251
|
Katakam PVG, Tulbert CD, Snipes JA, Erdös B, Miller AW, Busija DW. Impaired insulin-induced vasodilation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species. Am J Physiol Heart Circ Physiol 2005; 288:H854-60. [PMID: 15650157 DOI: 10.1152/ajpheart.00715.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance (IR) and associated hyperinsulinemia are major risk factors for coronary artery disease. Mechanisms linking hyperinsulinemia to coronary vascular dysfunction in IR are unclear. We evaluated insulin-induced vasodilation in isolated small coronary arteries (SCA; approximately 225 microm) of Zucker obese (ZO) and control Zucker lean (ZL) rats. Vascular responses to insulin (0.1-100 ng/ml), ACh (10(-9)-10(-5) mol/l), and sodium nitroprusside (10(-8)-10(-4) mol/l) were assessed in SCA by measurement of intraluminal diameter using videomicroscopy. Insulin-induced dilation was decreased in ZO compared with ZL rats, whereas ACh and sodium nitroprusside elicited similar vasodilations. Pretreatment of arteries with SOD (200 U/ml), a scavenger of reactive oxygen species (ROS), restored the vasorelaxation response to insulin in ZO arteries, whereas ZL arteries were unaffected. Pretreatment of SCA with N-nitro-L-arginine methyl ester (100 micromol/l), an inhibitor of endothelial nitric oxide (NO) synthase (eNOS), elicited a vasoconstrictor response to insulin that was greater in ZO than in ZL rats. This vasoconstrictor response was reversed to vasodilation in ZO and ZL rats by cotreatment of the SCA with SOD or apocynin (10 micromol/l), a specific inhibitor of vascular NADPH oxidase. Lucigenin-enhanced chemiluminescence showed increased basal ROS levels as well as insulin (330 ng/ml)-stimulated production of ROS in ZO arteries that was sensitive to inhibition by apocynin. Western blot analysis revealed increased eNOS expression in ZO rats, whereas Mn SOD and Cu,Zn SOD expression were similar to ZL rats. Thus IR in ZO rats leads to decreased insulin-induced vasodilation, probably as a result of increased production of ROS by vascular NADPH oxidase, leading to decreased NO bioavailability, despite a compensatory increase in eNOS expression.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
252
|
Ding H, Triggle CR. Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes: assessing the health of the endothelium. Vasc Health Risk Manag 2005; 1:55-71. [PMID: 17319098 PMCID: PMC1993929 DOI: 10.2147/vhrm.1.1.55.58939] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetes-associated vascular complications are collectively the major clinical problems facing patients with diabetes and lead to the considerably higher mortality rate than that of the general population. People with diabetes have a much higher incidence of coronary artery disease as well as peripheral vascular diseases in part because of accelerated atherogenesis. Despite the introduction of new therapies, it has not been possible to effectively reduce the high cardiovascular morbidity and mortality associated with diabetes. Of additional concern is the recognition by the World Health Organization that we are facing a global epidemic of type 2 diabetes. Endothelial dysfunction is an early indicator of cardiovascular disease, including that seen in type 2 diabetes. A healthy endothelium, as defined in terms of the vasodilator/blood flow response to an endothelium-dependent vasodilator, is an important indicator of cardiovascular health and, therefore, a goal for corrective interventions. In this review we explore the cellular basis for endothelial dysfunction in an attempt to identify appropriate new targets and strategies for the treatment of diabetes. In addition, we consider the question of biomarkers for vascular disease and evaluate their usefulness for the early detection of and their role as contributors to vascular dysfunction.
Collapse
Affiliation(s)
- Hong Ding
- School of Medical Sciences, RMIT University, BundooraWest Campus, Bundoora,VIC, Australia
| | | |
Collapse
|
253
|
Pacher P, Obrosova IG, Mabley JG, Szabó C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem 2005; 12:267-75. [PMID: 15723618 PMCID: PMC2225483 DOI: 10.2174/0929867053363207] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Macro- and microvascular disease are the most common causes of morbidity and mortality in patients with diabetes mellitus. Diabetic cardiovascular dysfunction represents a problem of great clinical importance underlying the development of various severe complications including retinopathy, nephropathy, neuropathy and increase the risk of stroke, hypertension and myocardial infarction. Hyperglycemic episodes, which complicate even well-controlled cases of diabetes, are closely associated with increased oxidative and nitrosative stress, which can trigger the development of diabetic complications. Hyperglycemia stimulates the production of advanced glycosylated end products, activates protein kinase C, and enhances the polyol pathway leading to increased superoxide anion formation. Superoxide anion interacts with nitric oxide, forming the potent cytotoxin peroxynitrite, which attacks various biomolecules in the vascular endothelium, vascular smooth muscle and myocardium, leading to cardiovascular dysfunction. The pathogenetic role of nitrosative stress and peroxynitrite, and downstream mechanisms including poly(ADP-ribose) polymerase (PARP) activation, is not limited to the diabetes-induced cardiovascular dysfunction, but also contributes to the development and progression of diabetic nephropathy, retinopathy and neuropathy. Accordingly, neutralization of peroxynitrite or pharmacological inhibition of PARP is a promising new approach in the therapy and prevention of diabetic complications. This review focuses on the role of nitrosative stress and downstream mechanisms including activation of PARP in diabetic complications and on novel emerging therapeutical strategies offered by neutralization of peroxynitrite and inhibition of PARP.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiologic Studies, National Institutes of Health, NIAAA, Bethesda, MD 20892-9413, USA.
| | | | | | | |
Collapse
|
254
|
Grigoryants V, Hannawa KK, Pearce CG, Sinha I, Roelofs KJ, Ailawadi G, Deatrick KB, Woodrum DT, Cho BS, Henke PK, Stanley JC, Eagleton MJ, Upchurch GR. Tamoxifen up-regulates catalase production, inhibits vessel wall neutrophil infiltration, and attenuates development of experimental abdominal aortic aneurysms. J Vasc Surg 2005; 41:108-14. [PMID: 15696052 DOI: 10.1016/j.jvs.2004.09.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Selective estrogen receptor modulators (SERMs), similar to estrogens, possess vasoprotective effects by reducing release of reactive oxygen species. Little is known about the potential effects of SERMs on the pathogenesis of abdominal aortic aneurysms (AAAs). This study's objective was to investigate the growth of experimental AAAs in the setting of the SERM tamoxifen. METHODS In the first set of experiments, adult male rats underwent subcutaneous tamoxifen pellet (delivering 10 mg/kg/day) implantation (n = 14) or sham operation (n = 16). Seven days later, all animals underwent pancreatic elastase perfusion of the abdominal aorta. Aortic diameters were determined at that time, and aortas were harvested 7 and 14 days after elastase perfusion for immunohistochemistry, real-time polymerase chain reaction, Western blot analysis, and zymography. In the second set of experiments, a direct irreversible catalase inhibitor, 3-amino-1,2,4-triazole (AT), was administered intraperitoneally (1 mg/kg) daily to tamoxifen-treated (n = 6) and control rats (n = 6), starting on day 7 after elastase perfusion. Aortic diameters were measured on day 14. In a third set of experiments, rats were perfused with catalase (150 mg/kg) after the elastase (n = 5), followed by daily intravenous injections of catalase (150 mg/kg/day) administered for 10 days. A control group of rats (n = 7) received 0.9% NaCl instead of catalase. RESULTS Mean AAA diameters were approximately 50% smaller in tamoxifen-treated rats compared with sham rats 14 days after elastase perfusion (P = .002). The tamoxifen-treated group's aortas had a five-fold increase in catalase mRNA expression (P = .02) on day 7 and an eight-fold increase in catalase protein on day 14 (P = .04). Matrix metalloprotroteinase-9 activity was 2.4-fold higher (P = .01) on day 7 in the aortas of the controls compared to the tamoxifen-treated group's aortas. Tamoxifen-treated rats had approximately 40% fewer aortic polymorphonuclear neutrophils compared to controls on day 7 (P = .05). Administration of the direct catalase inhibitor AT to tamoxifen-treated rats partially reversed the aneurysm inhibitory effect of tamoxifen by nearly 30% (P = .02). In contrast, catalase administration inhibited AAA formation by 44% (P = .002). CONCLUSIONS The selective estrogen receptor modulator tamoxifen inhibits the development of AAAs in male rats in association with an up-regulation of catalase and inhibition of aortic wall neutrophil infiltration.
