251
|
Burleigh MC, Liddle L, Monaghan C, Muggeridge DJ, Sculthorpe N, Butcher JP, Henriquez FL, Allen JD, Easton C. Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic Biol Med 2018; 120:80-88. [PMID: 29550328 DOI: 10.1016/j.freeradbiomed.2018.03.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) can be generated endogenously via NO synthases or via the diet following the action of symbiotic nitrate-reducing bacteria in the oral cavity. Given the important role of NO in smooth muscle control there is an intriguing suggestion that cardiovascular homeostasis may be intertwined with the presence of these bacteria. Here, we measured the abundance of nitrate-reducing bacteria in the oral cavity of 25 healthy humans using 16S rRNA sequencing and observed, for 3.5 h, the physiological responses to dietary nitrate ingestion via measurement of blood pressure, and salivary and plasma NO metabolites. We identified 7 species of bacteria previously known to contribute to nitrate-reduction, the most prevalent of which were Prevotella melaninogenica and Veillonella dispar. Following dietary nitrate supplementation, blood pressure was reduced and salivary and plasma nitrate and nitrite increased substantially. We found that the abundance of nitrate-reducing bacteria was associated with the generation of salivary nitrite but not with any other measured variable. To examine the impact of bacterial abundance on pharmacokinetics we also categorised our participants into two groups; those with a higher abundance of nitrate reducing bacteria (> 50%), and those with a lower abundance (< 50%). Salivary nitrite production was lower in participants with lower abundance of bacteria and these individuals also exhibited slower salivary nitrite pharmacokinetics. We therefore show that the rate of nitrate to nitrite reduction in the oral cavity is associated with the abundance of nitrate-reducing bacteria. Nevertheless, higher abundance of these bacteria did not result in an exaggerated plasma nitrite response, the best known marker of NO bioavailability. These data from healthy young adults suggest that the abundance of oral nitrate-reducing bacteria does not influence the generation of NO through the diet, at least when the host has a functional minimum threshold of these microorganisms.
Collapse
Affiliation(s)
- Mia C Burleigh
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - Luke Liddle
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - Chris Monaghan
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - David J Muggeridge
- Physical Activity and Health Group, School of Psychological Science and Health, University of Strathclyde, Glasgow, UK
| | - Nicholas Sculthorpe
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - John P Butcher
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK; Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK
| | - Jason D Allen
- Department of Kinesiology, Curry School of Education, University of Virginia, Charlottesville, VA 22904, USA
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK.
| |
Collapse
|
252
|
Stefano GB, Kream RM. Alkaloids, Nitric Oxide, and Nitrite Reductases: Evolutionary Coupling as Key Regulators of Cellular Bioenergetics with Special Relevance to the Human Microbiome. Med Sci Monit 2018; 24:3153-3158. [PMID: 29756604 PMCID: PMC5978027 DOI: 10.12659/msm.909409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Typical alkaloids expressed by prokaryotic and eukaryotic cells are small heterocyclic compounds containing weakly basic nitrogen groups that are critically important for mediating essential biological activities. The prototype opiate alkaloid morphine represents a low molecular mass heterocyclic compound that has been evolutionarily fashioned from a relatively restricted role as a secreted antimicrobial phytoalexin into a broad spectrum regulatory molecule. As an essential corollary, positive evolutionary pressure has driven the development of a cognate 6-transmembrane helical (TMH) domain μ3 opiate receptor that is exclusively responsive to morphine and related opiate alkaloids. A key aspect of “morphinergic” signaling mediated by μ3 opiate receptor activation is its functional coupling with regulatory pathways utilizing constitutive nitric oxide (NO) as a signaling molecule. Importantly, tonic and phasic intra-mitochondrial NO production exerts profound inhibitory effects on the rate of electron transport, H+ pumping, and O2 consumption. Given the pluripotent role of NO as a selective, temporally-defined chemical regulator of mitochondrial respiration and cellular bioenergetics, the expansion of prokaryotic denitrification systems into mitochondrial NO/nitrite cycling complexes represents a series of evolutionary modifications of existential proportions. Presently, our short review provides selective discussion of evolutionary development of morphine, opiate alkaloids, μ3 opiate receptors, and NO systems, within the perspectives of enhanced mitochondrial function, cellular bioenergetics, and the human microbiome.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague, Prague, Czech Republic.,Center for Cognitive and Molecular Neuroscience, General University Hospital in Prague, Prague, Czech Republic
| | - Richard M Kream
- Senior Advisor, International Scientific Information, Inc., Melville, NY, USA
| |
Collapse
|
253
|
Does dietary nitrate say NO to cardiovascular ageing? Current evidence and implications for research. Proc Nutr Soc 2018; 77:112-123. [DOI: 10.1017/s0029665118000058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CVD are characterised by a multi-factorial pathogenesis. Key pathogenetic steps in the development of CVD are the occurrence of endothelial dysfunction and formation of atherosclerotic lesions. Reduced nitric oxide (NO) bioavailability is a primary event in the initiation of the atherosclerotic cascade. NO is a free radical with multiple physiological functions including the regulation of vascular resistance, coagulation, immunity and oxidative metabolism. The synthesis of NO proceeds via two distinct pathways identified as enzymatic and non-enzymatic. The former involves the conversion of arginine into NO by the NO synthases, whilst the latter comprises a two-step reducing process converting inorganic nitrate $({\rm NO}_3^ - )$ into nitrite and subsequently NO.Inorganic ${\rm NO}_3^ - $ is present in water and food, particularly beetroot and green leafy vegetables. Several investigations have therefore used the non-enzymatic NO pathway as a target for nutritional supplementation (${\rm NO}_3^ - $ salts) or dietary interventions (high-${\rm NO}_3^ - $ foods) to increase NO bioavailability and impact on cardiovascular outcomes. Some studies have reported positive effects of dietary ${\rm NO}_3^ - $ on systolic blood pressure and endothelial function in patients with hypertension and chronic heart failure. Nevertheless, results have been inconsistent and the size of the effect appears to be declining in older individuals. Additionally, there is a paucity of studies for disorders such as diabetes, CHD and chronic kidney failure. Thus, whilst dietary ${\rm NO}_3^ - $ supplementation could represent an effective and viable strategy for the primary and secondary prevention of age-related cardiovascular and metabolic diseases, more large-scale, robust studies are awaited to confirm or refute this notion.
Collapse
|
254
|
The American Heart Association Scientific Statement on salt sensitivity of blood pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J Hypertens 2018. [PMID: 28650918 DOI: 10.1097/hjh.0000000000001458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Recently, the American Heart Association (AHA) published a scientific statement on salt sensitivity of blood pressure which emphasized a decades old conceptual framework for the pathogenesis of this common disorder. Here we examine the extent to which the conceptual framework for salt sensitivity emphasized in the AHA Statement accommodates contemporary findings and views of the broader scientific community on the pathogenesis of salt sensitivity. In addition, we highlight alternative conceptual frameworks and important contemporary theories of salt sensitivity that are little discussed in the AHA Statement. We suggest that greater consideration of conceptual frameworks and theories for salt sensitivity beyond those emphasized in the AHA Statement may help to advance understanding of the pathogenesis of salt-induced increases in blood pressure and, in consequence, may lead to improved approaches to preventing and treating this common disorder.
