación Jiménez Díaz, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Z Pedrozo
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - I Olmedo
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - C Suarez-Rozas
- Medicinal Chemistry Center, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - A Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - R Vivar
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
300
|
Badreldin H, El-Karef A, Ibrahim T, Elshal M. Targeting Nrf2/HO-1 and NF-κB/TNF-α signaling pathways with empagliflozin protects against atrial fibrillation-induced acute kidney injury in rats. Toxicology 2024; 506:153879. [PMID: 38971551 DOI: 10.1016/j.tox.2024.153879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
A bidirectional relationship exists between atrial fibrillation (AF) and kidney function. Uncontrolled AF may lead to kidney injury, whereas renal dysfunction may contribute to AF initiation and maintenance. This study aimed to investigate the protective effect of the sodium glucose cotransporter-2 inhibitor empagliflozin (EMPA) on acute kidney injury (AKI) associated with AF induced by acetylcholine and calcium chloride (ACh/CaCl2) in rats and elucidate the potential underlying mechanism. Rats were randomly divided as follows: control (CTRL) group: administered vehicles only; AF group: intravenously injected 1 ml/kg of an ACh/CaCl2 mixture for seven days to induce AF; EMPA group: orally administered EMPA (30 mg/kg) for seven days; AF+EMPA10 and AF+EMPA30 groups: co-administered the induction mixture and EMPA (10 and 30 mg/kg, respectively) for seven days. Our results showed that EMPA (10 and 30 mg/kg) effectively maintained kidney function and demonstrated a significant antioxidant potential. EMPA also suppressed AF-induced renal tubulointerstitial injury and fibrotic changes concurrently with reducing renal levels of the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin-6, as well as the pro-fibrotic marker transforming growth factor beta-1 and collagen type I. Mechanistically, EMPA boosted nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) renal tissue expression while repressing nuclear factor kappa B (NF-κB) activation. In addition, these beneficial effects of EMPA on kidneys were concurrent with its ability to effectively inhibit AF-related electrocardiographic changes, reduce incidence and duration of AF episodes, and markedly suppress serum B-type natriuretic peptide and C-reactive protein levels. In conclusion, EMPA protected against AKI associated with AF induced by ACh/CaCl2 in rats through simultaneous modulation of the Nrf2/HO-1 and the NF-κB/TNF-α signaling pathways, exerting antioxidant, anti-inflammatory, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Hussein Badreldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Amr El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt; Department of Pathology, Faculty of Medicine, Horus University, Egypt.
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|