Collapse
Affiliation(s)
- Vladimir Grigoryants
- Jobst Vascular Research Laboratory, Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O'dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, Ogier-Denis E. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 2004; 24:10703-17. [PMID: 15572675 PMCID: PMC533993 DOI: 10.1128/mcb.24.24.10703-10717.2004] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms involved in the cytotoxic action of oxysterols in the pathogenesis of atherosclerosis still remain poorly understood. Among the major oxysterols present in oxidized low-density lipoprotein, we show here that 7-ketocholesterol (7-Kchol) induces oxidative stress and/or apoptotic events in human aortic smooth muscle cells (SMCs). This specific effect of 7-Kchol is mediated by a robust upregulation (threefold from the basal level) of Nox-4, a reactive oxygen species (ROS)-generating NAD(P)H oxidase homologue. This effect was highlighted by silencing Nox-4 expression with a specific small interfering RNA, which significantly reduced the 7-Kchol-induced production of ROS and abolished apoptotic events. Furthermore, the 7-Kchol activating pathway included an early triggering of endoplasmic reticulum stress, as assessed by transient intracellular Ca(2+) oscillations, and the induction of the expression of the cell death effector CHOP and of GRP78/Bip chaperone via the activation of IRE-1, all hallmarks of the unfolded protein response (UPR). We also showed that 7-Kchol activated the IRE-1/Jun-NH(2)-terminal kinase (JNK)/AP-1 signaling pathway to promote Nox-4 expression. Silencing of IRE-1 and JNK inhibition downregulated Nox-4 expression and subsequently prevented the UPR-dependent cell death induced by 7-Kchol. These findings demonstrate that Nox-4 plays a key role in 7-Kchol-induced SMC death, which is consistent with the hypothesis that Nox-4/oxysterols are involved in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Eric Pedruzzi
- INSERM U479, Faculté de Médecine Xavier Bichat, BP416, 75870 Paris Cedex 18, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Ergul A, Johansen JS, Strømhaug C, Harris AK, Hutchinson J, Tawfik A, Rahimi A, Rhim E, Wells B, Caldwell RW, Anstadt MP. Vascular Dysfunction of Venous Bypass Conduits Is Mediated by Reactive Oxygen Species in Diabetes: Role of Endothelin-1. J Pharmacol Exp Ther 2004; 313:70-7. [PMID: 15608082 DOI: 10.1124/jpet.104.078105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes is associated with increased risk for complications following coronary bypass grafting (CABG) surgery. Augmented superoxide (*O2*) production plays an important role in diabetic complications by causing vascular dysfunction. The potent vasoconstrictor endothelin-1 (ET-1) is also elevated in diabetes and following CABG; however, the effect of ET-1 on *O2* generation and/or vascular dysfunction in bypass conduits remain unknown. Accordingly, this study investigated basal and ET-1-stimulated *O2* production in bypass conduits and determined the effect of *O2* on conduit reactivity. Saphenous vein specimens were obtained from nondiabetic (n = 24) and diabetic (n = 24) patients undergoing CABG. Dihydroethidium staining and NAD(P)H oxidase activity assays (5380 +/- 940 versus 16,362 +/- 2550 relative light units/microg) demonstrated increased basal *O2* levels in the diabetes group (p < 0.05). Plasma ET-1 levels were associated with elevated basal *O2* levels, and treatment of conduits with exogenous ET-1 further increased *O2* production and augmented vasoconstriction. Furthermore, vascular relaxation was impaired in the diabetic group (75 versus 40%), which was restored by *O2* scavenger superoxide dismutase. These findings suggest that ET-1 causes bypass conduits dysfunction via stimulation of *O2* production in diabetes. Novel therapies that attenuate *O2* generation in bypass conduits may improve acute and late outcome of CABG in diabetic patients.
Collapse
Affiliation(s)
- Adviye Ergul
- Clinical and Experimental Therapeutics Program, Univeristy of Georgia College of Pharmacy, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Abstract
Although initially adaptive, the changes that accompany hypertension, namely, cell growth, endothelial dysfunction, and extracellular matrix deposition, eventually can become maladaptive and lead to end-organ disease such as heart failure, coronary artery disease, and renal failure. A functional imbalance between angiotensin II (Ang II) and nitric oxide (NO) plays an important pathogenetic role in hypertensive end-organ injury. NO, an endogenous vasodilator, inhibitor of vascular smooth muscle and mesangial cell growth, and natriuretic agent, is synthesized in the endothelium by a constitutive NO synthase. NO antagonizes the effects of Ang II on vascular tone, cell growth, and renal sodium excretion, and also down-regulates the synthesis of angiotensin-converting enzyme (ACE) and Ang II type 1 receptors. On the other hand, Ang II decreases NO bioavailability by promoting oxidative stress. A better understanding of the pathophysiologic mechanisms involved in hypertensive end-organ damage may aid in identifying markers of cardiovascular susceptibility to injury and in developing therapeutic interventions. We propose that those antihypertensive agents that lower blood pressure and concomitantly restore the homeostatic balance of vasoactive agents such as Ang II and NO within the vessel wall would be more effective in preventing or arresting end-organ disease.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Nephrology-Hypertension Division, Vascular Biology Institute, University of Miami School of Medicine, Veterans Affairs Medical Center, FL 33125, USA
| | | | | |
Collapse
|
258
|
Li JM, Shah AM. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1014-30. [PMID: 15475499 DOI: 10.1152/ajpregu.00124.2004] [Citation(s) in RCA: 536] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endothelial generation of reactive oxygen species (ROS) is important both physiologically and in the pathogenesis of many cardiovascular disorders. ROS generated by endothelial cells include superoxide (O2-*), hydrogen peroxide (H2O2), peroxynitrite (ONOO-*), nitric oxide (NO), and hydroxyl (*OH) radicals. The O2-* radical, the focus of the current review, may have several effects either directly or through the generation of other radicals, e.g., H2O2 and ONOO-*. These effects include 1) rapid inactivation of the potent signaling molecule and endothelium-derived relaxing factor NO, leading to endothelial dysfunction; 2) the mediation of signal transduction leading to altered gene transcription and protein and enzyme activities ("redox signaling"); and 3) oxidative damage. Multiple enzymes can generate O2-*, notably xanthine oxidase, uncoupled NO synthase, and mitochondria. Recent studies indicate that a major source of endothelial O2-* involved in redox signaling is a multicomponent phagocyte-type NADPH oxidase that is subject to specific regulation by stimuli such as oscillatory shear stress, hypoxia, angiotensin II, growth factors, cytokines, and hyperlipidemia. Depending on the level of oxidants generated and the relative balance between pro- and antioxidant pathways, ROS may be involved in cell growth, hypertrophy, apoptosis, endothelial activation, and adhesivity, for example, in diabetes, hypertension, atherosclerosis, heart failure, and ischemia-reperfusion. This article reviews our current knowledge regarding the sources of endothelial ROS generation, their regulation, their involvement in redox signaling, and the relevance of enhanced ROS generation and redox signaling to the pathophysiology of cardiovascular disorders where endothelial activation and dysfunction are implicated.
Collapse
Affiliation(s)
- Jian-Mei Li
- Department of Cardiology, GKT School of Medicine, King's College of London, SE5 9PJ, UK.
| | | |
Collapse
|
259
|
Abstract
This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
260
|
Juliet PAR, Hayashi T, Daigo S, Matsui-Hirai H, Miyazaki A, Fukatsu A, Funami J, Iguchi A, Ignarro LJ. Combined effect of testosterone and apocynin on nitric oxide and superoxide production in PMA-differentiated THP-1 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:185-91. [PMID: 15363632 DOI: 10.1016/j.bbamcr.2004.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 08/05/2004] [Indexed: 11/15/2022]
Abstract
Human inducible nitric oxide synthase (iNOS) is most readily observed in macrophages from patients with inflammatory diseases like atherosclerosis. The aim of the present study was to find out the combined effect of male sex hormone; testosterone and apocynin (NADPH oxidase inhibitor) on cytokine-induced iNOS production. THP-1 cells were differentiated into macrophages by phorbol myristate acetate (PMA). Expression of iNOS was induced by the addition of cytokine mixture? Testosterone was added at different concentrations (10(-6)-10(-12) M) with apocynin (1 mM). Testosterone (10(-8), 10(-10) M) inhibited NOx production in cytokine-added THP-1 cells which was further confirmed by quantikine assay of iNOS protein and RT-PCR analysis. Testosterone treatment decreased 40% of superoxide anion production. Testosterone showed inhibition of NADPH oxidase, especially expression of p67phox and p47phox (cytosol subunits). Addition of testosterone with apocynin further decreased the expression of p67phox and p47phox subunits of NADPH oxidase. The findings of the present study suggest that, testosterone; the male androgen plays an important role in the prevention of atherogenesis. Even though apocynin does not have any role on NO production, addition of apocynin together with testosterone is effective in suppressing iNOS activity.
Collapse
Affiliation(s)
- Packiasamy A R Juliet
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai Cho, Showa Ku, 466 8550, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Affiliation(s)
- Claudia van Dijk
- University of Colorado Health Sciences Center, Division of Renal Diseases and Hypertension, 4200 E. 9th Ave., C-281, Denver, CO 80262, USA
| | | |
Collapse
|
262
|
Veerareddy S, Cooke CLM, Baker PN, Davidge ST. Gender differences in myogenic tone in superoxide dismutase knockout mouse: animal model of oxidative stress. Am J Physiol Heart Circ Physiol 2004; 287:H40-5. [PMID: 14975934 DOI: 10.1152/ajpheart.01179.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress mediated by prooxidants has been implicated in the pathogenesis of vascular disorders. However, the effect of prooxidants on myogenic regulation of vascular function and the differential influence of gender is not known. SOD, an intracellular enzyme, restricts excess prooxidant levels and may limit vascular dysfunction. We therefore tested the effects of Cu,Zn SOD deficiency on vascular tone in both male and female SOD knockout (SOD−/−) mice. We hypothesized that myogenic tone would be enhanced in SOD−/− mice by excess prooxidants compared with wild-type control mice. Indeed, resistance-sized mesenteric arteries from SOD−/− mice exhibited enhanced myogenic tone compared with control mice. Myogenic tone was lower in female than male control mice. Interestingly, this gender effect was absent in SOD−/− mice, such that myogenic tone of mesenteric arteries from females was equated to that of arteries from males. Furthermore, the pathways that modulate myogenic tone were diverse. In both male and female control mice, inhibition of prostaglandin H synthase (PGHS) and nitric oxide synthase (NOS) pathways enhanced myogenic tone. In female SOD−/− mice, inhibition of PGHS and NOS pathways enhanced myogenic tone to a greater extent compared with control mice. Conversely, in male SOD−/− mice, NOS and PGHS inhibition did not alter tone and only inhibition of gap junctions enhanced myogenic tone. In conclusion, this study revealed enhanced myogenic tone in SOD−/− mice compared with control mice. Furthermore, Cu,Zn SOD deficiency particularly enhanced myogenic tone in female mice such that their vascular tone attained the level of male SOD−/− mice, possibly mediated by prooxidants.
