251
|
Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 2007; 22:1343-55. [PMID: 18070821 DOI: 10.1096/fj.07-9591com] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ordinary gustatory experiences, which are usually evoked by taste mixtures, are determined by multiple interactions between different taste stimuli. The most studied model for these gustatory interactions is the suppression of the responses to sweeteners by the prototype bitter compound quinine. Here we report that TRPM5, a cation channel involved in sweet taste transduction, is inhibited by quinine (EC(50)=50 microM at -50 mV) owing to a decrease in the maximal whole-cell TRPM5 conductance and an acceleration of channel closure. Notably, quinine inhibits the gustatory responses of sweet-sensitive gustatory nerves in wild-type (EC(50)= approximately 1.6 mM) but not in Trpm5 knockout mice. Quinine induces a dose- and time-dependent inhibition of TRPM5-dependent responses of single sweet-sensitive fibers to sucrose, according to the restricted diffusion of the drug into the taste tissue. Quinidine, the stereoisomer of quinine, has similar effects on TRPM5 currents and on sweet-induced gustatory responses. In contrast, the chemically unrelated bitter compound denatonium benzoate has an approximately 100-fold weaker effect on TRPM5 currents and, accordingly, at 10 mM it does not alter gustatory responses to sucrose. The inhibition of TRPM5 by bitter compounds constitutes the molecular basis of a novel mechanism of taste interactions, whereby the bitter tastant inhibits directly the sweet transduction pathway.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Dept. of Molecular Cell Biology, Herestraat 49, Campus Gasthuisberg, O&N1, KU Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
252
|
Gamper N, Shapiro MS. Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 2007; 8:921-34. [DOI: 10.1038/nrn2257] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
253
|
Zhang H, Xu Y, Zhang Z, Liman ER, Prestwich GD. Synthesis and biological activity of phospholipase C-resistant analogues of phosphatidylinositol 4,5-bisphosphate. J Am Chem Soc 2007; 128:5642-3. [PMID: 16637624 PMCID: PMC2531207 DOI: 10.1021/ja060621d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is an important regulator in cell physiology. Hydrolysis of PtdIns(4,5)P2 by phospholipase C (PLC) releases two second messengers, Ins(1,4,5)P3 and diacylglycerol. To dissect the effects of PtdIns(4,5)P2 from those resulting from PLC-generated signals, a metabolically stabilized analogue of PtdIns(4,5)P2 was required. Two analogues were designed in which the scissile O-P bond was replaced with a C-P bond that could not be hydrolyzed by PLC activity. Herein we describe the asymmetric total synthesis of the first metabolically stabilized phospholipase C-resistant analogues of PtdIns(4,5)P2. The key transformation was a Pd(0)-catalyzed coupling of a H-phosphite with a vinyl bromide to form the desired C-P linkage. The phosphonate analogues of PtdIns(4,5)P2 were found to be effective in restoring the sensitivity of the TRPM4 channel to Ca2+ activation.
Collapse
Affiliation(s)
- Honglu Zhang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA
| | - Yong Xu
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA
| | - Zheng Zhang
- Department of Biological Sciences and Program in Neuroscience, University of Southern California, 3641 Watt Way, Los Angeles, California 90089-2520 USA
| | - Emily R. Liman
- Department of Biological Sciences and Program in Neuroscience, University of Southern California, 3641 Watt Way, Los Angeles, California 90089-2520 USA
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA
| |
Collapse
|
254
|
Lemonnier L, Trebak M, Putney JW. Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 2007; 43:506-14. [PMID: 17942152 DOI: 10.1016/j.ceca.2007.09.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/06/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
TRPC3, 6 and 7 channels constitute a subgroup of non-selective, calcium-permeable cation channels within the TRP superfamily that are activated by products of phospholipase C-mediated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP(2)). A number of ion channels, including other members of the TRP superfamily, are regulated directly by PIP(2). However, there is little information on the regulation of the TRPC channel subfamily by PIP(2). Pretreatment of TRPC7-expressing cells with a drug that blocks the synthesis of polyphosphoinositides inhibited the ability of the synthetic diacylglycerol, oleyl-acetyl glycerol, to activate TRPC7. In excised patches, TRPC7 channels were robustly activated by application of PIP(2) or ATP, but not by inositol 1,4,5-trisphosphate. Similar results were obtained with TRPC6 and TRPC3, although the effects of PIP(2) were somewhat less and with TRPC3 there was no significant effect of ATP. In the cell-attached configuration, TRPC7 channels could be activated by the synthetic diacylglycerol analog, oleyl-acetyl glycerol. However, this lipid mediator did not activate TRPC7 channels in excised patches. In addition, channel activation by PIP(2) in excised patches was significantly greater than that observed with oleyl-acetyl glycerol in the cell-attached configuration. These findings reveal complex regulation of TRPC channels by lipid mediators. The results also reveal for the first time direct activation by PIP(2) of members of the TRPC ion channel subfamily.
Collapse
Affiliation(s)
- Loïc Lemonnier
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences-NIH, Research Triangle Park, NC 27709, United States.
| | | | | |
Collapse
|
255
|
Yoshida Y, Saitoh K, Aihara Y, Okada S, Misaka T, Abe K. Transient receptor potential channel M5 and phospholipaseC-β2 colocalizing in zebrafish taste receptor cells. Neuroreport 2007; 18:1517-20. [PMID: 17885593 DOI: 10.1097/wnr.0b013e3282ec6874] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mammals, transient receptor potential (TRP) channel M5 (TRPM5) is coexpressed with phospholipaseC-beta2 (PLC-beta2) in the taste receptor cells, and both PLC-beta2 and TRPM5 are essential elements in the signal transduction of sweet, bitter and umami stimuli. In this study, we identified the zebrafish homologue of TRPM5 (zfTRPM5) and examined its expression in the gustatory system by in-situ hybridization. Using a transgenic zebrafish line that expressed green fluorescent protein under the control of the PLC-beta2 promoter, we showed that zfTRPM5 is expressed in green fluorescent protein-labeled cells of the taste buds. These results demonstrate that zfTRPM5 and PLC-beta2 colocalize in zebrafish taste receptor cells, suggesting their crucial roles in taste signaling via the fish taste receptors.
Collapse
Affiliation(s)
- Yuki Yoshida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
256
|
Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 2007; 117:1979-87. [PMID: 17571167 PMCID: PMC1888570 DOI: 10.1172/jci30951] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 04/10/2007] [Indexed: 12/17/2022] Open
Abstract
Proinflammatory agents trypsin and mast cell tryptase cleave and activate PAR2, which is expressed on sensory nerves to cause neurogenic inflammation. Transient receptor potential A1 (TRPA1) is an excitatory ion channel on primary sensory nerves of pain pathway. Here, we show that a functional interaction of PAR2 and TRPA1 in dorsal root ganglion (DRG) neurons could contribute to the sensation of inflammatory pain. Frequent colocalization of TRPA1 with PAR2 was found in rat DRG neurons. PAR2 activation increased the TRPA1 currents evoked by its agonists in HEK293 cells transfected with TRPA1, as well as DRG neurons. Application of phospholipase C (PLC) inhibitors or phosphatidylinositol-4,5-bisphosphate (PIP(2)) suppressed this potentiation. Decrease of plasma membrane PIP(2) levels through antibody sequestration or PLC-mediated hydrolysis mimicked the potentiating effects of PAR2 activation at the cellular level. Thus, the increased TRPA1 sensitivity may have been due to activation of PLC, which releases the inhibition of TRPA1 from plasma membrane PIP(2). These results identify for the first time to our knowledge a sensitization mechanism of TRPA1 and a novel mechanism through which trypsin or tryptase released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Shenglan Wang
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Makoto Tominaga
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Satoshi Yamamoto
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Tetsuo Fukuoka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Tomohiro Higashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Koichi Obata
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo, Japan.
Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan.
Department of Physiological Sciences, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Aichi, Japan.
Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
257
|
Abstract
The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
Collapse
|
258
|
Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A 2007; 104:15069-74. [PMID: 17724330 PMCID: PMC1986614 DOI: 10.1073/pnas.0706890104] [Citation(s) in RCA: 742] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1), released from gut endocrine L cells in response to glucose, regulates appetite, insulin secretion, and gut motility. How glucose given orally, but not systemically, induces GLP-1 secretion is unknown. We show that human duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Mouse intestinal L cells also express alpha-gustducin. Ingestion of glucose by alpha-gustducin null mice revealed deficiencies in secretion of GLP-1 and the regulation of plasma insulin and glucose. Isolated small bowel and intestinal villi from alpha-gustducin null mice showed markedly defective GLP-1 secretion in response to glucose. The human L cell line NCI-H716 expresses alpha-gustducin, taste receptors, and several other taste signaling elements. GLP-1 release from NCI-H716 cells was promoted by sugars and the noncaloric sweetener sucralose, and blocked by the sweet receptor antagonist lactisole or siRNA for alpha-gustducin. We conclude that L cells of the gut "taste" glucose through the same mechanisms used by taste cells of the tongue. Modulating GLP-1 secretion in gut "taste cells" may provide an important treatment for obesity, diabetes and abnormal gut motility.
Collapse
Affiliation(s)
- Hyeung-Jin Jang
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Zaza Kokrashvili
- Department of Neuroscience, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1065, New York, NY 10029
| | - Michael J. Theodorakis
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Olga D. Carlson
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Byung-Joon Kim
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Jie Zhou
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Hyeon Ho Kim
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Xiangru Xu
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Sic L. Chan
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Magdalena Juhaszova
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Michel Bernier
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| | - Bedrich Mosinger
- Department of Neuroscience, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1065, New York, NY 10029
| | - Robert F. Margolskee
- Department of Neuroscience, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1065, New York, NY 10029
- To whom correspondence should be addressed. E-mail:
| | - Josephine M. Egan
- *National Institute on Aging/National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and
| |
Collapse
|
259
|
Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Arch 2007; 454:759-76. [PMID: 17468883 PMCID: PMC3723147 DOI: 10.1007/s00424-007-0247-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
260
|
Zufall F, Leinders-Zufall T. Mammalian pheromone sensing. Curr Opin Neurobiol 2007; 17:483-9. [PMID: 17709238 DOI: 10.1016/j.conb.2007.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/19/2007] [Indexed: 11/28/2022]
Abstract
The traditional distinction that the mammalian main olfactory system recognizes general odor molecules and the accessory (vomeronasal) system detects pheromones is no longer valid. The emerging picture is that both systems have considerable overlap in terms of the chemosignals they detect and the effects that they mediate. Recent investigations have discovered large families of pheromonal signals together with a rich variety of specific receptor systems and nasal detection pathways. Selective genetic targeting of these subsystems should help to unravel their biological role in pheromone-mediated behavioral responses.
Collapse
Affiliation(s)
- Frank Zufall
- Department of Physiology, University of Saarland School of Medicine, Kirrberger Strasse, 66421 Homburg/Saar, Germany.
| | | |
Collapse
|
261
|
TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 2007; 8:49. [PMID: 17610722 PMCID: PMC1931605 DOI: 10.1186/1471-2202-8-49] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 07/04/2007] [Indexed: 11/26/2022] Open
Abstract
Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells). In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.
Collapse
|
262
|
Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA. Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J Physiol 2007; 582:1047-58. [PMID: 17599963 PMCID: PMC2075248 DOI: 10.1113/jphysiol.2007.134577] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurons of the preBötzinger complex (preBötC) form local excitatory networks and synchronously discharge bursts of action potentials during the inspiratory phase of respiratory network activity. Synaptic input periodically evokes a Ca(2+)-activated non-specific cation current (I(CAN)) postsynaptically to generate 10-30 mV transient depolarizations, dubbed inspiratory drive potentials, which underlie inspiratory bursts. The molecular identity of I(CAN) and its regulation by intracellular signalling mechanisms during inspiratory drive potential generation remains unknown. Here we show that mRNAs coding for two members of the transient receptor potential (TRP) family of ion channels, namely TRPM4 and TRPM5, are expressed within the preBötC region of neonatal mice. Hypothesizing that the phosphoinositides maintaining TRPM4 and TRPM5 channel sensitivity to Ca(2+) may similarly influence I(CAN) and thus regulate inspiratory drive potentials, we manipulated intracellular phosphatidylinositol 4,5-bisphosphate (PIP(2)) and measured its effect on preBötC neurons in the context of ongoing respiratory-related rhythms in slice preparations. Consistent with the involvement of TRPM4 and TRPM5, excess PIP(2) augmented the inspiratory drive potential and diminution of PIP(2) reduced it; sensitivity to flufenamic acid (FFA) suggested that these effects of PIP(2) were I(CAN) mediated. Inositol 1,4,5-trisphosphate (IP(3)), the product of PIP(2) hydrolysis, ordinarily causes IP(3) receptor-mediated I(CAN) activation. Simultaneously increasing PIP(2) while blocking IP(3) receptors intracellularly counteracted the reduction in the inspiratory drive potential that normally resulted from IP(3) receptor blockade. We propose that PIP(2) protects I(CAN) from rundown by interacting directly with underlying ion channels and preventing desensitization, which may enhance the robustness of respiratory rhythm.
Collapse
Affiliation(s)
- Erin A Crowder
- Department of Applied Science, McGlothlin-Street Hall, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | | | | | | | | | |
Collapse
|
263
|
Li M, Du J, Jiang J, Ratzan W, Su LT, Runnels LW, Yue L. Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J Biol Chem 2007; 282:25817-30. [PMID: 17599911 PMCID: PMC3239414 DOI: 10.1074/jbc.m608972200] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The channel kinases TRPM6 and TRPM7 have recently been discovered to play important roles in Mg2+ and Ca2+ homeostasis, which is critical to both human health and cell viability. However, the molecular basis underlying these channels' unique Mg2+ and Ca2+ permeability and pH sensitivity remains unknown. Here we have created a series of amino acid substitutions in the putative pore of TRPM7 to evaluate the origin of the permeability of the channel and its regulation by pH. Two mutants of TRPM7, E1047Q and E1052Q, produced dramatic changes in channel properties. The I-V relations of E1052Q and E1047Q were significantly different from WT TRPM7, with the inward currents of 8- and 12-fold larger than TRPM7, respectively. The binding affinity of Ca2+ and Mg2+ was decreased by 50- to 140-fold in E1052Q and E1047Q, respectively. Ca2+ and Mg2+ currents in E1052Q were 70% smaller than those of TRPM7. Strikingly, E1047Q largely abolished Ca2+ and Mg2+ permeation, rendering TRPM7 a monovalent selective channel. In addition, the ability of protons to potentiate inward currents was lost in E1047Q, indicating that E1047 is critical to Ca2+ and Mg2+ permeability of TRPM7, and its pH sensitivity. Mutation of the corresponding residues in the pore of TRPM6, E1024Q and E1029Q, produced nearly identical changes to the channel properties of TRPM6. Our results indicate that these two glutamates are key determinants of both channels' divalent selectivity and pH sensitivity. These findings reveal the molecular mechanisms underpinning physiological/pathological functions of TRPM6 and TRPM7, and will extend our understanding of the pore structures of TRPM channels.
Collapse
Affiliation(s)
- Mingjiang Li
- Center for Cardiology and Cardiovascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Jianyang Du
- Center for Cardiology and Cardiovascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Jianmin Jiang
- Center for Cardiology and Cardiovascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - William Ratzan
- Center for Cardiology and Cardiovascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Li-Ting Su
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Loren W. Runnels
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Lixia Yue
- Center for Cardiology and Cardiovascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
- To whom correspondence should be addressed. Tel.: 860-679-3869; Fax: 860-679-1426;
| |
Collapse
|
264
|
Zhang Z, Zhao Z, Margolskee R, Liman E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 2007; 27:5777-86. [PMID: 17522321 PMCID: PMC6672777 DOI: 10.1523/jneurosci.4973-06.2007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bitter, sweet, and umami tastants are detected by G-protein-coupled receptors that signal through a common second-messenger cascade involving gustducin, phospholipase C beta2, and the transient receptor potential M5 (TRPM5) ion channel. The mechanism by which phosphoinositide signaling activates TRPM5 has been studied in heterologous cell types with contradictory results. To resolve this issue and understand the role of TRPM5 in taste signaling, we took advantage of mice in which the TRPM5 promoter drives expression of green fluorescent protein and mice that carry a targeted deletion of the TRPM5 gene to unequivocally identify TRPM5-dependent currents in taste receptor cells. Our results show that brief elevation of intracellular inositol trisphosphate or Ca2+ is sufficient to gate TRPM5-dependent currents in intact taste cells, but only intracellular Ca2+ is able to activate TRPM5-dependent currents in excised patches. Detailed study in excised patches showed that TRPM5 forms a nonselective cation channel that is half-activated by 8 microM Ca2+ and that desensitizes in response to prolonged exposure to intracellular Ca2+. In addition to channels encoded by the TRPM5 gene, we found that taste cells have a second type of Ca2+-activated nonselective cation channel that is less sensitive to intracellular Ca2+. These data constrain proposed models for taste transduction and suggest a link between receptor signaling and membrane potential in taste cells.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Biological Sciences and Program in Neuroscience, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
265
|
Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez-Nilo F, Latorre R. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci U S A 2007; 104:10246-51. [PMID: 17548815 PMCID: PMC1891241 DOI: 10.1073/pnas.0703420104] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Indexed: 01/01/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel-PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis.