Collapse
|
255
|
Blekkenhorst LC, Bondonno NP, Liu AH, Ward NC, Prince RL, Lewis JR, Devine A, Croft KD, Hodgson JM, Bondonno CP. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am J Clin Nutr 2018; 107:504-522. [PMID: 29635489 DOI: 10.1093/ajcn/nqx046] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Dietary nitrate is an important source of nitric oxide (NO), a molecule critical for cardiovascular health. Nitrate is sequentially reduced to NO through an enterosalivary nitrate-nitrite-NO pathway that involves the oral microbiome. This pathway is considered an important adjunct pathway to the classical l-arginine-NO synthase pathway. Objective The objective of this study was to systematically assess the evidence for dietary nitrate intake and improved cardiovascular health from both human and animal studies. Design A systematic literature search was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by using key search terms in Medline and EMBASE databases and defined inclusion and exclusion criteria. Results Thirty-seven articles on humans and 14 articles on animals were included from 12,541 screened references. Data on the effects of dietary nitrate on blood pressure, endothelial function, ischemic reperfusion injury, arterial stiffness, platelet function, and cerebral blood flow in both human and animal models were identified. Beneficial effects of nitrate on vascular health have predominantly been observed in healthy human populations, whereas effects in populations at risk of cardiovascular disease are less clear. Few studies have investigated the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. In animal studies, there is evidence that nitrate improves blood pressure and endothelial function, particularly in animal models with reduced NO bioavailability. Nitrate dose seems to be a critical factor because there is evidence of cross-talk between the 2 pathways of NO production. Conclusions Evidence for a beneficial effect in humans at risk of cardiovascular disease is limited. Furthermore, there is a need to investigate the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. Further animal studies are required to elucidate the mechanisms behind the observed effects.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Alex H Liu
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Richard L Prince
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kevin D Croft
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Catherine P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
256
|
Najjar RS, Moore CE, Montgomery BD. A defined, plant-based diet utilized in an outpatient cardiovascular clinic effectively treats hypercholesterolemia and hypertension and reduces medications. Clin Cardiol 2018; 41:307-313. [PMID: 29575002 DOI: 10.1002/clc.22863] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Accepted: 11/24/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is a major economic burden in the United States. CVD risk factors, particularly hypertension and hypercholesterolemia, are typically treated with drug therapy. Five-year efficacy of such drugs to prevent CVD is estimated to be 5%. Plant-based diets have emerged as effective mitigators of these risk factors. HYPOTHESIS The implementation of a defined, plant-based diet for 4 weeks in an outpatient clinical setting may mitigate CVD risk factors and reduce patient drug burden. METHODS Participants consumed a plant-based diet consisting of foods prepared in a defined method in accordance with a food-classification system. Participants consumed raw fruits, vegetables, seeds, and avocado. All animal products were excluded from the diet. Participant anthropometric and hemodynamic data were obtained weekly for 4 weeks. Laboratory biomarkers were collected at baseline and at 4 weeks. Medication needs were assessed weekly. Data were analyzed using paired-samples t tests and 1-way repeated-measures ANOVA. RESULTS Significant reductions were observed for systolic (-16.6 mmHg) and diastolic (-9.1 mmHg) blood pressure (P < 0.0005), serum lipids (P ≤ 0.008), and total medication usage (P < 0.0005). Other CVD risk factors, including weight (P < 0.0005), waist circumference (P < 0.0005), heart rate (P = 0.018), insulin (P < 0.0005), glycated hemoglobin (P = 0.002), and high-sensitivity C-reactive protein (P = 0.001) were also reduced. CONCLUSION A defined, plant-based diet can be used as an effective therapeutic strategy in the clinical setting to mitigate cardiovascular risk factors and reduce patient drug burden.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition and Food Sciences, Texas Woman's University, Houston, Texas
| | - Carolyn E Moore
- Department of Nutrition and Food Sciences, Texas Woman's University, Houston, Texas
| | - Baxter D Montgomery
- University of Texas Health Science Center, Houston, Texas.,Montgomery Heart & Wellness, Houston, Texas
| |
Collapse
|
257
|
Dietary nitrate lowers ambulatory blood pressure in treated, uncontrolled hypertension: a 7-d, double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 2018; 119:658-663. [DOI: 10.1017/s0007114518000144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractDietary nitrate has been shown to increase nitrate/nitrite levels and decrease blood pressure (BP) in multiple populations. There are few reports among hypertensives and these reports have provided conflicting evidence. We aimed to assess the effect of daily nitrate compared with placebo in subjects with uncontrolled hypertension (HTN). On day 0, hypertensives wore an ambulatory BP monitor (ABPM) for 24 h and blood was taken. Subjects were then randomised to 7-d nitrate-rich beetroot juice (NO3−) (12·9 mmol nitrate) followed by 7-d nitrate-depleted beetroot juice (0·5 mmol nitrate) or vice versa. ABPM and blood were assessed before and after both conditions. In all, twenty subjects with treated yet uncontrolled HTN entered and completed the trial (mean age=62·5 years, mean BMI=30·7 kg/m2). Baseline BP was 137/80 (sd7/7) mmHg. Dietary nitrate was well tolerated and resulted in significantly increased plasma nitrite (P=0·0004) and decreased 24-h systolic BP and diastolic BP compared with placebo (−8 mmHg;P=0·012 and −4 mmHg;P=0·018, respectively). Our results support the existing data suggesting an anti-hypertensive effect of dietary nitrate in treated yet uncontrolled hypertensives. Targeted dietary strategies appear promising contributors to BP control.
Collapse
|
258
|
Waldron M, Waldron L, Lawlor C, Gray A, Highton J. Beetroot supplementation improves the physiological responses to incline walking. Eur J Appl Physiol 2018; 118:1131-1141. [PMID: 29546639 DOI: 10.1007/s00421-018-3843-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE We investigated the effects of an acute 24-h nitrate-rich beetroot juice supplement (BR) on the energy cost, exercise efficiency and blood pressure responses to intermittent walking at different gradients. METHODS In a double-blind, cross-over design, eight participants were provided with a total of 350 ml of nitrate-rich (~ 20.5 mmol nitrate) BR or placebo (PLA) across 24 h before completing intermittent walking at 3 km/h on treadmill at gradients of 1, 5, 10, 15 and 20%. RESULTS Resting mean arterial pressure (MAP) was ~ 4.1% lower after BR (93 vs. 89 mmHg; P = 0.001), as well as during exercise (102 vs. 99 mmHg; P = 0.011) and recovery (97 vs. 94 mmHg; P = 0.001). Exercising (1227 vs. 1129 ml/min P < 0.001) and end-stage (1404 vs. 1249 ml/min; P = 0.002) oxygen uptake ([Formula: see text]O2) was lower in BR compared to PLA, which was accompanied by an average reduction in phase II [Formula: see text]O2 amplitude (1067 vs. 940 ml/min; P = 0.025). Similarly, recovery [Formula: see text]O2 (509 vs. 458 ml/min; P = 0.001) was lower in BR. Whole blood potassium concentration increased from pre-post exercise in PLA (4.1 ± 0.3 vs. 4.5 ± 0.3 mmol/L; P = 0.013) but not BR (4.1 ± 0.31 vs. 4.3 ± 0.2 mmol/L; P = 0.188). CONCLUSIONS Energy cost of exercise, recovery of [Formula: see text]O2, MAP and blood markers were ameliorated after BR. Previously-reported mechanisms explain these findings, which are more noticeable during less-efficient walking at steep gradients (15-20%). These findings have practical implications for hill-walkers.