Collapse
Affiliation(s)
- Sukrutha Veerareddy
- Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
263
|
Alpert E, Altman H, Totary H, Gruzman A, Barnea D, Barash V, Sasson S. 4-Hydroxy tempol-induced impairment of mitochondrial function and augmentation of glucose transport in vascular endothelial and smooth muscle cells. Biochem Pharmacol 2004; 67:1985-95. [PMID: 15130774 DOI: 10.1016/j.bcp.2004.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Accepted: 02/02/2004] [Indexed: 11/21/2022]
Abstract
The water-soluble and cell permeable nitroxide derivative 4-hydroxy tempol (TPL) has been shown to reduce or ameliorate oxidative stress-induced dysfunction and damage in vascular endothelial cells. We studied the effects of TPL on glucose transport and metabolism in bovine aortic endothelial (VEC) and smooth muscle cells (VSMC) under normal and high glucose conditions. Normally, these cells operate an autoregulatory protective mechanism that limits the rate of glucose transport under hyperglycemic conditions by decreasing the cell content of their typical glucose transporter GLUT-1 mRNA and protein as well as its plasma membrane abundance. TPL augmented the rate of glucose transport both under normo- and hyperglycemic conditions by increasing GLUT-1 mRNA and protein content and its plasma membrane abundance in both types of cells, leading to an increased flux of glucose into the cells. These effects were found related to ROS-generating and oxidant activities of TPL and to a decreased rate of mitochondrial ATP production under both normo- and hyperglycemic conditions. Since impaired mitochondrial functions, and in particular decreased rate of ATP production, augment the expression of GLUT-1 protein and glucose transport and metabolism, we suggest that the stimulatory effects of TPL in vascular cells results from its unfavorable interactions in the mitochondrion. It is therefore suggested that effects of TPL in cells of cardiovascular system be evaluated in parallel to its adverse effects on glucose and energy metabolism.
Collapse
Affiliation(s)
- Evgenia Alpert
- Department of Pharmacology, School of Pharmacy, The Hebrew University-Hadassah Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
264
|
Sun K, Kiss E, Bedke J, Stojanovic T, Li Y, Gwinner W, Gröne HJ. ROLE OF XANTHINE OXIDOREDUCTASE IN EXPERIMENTAL ACUTE RENAL-ALLOGRAFT REJECTION. Transplantation 2004; 77:1683-92. [PMID: 15201667 DOI: 10.1097/01.tp.0000131169.29553.b1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Increased oxygen radical production may not only contribute to posttransplant ischemia-reperfusion injury but also to acute rejection of renal allografts. Xanthine oxidoreductase (XOR) may constitute a relevant reactive oxygen species (ROS) source. The study was conducted (1). to determine ROS production as well as oxidant and antioxidant enzyme activities in renal grafts and (2). to modulate acute rejection by tungsten administration, a specific inhibitor of XOR. METHODS Syngraft (Lewis to Lewis, Fisher344 to Fisher344) and allograft (Fisher344 to Lewis) kidney transplantations were performed with or without tungsten administration. Analysis was performed at day 1, 3, or 9 posttransplantation. RESULTS Generation of ROS was enhanced, being 10-fold higher in renal allografts versus control kidneys at day 9 (P <0.01); this was associated with histologic signs of acute rejection. Oxygen radicals were generated to a significant degree by enhanced XOR activity, which increased more than 10-fold in renal allografts at day 9 posttransplantation; XOR protein in glomeruli and tubulointerstitium was also elevated in allo-grafts. In addition, NADPH oxidase activity increased significantly in allografts. The activity of antioxidant enzymes tended to decrease. Tungsten treatment resulted in a pronounced reduction of XOR activity and ROS production, without any effect on NADPH-oxidase activity; mononuclear cell infiltration and rejection signs were significantly ameliorated at day 9 post-transplantation by selective inhibition of XOR. CONCLUSIONS A major part of ROS generation in acute rejection was contributed by XOR. ROS are not only associated with but also contribute to acute allograft rejection because inhibition of XOR alleviated rejection phenomena.
Collapse
Affiliation(s)
- Kai Sun
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
265
|
Svatikova A, Wolk R, Wang HH, Otto ME, Bybee KA, Singh RJ, Somers VK. Circulating free nitrotyrosine in obstructive sleep apnea. Am J Physiol Regul Integr Comp Physiol 2004; 287:R284-7. [PMID: 15142836 DOI: 10.1152/ajpregu.00241.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obstructive sleep apnea (OSA) has been increasingly linked to cardiovascular disease, endothelial dysfunction, and oxidative stress, generated by repetitive nocturnal hypoxemia and reperfusion. Circulating free nitrotyrosine has been reported as a novel biomarker of nitric oxide (NO)-induced oxidative/nitrosative stress. Nitrosative stress has been implicated as a possible mechanism for development of cardiovascular diseases. We tested the hypothesis that repetitive severe hypoxemia resulting from OSA would increase NO-mediated oxidative stress. We studied 10 men with newly diagnosed moderate to severe OSA who were free of other diseases, had never been treated for OSA, and were taking no medications. Nitrotyrosine measurements, performed by liquid chromatography-tandem mass spectrometry, were made before and after untreated apneic sleep. We compared free nitrotyrosine levels in these patients with those obtained at similar times in 10 healthy male control subjects without OSA, with similar age and body mass index. Evening baseline nitrotyrosine levels were similar before sleep in the control and OSA groups [0.16 +/- 0.01 and 0.15 +/- 0.01 ng/ml, respectively, P = not significant (NS)]. Neither normal nor disturbed apneic sleep led to significant changes of plasma nitrotyrosine (morning levels: control group 0.14 +/- 0.01 ng/ml; OSA group 0.15 +/- 0.01 ng/ml, P = NS). OSA was not accompanied by increased circulating free nitrotyrosine either at baseline or after sleep. This observation suggests that repetitive hypoxemia during OSA does not result in increased NO-mediated oxidative/nitrosative stress in otherwise healthy subjects with OSA.
Collapse
Affiliation(s)
- Anna Svatikova
- Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Shah AM, Channon KM. Free radicals and redox signalling in cardiovascular disease. BRITISH HEART JOURNAL 2004; 90:486-7. [PMID: 15084535 PMCID: PMC1768240 DOI: 10.1136/hrt.2003.029389] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A M Shah
- Department of Cardiology, Guy's King's & St Thomas's School of Medicine, King's College London, UK.
| | | |
Collapse
|
267
|
Sowers JR, Frohlich ED. Insulin and insulin resistance: impact on blood pressure and cardiovascular disease. Med Clin North Am 2004; 88:63-82. [PMID: 14871051 DOI: 10.1016/s0025-7125(03)00128-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease is a major cause of mortality in individuals with diabetes. Many factors, including hypertension, contribute to the high prevalence of CVD in this population. Hypertension occurs approximately twice as frequently in patients with diabetes compared with patients without diabetes. Conversely, recent data suggest that hypertensive persons are more likely to develop diabetes than normotensive persons. In addition, up to 75% of CVD in patients with diabetes may be attributed to hypertension, leading to recommendations for more aggressive blood pressure control (ie, < 130/85 mm Hg) in persons with coexistent diabetes and hypertension. Increasing obesity further contributes to both diabetes and hypertension and significantly increases CVD morbidity and mortality. Other important risk factors for CVD in these patients include atherosclerosis, dyslipidemia, microalbuminuria, endothelial dysfunction, platelet hyperaggregability, coagulation abnormalities, and diabetic cardiomyopathy. The current knowledge regarding these risk factors has been reviewed, placing special emphasis on the metabolic syndrome, hypertension, microalbuminuria, and the role of obesity in these disorders. Although not discussed in detail, it is acknowledged that both hygienic measures (weight loss and aerobic exercise) and treatment strategies that include aspirin, statins, INS sensitizers, and antihypertensive agents that reduce renin-angiotensin-aldosterone system activity have been shown to reduce inflammation, coagulation abnormalities, endothelial function, proteinuria, and in some cases reduce CVD and renal disease progression. Additional therapeutic agents are currently being developed specifically to improve INS sensitivity and other CVD risk factors that are components of the cardiometabolic syndrome.