Collapse
Affiliation(s)
- Sebastian Brauchi
- *Laboratory of Biophysics and Molecular Physiology, Centro de Estudios Cientificos, Valdivia 509-9100, Chile
| | - Gerardo Orta
- *Laboratory of Biophysics and Molecular Physiology, Centro de Estudios Cientificos, Valdivia 509-9100, Chile
| | - Carolina Mascayano
- Centro de Bioinformatica y Simulacion Molecular Simulation Center, Universidad de Talca, Talca 346-0000, Chile
| | - Marcelo Salazar
- *Laboratory of Biophysics and Molecular Physiology, Centro de Estudios Cientificos, Valdivia 509-9100, Chile
| | - Natalia Raddatz
- *Laboratory of Biophysics and Molecular Physiology, Centro de Estudios Cientificos, Valdivia 509-9100, Chile
| | - Hector Urbina
- Centro de Bioinformatica y Simulacion Molecular Simulation Center, Universidad de Talca, Talca 346-0000, Chile
| | - Eduardo Rosenmann
- *Laboratory of Biophysics and Molecular Physiology, Centro de Estudios Cientificos, Valdivia 509-9100, Chile
| | - Fernando Gonzalez-Nilo
- Centro de Bioinformatica y Simulacion Molecular Simulation Center, Universidad de Talca, Talca 346-0000, Chile
| | - Ramon Latorre
- *Laboratory of Biophysics and Molecular Physiology, Centro de Estudios Cientificos, Valdivia 509-9100, Chile
| |
Collapse
|
266
|
Rohacs T, Nilius B. Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 2007; 455:157-68. [PMID: 17479281 DOI: 10.1007/s00424-007-0275-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/13/2007] [Indexed: 11/28/2022]
Abstract
This review summarizes the modulation of transient receptor potential (TRP) channels, by phosphoinositides. TRP channels are characterized by polymodal activation and a surprising complexity of regulation mechanisms. Possibly, most if not all TRP channels are modulated by phosphoinositides. Modulation by phosphatidylinositol 4,5-biphosphate (PIP(2)) has been shown in detail for TRP vanilloid (TRPV) 1, TRPV5, TRP melastatin (TRPM) 4, TRPM5, TRPM7, TRPM8, TRP polycystin 2, and the Drosophila TPR-like (TRPL) channels. This review describes mechanisms of modulation of TRP channels mainly by PIP(2) and discusses some future challenges of this fascinating topic.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, 07103, USA.
| | | |
Collapse
|
267
|
Roper SD. Signal transduction and information processing in mammalian taste buds. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2007. [PMID: 17468883 DOI: 10.1007/s00424‐007‐0247‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
268
|
Andersson DA, Nash M, Bevan S. Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 2007; 27:3347-55. [PMID: 17376995 PMCID: PMC2726637 DOI: 10.1523/jneurosci.4846-06.2007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We investigated the role of phospholipase A2 (PLA2) and the effects of PLA2 products (polyunsaturated fatty acids and lysophospholipids) on the cold-sensitive channel transient receptor potential (melastatin)-8 (TRPM8), heterologously expressed in Chinese hamster ovary cells. TRPM8 responses to cold and the agonist icilin were abolished by inhibitors of the calcium-independent (iPLA2) form of the enzyme, whereas responses to menthol were less sensitive to iPLA2 inhibition. Inhibition of PLA2 similarly abolished the cold responses of the majority of cold-sensitive dorsal root ganglion neurons. The products of PLA2 had opposing effects on TRPM8. Lysophospholipids (LPLs) (lysophosphatidylcholine, lysophosphatidylinositol, and lysophosphatidylserine) altered the thermal sensitivity of TRPM8, raising the temperature threshold toward normal body temperature. Polyunsaturated fatty acids (PUFAs), such as arachidonic acid, inhibited the activation of TRPM8 by cold, icilin, and menthol. The relative potencies of lysophospholipids and PUFAs are such that lysophosphatidylcholine is able to modulate TRPM8 in the presence of an equimolar concentration of arachidonic acid. Positive modulation by LPLs provides a potential physiological mechanism for sensitizing and activating TRPM8 in the absence of temperature variations.
Collapse
Affiliation(s)
- David A Andersson
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom.
| | | | | |
Collapse
|
269
|
Abstract
The TRP superfamily of cation channels encompasses 28 mammalian members related to the product of the Drosophila trp (transient receptor potential) gene. TRP channels have a widespread distribution in many cell types and organs and gate in response to a broad variety of physical and chemical stimuli; as such, they can be considered as ubiquitous cellular sensors. Several recent studies reported modulation of different TRP channels by phosphoinositides, in particular by phosphatidylinositol 4,5-bisphosphate (PIP(2)). In most cases, PIP(2) promotes TRP channel activation. Here we provide a brief overview of current insights and controversies about the mechanisms and structural determinants of PIP(2)-TRP channel interactions, and zoom in on the regulation of the Ca(2+)- and voltage-gated TRPM4 by phosphoinositides.
Collapse
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research, Division of Physiology, Department of Molecular Cell Biology, KU Leuven, Onderwijs & Navorsing 1, Herestraat 49 bus 802, 3000 Leuven, Belgium.
| | | |
Collapse
|
270
|
Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 2007; 104:6436-41. [PMID: 17389364 PMCID: PMC1851090 DOI: 10.1073/pnas.0611280104] [Citation(s) in RCA: 459] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP has been shown to be a taste bud afferent transmitter, but the cells responsible for, and the mechanism of, its release have not been identified. Using CHO cells expressing high-affinity neurotransmitter receptors as biosensors, we show that gustatory stimuli cause receptor cells to secrete ATP through pannexin 1 hemichannels in mouse taste buds. ATP further stimulates other taste cells to release a second transmitter, serotonin. These results provide a mechanism to link intracellular Ca(2+) release during taste transduction to secretion of afferent transmitter, ATP, from receptor cells. They also indicate a route for cell-cell communication and signal processing within the taste bud.
Collapse
Affiliation(s)
| | | | | | | | - Nirupa Chaudhari
- *Department of Physiology and Biophysics and
- Program in Neurosciences, Miller School of Medicine, University of Miami, 1600 NW 10th Street, Miami, FL 33136
| | - Stephen D. Roper
- *Department of Physiology and Biophysics and
- Program in Neurosciences, Miller School of Medicine, University of Miami, 1600 NW 10th Street, Miami, FL 33136
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
271
|
Kwon Y, Hofmann T, Montell C. Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell 2007; 25:491-503. [PMID: 17317623 PMCID: PMC1855209 DOI: 10.1016/j.molcel.2007.01.021] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 12/07/2006] [Accepted: 01/12/2007] [Indexed: 11/18/2022]
Abstract
Multiple TRP channels are regulated by phosphoinositides (PIs). However, it is not known whether PIs bind directly to TRP channels. Furthermore, the mechanisms through which PIs regulate TRP channels are obscure. To analyze the role of PI/TRP interactions, we used a biochemical approach, focusing on TRPC6. TRPC6 bound directly to PIs, and with highest potency to phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). We found that PIP(3) binding disrupted the association of calmodulin (CaM) with TRPC6. We identified the PIP(3)-binding site and found that mutations that increased or decreased the affinity of the PIP(3)/TRPC6 interaction enhanced or reduced the TRPC6-dependent current, respectively. PI-mediated disruption of CaM binding appears to be a theme that applies to other TRP channels, such as TRPV1, as well as to the voltage-gated channels KCNQ1 and Ca(v)1.2. We propose that regulation of CaM binding by PIs provides a mode for integration of channel regulation by Ca(2+) and PIs.