Collapse
Affiliation(s)
- Mark Waldron
- School of Sport, Health and Applied Science, St Mary's University, Waldegrave Road, Twickenham, London, TW1 4SX, UK. .,School of Science and Technology, University of New England, Armidale, NSW, 2350, Australia.
| | - Luke Waldron
- Medical Education Centre, Royal Cornwall Hospitals NHS Trust, Truro, TR1 3LJ, UK
| | - Craig Lawlor
- School of Science and Technology, University of New England, Armidale, NSW, 2350, Australia
| | - Adrian Gray
- School of Science and Technology, University of New England, Armidale, NSW, 2350, Australia
| | - Jamie Highton
- Department of Sports and Exercise Sciences, University of Chester, Parkgate Road, Chester, CH14BJ, UK
| |
Collapse
|
259
|
McDonagh STJ, Wylie LJ, Thompson C, Vanhatalo A, Jones AM. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. Eur J Sport Sci 2018. [PMID: 29529987 DOI: 10.1080/17461391.2018.1445298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and beetroot, have been variously shown to promote nitric oxide bioavailability, reduce systemic blood pressure, enhance tissue blood flow, modulate muscle O2 utilisation and improve exercise tolerance both in normoxia and in hypoxia, as is commonly observed in a number of disease states. NO3- ingestion may, therefore, act as a natural means for augmenting performance and attenuating complications associated with limited O2 availability or transport, hypertension and the metabolic syndrome. Recent studies indicate that dietary NO3- might also augment intrinsic skeletal muscle contractility and improve the speed and power of muscle contraction. Moreover, several investigations suggest that NO3- supplementation may improve aspects of cognitive performance both at rest and during exercise. Collectively, these observations position NO3- as more than a putative ergogenic aid and suggest that increasing natural dietary NO3- intake may act as a prophylactic in countering the predations of senescence and certain cardiovascular-metabolic diseases.
Collapse
Affiliation(s)
- Sinead T J McDonagh
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Lee J Wylie
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Christopher Thompson
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Anni Vanhatalo
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Andrew M Jones
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| |
Collapse
|
260
|
Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan. J Cardiol 2018; 72:42-49. [PMID: 29544657 DOI: 10.1016/j.jjcc.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
High salt intake is one of the major dietary determinants of hypertension and cardiovascular disease in Japan and throughout the world. Although dietary salt restriction may be of clinical benefit in salt-sensitive individuals, many individuals may not wish, or be able to, reduce their intake of salt. Thus, identification of functional foods that can help protect against mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable medical and scientific interest. According to the "vasodysfunction" theory of salt-induced hypertension, the hemodynamic abnormality initiating salt-induced increases in blood pressure usually involves subnormal vasodilation and abnormally increased vascular resistance in response to increased salt intake. Because disturbances in nitric oxide activity can contribute to subnormal vasodilator responses to increased salt intake that often mediate blood pressure salt sensitivity, increased intake of functional foods that support nitric oxide activity may help to reduce the risk for salt-induced hypertension. Mounting evidence indicates that increased consumption of traditional Japanese vegetables and other vegetables with high nitrate content such as table beets and kale can promote the formation of nitric oxide through an endothelial independent pathway that involves reduction of dietary nitrate to nitrite and nitric oxide. In addition, recent studies in animal models have demonstrated that modest increases in nitrate intake can protect against the initiation of salt-induced hypertension. These observations are: (1) consistent with the view that increased intake of many traditional Japanese vegetables and other nitrate rich vegetables, and of functional foods derived from such vegetables, may help maintain healthy blood pressure despite a high salt diet; (2) support government recommendations to increase vegetable intake in the Japanese population.
Collapse
|
261
|
Monaco CMF, Miotto PM, Huber JS, van Loon LJC, Simpson JA, Holloway GP. Sodium nitrate supplementation alters mitochondrial H 2O 2 emission but does not improve mitochondrial oxidative metabolism in the heart of healthy rats. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513565 DOI: 10.1152/ajpregu.00275.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supplementation with dietary inorganic nitrate ([Formula: see text]) is increasingly recognized to confer cardioprotective effects in both healthy and clinical populations. While the mechanism(s) remains ambiguous, in skeletal muscle oral consumption of NaNO3 has been shown to improve mitochondrial efficiency. Whether NaNO3 has similar effects on mitochondria within the heart is unknown. Therefore, we comprehensively investigated the effect of NaNO3 supplementation on in vivo left ventricular (LV) function and mitochondrial bioenergetics. Healthy male Sprague-Dawley rats were supplemented with NaNO3 (1 g/l) in their drinking water for 7 days. Echocardiography and invasive hemodynamics were used to assess LV morphology and function. Blood pressure (BP) was measured by tail-cuff and invasive hemodynamics. Mitochondrial bioenergetics were measured in LV isolated mitochondria and permeabilized muscle fibers by high-resolution respirometry and fluorometry. Nitrate decreased ( P < 0.05) BP, LV end-diastolic pressure, and maximal LV pressure. Rates of LV relaxation (when normalized to mean arterial pressure) tended ( P = 0.13) to be higher with nitrate supplementation. However, nitrate did not alter LV mitochondrial respiration, coupling efficiency, or oxygen affinity in isolated mitochondria or permeabilized muscle fibers. In contrast, nitrate increased ( P < 0.05) the propensity for mitochondrial H2O2 emission in the absence of changes in cellular redox state and decreased the sensitivity of mitochondria to ADP (apparent Km). These results add to the therapeutic potential of nitrate supplementation in cardiovascular diseases and suggest that nitrate may confer these beneficial effects via mitochondrial redox signaling.
Collapse
Affiliation(s)
- Cynthia M F Monaco
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Luc J C van Loon
- Department of Human Movement Sciences, Nutrition, and Toxicology, Research Institute Maastricht (NUTRIM), Maastricht University , Maastricht , The Netherlands
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| |
Collapse
|
262
|
Münzel T, Daiber A. Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors? Vascul Pharmacol 2018; 102:1-10. [DOI: 10.1016/j.vph.2017.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/08/2023]
|
263
|
Rosenbæk JB, Hornstrup BG, Jørgensen AN, Mortensen J, Pedersen EB, Bech JN. Effects of sodium nitrite on renal function and blood pressure in hypertensive vs. healthy study participants: a randomized, placebo-controlled, crossover study. J Hypertens 2018; 36:666-679. [PMID: 29065098 DOI: 10.1097/hjh.0000000000001598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Nitric oxide is a key player in regulating vascular tone. Impaired endothelial nitric oxide synthesis plays an important role in hypertension. Replenishing of nitric oxide by sodium nitrite (NaNO2) has not been investigated in patients with essential hypertension (EHT). We aimed to determine the effects of NaNO2 on blood pressure (BP) and renal sodium and water regulation in patients with EHT compared with healthy control study participants (CON). METHODS In a placebo-controlled, crossover study, we infused 240 μg NaNO2/kg/h or isotonic saline for 2 h in 14 EHT and 14 CON. During infusion, we measured changes in brachial and central BP, free water clearance, fractional sodium excretion, and urinary excretion rate of γ-subunit of the epithelial sodium channel (U-ENaCγ), and aquaporin-2 (U-AQP2). RESULTS Placebo-adjusted brachial SBP decreased 18 mmHg (P < 0.001) during NaNO2 infusion in EHT and 12 mmHg (P < 0.001) in CON (Pbetween = 0.024). Brachial DBP and central SBP decreased equally in both groups during NaNO2. In EHT, we found a decrease in U-ENaCγ during NaNO2 infusion. In both groups, we observed a decrease in fractional sodium excretion, free water clearance, and U-AQP2 during NaNO2 infusion. CONCLUSION This study demonstrated an augmented BP-lowering effect of NaNO2 in patients with EHT. We observed an antinatriuretic and antidiuretic effect of NaNO2 in both groups, and a decrease in U-ENaCγ, solely in EHT. In both groups, we detected a nonvasopressin mediated decrease in U-AQP2, which is most likely compensatory to the decline in diuresis.