Collapse
Affiliation(s)
- James R Sowers
- Division of Endocrinology, Diabetes and Hypertension, SUNY Downstate and VAMC, 450 Clarkson Avenue, Box 1205, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
268
|
Downing JW, Ramasubramanian R, Johnson RF, Minzter BH, Paschall RL, Sundell HW, Engelhardt B, Lewis R. Hypothesis: selective phosphodiesterase-5 inhibition improves outcome in preeclampsia. Med Hypotheses 2004; 63:1057-64. [PMID: 15504576 DOI: 10.1016/j.mehy.2004.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 03/13/2004] [Indexed: 11/17/2022]
Abstract
The pathogenesis of preeclampsia stems from aberrant changes at the placental interface. The trophoblastic endovascular invasion of tonic spiral arteries that converts them to passive conduits falters. Uteroplacental insufficiency and fetoplacental hypoxemia result. Secondary maternal oxidative stress and an excessive inflammatory response to pregnancy generate the clinical syndrome of preeclampsia. Current treatment focuses on preventing seizures, controlling hypertension, preserving renal function and delivering the baby. We propose that the pathophysiological changes induced by preeclampsia in the placenta parallel those caused by persistent hypoxemia in the lungs at high altitude or with chronic obstructive pulmonary disease. Unrelenting pulmonary hypoxic vasoconstriction induces pulmonary hypertension and cor pulmonale. Inhalation of nitric oxide and phosphodiesterase-5 inhibitors opposes pulmonary hypoxic vasoconstriction, alleviates pulmonary hypertension and improves systemic oxygenation. Notably nitric oxide donor therapy also counters hypoxemic fetoplacental vasoconstriction, a biological response analogous to pulmonary hypoxic vasoconstriction. Fetal oxygenation and nutrition improve. Placental upstream resistance to umbilical arterial blood flow decreases. Fetal right ventricular impedance falls. Heart failure (cor placentale) is avoided. Emergency preterm delivery can be postponed. Other than low dose aspirin and antioxidants vitamins C and E no available therapy specifically targets the underlying disease profile. We hypothesize that, like nitric oxide donation, pharmacological inhibition of placental phosphodiesterase-5 will also protect the fetus but for a longer time. Biological availability of guanosine 3'5'-cyclic monophosphate is boosted due to slowed hydrolysis. Adenosine 3'5'-cyclic monphosphate levels increase in parallel. Cyclic nucleotide accumulation dilates intact tonic spiral arteries and counters hypoxemic fetoplacental vasoconstriction. Intervillous and intravillous perfusion pick up. Maternal to fetal placental circulatory matching improves. Enhanced placental oxygen uptake alleviates hypoxemic fetal stress. Appropriate fetal nutrition resumes. Cor placentale and severe intrauterine growth restriction are averted. Increased maternal cyclic nucleotide concentrations promote systemic vasodilatation so that blood pressures fall. Preemption of oxidative stress initiated by "consumptive" oxidation of nitric oxide stabilizes the vascular endothelium and corrects coagulopathy. Anti-inflammatory and immunosuppressant adenosine 3'5'-cyclic monphosphate offsets the extreme gestational inflammatory response. Cellular injury and multi-organ damage are prevented. One tablet a day of the new long acting phosphodiesterase-5 inhibitor, tadalafil (half life of 17.5 h) theoretically should allow a preterm pregnancy affected by preeclampsia to continue safely. Selective monitoring of vital organ functions guards against life-threatening maternal complications. Regular biophysical profiling warns the obstetrician of impending fetal compromise. Fetal growth and vital organ maturation can continue. As a result workloads imposed upon neonatal intensivists will lighten. Parental anxiety and concern will be allayed. The cost of treating preeclamptic mothers and their extremely low birth weight infants will decrease. Money saved by midwifery services in poorer states can be used to pay for better prenatal care. Severe preeclampsia/eclampsia will be less common. Maternal and perinatal morbidity and mortality will be reduced. Because the human immunodeficiency virus often infects individuals at a workforce eligible age, the global acquired immunodeficiency syndrome pandemic has already brought many nations to the brink of economic ruin. Potentially productive lives saved for the future will help restore them fiscally.
Collapse
Affiliation(s)
- J W Downing
- Department of Anesthesiology, Vanderbilt University School of Medicine, 1313 21st Ave. So. 504 Oxford House, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Biro S, Masuda A, Kihara T, Tei C. Clinical implications of thermal therapy in lifestyle-related diseases. Exp Biol Med (Maywood) 2003; 228:1245-9. [PMID: 14610268 DOI: 10.1177/153537020322801023] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systemic thermal therapy, such as taking a warm-water bath and sauna, induces systemic vasodilation. It was found that repeated sauna therapy (60 degrees C for 15 min) improved hemodynamic parameters, clinical symptoms, cardiac function, and vascular endothelial function in patients with congestive heart failure. Vascular endothelial function is impaired in subjects with lifestyle-related diseases, such as hypertension, hyperlipidemia, diabetes mellitus, obesity, and smoking. Sauna therapy also improved endothelial dysfunction in these subjects, suggesting a preventive role for atherosclerosis. In animal experiments, sauna therapy increases mRNA and protein levels of endothelial nitric oxide synthase (eNOS) in aortas. In normal-weight patients with appetite loss, repeated sauna therapy increased plasma ghrelin concentrations and daily caloric intake and improved feeding behavior. In obese patients, the body weight and body fat significantly decreased after 2 weeks of sauna therapy without increase of plasma ghrelin concentrations. On the basis of these data, sauna therapy may be a promising therapy for patients with lifestyle-related diseases.
Collapse
Affiliation(s)
- Sadatoshi Biro
- Department of Cardiovascular, Respiratory and Metabolic Medicine, Graduate School of Medicine, Kagoshima University, Kagoshima 890-8520, Japan
| | | | | | | |
Collapse
|
270
|
Murphey LJ, Morrow JD, Sawathiparnich P, Williams GH, Vaughan DE, Brown NJ. Acute angiotensin II increases plasma F2-isoprostanes in salt-replete human hypertensives. Free Radic Biol Med 2003; 35:711-8. [PMID: 14583335 DOI: 10.1016/s0891-5849(03)00395-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiotensin (Ang) II induces oxidative stress in vitro and in animal models of hypertension. We tested the hypothesis that Ang II increases oxidative stress in human hypertension, as assessed by plasma F2-isoprostane concentrations. Plasma F2-isoprostanes, hemodynamic and endocrine parameters were measured at baseline and following a 55 min infusion of 3 ng/kg/min Ang II in 13 normotensive and 13 hypertensive volunteers ingesting a high- (200 mmol/d) or low- (10 mmol/d) sodium diet. Mean arterial pressure (MAP) and body mass index were higher in hypertensive subjects. Ang II infusion increased MAP (p<.001) and plasma aldosterone concentrations (p<.001) and decreased plasma renin activity (p<.001) and renal plasma flow (p<.001) to a similar extent in both groups. Plasma F2-isoprostane concentrations were similar at baseline. There was no effect of Ang II on F2-isoprostane concentrations during low-salt intake in either group (normotensive 51.7 +/- 7.1 to 53.7 +/- 6.5 pg/ml and hypertensive 52.2 +/- 8.2 to 56.2 +/- 10.0 pg/ml; mean +/- SE). During high-salt intake, Ang II increased F2-isoprostane concentrations in the hypertensive group (52.3 +/- 7.2 to 63.2 +/- 10.4 pg/ml, p=0.010) but not in the normotensive group (54.2 +/- 4.4 to 58.9 +/- 6.6 pg/ml, p=0.83). Acute Ang II infusion increases oxidative stress in vivo in hypertensive humans. The renin-angiotensin system may contribute to oxidative stress in human cardiovascular disease.
Collapse
Affiliation(s)
- Laine J Murphey
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
271
|
Bilodeau JF, Hubel CA. Current concepts in the use of antioxidants for the treatment of preeclampsia. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2003; 25:742-50. [PMID: 12970809 DOI: 10.1016/s1701-2163(16)31003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Preeclampsia is a leading cause of maternal and neonatal mortality and morbidity. It is a complex syndrome of undetermined etiologic origin, usually diagnosed during the second half of pregnancy, with clinical features of hypertension, proteinuria, and edema. No cure for preeclampsia exists, except premature delivery. There is increasing evidence that oxidative stress is an important contributing factor to the pathogenesis of preeclampsia. Oxidative stress is defined as an imbalance between reactive oxygen species (ROS), such as nitric oxide (NO*), superoxide anion (O2*-), and hydrogen peroxide (H2O2), and antioxidants, favouring an overabundance of ROS. The consequence of an overproduction of ROS can be observed as increased levels of markers of oxidative stress, such as lipid peroxides. Pregnant women affected by preeclampsia may have abnormal ROS production, particularly NO* and O2*-, abnormal levels of antioxidant defences, and increased placental lipid peroxidation. Several observations suggest that decreased bioavailability of endothelium-derived NO*, due to oxidative destruction of NO* by ROS, might contribute to the impaired endothelium-dependent vasodilatory responses and multisystemic pathology of preeclampsia, a phenomenon in which antioxidant vitamins may play a beneficial role. This review focuses on the rationale for vitamins C and E supplementation toward prevention of preeclampsia, with an emphasis on the limit of our scientific knowledge concerning the deleterious oxidative events taking place in this pathology.
Collapse
Affiliation(s)
- Jean-François Bilodeau
- Department of Obstetrics and Gynecology, Laval University and CHUL Research Centre, Québec, QC, Canada
| | | |
Collapse
|
272
|
Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 2003; 24:471-8. [PMID: 12967772 DOI: 10.1016/s0165-6147(03)00233-5] [Citation(s) in RCA: 528] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of vascular NAD(P)H oxidases and the production of reactive oxygen species (ROS) by these enzyme systems are common in cardiovascular disease. In the past several years, a new family of NAD(P)H oxidase subunits, known as the non-phagocytic NAD(P)H oxidase (NOX) proteins, have been discovered and shown to play a role in vascular tissues. Recent studies make clearer the mechanisms of activation of the endothelial and vascular smooth muscle NAD(P)H oxidases. ROS produced following angiotensin II-mediated stimulation of NAD(P)H oxidases signal through pathways such as mitogen-activated protein kinases, tyrosine kinases and transcription factors, and lead to events such as inflammation, hypertrophy, remodeling and angiogenesis. Studies in mice that are deficient in p47(phox) and gp91(phox) (also known as NOX2) NAD(P)H oxidase subunits show that ROS produced by these oxidases contribute to cardiovascular diseases including atherosclerosis and hypertension. Recently, efforts have been devoted to developing inhibitors of NAD(P)H oxidases that will provide useful experimental tools and might have therapeutic potential in the treatment of human diseases.