Collapse
Affiliation(s)
- Young Kwon
- Departments of Biological Chemistry and Neuroscience; Center for Sensory Biology; The Johns Hopkins University School of Medicine; Baltimore, MD, 21205
| | - Thomas Hofmann
- Institut für Pharmakologie und Toxikologie, Philipps- Universität Marburg, Karl-von-Frisch-Str. 1, 35033 Marburg, Germany
| | - Craig Montell
- Departments of Biological Chemistry and Neuroscience; Center for Sensory Biology; The Johns Hopkins University School of Medicine; Baltimore, MD, 21205
- Correspondence: e-mail- phone: (410) 955-1199
| |
Collapse
|
272
|
Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 2007; 87:165-217. [PMID: 17237345 DOI: 10.1152/physrev.00021.2006] [Citation(s) in RCA: 1041] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of cation channels that are mostly permeable to both monovalent and divalent cations. The 28 mammalian TRP channels can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are expressed in almost every tissue and cell type and play an important role in the regulation of various cell functions. Currently, significant scientific effort is being devoted to understanding the physiology of TRP channels and their relationship to human diseases. At this point, only a few channelopathies in which defects in TRP genes are the direct cause of cellular dysfunction have been identified. In addition, mapping of TRP genes to susceptible chromosome regions (e.g., translocations, breakpoint intervals, increased frequency of polymorphisms) has been considered suggestive of the involvement of these channels in hereditary diseases. Moreover, strong indications of the involvement of TRP channels in several diseases come from correlations between levels of channel expression and disease symptoms. Finally, TRP channels are involved in some systemic diseases due to their role as targets for irritants, inflammation products, and xenobiotic toxins. The analysis of transgenic models allows further extrapolations of TRP channel deficiency to human physiology and disease. In this review, we provide an overview of the impact of TRP channels on the pathogenesis of several diseases and identify several TRPs for which a causal pathogenic role might be anticipated.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KULeuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
273
|
Earley S, Straub SV, Brayden JE. Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 2007; 292:H2613-22. [PMID: 17293488 DOI: 10.1152/ajpheart.01286.2006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic vasoconstriction results from pressure-induced vascular smooth muscle cell depolarization and Ca(2+) influx via voltage-dependent Ca(2+) channels, a process that is significantly attenuated by inhibition of protein kinase C (PKC). It was recently reported that the melastatin transient receptor potential (TRP) channel TRPM4 is a critical mediator of pressure-induced smooth muscle depolarization and constriction in cerebral arteries. Interestingly, PKC activity enhances the activation of cloned TRPM4 channels expressed in cultured cells by increasing sensitivity of the channel to intracellular Ca(2+). Thus we postulated that PKC-dependent activation of TRPM4 might be a critical mediator of vascular myogenic tone. We report here that PKC inhibition attenuated pressure-induced constriction of cerebral vessels and that stimulation of PKC activity with phorbol 12-myristate 13-acetate (PMA) enhanced the development of myogenic tone. In freshly isolated cerebral artery myocytes, we identified a Ca(2+)-dependent, rapidly inactivating, outwardly rectifying, iberiotoxin-insensitive cation current with properties similar to those of expressed TRPM4 channels. Stimulation of PKC activity with PMA increased the intracellular Ca(2+) sensitivity of this current in vascular smooth muscle cells. To validate TRPM4 as a target of PKC regulation, antisense technology was used to suppress TRPM4 expression in isolated cerebral arteries. Under these conditions, the magnitude of TRPM4-like currents was diminished in cells from arteries treated with antisense oligonucleotides compared with controls, identifying TRPM4 as the molecular entity responsible for the PKC-activated current. Furthermore, the extent of PKC-induced smooth muscle cell depolarization and vasoconstriction was significantly decreased in arteries treated with TRPM4 antisense oligonucleotides compared with controls. We conclude that PKC-dependent regulation of TRPM4 activity contributes to the control of cerebral artery myogenic tone.
Collapse
MESH Headings
- Alkaloids/pharmacology
- Animals
- Benzophenanthridines/pharmacology
- Calcium Signaling/drug effects
- Cell Line
- Cerebral Arteries/metabolism
- Enzyme Activation/drug effects
- Enzyme Activators/pharmacology
- Humans
- In Vitro Techniques
- Ion Channel Gating/drug effects
- Male
- Mechanotransduction, Cellular/drug effects
- Membrane Potentials
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Patch-Clamp Techniques
- Pressure
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Sprague-Dawley
- TRPM Cation Channels/drug effects
- TRPM Cation Channels/genetics
- TRPM Cation Channels/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Transfection
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Scott Earley
- Department of Biomedical Sciences, Colorado State Univeristy, Fort Collins, CO USA 80523-1680, USA.
| | | | | |
Collapse
|
274
|
Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 2007; 26:657-67. [PMID: 17235286 PMCID: PMC1794384 DOI: 10.1038/sj.emboj.7601526] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/05/2006] [Indexed: 01/06/2023] Open
Abstract
In mammalian taste buds, ionotropic P2X receptors operate in gustatory nerve endings to mediate afferent inputs. Thus, ATP secretion represents a key aspect of taste transduction. Here, we characterized individual vallate taste cells electrophysiologically and assayed their secretion of ATP with a biosensor. Among electrophysiologically distinguishable taste cells, a population was found that released ATP in a manner that was Ca(2+) independent but voltage-dependent. Data from physiological and pharmacological experiments suggested that ATP was released from taste cells via specific channels, likely to be connexin or pannexin hemichannels. A small fraction of ATP-secreting taste cells responded to bitter compounds, indicating that they express taste receptors, their G-protein-coupled and downstream transduction elements. Single cell RT-PCR revealed that ATP-secreting taste cells expressed gustducin, TRPM5, PLCbeta2, multiple connexins and pannexin 1. Altogether, our data indicate that tastant-responsive taste cells release the neurotransmitter ATP via a non-exocytotic mechanism dependent upon the generation of an action potential.
Collapse
Affiliation(s)
- Roman A Romanov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Marina F Bystrova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Peihua Jiang
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY, USA
| | - Robert F Margolskee
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY, USA
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
275
|
Abstract
TRPM5 is a cation channel that it is essential for transduction of bitter, sweet and umami tastes. Signaling of these tastes involves the activation of G protein-coupled receptors that stimulate phospholipase C (PLC) beta2, leading to the breakdown of phosphatidylinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3), and release of Ca2+ from intracellular stores. TRPM5 forms a nonselective cation channel that is directly activated by Ca2+ and it is likely to be the downstream target of this signaling cascade. Therefore, study of TRPM5 promises to provide insight into fundamental mechanisms of taste transduction. This review highlights recent work on the mechanisms of activation of the TRPM5 channel. The mouse TRPM5 gene encodes a protein of 1,158 amino acids that is proposed to have six transmembrane domains and to function as a tetramer. TRPM5 is structurally most closely related to the Ca(2+)-activated channel TRPM4 and it is more distantly related to the cold-activated channel TRPM8. In patch clamp recordings, TRPM5 channels are activated by micromolar concentrations of Ca2+ and are permeable to monovalent but not divalent cations. TRPM5 channel activity is strongly regulated by voltage, phosphoinositides and temperature, and is blocked by acid pH. Study of TRPM4 and TRPM8, which show similar modes of regulation, has yielded insights into possible structural domains of TRPM5. Understanding the structural basis for TRPM5 function will ultimately allow the design of pharmaceuticals to enhance or interfere with taste sensations.
Collapse
Affiliation(s)
- E R Liman
- University of Southern California, 3641 Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
276
|
Abstract
TRPM7 is a member of the melastatin-related subfamily of TRP channels and represents a protein that contains both an ion channel and a kinase domain. The protein is ubiquitously expressed and represents the only ion channel known that is essential for cellular viability. TRPM7 is a divalent cation-selective ion channel that is permeable to Ca2+ and Mg2+, but also conducts essential metals such as Zn2+, Mn2+, and Co2+, as well as nonphysiologic or toxic metals such as Ni2+, Cd2+, Ba2+, and Sr2+. The channel is constitutively open but strongly downregulated by intracellular levels of Mg2+ and MgATP and other Mg-nucleotides. Reducing the cellular levels of these regulators leads to activation of TRPM7-mediated currents that exhibit a characteristic nonlinear current-voltage relationship with pronounced outward rectification due to divalent influx at physiologically negative voltages and monovalent outward fluxes at positive voltages. TRPM7 channel activity is also actively regulated following receptor-mediated changes in cyclic AMP (cAMP) and protein kinase A activity. This regulation as well as that by Mg-nucleotides requires a functional endogenous kinase domain. The function of the kinase domain is not completely understood, but may involve autophosphorylation of TRPM7 as well as phosphorylation of other target proteins such as annexin and myosin IIA heavy chain. Based on these properties, TRPM7 is currently believed to represent a ubiquitous homeostatic mechanism that regulates Ca2+ and Mg2+ fluxes based on the metabolic state of the cell. Physiologically, the channel may serve as a regulated transport mechanism for these ions that could affect cell adhesion, cell growth and proliferation, and even cell death under pathological stress such as anoxia.