Collapse
Affiliation(s)
- Jeppe B Rosenbæk
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| | - Bodil G Hornstrup
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| | - Andreas N Jørgensen
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| | - Jesper Mortensen
- Department of Nuclear Medicine, Regional Hospital West Jutland, Denmark
| | - Erling B Pedersen
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| | - Jesper N Bech
- University Clinic in Nephrology and Hypertension, Regional Hospital West Jutland and Aarhus University
| |
Collapse
|
264
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
265
|
Bahadoran Z, Carlström M, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Total antioxidant capacity of the diet modulates the association between habitual nitrate intake and cardiovascular events: A longitudinal follow-up in Tehran Lipid and Glucose Study. Nutr Metab (Lond) 2018; 15:19. [PMID: 29492096 PMCID: PMC5828061 DOI: 10.1186/s12986-018-0254-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Considering the lack of data on the association between habitual dietary intakes of nitrate (NO3−) and nitrite (NO2−) and cardiovascular events, we assessed possible effects of dietary NO3− and NO2−, in the context of total antioxidant capacity (TAC) of the diet, with the risk of cardiovascular (CVD) outcomes. Methods Adult men and women without CVD (n = 2369) were recruited from the Tehran Lipid and Glucose Study and were followed for a mean of 6.7 years. Dietary NO3− and NO2− intakes, as well as dietary TAC and nitric oxide (NO) index were assessed at baseline (2006–2008). Multivariable-adjusted Cox proportional hazards regression models were used to estimate risk of CVD above and below median of dietary intakes of NO3−/NO2− and dietary TAC and NO index. Due to a significant interaction between NO3−/NO2− intake and TAC, stratified analyses were done for < and ≥ median dietary TAC. Results Daily mean (SD) dietary NO3− and NO2− intakes were 460 (195) and 9.5 (3.9) mg; mean (SD) dietary TAC and NO index was 1406 (740) and 338 (197) μmol trolox equivalent (TE)/100 g. In subjects with lower dietary TAC, higher intake of NO3− (≥ 430 mg/d) was accompanied with an increased risk of CVD (HR = 3.28, 95% CI = 1.54–6.99). There were no significant associations between dietary intakes of NO2−, TAC of the diet and NO index with the occurrence of CVD events during the study follow-up. Conclusion High habitual intake of NO3−, in the context of low TAC of the food, may be associated with the risk of CVD outcomes.
Collapse
Affiliation(s)
- Zahra Bahadoran
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, 19395-4763 Iran
| | - Mattias Carlström
- 2Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Asghar Ghasemi
- 3Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, 19395-4763 Iran
| | - Fereidoun Azizi
- 4Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- 5Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
266
|
Singh P, Vijayakumar S, Kalogeroupoulos A, Butler J. Multiple Avenues of Modulating the Nitric Oxide Pathway in Heart Failure Clinical Trials. Curr Heart Fail Rep 2018; 15:44-52. [DOI: 10.1007/s11897-018-0383-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
267
|
Ashor AW, Lara J, Siervo M. Medium-term effects of dietary nitrate supplementation on systolic and diastolic blood pressure in adults: a systematic review and meta-analysis. J Hypertens 2018; 35:1353-1359. [PMID: 28319596 DOI: 10.1097/hjh.0000000000001305] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Dietary nitrate supplementation has been shown to lower blood pressure (BP) particularly in short-term clinical trials. Whether these effects are sustained in the long-term remains to be established. The objective was to conduct a meta-analysis of randomized controlled trials that examined whether dietary nitrate supplementation for more than 1 week has beneficial effects on SBP and DBP. METHODS Electronic databases were searched from inception until May 2016. Specific inclusion criteria were duration at least 1 week, report of effects on SBP or DBP or both and comparison of inorganic nitrate or beetroot juice supplementation with placebo control groups. Random-effects models were used to calculate the pooled BP effect sizes. RESULTS Thirteen trials met eligibility criteria. The trials included a total of 325 participants with seven to 65 participants per study. The duration of each intervention ranged from 1 to 6 weeks. Ten trials assessed BP in resting clinic conditions, whereas 24-h ambulatory and daily home monitorings were used in six and three trials, respectively. Overall, dietary nitrate was associated with a significant decline in SBP [-4.1 mmHg (95% confidence interval: -6.1, -2.2); P < 0.001] and DBP [-2.0 mmHg (95% confidence interval: -3.0, -0.9); P < 0.001]. However, the effect was only significant when measured in resting clinical settings as no significant changes in BP were observed using 24-h ambulatory and daily home BP monitorings. CONCLUSION Positive effects of medium-term dietary nitrate supplementation on BP were only observed in clinical settings, which were not corroborated by more accurate methods such as 24-h ambulatory and daily home monitorings.
Collapse
Affiliation(s)
- Ammar W Ashor
- aHuman Nutrition Research Centre, Institute of Cellular Medicine, Campus for Ageing and Vitality, Newcastle University bDepartment of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
268
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
269
|
Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil CJ, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol 2018; 314:H195-H212. [DOI: 10.1152/ajpheart.00414.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral consumption of inorganic nitrate, which is abundant in green leafy vegetables and roots, has been shown to increase circulating plasma nitrite concentration, which can be converted to nitric oxide in low oxygen conditions. The associated beneficial physiological effects include a reduction in blood pressure, modification of platelet aggregation, and increases in limb blood flow. There have been numerous studies of nitrate supplementation in healthy recreational and competitive athletes; however, the ergogenic benefits are currently unclear due to a variety of factors including small sample sizes, different dosing regimens, variable nitrate conversion rates, the heterogeneity of participants’ initial fitness levels, and the types of exercise tests used. In clinical populations, the study results seem more promising, particularly in patients with cardiovascular diseases who typically present with disruptions in the ability to transport oxygen from the atmosphere to working tissues and reduced exercise tolerance. Many of these disease-related, physiological maladaptations, including endothelial dysfunction, increased reactive oxygen species, reduced tissue perfusion, and muscle mitochondrial dysfunction, have been previously identified as potential targets for nitric oxide restorative effects. This review is the first of its kind to outline the current evidence for inorganic nitrate supplementation as a therapeutic intervention to restore exercise tolerance and improve quality of life in patients with cardiovascular diseases. We summarize the factors that appear to limit or maximize its effectiveness and present a case for why it may be more effective in patients with cardiovascular disease than as ergogenic aid in healthy populations.
Collapse
Affiliation(s)
- Mary N. Woessner
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Luke C. McIlvenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Christopher J. Neil
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Jason D. Allen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
270
|
Lessens DM, Rakel D. The DASH Diet. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
271
|
Plotnikoff GA, Dusek J. Hypertension. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
272
|
Kim-Shapiro DB, Gladwin MT. Nitric oxide pathology and therapeutics in sickle cell disease. Clin Hemorheol Microcirc 2018; 68:223-237. [PMID: 29614634 PMCID: PMC5911689 DOI: 10.3233/ch-189009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sickle cell disease is caused by a mutant form of hemoglobin that polymerizes under hypoxic conditions which leads to red blood cell (RBC) distortion, calcium-influx mediated RBC dehydration, increased RBC adhesivity, reduced RBC deformability, increased RBC fragility, and hemolysis. These impairments in RBC structure and function result in multifaceted downstream pathology including inflammation, endothelial cell activation, platelet and leukocyte activation and adhesion, and thrombosis, all of which contribute vascular occlusion and substantial morbidity and mortality. Hemoglobin released upon RBC hemolysis scavenges nitric oxide (NO) and generates reactive oxygen species (ROS) and thereby decreases bioavailability of this important signaling molecule. As the endothelium-derived relaxing factor, NO acts as a vasodilator and also decreases platelet, leukocyte, and endothelial cell activation. Thus, low NO bioavailability contributes to pathology in sickle cell disease and its restoration could serve as an effective treatment. Despite its promise, clinical trials based on restoring NO bioavailability have so far been mainly disappointing. However, particular "NO donating" agents such as nitrite, which unlike some other NO donors can improve sickle RBC properties, may yet prove effective.