Collapse
Affiliation(s)
- Hua Cai
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
273
|
Haloui M, Meilhac O, Jandrot-Perrus M, Michel JB. Atorvastatin limits the pro-inflammatory response of rat aortic smooth muscle cells to thrombin. Eur J Pharmacol 2003; 474:175-84. [PMID: 12921859 DOI: 10.1016/s0014-2999(03)02043-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Thrombin, a serine protease, plays an important role in the progression of atherosclerosis. How atorvastatin could limit the pro-inflammatory response to thrombin was studied in cultured rat aortic smooth muscle cells. The variations in expression of interleukin-6, heme oxygenase-1, p(22phox) and Mox-1 mRNAs were evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). Interleukin-6 release was determined using the B9 cell assay. Nuclear factor-kappa B (NF-kappaB) translocation was analysed by electrophoretic mobility shift assay (EMSA) and RhoA protein translocation by Western blot. Thrombin activated interleukin-6 secretion and mRNA expression in smooth muscle cells in a dose-dependent manner. The greatest effect on mRNA expression was obtained after 1 h of stimulation. Preincubation (72 h) of the cells with various concentrations of atorvastatin prevented this effect. Simultaneous addition of mevalonate overcame this statin effect. Thrombin was without effect on p(22phox) and heme oxygenase-1 mRNA expression but, after 3 h of stimulation, induced a two-fold increase in that of Mox-1. Preincubation with atorvastatin dose-dependently downregulated this Mox-1 mRNA expression. In addition, thrombin induced NF-kappaB translocation and membrane translocation of RhoA in smooth muscle cells which were both prevented by pre-treatment of the cells by atorvastatin. These data demonstrate the ability of atorvastatin to prevent the induction by thrombin of a pro-inflammatory phenotype in smooth muscle cells.
Collapse
|
274
|
Li JM, Shah AM. ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 2003; 14:S221-6. [PMID: 12874435 DOI: 10.1097/01.asn.0000077406.67663.e7] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress has emerged as an important pathogenic factor in the development of long-term complications, such as atherosclerosis and nephropathy, in patients with diabetes. Whereas multiple enzymes and processes can contribute to oxidative stress, recent studies indicate that a multicomponent phagocyte-type NADPH oxidase is a major source of reactive oxygen species (ROS) production in many nonphagocytic cells, including fibroblasts, vascular smooth muscle cells, endothelial cells, renal mesangial cells, and tubular cells. Under physiologic conditions, nonphagocytic NADPH oxidases have very low-level constitutive activity. However, enzyme activity can be upregulated both acutely and chronically in response to stimuli such as growth factors, cytokines, high glucose, and hyperlipidemia. ROS production by the oxidase may serve a signaling role or may lead to oxidative damage. This article reviews current knowledge of the nonphagocyte-NADPH oxidases at both structural and biochemical levels and discusses the possible role of these enzymes in the pathophysiology of diabetic nephropathy.
Collapse
Affiliation(s)
- Jian-Mei Li
- Department of Cardiology, Guy's King's & St Thomas's School of Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
275
|
Abstract
BACKGROUND A growing body of evidence has demonstrated that oxidants play a critical role in the pathogenesis of endothelial dysfunction. Pathologic processes fundamental to development and progression of endothelial dysfunction such as the oxidation of LDL, the loss of bioavailable nitric oxide, and the vascular inflammatory response are all modulated by oxidant stress. Therapeutic strategies to reverse endothelial dysfunction have begun to focus on agents with the ability to ameliorate oxidant stress. METHODS Preclinical and clinical studies evaluating the actions of antioxidants as well as traditional cardiovascular therapies in ameliorating oxidative stress and endothelial dysfunction were reviewed through the use of a MEDLINE search of English language articles published between the years of 1992 and 2002. RESULTS Antioxidants appear to be an attractive candidate therapy, yet despite compelling preclinical evidence supporting their benefits, efforts to validate the use of vitamins C and E in a clinical setting have been conflicting. In contrast, conventional cardiovascular therapies such as ACE inhibitors, statins, insulin-sensitizing agents, and estrogens have been shown to alleviate endothelial dysfunction, often independent of their effects on systemic disease processes. CONCLUSIONS These agents restore endothelial function through their salutary effects on pathologic vascular oxidative processes.
Collapse
Affiliation(s)
- Brett E Fenster
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif 94305, USA
| | | | | |
Collapse
|
276
|
Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285:R277-97. [PMID: 12855411 DOI: 10.1152/ajpregu.00758.2002] [Citation(s) in RCA: 648] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of reactive oxygen species (ROS) in vascular physiology and pathology is becoming increasingly evident. All cell types in the vascular wall produce ROS derived from superoxide-generating protein complexes similar to the leukocyte NADPH oxidase. Specific features of the vascular enzymes include constitutive and inducible activities, substrate specificity, and intracellular superoxide production. Most phagocyte enzyme subunits are found in vascular cells, including the catalytic gp91phox (aka, nox2), which was the earliest member of the newly discovered nox family. However, smooth muscle frequently expresses nox1 rather than gp91phox, and nox4 is additionally present in all cell types. In cell culture, agonists increase ROS production by activating multiple signals, including protein kinase C and Rac, and by upregulating oxidase subunits. The oxidases are also upregulated in vascular disease and are involved in the development of atherosclerosis and a significant part of angiotensin II-induced hypertension, possibly via nox1 and nox4. Likewise, enhanced vascular oxidase activity is associated with diabetes. Therefore, members of this enzyme family appear to be important in vascular biology and disease and constitute promising targets for future therapeutic interventions.
Collapse
|
277
|
Stone JR, Collins T. The role of hydrogen peroxide in endothelial proliferative responses. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2003; 9:231-8. [PMID: 12572854 DOI: 10.1080/10623320214733] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hydrogen peroxide (H2O2) is a recently recognized second messenger regulating proliferation in mammalian cells. Endothelial cells possess NADPH oxidases, which produce the H202 precursor superoxide (.O2-) in response to receptor-mediated signaling. Multiple physiologic agents have been shown to stimulate endothelial cells to produce .O2-/H2O2, including growth factors, such as vascular endothelial growth factor and transforming growth factor-beta1, and alterations in biomechanical forces, such as shear stress and cyclic strain. Downstream effects of these stimuli can often be inhibited by scavenging H2O2. Low concentrations of H2O2 stimulate proliferation or enhanced survival in a wide variety of cell types. Also, low concentrations of H2O2 stimulate endothelial migration as well as tube formation in an in vitro model of angiogenesis. Although low concentrations of H2O2 have been shown to be involved in numerous signal transduction pathways and to independently stimulate mitogenesis, there has been little information presented on precisely how mammalian cells respond biochemically to these low concentrations of H2O2. Recently a functional proteomics approach has been utilized to identify proteins responsive to low concentrations of H2O2 in human endothelial cells.
Collapse
Affiliation(s)
- James R Stone
- Department of Pathology, Children's Hospital and Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
278
|
Cooper D, Stokes KY, Tailor A, Granger DN. Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol 2003; 2:165-80. [PMID: 12665663 DOI: 10.1007/s12012-002-0002-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the capacity of the cell to detoxify these potentially injurious oxidants using endogenous antioxidant defense systems. Conditions associated with oxidative stress include ischemia/reperfusion, hypercholesterolemia, diabetes, and hypertension. The adhesion of circulating blood cells (leukocytes, platelets) to vascular endothelium is a key element of the pro-inflammatory and prothrombogenic phenotype assumed by the vasculature in these and other disease states that are associated with an oxidative stress. There is a growing body of evidence that links the blood cell endothelial cell interactions in these conditions to the enhanced production of ROS. Potential enzymatic sources of ROS within the microcirculation include xanthine oxidase, NAD(P)H oxidase, and nitric oxide synthase. ROS can promote a pro-inflammatory/prothrombogenic phenotype within the microvasculature by a variety of mechanisms, including the inactivation of nitric oxide, the activation of redox-sensitive transcription factors (e.g., nuclear factor-kappaB) that govern the expression of endothelial cell adhesion molecules (e.g., P-selectin), and the activation of enzymes (e.g., phospholipase A(2)) that produce leukocyte-stimulating inflammatory mediators (e.g., platelet-activating factor). The extensively documented ability of different oxidant-ablating interventions to attenuate blood cell endothelial cell interactions underscores the importance of ROS in mediating the dysfunctional microvascular responses to oxidative stress.
Collapse
Affiliation(s)
- Dianne Cooper
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
279
|
Jiang F, Guo Y, Salvemini D, Dusting GJ. Superoxide dismutase mimetic M40403 improves endothelial function in apolipoprotein(E)-deficient mice. Br J Pharmacol 2003; 139:1127-34. [PMID: 12871831 PMCID: PMC1573947 DOI: 10.1038/sj.bjp.0705354] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Overproduction of superoxide anions in the vascular wall contributes to endothelial dysfunction in vascular disease. A superoxide-generating reduced beta-nicotinamide adenine dinucleotide phosphate (NADPH) oxidase has recently been identified as a major source of oxidative radicals in vascular tissues. We studied the effects of a synthetic manganese-containing superoxide dismutase (SOD) mimetic, M40403, on NADPH oxidase-dependent superoxide generation and on endothelial dysfunction. 2. In rat aortic smooth muscle cells, NADPH (100 micro M) markedly stimulated superoxide production as detected by lucigenin (5 micro M)-enhanced chemiluminescence. M40403 reduced NADPH oxidase-dependent superoxide production in a concentration-dependent manner, with IC(50) being 31.6 micro M. In contrast, native Cu/Zn SOD (up to 300 U ml(-1)) had no effect. Angiotensin II (100 nM) increased the NADPH oxidase activity by 70%, and treatment with M40403 (10 micro M) reduced this increased superoxide to the control level. 3. In aortae from apolipoprotein(E)-deficient mice (apoE(0)) with hyperlipidemia and atherosclerosis, superoxide production is largely derived from NADPH oxidase. The attenuation of endothelial nitric oxide vasodilator function parallels the increase in vascular superoxide production at different stages of the disease. Acute incubation of such aortic rings with M40403 significantly suppressed superoxide production and improved endothelium-dependent vasorelaxation to a level comparable to that in wildtype control mice. 4. In summary, the cell-permeable SOD mimetic M40403 was found to reverse endothelial dysfunction in apoE(0) aorta ex vivo by decreasing NADPH oxidase-dependent superoxide levels. The advantages of synthetic SOD mimetics over the native Cu/Zn SOD enzyme, such as greater cell permeability and stability, confer significant therapeutic potential in vascular disease.