Collapse
Affiliation(s)
- R Penner
- Laboratory of Cell and Molecular Signaling, The Queen's Medical Center, 1301 Punchbowl Street-UHT 8, Honolulu, HI 96813, USA
| | | |
Collapse
|
277
|
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) has emerged as a versatile regulator of TRP ion channels. In many cases, the regulation involves interactions of channel proteins with the lipid itself independent of its hydrolysis products. The functions of the regulation mediated by such interactions are diverse. Some TRP channels absolutely require PIP2 for functioning, while others are inhibited. A change of gating is common to all, endowing the lipid a role for modulation of the sensitivity of the channels to their physiological stimuli. The activation of TRP channels may also influence cellular PIP2 levels via the influx of Ca2+ through these channels. Depletion of PIP2 in the plasma membrane occurs upon activation of TRPV1, TRPM8, and possibly TRPM4/5 in heterologous expression systems, whereas resynthesis of PIP2 requires Ca2+ entry through the TRP/TRPL channels in Drosophila photoreceptors. These developments concerning PIP2 regulation of TRP channels reinforce the significance of the PLC signaling cascade in TRP channel function, and provide further perspectives for understanding the physiological roles of these ubiquitous and often enigmatic channels.
Collapse
Affiliation(s)
- F Qin
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
278
|
Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 2007; 104:2471-6. [PMID: 17267604 PMCID: PMC1892929 DOI: 10.1073/pnas.0610201104] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the main olfactory epithelium respond to environmental odorants. Recent studies reveal that these OSNs also respond to semiochemicals such as pheromones and that main olfactory input modulates animal reproduction, but the transduction mechanism for these chemosignals is not fully understood. Previously, we determined that responses to putative pheromones in the main olfactory system were reduced but not eliminated in mice defective for the canonical cAMP transduction pathway, and we suggested, on the basis of pharmacology, an involvement of phospholipase C. In the present study, we find that a downstream signaling component of the phospholipase C pathway, the transient receptor potential channel M5 (TRPM5), is coexpressed with the cyclic nucleotide-gated channel subunit A2 in a subset of mature OSNs. These neurons project axons primarily to the ventral olfactory bulb, where information from urine and other socially relevant signals is processed. We find that these chemosignals activate a subset of glomeruli targeted by TRPM5-expressing OSNs. Our data indicate that TRPM5-expressing OSNs that project axons to glomeruli in the ventral area of the main olfactory bulb are involved in processing of information from semiochemicals.
Collapse
Affiliation(s)
- Weihong Lin
- *Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Robert Margolskee
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Gerald Donnert
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Stefan W. Hell
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- To whom correspondence should be addressed at:
Department of Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Mail Stop 8108, Building RC1, Room L18-11119, 12801 East 17th Avenue, P.O. Box 6511, Aurora, CO 80045. E-mail:
| |
Collapse
|
279
|
Nilius B, Mahieu F, Karashima Y, Voets T. Regulation of TRP channels: a voltage–lipid connection. Biochem Soc Trans 2007; 35:105-8. [PMID: 17233613 DOI: 10.1042/bst0350105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRP (transient receptor potential) channels respond to a plethora of stimuli in a fine-tuned manner. We show here that both membrane potential and the level of PI (phosphatidylinositol) phosphates are efficient regulators of TRP channel gating. Recent work has shown that this regulation applies to several members of the TRPV (TRP vanilloid) subfamily (TRPV1 and TRPV5) and the TRPM (TRP melastatin) subfamily (TRPM4/TRPM5/TRPM7/TRPM8), whereas regulation of members of the TRPC subfamily is still disputed. The mechanism whereby PIP2 (PI 4,5-bisphosphate) acts on TRPM4, a Ca2+- and voltage-activated channel, is shown in detail in this paper: (i) PIP2 may bind directly to the channel, (ii) PIP2 induces sensitization to activation by Ca2+, and (iii) PIP2 shifts the voltage dependence towards negative and physiologically more meaningful potentials. A PIP2-binding pocket seems to comprise a part of the TRP domain and especially pleckstrin homology domains in the C-terminus.
Collapse
Affiliation(s)
- B Nilius
- Department of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
280
|
Simon SA, de Araujo IE, Gutierrez R, Nicolelis MAL. The neural mechanisms of gustation: a distributed processing code. Nat Rev Neurosci 2007; 7:890-901. [PMID: 17053812 DOI: 10.1038/nrn2006] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whenever food is placed in the mouth, taste receptors are stimulated. Simultaneously, different types of sensory fibre that monitor several food attributes such as texture, temperature and odour are activated. Here, we evaluate taste and oral somatosensory peripheral transduction mechanisms as well as the multi-sensory integrative functions of the central pathways that support the complex sensations that we usually associate with gustation. On the basis of recent experimental data, we argue that these brain circuits make use of distributed ensemble codes that represent the sensory and post-ingestive properties of tastants.
Collapse
Affiliation(s)
- Sidney A Simon
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
281
|
Langeslag M, Clark K, Moolenaar WH, van Leeuwen FN, Jalink K. Activation of TRPM7 Channels by Phospholipase C-coupled Receptor Agonists. J Biol Chem 2007; 282:232-9. [PMID: 17095511 DOI: 10.1074/jbc.m605300200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TRPM7 is a ubiquitously expressed nonspecific cation channel that has been implicated in cellular Mg(2+) homeostasis. We have recently shown that moderate overexpression of TRPM7 in neuroblastoma N1E-115 cells elevates cytosolic Ca(2+) levels and enhances cell-matrix adhesion. Furthermore, activation of TRPM7 by phospholipase C (PLC)-coupled receptor agonists caused a further increase in intracellular Ca(2+) levels and augmented cell adhesion and spreading in a Ca(2+)-dependent manner (1). Regulation of the TRPM7 channel is not well understood, although it has been reported that PIP(2) hydrolysis closes the channel. Here we have examined the regulation of TRPM7 by PLC-coupled receptor agonists such as bradykinin, lysophosphatidic acid, and thrombin. Using FRET assays for second messengers, we have shown that the TRPM7-dependent Ca(2+) increase closely correlates with activation of PLC. Under non-invasive "perforated patch clamp" conditions, we have found similar activation of TRPM7 by PLC-coupled receptor agonists. Although we could confirm that, under whole-cell conditions, the TRPM7 currents were significantly inhibited following PLC activation, this PLC-dependent inhibition was only observed when [Mg(2+)](i) was reduced below physiological levels. Thus, under physiological ionic conditions, TRPM7 currents were activated rather than inhibited by PLC-activating receptor agonists.
Collapse
Affiliation(s)
- Michiel Langeslag
- Division of Cell Biology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
282
|
Woodard GE, Sage SO, Rosado JA. Transient Receptor Potential Channels and Intracellular Signaling. ACTA ACUST UNITED AC 2007; 256:35-67. [PMID: 17241904 DOI: 10.1016/s0074-7696(07)56002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The transient receptor potential (TRP) family of ion channels is composed of more than 50 functionally versatile cation-permeant ion channels expressed in most mammalian cell types. Considerable research has been brought to bear on the members of this family, especially with regard to their possible role as store-operated calcium channels, although studies have provided evidence that TRP channels exhibit a number of regulatory and functional aspects. Endogenous and transiently expressed TRP channels can be activated by different mechanisms grouped into four main categories: receptor-operated activation, store depletion-mediated activation, ligand-induced activation, and direct activation. This article reviews the biochemical characteristics of the different members of the TRP family and summarizes their involvement in a number of physiological events ranging from sensory transduction to development, which might help in understanding the relationship between TRP channel dysfunction and the development of several diseases.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
283
|
Abstract
Ion channel functional diversity can be achieved at the structural level by means of three main mechanisms: (1) transcriptional regulation and processing of mRNA, (2) heteromerization of different pore-forming channel subunits and (3) incorporation of regulatory subunits to the functional channel complex. In this review article we will focus on one of these mechanisms, alternative pre-mRNA splicing, in the context of the TRP superfamily of cation channels. For this purpose, the basic principles governing pre-mRNA splicing will be introduced and comprehensive tables classifying only published spliced-variants of TRP channels will be presented.