Collapse
Affiliation(s)
- Daniel B. Kim-Shapiro
- Department of Physics and the Translational Science Center, Wake Forest University, Winston-Salem NC 27109
| | - Mark T. Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute and the Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
273
|
Thomas DD, Corey C, Hickok J, Wang Y, Shiva S. Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide. Redox Biol 2017; 15:277-283. [PMID: 29304478 PMCID: PMC5975210 DOI: 10.1016/j.redox.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 01/09/2023] Open
Abstract
Nitrite represents an endocrine reserve of bioavailable nitric oxide (NO) that mediates a number of physiological responses including conferral of cytoprotection after ischemia/reperfusion (I/R). It has long been known that nitrite can react with non-heme iron to form dinitrosyliron complexes (DNIC). However, it remains unclear how quickly nitrite-dependent DNIC form in vivo, whether formation kinetics differ from that of NO-dependent DNIC, and whether DNIC play a role in the cytoprotective effects of nitrite. Here we demonstrate that chronic but not acute nitrite supplementation increases DNIC concentration in the liver and kidney of mice. Although DNIC have been purported to have antioxidant properties, we show that the accumulation of DNIC in vivo is not associated with nitrite-dependent cytoprotection after hepatic I/R. Further, our data in an isolated mitochondrial model of anoxia/reoxygenation show that while NO and nitrite demonstrate similar S-nitrosothiol formation kinetics, DNIC formation is significantly greater with NO and associated with mitochondrial dysfunction as well as inhibition of aconitase activity. These data are the first to directly compare mitochondrial DNIC formation by NO and nitrite. This study suggests that nitrite-dependent DNIC formation is a physiological consequence of dietary nitrite. The data presented herein implicate mitochondrial DNIC formation as a potential mechanism underlying the differential cytoprotective effects of nitrite and NO after I/R, and suggest that DNIC formation is potentially responsible for the cytotoxic effects observed at high NO concentrations. Dietary nitrite results in DNIC formation in many tissues, most notably the liver. Nitrite-dependent DNIC accumulate within the mitochondrion. NO generates greater DNIC formation in the mitochondrion than nitrite. At high concentrations of NO DNIC formation is associated with mitochondrial injury.
Collapse
Affiliation(s)
- Douglas D Thomas
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA.
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Jason Hickok
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 South Wood St., Chicago IL 60612, USA
| | - Yinna Wang
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, BST1240E, 200 Lothrop St, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
274
|
Tsikas D, Schwedhelm KS, Surdacki A, Giustarini D, Rossi R, Kukoc-Modun L, Kedia G, Ückert S. S-Nitroso- N-acetyl-L-cysteine ethyl ester (SNACET) and N-acetyl-L-cysteine ethyl ester (NACET)-Cysteine-based drug candidates with unique pharmacological profiles for oral use as NO, H 2S and GSH suppliers and as antioxidants: Results and overview. J Pharm Anal 2017; 8:1-9. [PMID: 29568662 PMCID: PMC5859134 DOI: 10.1016/j.jpha.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022] Open
Abstract
S-Nitrosothiols or thionitrites with the general formula RSNO are formally composed of the nitrosyl cation (NO+) and a thiolate (RS−), the base of the corresponding acids RSH. The smallest S-nitrosothiol is HSNO and derives from hydrogen sulfide (HSH, H2S). The most common physiological S-nitrosothiols are derived from the amino acid L-cysteine (CysSH). Thus, the simplest S-nitrosothiol is S-nitroso-L-cysteine (CysSNO). CysSNO is a spontaneous potent donor of nitric oxide (NO) which activates soluble guanylyl cyclase to form cyclic guanosine monophosphate (cGMP). This activation is associated with multiple biological actions that include relaxation of smooth muscle cells and inhibition of platelet aggregation. Like NO, CysSNO is a short-lived species and occurs physiologically at concentrations around 1 nM in human blood. CysSNO can be formed from CysSH and higher oxides of NO including nitrous acid (HONO) and its anhydride (N2O3). The most characteristic feature of RSNO is the S-transnitrosation reaction by which the NO+ group is reversibly transferred to another thiolate. By this way numerous RSNO can be formed such as the low-molecular-mass S-nitroso-N-acetyl-L-cysteine (SNAC) and S-nitroso-glutathione (GSNO), and the high-molecular-mass S-nitrosol-L-cysteine hemoglobin (HbCysSNO) present in erythrocytes and S-nitrosol-L-cysteine albumin (AlbCysSNO) present in plasma at concentrations of the order of 200 nM. All above mentioned RSNO exert NO-related biological activity, but they must be administered intravenously. This important drawback can be overcome by lipophilic charge-free RSNO. Thus, we prepared the ethyl ester of SNAC, the S-nitroso-N-acetyl-L-cysteine ethyl ester (SNACET), from synthetic N-acetyl-L-cysteine ethyl ester (NACET). Both NACET and SNACET have improved pharmacological features over N-acetyl-L-cysteine (NAC) and S-nitroso-N-acetyl-L-cysteine (SNAC), respectively, including higher oral bioavailability. SNACET exerts NO-related activities which can be utilized in the urogenital tract and in the cardiovascular system. NACET, with high oral bioavailability, is a strong antioxidant and abundant precursor of GSH, unlike its free acid N-acetyl-L-cysteine (NAC). Here, we review the chemical and pharmacological properties of SNACET and NACET as well as their analytical chemistry. We also report new results from the ingestion of S-[15N]nitroso-N-acetyl-L-cysteine ethyl ester (S15NACET) demonstrating the favorable pharmacological profile of SNACET.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| | - Kathrin S Schwedhelm
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
| | - Andrzej Surdacki
- Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Daniela Giustarini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, 53100 Siena, Italy
| | - Lea Kukoc-Modun
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia
| | - George Kedia
- Department of Urology and Urological Oncology, Hannover Medical School, 30623 Hannover, Germany
| | - Stefan Ückert
- Department of Urology and Urological Oncology, Hannover Medical School, 30623 Hannover, Germany
| |
Collapse
|
275
|
de Oliveira GV, Morgado M, Conte-Junior CA, Alvares TS. Acute effect of dietary nitrate on forearm muscle oxygenation, blood volume and strength in older adults: A randomized clinical trial. PLoS One 2017; 12:e0188893. [PMID: 29190751 PMCID: PMC5708833 DOI: 10.1371/journal.pone.0188893] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
Both recovery time of post-exercise muscle oxygenation and muscle strength decline with aging. Although beetroot consumption has been shown to improve muscle oxygenation and exercise performance in adults, these effects in the elderly has not been addressed. The aim of the present study was to evaluate the effect of a beetroot-based gel (BG) on muscle O2 saturation, blood volume (tHb) and handgrip strength in the elderly in response to handgrip exercise. In a randomized crossover double-blind design, twelve older subjects consumed BG (100 g of beetroot-based gel containing ~ 12 mmol nitrate) or PLA (100 g of nitrate-depleted gel nitrate-depleted). The subjects performed a rhythmic handgrip exercise which consisted of a one 1-min set at 30% of the maximal voluntary contraction (MVC) of each subject, followed by a 1 min recovery. The muscle oxygenation parameters and tHb were continuously monitored by using near-infrared spectroscopy. MVC was evaluated at baseline, immediately after exercise, and 30 min afterwards. The muscle O2 resaturation rate during exercise recovery was greater in the BG when compared to PLA condition (1.43 ± 0.77 vs 1.02 ± 0.48%.s-1; P < 0.05). Significant increase was observed in tHb during exercise recovery (10.25 ± 5.47 vs 6.72 ± 4.55 μM; P < 0.05) and significant reduction of handgrip strength decline was observed 30 min after exercise in BG (- 0.24 ± 0.18 vs—0.39 ± 0.20 N; P < 0.05). In summary, a single dose of a beetroot-based gel speeds up muscle O2 resaturation, increases blood volume and improves recovery of handgrip strength after handgrip exercise in older adults.