Collapse
Affiliation(s)
- Fan Jiang
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
| | - Yanan Guo
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
| | | | - Gregory J Dusting
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
- Author for correspondence:
| |
Collapse
|
280
|
Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 2003; 41:2164-71. [PMID: 12821241 DOI: 10.1016/s0735-1097(03)00471-6] [Citation(s) in RCA: 427] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study was designed to investigate whether nicotinamide adenine dinucleotide 3-phosphate (reduced form) (NADPH) oxidase is expressed in the human heart and whether it contributes to reactive oxygen species (ROS) production in heart failure. BACKGROUND A phagocyte-type NADPH oxidase complex is a major source of ROS in the vasculature and is implicated in the pathophysiology of hypertension and atherosclerosis. An increase in myocardial oxidative stress due to excessive production of ROS may be involved in the pathophysiology of congestive heart failure. Recent studies have suggested an important role for myocardial NADPH oxidase in experimental models of cardiac disease. However, it is unknown whether NADPH oxidase is expressed in the human myocardium or if it has any role in human heart failure. METHODS Myocardium of explanted nonfailing (n = 9) and end-stage failing (n = 13) hearts was studied for the expression of NADPH oxidase subunits and oxidase activity. RESULTS The NADPH oxidase subunits p22(phox), gp91(phox), p67(phox), and p47(phox) were all expressed at messenger ribonucleic acid and protein level in cardiomyocytes of both nonfailing and failing hearts. NADPH oxidase activity was significantly increased in end-stage failing versus nonfailing myocardium (5.86 +/- 0.41 vs. 3.72 +/- 0.39 arbitrary units; p < 0.01). The overall level of oxidase subunit expression was unaltered in failing compared with nonfailing hearts. However, there was increased translocation of the regulatory subunit, p47(phox), to myocyte membranes in failing myocardium. CONCLUSIONS This is the first report of the presence of NADPH oxidase in human myocardium. The increase in NADPH oxidase activity in the failing heart may be important in the pathophysiology of cardiac dysfunction by contributing to increased oxidative stress.
Collapse
Affiliation(s)
- Christophe Heymes
- Department of Cardiology, Guy's King's and St. Thomas's School of Medicine, King's College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
281
|
|
282
|
Harrison DG, Cai H, Landmesser U, Griendling KK. Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J Renin Angiotensin Aldosterone Syst 2003; 4:51-61. [PMID: 12806586 DOI: 10.3317/jraas.2003.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
An elevation in angiotensin II (Ang II) levels is a common occurrence in a diverse number of cardiovascular diseases including hypertension, hypercholesterolaemia, atherosclerotic coronary artery disease, left ventricular hypertrophy (LVH), heart failure and diabetes. An important effect of Ang II is activation of the NAD(P)H oxidase, a major source of reactive oxygen species (ROS) production by vascular cells. This increase in cellular ROS contributes to the pathogenesis of vascular disease by altering endothelial cell function, enhancing smooth muscle cell growth and proliferation, stimulating inflammatory proteins, including macrophage chemoattractant agents, growth factors and cytokines, and modulating matrix remodelling. Studies of genetically-altered mice have unequivocally shown that activation of the NAD(P)H oxidase by Ang II contributes to hypertension, LVH and atherosclerosis. Furthermore, increasing evidence suggest that the NAD(P)H oxidase contributes to human disease, suggesting that it is a potential target for future therapeutic intervention.
Collapse
Affiliation(s)
- David G Harrison
- Division of Caridology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
283
|
Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet Med 2003; 20:255-68. [PMID: 12675638 DOI: 10.1046/j.1464-5491.2003.00869.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Insulin resistance is a key component of the insulin resistance syndrome and is a crucially important metabolic abnormality in Type 2 diabetes. Insulin-resistant individuals are at significantly increased risk of cardiovascular disease, although the underlying mechanisms remain incompletely understood. The endothelium is thought to play a critical role in maintaining vascular homeostasis, a process dependent on the balance between the production of nitric oxide, superoxide and other vasoactive substances. Endothelial dysfunction has been demonstrated in insulin-resistant states in animals and humans and may represent an important early event in the development of atherosclerosis. Insulin resistance may be linked to endothelial dysfunction by a number of mechanisms, including disturbances of subcellular signalling pathways common to both insulin action and nitric oxide production. Other potential unifying links include the roles of oxidant stress, endothelin, the renin angiotensin system and the secretion of hormones and cytokines by adipose tissue. Lifestyle measures and drug therapies which improve insulin sensitivity and ameliorate endothelial dysfunction may be important in delaying the progression to overt cardiovascular disease in at risk individuals. METHODS We conducted a literature search using Medline, restricted to articles published in the English language between 1966 and the present, and reviewed bibliographies of relevant articles. An initial search strategy employing combinations of the MeSH terms: insulin resistance; endothelium, vascular; insulin; nitric oxide or hyperinsulinaemia produced over 300 references. Focused searches using keywords relevant to the molecular aspects of endothelial function and insulin signalling, and lifestyle or pharmacological interventions relevant to insulin resistance or endothelial function, produced over 300 further references. Abstracts of all references were screened before selecting those relevant to this review.
Collapse
Affiliation(s)
- S B Wheatcroft
- Department of Cardiology, Guy's, King's & St Thomas' School of Medicine, King's College, London, UK.
| | | | | | | |
Collapse
|
284
|
Rueckschloss U, Duerrschmidt N, Morawietz H. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal 2003; 5:171-80. [PMID: 12716477 DOI: 10.1089/152308603764816532] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An elevated vascular superoxide anion formation has been implicated in the initiation and progression of hypertension and atherosclerosis. In this review, we would like to discuss the generation of superoxide anions by an NADPH oxidase complex in vascular cells. Special focus is on the induction of endothelial NADPH oxidase by proatherosclerotic stimuli. We propose a proatherosclerotic vicious cycle of increased NADPH oxidase-dependent superoxide anion formation, augmented generation and uptake of oxidatively modified low-density lipoprotein, and further potentiation of oxidative stress by oxidized low-density lipoprotein itself, angiotensin II, and endothelin-1 in endothelial cells. Furthermore, novel homologues of NADPH oxidase subunit gp91(phox) are summarized. Future directions of research for a better understanding of the role of NADPH oxidase in the pathogenesis of atherosclerosis and clinical implications are discussed.
Collapse
Affiliation(s)
- Uwe Rueckschloss
- Institute of Pathophysiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 18, D-06097 Halle, Germany
| | | | | |
Collapse
|
285
|
Onozato ML, Tojo A, Goto A, Fujita T. Effect of combination therapy with dipyridamole and quinapril in diabetic nephropathy. Diabetes Res Clin Pract 2003; 59:83-92. [PMID: 12560157 DOI: 10.1016/s0168-8227(02)00154-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Dipyridamole stimulates nitric oxide action via inhibition of phosphodiesterase and also has an antioxidant effect. ACE inhibitor reduces glomerular pressure and enhances NO action via increased bradykinin. Thus, we evaluated the effect of the combination of dipyridamole and ACE inhibitor in diabetic nephropathy. METHODS Streptozotocin-induced diabetic rats at 2 weeks were treated with dipyridamole, quinapril or both. The expression of NOS and NAD(P)H oxidase p47phox was investigated using immunohistochemistry and western blot, and urinary albumin, cGMP and lipid peroxidation products (LPO) were measured at 4 weeks. RESULTS NAD(P)H oxidase and urinary LPO were significantly enhanced in diabetes, and suppressed by each treatment to the same extent. The nNOS expression in macula densa and eNOS increased significantly with combination therapy compared to quinapril treatment alone contributing to an enhanced urinary excretion of cGMP and to maintain the creatinine clearance. Increased albuminuria in diabetes was reduced more effectively with combination therapy to the control level than with single treatments. CONCLUSION Combination therapy with dipyridamole and quinapril suppressed urinary LPO via reduction of NAD(P)H oxidase increase in diabetes. The combination therapy reduced microalbuminuria to the control level and maintained creatinine clearance with enhanced nNOS and eNOS expression compared to quinapril alone.
Collapse
Affiliation(s)
- Maristela Lika Onozato
- Division of Nephrology and Endocrinology, Department of Internal Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
286
|
Zanetti M, Katusic ZS, O'Brien T. Adenoviral-mediated overexpression of catalase inhibits endothelial cell proliferation. Am J Physiol Heart Circ Physiol 2002; 283:H2620-6. [PMID: 12427601 DOI: 10.1152/ajpheart.00358.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although hydrogen peroxide (H(2)O(2)) induces proliferation of vascular smooth muscle cells, its role in endothelial cell proliferation is unclear. Our aim was to study the role of hydrogen peroxide in endothelial cell proliferation by overexpressing catalase. Human aortic endothelial cells were transduced with adenoviral vectors encoding beta-galactosidase (Adbetagal) or catalase (AdCat) or were exposed to diluent alone (control). Transgene expression was demonstrated by beta-galactosidase staining, Western analysis, and significantly increased enzyme activity in AdCat-transduced cells. Overexpression of catalase decreased DNA synthesis in AdCat compared with control and Adbetagal-transduced cells (536.8 +/- 31 vs. 1,875.1 +/- 132.9 vs. 1,347.5 +/- 93.7 dpm/well, respectively; P < 0.05 vs. control and Adbetagal). Six days after transduction with AdCat (multiplicity of infection = 50), cell numbers were significantly reduced (AdCat: 38 +/- 1.8% of cell counts in control, P < 0.05; and 45 +/- 2% of cell count in Adbetagal, P < 0.05). Incubation with aminotriazole 10 mmol/l, an inhibitor of catalase, prevented this effect. The number of apoptotic cells was increased one- and threefold 2 and 4 days, respectively, after transduction with AdCat. Exogenous administration of low concentrations of H(2)O(2) (50 microM) significantly increased cell proliferation, whereas it was inhibited by higher concentrations. These results suggest that H(2)O(2) is an important modulator of endothelial cell proliferation.