Collapse
Affiliation(s)
- Esther Vázquez
- Molecular Physiology and Channelopathies Group, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, C/Dr. Aiguader 80, Barcelona 08003, Spain
| | | |
Collapse
|
284
|
Abstract
Animals sense temperature--either cold or hot--by the direct activation of temperature-sensitive members of the TRP family of ion channels, the thermo-TRPs. To date, six TRP channels--TRPV1-4, TRPM8 and TRPA1--have been reported to be directly activated by heat and to be involved in thermosensation. Temperature sensing can be modulated by phosphorylation of intracellular residues by protein kinases or by insertion of new channels into the cell membrane. In this review we provide a brief overview of the properties of thermo-TRPs, and we summarise signalling pathways involved in their regulation.
Collapse
Affiliation(s)
- Jiehong Huang
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | | | | |
Collapse
|
285
|
Benedikt J, Teisinger J, Vyklicky L, Vlachova V. Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate. J Neurochem 2006; 100:211-24. [PMID: 17074062 DOI: 10.1111/j.1471-4159.2006.04192.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ethanol has opposite effects on two members of the transient receptor potential (TRP) family of ion channels: it inhibits the cold-menthol receptor TRPM8, whereas it potentiates the activity of the heat- and capsaicin-gated vanilloid receptor TRPV1. Both thermosensitive cation channels are critically regulated by the membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)). The effects of this phospholipid on TRPM8 and TRPV1 are also functionally opposite: PIP(2) is necessary for the activation of TRPM8 but it constitutively inhibits TRPV1. This parallel led us to investigate the possible role of PIP(2) in the ethanol-induced modulation of rat TRPM8, heterologously expressed in HEK293T cells. In this study, we characterize the effects of ethanol (0.1-10%) on whole-cell currents produced by menthol and by low temperature (< 17 degrees C). We show that the inclusion of PIP(2) in the intracellular solution results in a strong reduction in the ethanol-induced inhibition of menthol-evoked responses. Conversely, intracellular dialysis with anti-PIP(2) antibody or with the PIP(2) scavenger, poly L-lysine, enhanced the ethanol-induced inhibition of TRPM8. A 20 min pre-incubation with wortmannin caused a modest decrease in inhibition produced by 1% ethanol, indicating that the ethanol-induced inhibition is not mediated by lipid kinases. These findings suggest that ethanol inhibits TRPM8 by weakening the PIP(2)-TRPM8 channel interaction; a similar mechanism may contribute to the ethanol-mediated modulation of some other PIP(2)-sensitive TRP channels.
Collapse
Affiliation(s)
- Jan Benedikt
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
286
|
Erler I, Al-Ansary DMM, Wissenbach U, Wagner TFJ, Flockerzi V, Niemeyer BA. Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem 2006; 281:38396-404. [PMID: 17065148 DOI: 10.1074/jbc.m607756200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM (transient receptor potential melastatin-like) channels are distinct from many other members of the transient receptor potential family in regard to their overall size (>1000 amino acids), the lack of N-terminal ankyrin-like repeats, and hydrophobicity predictions that may allow for more than six transmembrane regions. Common to each TRPM member is a prominent C-terminal coiled coil region. Here we have shown that TRPM8 channels assemble as multimers using the putative coiled coil region within the intracellular C terminus and that this assembly can be disturbed by a single point mutation within the coiled coil region. This mutant neither gives rise to functional channels nor do its subunits interact or form protein complexes that correspond to a multimer. However, they are still transported to the plasma membrane. Furthermore, wild-type currents can be suppressed by expressing the membrane-attached C-terminal region of TRPM8. To separate assembly from trafficking, we investigated the maturation of TRPM8 protein by identifying and mutating the relevant N-linked glycosylation site and showing that glycosylation is neither essential for multimerization nor for transport to the plasma membrane per se but appears to facilitate efficient multimerization and transport.
Collapse
Affiliation(s)
- Isabell Erler
- Department of Pharmacology and Toxicology, University of Saarland, Medical Campus, 66421 Homburg, Germany
| | | | | | | | | | | |
Collapse
|
287
|
Abstract
Transient receptor potential (TRP) channels are regulated by a wide variety of physical and chemical factors. Recently, several members of the TRP channel family were reported to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2), PIP(2)). This review will summarize the current knowledge on PIP(2) regulation of TRP channels and discuss the possibility that PIP(2) is a common regulator of mammalian TRP channels.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
288
|
Bezençon C, le Coutre J, Damak S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 2006; 32:41-9. [PMID: 17030556 DOI: 10.1093/chemse/bjl034] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The taste system, made up of taste receptor cells clustered in taste buds at the surface of the tongue and the soft palate, plays a key role in the decision to ingest or reject food and thereby is essential in protecting organisms against harmful toxins and in selecting the most appropriate nutrients. To determine if a similar chemosensory system exists in the gastrointestinal tract, we used immunohistochemistry and real-time polymerase chain reaction (PCR) to investigate which taste-signaling molecules are expressed in the intestinal mucosa. The PCR data showed that T1r1, T1r2, T1r3, alpha-gustducin, phospholipase Cbeta2 (PLCbeta2), and Trpm5 are expressed in the stomach, small intestine, and colon of mice and humans, with the exception of T1r2, which was not detected in the mouse and human stomach or in the mouse colon. Using transgenic mice expressing enhanced green fluorescent protein under the control of the Trpm5 promoter, we found colocalization of Trpm5 and alpha-gustducin in tufted cells at the surface epithelium of the colon, but these cells did not express T1r3 or PLCbeta2. In the duodenal glands, 43%, 33%, and 38% of Trpm5-expressing cells also express PLCbeta2, T1r3, or alpha-gustducin, respectively. The duodenal gland cells that coexpress PLCbeta2 and Trpm5 morphologically resemble enteroendocrine cells. We found a large degree of colocalization of Trpm5, alpha-gustducin, T1r1, and T1r3 in tufted cells of the duodenal villi, but these cells rarely expressed PLCbeta2. The data suggest that these duodenal cells are possibly involved in sensing amino acids.
Collapse
Affiliation(s)
- Carole Bezençon
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | | |
Collapse
|
289
|
Gkika D, Topala CN, Chang Q, Picard N, Thébault S, Houillier P, Hoenderop JGJ, Bindels RJM. Tissue kallikrein stimulates Ca(2+) reabsorption via PKC-dependent plasma membrane accumulation of TRPV5. EMBO J 2006; 25:4707-16. [PMID: 17006539 PMCID: PMC1618098 DOI: 10.1038/sj.emboj.7601357] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/28/2006] [Indexed: 11/08/2022] Open
Abstract
The transient receptor potential vanilloid 5 (TRPV5) channel determines urinary Ca(2+) excretion, and is therefore critical for Ca(2+) homeostasis. Interestingly, mice lacking the serine protease tissue kallikrein (TK) exhibit robust hypercalciuria comparable to the Ca(2+) leak in TRPV5 knockout mice. Here, we delineated the molecular mechanism through which TK stimulates Ca(2+) reabsorption. Using TRPV5-expressing primary cultures of renal Ca(2+)-transporting epithelial cells, we showed that TK activates Ca(2+) reabsorption. The stimulatory effect of TK was mimicked by bradykinin (BK) and could be reversed by application of JE049, a BK receptor type 2 antagonist. A cell permeable analog of DAG increased TRPV5 activity within 30 min via protein kinase C activation of the channel since mutation of TRPV5 at the putative PKC phosphorylation sites S299 and S654 prevented the stimulatory effect of TK. Cell surface labeling revealed that TK enhances the amount of wild-type TRPV5 channels, but not of the TRPV5 S299A and S654A mutants, at the plasma membrane by delaying its retrieval. In conclusion, TK stimulates Ca(2+) reabsorption via the BK-activated PLC/DAG/PKC pathway and the subsequent stabilization of the TRPV5 channel at the plasma membrane.