Collapse
Affiliation(s)
- Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Marina Morgado
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | | | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Department of Basic Nutrition and Dietetics, Nutrition Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
276
|
Bhaswant M, Brown L, McAinch AJ, Mathai ML. Beetroot and Sodium Nitrate Ameliorate Cardiometabolic Changes in Diet‐Induced Obese Hypertensive Rats. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/02/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Maharshi Bhaswant
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria University Melbourne 3021 Australia
- Department of BiotechnologyK L University Vaddeswaram Guntur 522502 India
| | - Lindsay Brown
- School of Health and Wellbeing and Institute for Agriculture and the EnvironmentUniversity of Southern Queensland Toowoomba 4350 Australia
| | - Andrew J. McAinch
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria University Melbourne 3021 Australia
- Australian Institute for Musculoskeletal ScienceCollege of Health and BiomedicineVictoria University Melbourne 3021 Australia
| | - Michael L. Mathai
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria University Melbourne 3021 Australia
| |
Collapse
|
277
|
Bahadoran Z, Mirmiran P, Kabir A, Azizi F, Ghasemi A. The Nitrate-Independent Blood Pressure-Lowering Effect of Beetroot Juice: A Systematic Review and Meta-Analysis. Adv Nutr 2017; 8:830-838. [PMID: 29141968 PMCID: PMC5683004 DOI: 10.3945/an.117.016717] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Beetroot is considered a complementary treatment for hypertension because of its high content of inorganic NO3 This systematic review and meta-analysis aimed to clarify several aspects of beetroot juice supplementation on systolic blood pressure (SBP) and diastolic blood pressure (DBP). We searched PubMed, Scopus, and Embase databases, and the reference lists of previous reviews. Randomized clinical trials that investigated the effects of beetroot juice on resting blood pressure in humans were recruited for quality assessment, meta-analyses, subgroup analyses, and meta-regressions; of these, 22 were conducted between 2009 and 2017 and included a total of 47 intervention (n = 650) and 43 control (n = 598) groups. Overall, SBP (-3.55 mm Hg; 95% CI: -4.55, -2.54 mm Hg) and DBP (-1.32 mm Hg; 95% CI: -1.97, -0.68 mm Hg) were significantly lower in the beetroot juice-supplemented groups than in the control groups. The mean difference of SBP was larger between beetroot juice-supplemented and control groups in the longer than in the shorter (≥14 compared with <14 d) study durations (-5.11 compared with -2.67 mm Hg) and the highest compared with the lowest (500 compared with 70 and 140 mL/d) doses of beetroot juice (-4.78 compared with -2.37 mm Hg). A positive correlation was observed between beetroot juice doses and the mean differences of blood pressures. In contrast, a smaller effect size of blood pressures was observed after supplementation with higher NO3 (milligrams per 100 mL beetroot juice). A weak effect size was observed in a meta-analysis of trials that used NO3-depleted beetroot juice as a placebo compared with other interventions (-3.09 compared with -4.51 mm Hg for SBP and -0.81 compared with -2.01 mm Hg for DBP). Our results demonstrate the blood pressure-lowering effects of beetroot juice and highlight its potential NO3-independent effects.
Collapse
Affiliation(s)
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; and
| | - Ali Kabir
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Asghar Ghasemi
- Endocrine Physiology Center, Research Institute for Endocrine Sciences
| |
Collapse
|
278
|
Gallien G, Bellar D, Davis GR. The Efficacy of a Pre-Workout Vegan Supplement on High-Intensity Cycling Performance in Healthy College-Aged Males. J Diet Suppl 2017; 14:697-705. [PMID: 28429998 DOI: 10.1080/19390211.2017.1310780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There is a limited supply of sport nutrition supplements currently available for vegan or vegetarian athletes. In addition, the efficacy of a vegan or vegetarian pre-workout supplement that does not contain any processed ingredients or stimulants is currently unknown. The purpose of the current study was to examine the effects of an unprocessed vegan pre-workout supplement on high-intensity cycling performance. Participants completed three separate cycling trials following the consumption of a vegan pre-workout supplement, an isocaloric processed supplement, or a zero-calorie placebo supplement. Each supplement was consumed 30 minutes prior to each trial, and each cycling trial was separated by a minimum of 72 hours. Supplements were administered using a randomized, double-blind cross-over design. Each cycling trial was performed at a workload equal to 80% VO2peak until exhaustion. The average time in seconds (s) until exhaustion values for the vegan, isocaloric, and zero-calorie supplements were 482 ± 163, 480 ± 157, and 496 ± 238, respectively. Consumption of the vegan supplement did not significantly improve performance compared to an isocaloric and zero-calorie supplement (F = 0.12, p =.89). The results of this study indicate that individuals who choose a vegan pre-workout supplement (over an isocaloric or zero-calorie product) will not experience any acute decrements or ergogenic benefits in cycling performance. Although the present study does not support performance benefits of the tested vegan pre-workout supplement before cycling, additional research examining various exercise intensities and modalities is warranted.
Collapse
Affiliation(s)
- Gabrielle Gallien
- a School of Kinesiology , University of Louisiana at Lafayette , Lafayette , LA , USA
| | - David Bellar
- a School of Kinesiology , University of Louisiana at Lafayette , Lafayette , LA , USA
| | - Greggory R Davis
- a School of Kinesiology , University of Louisiana at Lafayette , Lafayette , LA , USA
| |
Collapse
|
279
|
Eglin CM, Costello JT, Bailey SJ, Gilchrist M, Massey H, Shepherd AI. Effects of dietary nitrate supplementation on the response to extremity cooling and endothelial function in individuals with cold sensitivity. A double blind, placebo controlled, crossover, randomised control trial. Nitric Oxide 2017; 70:76-85. [PMID: 28941934 DOI: 10.1016/j.niox.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023]
Abstract
Individuals with cold sensitivity have low peripheral skin blood flow and skin temperature possibly due to reduced nitric oxide (NO•) bioavailability. Beetroot has a high concentration of inorganic nitrate and may increase NO-mediated vasodilation. Using a placebo-controlled, double blind, randomised, crossover design, this study tested the hypotheses that acute beetroot supplementation would increase the rate of cutaneous rewarming following a local cold challenge and augment endothelium-dependent vasodilation in cold sensitive individuals. Thirteen cold sensitive participants completed foot and hand cooling (separately, in 15 °C water for 2 min) with spontaneous rewarming in 30 °C air whilst skin temperature and cutaneous vascular conductance (CVC) were measured (Baseline). On two further separate visits, participants consumed 140 ml of either concentrated beetroot juice (nitrate supplementation) or nitrate-depleted beetroot juice (Placebo) 90 min before resting seated blood pressure was measured. Endothelial function was assessed by measuring CVC at the forearm, finger and foot during iontophoresis of 1% w/v acetylcholine followed by foot and hand cooling as for Baseline. Plasma nitrite concentrations significantly increased in nitrate supplementation compared to Placebo and Baseline (502 ± 246 nmol L-1; 73 ± 45 nmol L-1; 74 ± 49 nmol L-1 respectively; n = 11; P < 0.001). Resting blood pressure and the response to foot and hand cooling did not differ between conditions (all P > 0.05). Nitrate supplementation did not alter endothelial function in the forearm, finger or foot (all P > 0.05) compared to Placebo. Despite a physiologically meaningful rise in plasma nitrite concentrations, acute nitrate supplementation does not alter extremity rewarming, endothelial function or blood pressure in individuals with cold sensitivity.