Collapse
Affiliation(s)
- Michela Zanetti
- Department of Endocrinology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
287
|
Silvestro A, Scopacasa F, Oliva G, de Cristofaro T, Iuliano L, Brevetti G. Vitamin C prevents endothelial dysfunction induced by acute exercise in patients with intermittent claudication. Atherosclerosis 2002; 165:277-83. [PMID: 12417278 DOI: 10.1016/s0021-9150(02)00235-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In patients with intermittent claudication, exercise is associated with a marked increase in oxidative stress, likely responsible for systemic endothelial perturbation. In 31 claudicant patients, we assessed the effect of vitamin C administration on the acute changes induced by maximal and submaximal exercise in endothelium-dependent, flow-mediated dilation (FMD), and in plasma levels of thiobarbituric acid-reactive substances (TBARS) and soluble intercellular adhesion molecule-1 (sICAM-1). In 16 claudicants, maximal exercise reduced FMD (from 8.5+/-0.9 to 3.7+/-0.8%, P<0.01), and increased plasma levels of TBARS (from 1.93+/-0.06 to 2.22+/-0.1 nmol/ml, P<0.02) and of sICAM-1 (from 282+/-17 to 323+/-19 ng/ml, P<0.01). In eight of these patients, randomized to vitamin C, exercise-induced changes in FMD and biochemistry were abolished. This beneficial effect was not observed in the eight patients randomized to saline. In 15 patients, who walked until the onset of claudication pain (submaximal exercise), and in ten control subjects, who performed maximal exercise, no changes were observed with exercise. Thus, in claudicants, vitamin C prevents the acute, systemic impairment in endothelial function induced by maximal exercise. This finding provides a rationale for trials investigating antioxidant therapy and cardiovascular risk in patients with intermittent claudication.
Collapse
Affiliation(s)
- Antonio Silvestro
- Department of Medicine, University of Naples "Federico II", Naples, Italy.
| | | | | | | | | | | |
Collapse
|
288
|
Hanna IR, Taniyama Y, Szöcs K, Rocic P, Griendling KK. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal 2002; 4:899-914. [PMID: 12573139 DOI: 10.1089/152308602762197443] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiotensin II has been shown to participate in both physiological processes, such as sodium and water homeostasis and vascular contraction, and pathophysiological processes, including atherosclerosis and hypertension. The effects of this molecule on vascular tissue are mediated at least in part by the modification of the redox milieu of its target cells. Angiotensin II has been shown to activate the vascular NAD(P)H oxidase(s) resulting in the production of reactive oxygen species, namely superoxide and hydrogen peroxide. In this article, we review what is known about the molecular steps that link angiotensin II and its receptor to production of reactive oxygen species and subsequent redox-mediated events, focusing on the structural and functional properties of the vascular NAD(P)H oxidases and their downstream mediators. As such, we provide a framework linking angiotensin II to crucial vascular pathologies, such as hypertension, atherosclerosis, and restenosis after angioplasty, by means of the NAD(P)H-dependent oxidases and their effector molecules.
Collapse
Affiliation(s)
- Ibrahim R Hanna
- Emory University, Division of Cardiology, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
289
|
Wratten ML, Galaris D, Tetta C, Sevanian A. Evolution of oxidative stress and inflammation during hemodialysis and their contribution to cardiovascular disease. Antioxid Redox Signal 2002; 4:935-44. [PMID: 12573142 DOI: 10.1089/152308602762197470] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
End-stage renal disease patients have increased cardiovascular morbidity and mortality. These patients have many unique risk factors, such as an accumulation of uremic toxins, electrolyte imbalances, metabolic disturbances, anemia, chronic inflammation, and thrombogenic disturbances. Oxidative stress has been implicated in many of these disturbances. This review will focus on some of the factors that may accelerate cardiovascular disease in uremic patients, with an emphasis on mechanisms and interactions of various components of oxidative stress and inflammation. Understanding the mechanisms of these pathways may be useful in developing effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Mary Lou Wratten
- Clinical and Laboratory Research Department, Bellco, Mirandola (MO) Italy.
| | | | | | | |
Collapse
|
290
|
Abstract
The endothelium, by releasing nitric oxide (NO), promotes vasodilation and inhibits inflammation, thrombosis, and vascular smooth muscle cell proliferation. These biological actions of NO make it an important component in the endogenous defense against atherosclerosis and its overt clinical complications. Loss of the functional integrity of the endothelium, as seen commonly in the milieu of cardiovascular risk factors, plays an integral role in all stages of atherosclerosis from lesion initiation to plaque rupture. A number of established techniques can assess endothelial function in human vascular beds. The outcome of endothelial testing has profound prognostic implications and is an independent predictor of atherosclerosis disease progression and cardiovascular event rates. The large clinical benefit of statins and angiotensin-converting enzyme inhibitors in patients with atherosclerosis involves favorable effects of endothelial function. Studies of endothelial function represent a prime example of a successful application of insights derived from vascular biology at the bedside.
Collapse
Affiliation(s)
- Dominik Behrendt
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
291
|
Zapolska-Downar D, Zapolski-Downar A, Naruszewicz M, Siennicka A, Krasnodebska B, Kołdziej B. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes. Life Sci 2002; 71:2897-08. [PMID: 12377270 DOI: 10.1016/s0024-3205(02)02136-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (p<0,001) while aqueous extract (50 microg/ml) by 43% (p<0,01). The ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production in monocytes by 76% (p<0,01). Effective concentrations (25-100 microg/ml) were well below the cytotoxic levels of the extracts which started at 1 mg/ml as assessed by LDH leakage and trypan blue exclusion. Penetration of some active substances into the cells was necessary for inhibition to take place as juged from the effect of preincubation time. These results demonstrate that artichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.
Collapse
Affiliation(s)
- Danuta Zapolska-Downar
- Chair of Clinical Biochemistry and Laboratory Diagnoastic, Regional Ctr. Atherosclerosis Research, Pomeranian Academy of Medicine, ul. Powstańców Wlkp. 72, PL-70-111, Szczecin, Poland
| | | | | | | | | | | |
Collapse
|
292
|
de Gasparo M, Hess P, Clozel M, Persohn E, Roman D, Germann PG, Clozel JP, Webb RL. Combination of low-dose valsartan and enalapril improves endothelial dysfunction and coronary reserve in Nomega-nitro-L-arginine methyl ester-treated spontaneously hypertensive rats. J Cardiovasc Pharmacol 2002; 40:789-800. [PMID: 12409988 DOI: 10.1097/00005344-200211000-00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Combination of nonhypotensive doses of valsartan and enalapril markedly improved survival (+87%) compared with untreated animals (37%) in spontaneously hypertensive rats (SHRs) with endothelial dysfunction. However, the combination had no effect on kidney function, and proteinuria persisted over the 12 weeks of the study. It was hypothesized that the greater survival was due to improvement in endothelial function or coronary vasculature despite blockade of nitric oxide synthase and high blood pressure. Therefore, endothelial function was evaluated in isolated aortic ring and maximal coronary blood flow was studied in isolated perfused SHR hearts (20-24 weeks) treated with -nitro-l-arginine methyl ester (L-NAME) (50 mg/l) for 4 weeks. The animals received vehicle, valsartan 5 mg/kg/d, enalapril 1 mg/kg/d, valsartan 50 mg/kg/d, or the combination valsartan 5 mg/kg/d with enalapril 1 mg/kg/d in drinking water. Normotensive Wistar-Kyoto (WKY) rats were used as control. Blood pressure was measured by telemetry. Histopathology was performed on heart, kidney (hematoxylin-eosin), and aorta (Masson trichrome). L-NAME elevated blood pressure by 50 mm Hg after vehicle (199 +/- 5 mm Hg). Valsartan 50 mg/kg/d completely abolished this increase (150 +/- 4 mm Hg) whereas the valsartan-enalapril combination synergistically decreased blood pressure (-37 mm Hg at 162 +/- 7 mm Hg) compared with monotherapy (valsartan 5 mg/kg/d -10 mm Hg; enalapril 1 mg/kg/d -15 mm Hg). All treatments improved the histopathology, most markedly in those receiving the valsartan-enalapril combination. The severity mean grades for lesions were 2.1, 1.9, 1.7, 1.1, and 0.9 in vehicle-treated SHRs, enalapril 1 mg/kg/d, valsartan 5 mg/kg/d, valsartan 5 or 50 mg/kg/d, and the valsartan-enalapril combination, respectively, compared with 0.02 in WKY rats. Acetylcholine-induced relaxation was significantly greater in treated SHRs than after vehicle (-40% at 0.1 mmol acetylcholine) but the combination induced the maximal relaxation (-85%). The ratio of maximal tension induced by serotonin in rings with and without endothelium was 1.4 and 1.3 in vehicle and valsartan 5 mg/kg/d-treated rats whereas it did not differ from 1 in WKY rats and all other treated groups. The cardiac hypertrophy (+27%) was prevented by valsartan 50 mg/kg/d and the valsartan-enalapril combination. Coronary reserve was significantly increased by valsartan 50 mg/kg/d (+85% at 7.8 +/- 0.7 ml/min/g) and the valsartan-enalapril combination (+42% at 6.0 +/- 0.4 ml/min/g) compared with 4.2 +/- 0.5 (vehicle). This was not different of 8.8 +/- 0.5 (WKYs). Despite the maintenance of a high blood pressure, low-dose valsartan-enalapril significantly improved endothelial function and histopathology and increased coronary reserve in SHRs chronically receiving L-NAME.