Collapse
Affiliation(s)
- Dimitra Gkika
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Catalin N Topala
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Qing Chang
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nicolas Picard
- INSERM, Unité 652 Institut Fédératif de Recherche 58 and René Descartes University Paris, Paris, France
| | - Stéphanie Thébault
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Pascal Houillier
- INSERM, Unité 652 Institut Fédératif de Recherche 58 and René Descartes University Paris, Paris, France
| | - Joost G J Hoenderop
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Nijmegen Medical Centre, PO Box 9101, Nijmegen 6500 HB, The Netherlands. Tel.: +31 24 3614211; Fax: +31 24 3616413; E-mail:
| |
Collapse
|
290
|
Abstract
The transient receptor potential (TRP) ion channel family was the last major ion channel family to be discovered. The prototypical member (dTRP) was identified by a forward genetic approach in Drosophila, where it represents the transduction channel in the photoreceptors, activated downstream of a Gq-coupled PLC. In the meantime 29 vertebrate TRP isoforms are recognized, distributed amongst seven subfamilies (TRPC, TRPV, TRPM, TRPML, TRPP, TRPA, TRPN). They subserve a wide range of functions throughout the body, most notably, though by no means exclusively, in sensory transduction and in vascular smooth muscle. However, their precise physiological roles and mechanism of activation and regulation are still only gradually being revealed. Most TRP channels are subject to multiple modes of regulation, but a common theme amongst the TRPC/V/M subfamilies is their regulation by lipid messengers. Genetic evidence supports an excitatory role of diacylglycerol (DAG) for the dTRP's, although curiously only DAG metabolites (PUFAs) have been found to activate the Drosophila channels. TRPC2,3,6 and 7 are widely accepted as DAG-activated channels, although TRPC3 can also be regulated via a store-operated mechanism. More recently PIP2 has been shown to be required for activity of TRPV5, TRPM4,5,7 and 8, whilst it may inhibit TRPV1 and the dTRPs. Although compelling evidence for a direct interaction of DAG with the TRPC channels is lacking, mutagenesis studies have identified putative PIP2-interacting domains in the C-termini of several TRPV and TRPM channels.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
291
|
Oike H, Wakamori M, Mori Y, Nakanishi H, Taguchi R, Misaka T, Matsumoto I, Abe K. Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1078-84. [PMID: 16935556 DOI: 10.1016/j.bbalip.2006.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 07/06/2006] [Accepted: 07/13/2006] [Indexed: 11/26/2022]
Abstract
Vertebrate sensory cells such as vomeronasal neurons and Drosophila photoreceptor cells use TRP channels to respond to exogenous stimuli. In mammalian taste cells, bitter and sweet substances as well as some amino acids are received by G protein-coupled receptors (T2Rs or T1Rs). As a result of activation of G protein and phospholipase Cbeta2, the TRPM5 channel is activated. Intracellular Ca(2+) is known to be a TRPM5 activator, but the participation of lipid activators remains unreported. To clarify the effect of arachidonic acid on TRPM5 in taste cells, we investigated the expression profile of a series of enzymes involved in controlling the intracellular free arachidonic acid level, with the result that in a subset of taste bud cells, monoglyceride lipase (MGL) and cyclooxygenase-2 (COX-2) are expressed as well as the previously reported group IIA phospholipase A(2) (PLA(2)-IIA). Double-labeling analysis revealed that MGL, COX-2 and PLA(2)-IIA are co-expressed in some cells that express TRPM5. We then investigated whether arachidonic acid activates TRPM5 via a heterologous expression system in HEK293 cells, and found that its activation occurred at 10 microM arachidonic acid. These results strongly suggest the possibility that arachidonic acid acts as a modulator of TRPM5 in taste signaling pathways.
Collapse
Affiliation(s)
- Hideaki Oike
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
292
|
Santarius M, Lee C, Anderson R. Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P2 pools. Biochem J 2006; 398:1-13. [PMID: 16856876 PMCID: PMC1525017 DOI: 10.1042/bj20060565] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation of PIPK (phosphatidylinositol phosphate kinase) and PtdIns(4,5)P2 signalling by small G-proteins and their effectors is key to many biological functions. Through selective recruitment and activation of different PIPK isoforms, small G-proteins such as Rho, Rac and Cdc42 modulate actin dynamics and cytoskeleton-dependent cellular events in response to extracellular signalling. These activities affect a number of processes, including endocytosis, bacterial penetration into host cells and cytolytic granule-mediated targeted cell killing. Small G-proteins and their modulators are also regulated by phosphoinositides through translocation and conformational changes. Arf family small G-proteins act at multiple sites as regulators of membrane trafficking and actin cytoskeletal remodelling, and regulate a feedback loop comprising phospholipase D, phosphatidic acid, PIPKs and PtdIns(4,5)P2, contributing to enhancement of PtdIns(4,5)P2-mediated cellular events and receptor signalling. Na+, Kir (inwardly rectifying K+), Ca2+ and TRP (transient receptor potential) ion channels are regulated by small G-proteins and membrane pools of PtdIns(4,5)P2. Yeast phosphatidylinositol 4-phosphate 5-kinases Mss4 and Its3 are involved in resistance against disturbance of sphingolipid biosynthesis and maintenance of cell integrity through the synthesis of PtdIns(4,5)P2 and downstream signalling through the Rom2/Rho2 and Rgf1/Rho pathways. Here, we review models for regulated intracellular targeting of PIPKs by small G-proteins and other modulators in response to extracellular signalling. We also describe the spatial and temporal cross-regulation of PIPKs and small G-proteins that is critical for a number of cellular functions.
Collapse
Affiliation(s)
- Megan Santarius
- *Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, U.S.A
| | - Chang Ho Lee
- †Department of Pharmacology, College of Medicine, Hanyang University, 17 Hengdang-dong, Seongdong-ku, Seoul, 133-791, South Korea
- To whom correspondence should be addressed (email )
| | - Richard A. Anderson
- *Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, U.S.A
- ‡Department of Pharmacology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, U.S.A
| |
Collapse
|
293
|
Brann JH, Fadool DA. Vomeronasal sensory neurons from Sternotherus odoratus (stinkpot/musk turtle) respond to chemosignals via the phospholipase C system. ACTA ACUST UNITED AC 2006; 209:1914-27. [PMID: 16651557 PMCID: PMC2779218 DOI: 10.1242/jeb.02206] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mammalian signal transduction apparatus utilized by vomeronasal sensory neurons (VSNs) in the vomeronasal organ (VNO) has been richly explored, while that of reptiles, and in particular, the stinkpot or musk turtle Sternotherus odoratus, is less understood. Given that the turtle's well-known reproductive and mating behaviors are governed by chemical communication, 247 patch-clamp recordings were made from male and female S. odoratus VSNs to study the chemosignal-activated properties as well as the second-messenger system underlying the receptor potential. Of the total neurons tested, 88 (35%) were responsive to at least one of five complex natural chemicals, some of which demonstrated a degree of sexual dimorphism in response selectivity. Most notably, male VSNs responded to male urine with solely outward currents. Ruthenium Red, an IP3 receptor (IP3R) antagonist, failed to block chemosignal-activated currents, while the phospholipase C (PLC) inhibitor, U73122, abolished the chemosignal-activated current within 2 min, implicating the PLC system in the generation of a receptor potential in the VNO of musk turtles. Dialysis of several second messengers or their analogues failed to elicit currents in the whole-cell patch-clamp configuration, negating a direct gating of the transduction channel by cyclic adenosine monophosphate (cAMP), inositol 1,4,5-trisphosphate (IP3), arachidonic acid (AA), or diacylglycerol (DAG). Reversal potential analysis of chemosignal-evoked currents demonstrated that inward currents reversed at -5.7+/-7.8 mV (mean +/- s.e.m.; N=10), while outward currents reversed at -28.2+/-2.4 mV (N=30). Measurements of conductance changes associated with outward currents indicated that the outward current represents a reduction of a steady state inward current by the closure of an ion channel when the VSN is exposed to a chemical stimulus such as male urine. Chemosignal-activated currents were significantly reduced when a peptide mimicking a domain on canonical transient receptor potential 2 (TRPC2), to which type 3 IP3 receptor (IP3R3) binds, was included in the recording pipette. Collectively these data suggest that there are multiple transduction cascades operational in the VSNs of S. odoratus, one of which may be mediated by a non-selective cation conductance that is not gated by IP3 but may be modulated by the interaction of its receptor with the TRPC2 channel.