Collapse
Affiliation(s)
- Clare M Eglin
- Department of Sport and Exercise Science, University of Portsmouth, UK
| | - Joseph T Costello
- Department of Sport and Exercise Science, University of Portsmouth, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark Gilchrist
- University of Exeter Medical School, NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, UK
| | - Heather Massey
- Department of Sport and Exercise Science, University of Portsmouth, UK
| | | |
Collapse
|
280
|
Abstract
PURPOSE OF REVIEW Early interventional trials reported improvements in cardiac and exercise outcomes with inorganic nitrate ingestion. The current review aims to provide a brief update of recent evidence regarding ergogenic and cardiovascular effects of dietary nitrate and practical recommendations. RECENT FINDINGS Recent evidence has been inconsistent and questions remain regarding effective dose, duration, and source of nitrate and cohorts likely to benefit. Dietary nitrate may be most relevant to those with vascular/metabolic impairments, those engaging in short-term, intense exercise, deconditioned individuals, and those with a low dietary nitrate intake. SUMMARY The evidence for cardiovascular/exercise benefit is plausible but inconsistent. However, dietary nitrate, in contrast to pharmacological nitrate, has a high benefit-risk ratio. Although nitrate supplementation has grown in popularity, it is suggested that increased green vegetables consumption may provide similar/superior benefits to nitrate supplementation in a cheaper, safer, and potentially tastier context.
Collapse
Affiliation(s)
- Conor P Kerley
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Avenue, N.W. Ste. 400, Washington, District of Columbia, USA
| |
Collapse
|
281
|
Wong BJ, Keen JT, Levitt EL. Cutaneous reactive hyperaemia is unaltered by dietary nitrate supplementation in healthy humans. Clin Physiol Funct Imaging 2017; 38:772-778. [DOI: 10.1111/cpf.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Brett J Wong
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Kinesiology & Health, Georgia State University, Atlanta, GA, USA
| | - Jeremy T Keen
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Erica L Levitt
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
282
|
Performance and Health Benefits of Dietary Nitrate Supplementation in Older Adults: A Systematic Review. Nutrients 2017; 9:nu9111171. [PMID: 29077028 PMCID: PMC5707643 DOI: 10.3390/nu9111171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022] Open
Abstract
Supplementation with nitrate (NO3−)-rich beetroot juice has been shown to improve exercise performance and cardiovascular (CV) responses, due to an increased nitric oxide (NO) availability. However, it is unclear whether these benefits are greater in older adults who have an age-related decrease in NO and higher risk of disease. This systematic review examines 12 randomised, crossover, control trials, investigating food-based NO3− supplementation in older adults and its potential benefits on physiological and cognitive performances, and CV, cerebrovascular and metabolic health. Four studies found improvements in physiological performance (time to exhaustion) following dietary NO3− supplementation in older adults. Benefits on cognitive performance were unclear. Six studies reported improvements in CV health (blood pressure and blood flow), while six found no improvement. One study showed improvements in cerebrovascular health and two found no improvement in metabolic health. The current literature indicates positive effects of dietary NO3− supplementation in older adults on physiological performance, with some evidence indicating benefits on cardiovascular and cerebrovascular health. Effects on cognitive performance were mixed and studies on metabolic health indicated no benefit. However, there has been limited research conducted on the effects of dietary NO3− supplementation in older adults, thus, further study, utilising a randomised, double-blind, control trial design, is warranted.
Collapse
|
283
|
Abstract
Nutraceuticals are dietary components with pharmacologic properties that can be used to treat various disease states. There is growing interest among patients in the use of nutraceuticals for the management of hypertension; as such, it is important that clinicians are prepared to engage in meaningful discussions with their patients about these substances. Flavonoids, beetroot, garlic, and unsaturated fats have garnered significant attention for their blood pressure lowering properties. We review the clinical evidence and reported mechanisms of action for these substances in an attempt to offer a practical guide for clinicians to engage with patients who are highly motivated to seek out nutraceutical therapies to manage their hypertension.
Collapse
|
284
|
Bock JM, Ueda K, Schneider AC, Hughes WE, Limberg JK, Bryan NS, Casey DP. Inorganic nitrate supplementation attenuates peripheral chemoreflex sensitivity but does not improve cardiovagal baroreflex sensitivity in older adults. Am J Physiol Heart Circ Physiol 2017; 314:H45-H51. [PMID: 28971842 DOI: 10.1152/ajpheart.00389.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is associated with increased peripheral chemoreceptor activity, reduced nitric oxide (NO) bioavailability, and attenuation of cardiovagal baroreflex sensitivity (BRS), collectively increasing the risk of cardiovascular disease. Evidence suggests that NO may attenuate peripheral chemoreflex sensitivity and increase BRS. Exogenous inorganic nitrate ([Formula: see text]) increases NO bioavailability via the [Formula: see text]-[Formula: see text]-NO pathway. Our hypothesis was that inorganic [Formula: see text] supplementation would attenuate peripheral chemoreflex sensitivity and enhance spontaneous cardiovagal BRS in older adults. We used a randomized, placebo-controlled crossover design in which 13 older (67 ± 3 yr old) adults ingested beetroot powder containing (BRA) or devoid of (BRP) [Formula: see text] and [Formula: see text] daily over 4 wk. Spontaneous cardiovagal BRS was assessed over 15 min of rest and was quantified using the sequence method. Chemoreflex sensitivity was assessed via ~5 min of hypoxia (10% fraction of inspired O2) and reported as the slope of the relationship between O2 saturation (%[Formula: see text]) and minute ventilation (in l/min) or heart rate (in beats/min). Ventilatory responsiveness to hypoxia was reduced after BRA (from -0.14 ± 0.04 to -0.05 ± 0.02 l·min-1·%[Formula: see text]-1, P = 0.01) versus BRP (from -0.10 ± 0.05 to -0.11 ± 0.05 l·min-1·%[Formula: see text]-1, P = 0.80), with no differences in heart rate responsiveness (BRA: from -0.47 ± 0.06 to -0.33 ± 0.04 beats·min-1·%[Formula: see text]-1, BRP: from -0.48 ± 0.07 to -0.42 ± 0.06 beats·min-1·%[Formula: see text]-1) between conditions (interaction effect, P = 0.41). Spontaneous cardiovagal BRS was unchanged after BRA and BRP (interaction effects, P = 0.69, 0.94, and 0.39 for all, up, and down sequences, respectively), despite a reduction in resting systolic and mean arterial blood pressure in the experimental (BRA) group ( P < 0.01 for both). These findings illustrate that inorganic [Formula: see text] supplementation attenuates peripheral chemoreflex sensitivity without concomitant change in spontaneous cardiovagal BRS in older adults. NEW & NOTEWORTHY Exogenous inorganic nitrate supplementation attenuates ventilatory, but not heart rate, responsiveness to abbreviated hypoxic exposure in older adults. Additionally, inorganic nitrate reduces systolic and mean arterial blood pressure without affecting spontaneous cardiovagal baroreflex sensitivity. These findings suggest that inorganic nitrate may attenuate sympathetically oriented pathologies associated with aging.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Aaron C Schneider
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - William E Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | | | - Nathan S Bryan
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, Texas
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
285
|
Chrysant SG, Chrysant GS. Herbs Used for the Treatment of Hypertension and their Mechanism of Action. Curr Hypertens Rep 2017; 19:77. [DOI: 10.1007/s11906-017-0775-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
286
|
Abstract
Cardiovascular disease (CVD) is traditionally treated through medications and lifestyle modifications, yet adherence to these treatments is often poor. The use of complementary therapies is increasing, and it is vital for physicians to be aware of the risks and benefits of these options. This article summarizes the current evidence base on integrative therapies for the prevention and treatment of CVD, including hypertension, hyperlipidemia, coronary artery disease, heart failure, and arrhythmias. Where applicable, recommendations are included for therapies that may be used as an adjunct to traditional medical care to improve cardiovascular health and quality of life.