Collapse
|
293
|
Stokes KY, Cooper D, Tailor A, Granger DN. Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radic Biol Med 2002; 33:1026-36. [PMID: 12374614 DOI: 10.1016/s0891-5849(02)01015-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Relatively brief periods (days) of hypercholesterolemia can exert profound effects on endothelium-dependent functions of the microcirculation, including dilation of arterioles, fluid filtration across capillaries, and regulation of leukocyte recruitment in postcapillary venules. Hypercholesterolemia appears to convert the normal anti-inflammatory phenotype of the microcirculation to a proinflammatory phenotype. This phenotypic change appears to result from a decline in nitric oxide (NO) bioavailability that results from a reduction in NO biosynthesis, inactivation of NO by superoxide (O(2)(*)(-)), or both. A consequence of the hypercholesterolemia-induced microvascular responses is an enhanced vulnerability of the microcirculation to the deleterious effects of ischemia and other inflammatory conditions. Hence, therapeutic strategies that are directed towards preventing the early microcirculatory dysfunction and inflammation caused by hypercholesterolemia may prove effective in reducing the high mortality associated with ischemic tissue diseases. Agents that act to maintain the normal balance between NO and reactive oxygen species (ROS) in vascular endothelial cells may prove particularly useful in this regard.
Collapse
Affiliation(s)
- Karen Y Stokes
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
294
|
Fenster CP, Weinsier RL, Darley-Usmar VM, Patel RP. Obesity, aerobic exercise, and vascular disease: the role of oxidant stress. OBESITY RESEARCH 2002; 10:964-8. [PMID: 12226146 DOI: 10.1038/oby.2002.131] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Oxidant formation in the vasculature contributes to vascular disease and dysfunction associated with obesity. In contrast, exercise-dependent production of oxidants may stimulate adaptive responses that protect against the development of such diseases. In this review, we discuss current concepts in the biology of reactive oxygen and nitrogen species and how their function is modulated in the context of vascular disease, obesity, and aerobic exercise.
Collapse
Affiliation(s)
- Catherine P Fenster
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
295
|
|
296
|
Li N, Yi FX, Spurrier JL, Bobrowitz CA, Zou AP. Production of superoxide through NADH oxidase in thick ascending limb of Henle's loop in rat kidney. Am J Physiol Renal Physiol 2002; 282:F1111-9. [PMID: 11997328 DOI: 10.1152/ajprenal.00218.2001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently reported that NADH oxidase is one of the major enzymes responsible for superoxide (O(2)(-)*) production in the rat kidney. However, the functional significance of NADH oxidase-mediated O. production and the mechanisms regulating this enzyme activity are poorly understood. Using fluorescence microscopic imaging analysis, the present study demonstrated that thick ascending limbs of Henle's loop (TALHs) exhibited red fluorescence when incubated with dihydroethidium (DHE), suggesting that O(2)(-)* is produced in this tubular segment. Compared with other nephron segments, TALHs from both renal cortex and medulla showed the highest fluorescence intensity. By incubating cortical TALHs (cTALHs) with the substrates of NADH oxidase, xanthine oxidase, nitric oxide synthase, arachidonic acid-metabolizing enzymes, and intramitochondrial oxidases, NADH oxidase was found to be one of the most important enzymes for O(2)(-)* production in this tubular segment. The NADH oxidase inhibitor diphenyleneiodonium (DPI; 100 microM) completely blocked NADH-induced O(2)(-)* production in cTALHs. Exposure of cTALHs to low PO(2) (5-10 Torr) significantly increased O(2)(-)* production regardless of the absence or presence of NADH. Furthermore, angiotensin II (100 nM) increased NADH oxidase activity by 32%, which was completely blocked by DPI. These results suggest that NADH oxidase is a major enzyme responsible for O(2)(-)* production in the TALHs and that the production of O(2)(-)* via NADH oxidase may be regulated by renal tissue oxygenation and circulating hormones.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
297
|
Sharma R, Davidoff MN. Oxidative stress and endothelial dysfunction in heart failure. CONGESTIVE HEART FAILURE (GREENWICH, CONN.) 2002; 8:165-72. [PMID: 12045385 DOI: 10.1111/j.1527-5299.2002.00714.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The clinical syndrome of congestive heart failure (CHF) is characterized by abnormalities of left ventricular function and neurohormonal regulation, which are accompanied by effort intolerance, fluid retention, and decreased longevity. While an increased sympathetic tone and an activated renin-angiotensin system may contribute to the reduced vasodilatory capacity in patients with CHF, the important role of the endothelium in coordinating tissue perfusion has now been recognized. CHF is associated with endothelial dysfunction, as demonstrated by impaired endothelium-mediated vasodilation. Endothelial dysfunction in patients with CHF is a critical component in the systemic vasoconstriction and reduced peripheral perfusion that characterizes these patients. Endothelial regulation of vascular tone is mediated mainly by nitric oxide. Increased oxidative stress in patients with CHF is likely caused by decreased bioavailability of nitric oxide due to reduced expression of endothelial nitric oxide synthase and increased generation of reactive oxygen species. These react with nitric oxide in the setting of decreased antioxidant defenses that would normally clear these radicals, culminating in attenuated endothelium-dependent vasodilation in patients with CHF. Therapies that improve endothelial function have been shown to improve exercise tolerance and outcomes in patients with CHF. Endothelial dysfunction is thus an important target for future therapy in patients with CHF.
Collapse
Affiliation(s)
- Rajesh Sharma
- Emory University School of Medicine, Department of Medicine, Division of Cardiology, Atlanta, GA, USA
| | | |
Collapse
|
298
|
Brosnan J. Right enzyme? Wrong place? J Hypertens 2002; 20:591-2. [PMID: 11910287 DOI: 10.1097/00004872-200204000-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
299
|
Abstract
Reactive oxygen species are important modulators of cerebral vascular tone. Recent evidence, mainly from the aorta, suggests that NAD(P)H oxidase is a major source of vascular superoxide. The goal of the present study was to examine the effects of NADH and NADPH that are commonly used to stimulate NAD(P)H oxidase activity, on superoxide levels and cerebral vascular tone. Basilar arteries and cerebral arterioles from normal rabbits were studied in vitro using isolated tissue baths and in vivo using a cranial window, respectively. In the basilar artery, NADH produced a biphasic response; low concentrations (0.1-10 microM NADH) produced marked relaxation, whereas higher concentrations (30-100 microM NADH) produced contraction. Responses to NADH were significantly (P < 0.05) inhibited in the presence of 4,5-dihydroxy-1,3-benzene-disulfonic acid (Tiron; a scavenger of superoxide, 10 mM). In contrast, NADPH (10-100 microM) produced moderate contraction of the basilar artery, which was inhibited in the presence of Tiron. In vivo, NADH produced Tiron-sensitive dilatation of cerebral arterioles. NADH and NADPH dose dependently increased superoxide levels in the basilar artery, as detected by lucigenin (5 microM)-enhanced chemiluminescence, but increases in superoxide were significantly greater for NADPH than NADH. These increases in superoxide were markedly reduced in the presence of polyethylene glycol-superoxide dismutase (300 U/ml) or diphenylene iodonium [0.1 mM, an inhibitor of flavin-containing enzymes, including NAD(P)H oxidase] but were not affected by indomethacin, N(G)-nitro-L-arginine, or allopurinol. These data suggest that NADH- and NADPH-induced changes in cerebral vascular tone are mediated by superoxide, produced by a flavin-containing enzyme, most likely NAD(P)H oxidase, but not xanthine oxidase or nitric oxide synthase.
Collapse
Affiliation(s)
- Sean P Didion
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
300
|
Lenda DM, Boegehold MA. Effect of a high-salt diet on oxidant enzyme activity in skeletal muscle microcirculation. Am J Physiol Heart Circ Physiol 2002; 282:H395-402. [PMID: 11788385 DOI: 10.1152/ajpheart.0354.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased salt intake attenuates the endothelium-dependent dilation of skeletal muscle arterioles by abolishing local nitric oxide (NO) activity. There is evidence of oxidative stress in arteriolar and venular walls of rats fed a high-salt diet, and depressed arteriolar responses to acetylcholine (ACh) in these rats are reversed by scavengers of reactive oxygen species (ROS). In this study, we tested the hypothesis that this salt-dependent increase in microvascular ROS and the resulting attenuation of endothelium-dependent dilation are due to increased expression and/or activity of oxidant enzymes in the microvascular wall. Resting arteriolar and venular wall oxidant activity, as assessed by tetranitroblue tetrazolium reduction, was consistently higher in the spinotrapezius muscle of rats fed a high-salt diet (7% NaCl, HS) for 4-5 wk than in those fed a normal diet (0.45% NaCl, NS) for the same duration. Western analysis of protein from isolated microvessels showed no difference between HS and NS rats in the expression of NAD(P)H oxidase or xanthine oxidase. Inhibition of NAD(P)H oxidase and/or xanthine oxidase with diphenyleneiodonium chloride and oxypurinol, respectively, reduced resting arteriolar wall oxidant activity to normal levels in HS rats but had no effect in NS rats, suggesting that the basal activities of NAD(P)H oxidase and xanthine oxidase are increased in HS microvessels. However, inhibition of these enzymes in HS rats did not restore normal arteriolar responses to ACh, suggesting that this stimulus activates an alternate source of ROS that eliminates the role of NO in the subsequent dilation.
Collapse
Affiliation(s)
- Deborah M Lenda
- Department of Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9229, USA
| | | |
Collapse
|