Collapse
Affiliation(s)
- Jessica H. Brann
- The Florida State University, Department of Biological Science, Program in Neuroscience, Biomedical Research Facility, Tallahassee, FL 32306, USA
| | - Debra A. Fadool
- The Florida State University, Department of Biological Science, Program in Neuroscience, Biomedical Research Facility, Tallahassee, FL 32306, USA
- The Florida State University, Department of Biological Science, Program in Molecular Biophysics, Biomedical Research Facility, Tallahassee, FL 32306, USA
- Author for correspondence (e-mail: )
| |
Collapse
|
294
|
Rozengurt E. Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol 2006; 291:G171-7. [PMID: 16710053 DOI: 10.1152/ajpgi.00073.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Molecular sensing by gastrointestinal (GI) cells plays a critical role in the control of multiple fundamental functions in digestion and also initiates hormonal and/or neural pathways leading to the regulation of caloric intake, pancreatic insulin secretion, and metabolism. Molecular sensing in the GI tract is also responsible for the detection of ingested harmful drugs and toxins, thereby initiating responses critical for survival. The initial recognition events and mechanism(s) involved remain incompletely understood. The notion to be discussed in this article is that there are important similarities between the chemosensory machinery elucidated in specialized neuroepithelial taste receptor cells of the lingual epithelium and the molecular transducers localized recently in enteroendocrine open GI cells that sense the chemical composition of the luminal contents of the gut.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases and CURE: Digestive Diseases Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1786, USA.
| |
Collapse
|
295
|
Ohmoto M, Matsumoto I, Misaka T, Abe K. Taste Receptor Cells Express Voltage-Dependent Potassium Channels in a Cell Age-Specific Manner. Chem Senses 2006; 31:739-46. [PMID: 16873422 DOI: 10.1093/chemse/bjl016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two voltage-dependent potassium channels, KCNQ1 and KCNH2, are expressed in the taste buds and were identified as strong candidates involved in the repolarization of taste receptor cells expressing phospholipase C-beta2 and TRPM5 (beta2/M5-TRCs). In cell type-specific expression, KCNQ1 was expressed in most taste bud cells, including beta2/M5-TRCs, whereas KCNH2 was expressed in a subset of beta2/M5-TRCs with no correlation with their taste modality, such as sweet or bitter taste reception. Expression of KCNH2 was restricted to young beta2/M5-TRCs. These results suggest that taste bud cells other than beta2/M5-TRCs are depolarized by some stimuli and also that beta2/M5-TRCs have cell age-dependent molecular mechanisms of repolarization.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
296
|
Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 2006; 112:744-60. [PMID: 16842858 DOI: 10.1016/j.pharmthera.2006.05.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Smooth muscle cells (SMC) are essential components of many tissues of the body. Ion channels regulate their membrane potential, the intracellular Ca(2+) concentration ([Ca(2+)](i)) and their contractility. Among the ion channels expressed in SMC cation channels of the transient receptor potential (TRP) superfamily allow the entry of Na(+), Ca(2+) and Mg(2+). Members of the TRP superfamily are essential constituents of tonically active channels (TAC), receptor-operated channels (ROC), store-operated channels (SOC) and stretch-activated channels (SAC). This review focusses on TRP channels (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV2, TRPV4, TRPM4, TRPM7, TRPP2) whose physiological functions in SMC were dissected by downregulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models. Their possible functional role and physiological regulation as homomeric or heteromeric channels in SMC are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes involving SMC-like airway hyperresponsiveness and pulmonary hypertension. Therefore, they present important drug targets for future pharmacological interventions.
Collapse
Affiliation(s)
- Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 1, 35043 Marburg, Germany.
| | | | | | | | | |
Collapse
|
297
|
Abstract
There is a rapidly growing interest in the family of transient receptor potential (TRP) channels because TRP channels are not only important for many sensory systems, but they are crucial components of the function of neurons, epithelial, blood and smooth muscle cells. These facts make TRP channels important targets for treatment of diseases arising from the malfunction of these channels in the above cells and for treatment of inflammatory pain. TRP channels are also important for a growing number of genetic diseases arising from mutations in various types of TRP channels. The Minerva-Gentner Symposium on TRP channels and Ca(2+) signaling, which took place in Eilat, Israel (February 24-28, 2006) has clearly demonstrated that the study of TRP channels is a newly emerging field of biomedicine with prime importance. In the Eilat symposium, investigators who have contributed seminal publications and insight into the TRP field presented their most recent, and in many cases still unpublished, studies. The excellent presentations and excitement generated by them demonstrated that much progress has been achieved. Nevertheless, it was also evident that the field of TRP channels is still in its infancy in comparison to other fields of ion channels, and even the fundamental knowledge of the gating mechanism of TRP channels is still unsolved. The beautiful location of the symposium, together with informal intensive discussions among the participants, contributed to the success of this meeting.
Collapse
Affiliation(s)
- Baruch Minke
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
298
|
Lupinsky DA, Magoski NS. Ca2+-dependent regulation of a non-selective cation channel from Aplysia bag cell neurones. J Physiol 2006; 575:491-506. [PMID: 16763004 PMCID: PMC1819442 DOI: 10.1113/jphysiol.2006.105833] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca2+-activated, non-selective cation channels feature prominently in the regulation of neuronal excitability, yet the mechanism of their Ca2+ activation is poorly defined. In the bag cell neurones of Aplysia californica, opening of a voltage-gated, non-selective cation channel initiates a long-lasting afterdischarge that induces egg-laying behaviour. The present study used single-channel recording to investigate Ca2+ activation in this cation channel. Perfusion of Ca2+ onto the cytoplasmic face of channels in excised, inside-out patches yielded a Ca2+ activation EC50 of 10 microm with a Hill coefficient of 0.66. Increasing Ca2+ from 100 nm to 10 microm caused an apparent hyperpolarizing shift in the open probability (Po) versus voltage curve. Beyond 10 microm Ca2+, additional changes in voltage dependence were not evident. Perfusion of Ba2+ onto the cytoplasmic face did not alter Po; moreover, in outside-out recordings, Po was decreased by replacing external Ca2+ with Ba2+ as a charge carrier, suggesting Ca2+ influx through the channel may provide positive feedback. The lack of Ba2+ sensitivity implicated calmodulin in Ca2+ activation. Consistent with this, the application to the cytoplasmic face of calmodulin antagonists, calmidazolium and calmodulin-binding domain, reduced Po, whereas exogenous calmodulin increased Po. Overall, the data indicated that the cation channel is activated by Ca2+ through closely associated calmodulin. Bag cell neurone intracellular Ca2+ rises markedly at the onset of the afterdischarge, which would enhance channel opening and promote bursting to elicit reproduction. Cation channels are essential to nervous system function in many organisms, and closely associated calmodulin may represent a widespread mechanism for their Ca2+ sensitivity.
Collapse
Affiliation(s)
- Derek A Lupinsky
- Department of Physiology, Queen's University, 4th Floor, Botterell Hall, 18 Stuart Street, Kingston, ON, Canada, K7L 3N6
| | | |
Collapse
|
299
|
Abstract
The aim of this review is to provide a basic framework for understanding the function of mammalian transient receptor potential (TRP) channels, particularly as they have been elucidated in heterologous expression systems. Mammalian TRP channel proteins form six-transmembrane (6-TM) cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Selected functional properties of TRP channels from each subfamily are summarized in this review. Although a single defining characteristic of TRP channel function has not yet emerged, TRP channels may be generally described as calcium-permeable cation channels with polymodal activation properties. By integrating multiple concomitant stimuli and coupling their activity to downstream cellular signal amplification via calcium permeation and membrane depolarization, TRP channels appear well adapted to function in cellular sensation. Our review of recent literature implicating TRP channels in neuronal growth cone steering suggests that TRPs may function more widely in cellular guidance and chemotaxis. The TRP channel gene family and its nomenclature, the encoded proteins and alternatively spliced variants, and the rapidly expanding pharmacology of TRP channels are summarized in online supplemental material.
Collapse
Affiliation(s)
- I Scott Ramsey
- Howard Hughes Medical Institute, Cardiovascular Department, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
300
|
Chen MC, Wu SV, Reeve JR, Rozengurt E. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am J Physiol Cell Physiol 2006; 291:C726-39. [PMID: 16707556 DOI: 10.1152/ajpcell.00003.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the alpha-subunits of the G protein gustducin (Galpha(gust)) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca(2+) fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca(2+)] ([Ca(2+)](i)) in a dose- and time-dependent manner. Chelating extracellular Ca(2+) with EGTA blocked the increase in [Ca(2+)](i) induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca(2+)](i) induced by bombesin, but did not attenuate the [Ca(2+)](i) increase elicited by DB or PTC. These results indicate that Ca(2+) influx mediates the increase in [Ca(2+)](i) induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca(2+) channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca(2+)](i) elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca(2+)](i) induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca(2+)](i) and cholecystokinin release through Ca(2+) influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells.
Collapse
Affiliation(s)
- Monica C Chen
- Division of Digestive Diseases, Department of Medicine, CURE, Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles 90095-1786, USA
| | | | | | | |
Collapse
|