Collapse
Affiliation(s)
- Monica Aggarwal
- Division of Cardiology, University of Florida, 1600 Southwest Archer Road, PO Box 100288, Gainesville, FL 32610, USA.
| | - Brooke Aggarwal
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 51 Audubon Avenue, Suite 505, New York, NY 10032, USA
| | - Jyothi Rao
- Shakthi Health and Wellness Center, 2702 Back Acre Circle Suite 290C, Mt. Airy, MD 21771, USA
| |
Collapse
|
287
|
Reddy YNV, Lewis GD, Shah SJ, LeWinter M, Semigran M, Davila-Roman VG, Anstrom K, Hernandez A, Braunwald E, Redfield MM, Borlaug BA. INDIE-HFpEF (Inorganic Nitrite Delivery to Improve Exercise Capacity in Heart Failure With Preserved Ejection Fraction): Rationale and Design. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.003862. [PMID: 28476756 DOI: 10.1161/circheartfailure.117.003862] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Approximately half of patients with heart failure have preserved ejection fraction. There is no proven treatment that improves outcome. The pathophysiology of heart failure with preserved ejection fraction is complex and includes left ventricular systolic and diastolic dysfunction, pulmonary vascular disease, endothelial dysfunction, and peripheral abnormalities. Multiple lines of evidence point to impaired nitric oxide (NO)-cGMP bioavailability as playing a central role in each of these abnormalities. In contrast to traditional organic nitrate therapies, an alternative strategy to restore NO-cGMP signaling is via inorganic nitrite. Inorganic nitrite, previously considered to be an inert byproduct of NO metabolism, functions as an important in vivo reservoir for NO generation, particularly under hypoxic and acidosis conditions. As such, inorganic nitrite becomes most active at times of greater need for NO signaling, as during exercise when left ventricular filling pressures and pulmonary artery pressures increase. Herein, we present the rationale and design for the INDIE-HFpEF trial (Inorganic Nitrite Delivery to Improve Exercise Capacity in Heart Failure with Preserved Ejection Fraction), which is a multicenter, randomized, double-blind, placebo-controlled cross-over study assessing the effect of inhaled inorganic nitrite on peak exercise capacity, conducted in the National Heart, Lung, and Blood Institute-sponsored Heart Failure Clinical Research Network. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02742129.
Collapse
Affiliation(s)
- Yogesh N V Reddy
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Gregory D Lewis
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Sanjiv J Shah
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Martin LeWinter
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Marc Semigran
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Victor G Davila-Roman
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Kevin Anstrom
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Adrian Hernandez
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Eugene Braunwald
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Margaret M Redfield
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.)
| | - Barry A Borlaug
- From the Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Y.N.V.R., M.M.R., B.A.B.); Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital, Boston (G.D.L., M.S.); Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.); Cardiology Unit, University of Vermont College of Medicine, Burlington (M.L.W.); Cardiovascular Division, Washington University School of Medicine, St. Louis, MO (V.G.D.-R.); Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (K.A., A.H.); and Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (E.B.).
| |
Collapse
|
288
|
Falls R, Seman M, Braat S, Sortino J, Allen JD, Neil CJ. Inorganic nitrate as a treatment for acute heart failure: a protocol for a single center, randomized, double-blind, placebo-controlled pilot and feasibility study. J Transl Med 2017; 15:172. [PMID: 28789663 PMCID: PMC5549289 DOI: 10.1186/s12967-017-1271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 07/24/2017] [Indexed: 01/07/2023] Open
Abstract
Background Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and effective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate (NaNO3) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably affect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without significant hypotension. Methods and outcomes We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treatment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional surrogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical effect on dyspnea and renal function. Discussion The results of this study will provide evidence of the feasibility of this novel approach and will be of interest to the heart failure community. This trial may inform a larger study.
Collapse
Affiliation(s)
- Roman Falls
- Western Centre for Health Research and Education, Western Health, Melbourne, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Michael Seman
- Western Centre for Health Research and Education, Western Health, Melbourne, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Sabine Braat
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia.,Melbourne School of Population and Global Health and Melbourne Clinical and Translational Sciences Platform (MCATS), Parkville, Australia
| | - Joshua Sortino
- Western Centre for Health Research and Education, Western Health, Melbourne, Australia
| | - Jason D Allen
- Western Centre for Health Research and Education, Western Health, Melbourne, Australia.,Clinical Exercise Science Research Program, Institute of Sport Exercise and Active Living (ISEAL), Melbourne, Australia
| | - Christopher J Neil
- Western Centre for Health Research and Education, Western Health, Melbourne, Australia. .,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia. .,Clinical Exercise Science Research Program, Institute of Sport Exercise and Active Living (ISEAL), Melbourne, Australia. .,Western Health Cardiology, Footscray Hospital, Gordon St, Locked Bag 2, Footscray, VIC, 3011, Australia.
| |
Collapse
|
289
|
Veerabhadrappa P, Schutte AE. Blood Pressure With Nitrate Exposure: Back-to-Basics With Fresh Fruits and Vegetables. Am J Hypertens 2017; 30:665-666. [PMID: 28430832 DOI: 10.1093/ajh/hpx061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
290
|
Blekkenhorst LC, Bondonno CP, Lewis JR, Devine A, Woodman RJ, Croft KD, Lim WH, Wong G, Beilin LJ, Prince RL, Hodgson JM. Association of dietary nitrate with atherosclerotic vascular disease mortality: a prospective cohort study of older adult women. Am J Clin Nutr 2017; 106:207-216. [PMID: 28566306 DOI: 10.3945/ajcn.116.146761] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/03/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Nitrate-rich vegetables lower blood pressure and improve endothelial function in humans. It is not known, however, whether increased consumption of nitrate-rich vegetables translates to a lower risk of atherosclerotic vascular disease (ASVD) mortality.Objective: The objective was to investigate the association of nitrate intake from vegetables with ASVD mortality.Design: A total of 1226 Australian women aged 70-85 y without prevalent ASVD and/or diabetes were recruited in 1998 and were studied for 15 y. We assessed demographic and ASVD risk factors at baseline (1998), and we used a validated food-frequency questionnaire to evaluate dietary intake. Nitrate intake from vegetables was calculated by use of a newly developed comprehensive database. The primary outcome was any death attributed to ASVD ascertained by using linked data that were provided via the Western Australian Data Linkage system. We used Cox proportional hazards modeling to examine the association between nitrate intake and ASVD mortality before and after adjustment for lifestyle and cardiovascular disease risk factors.Results: During a follow-up period of 15,947 person-years, 238 of 1226 (19.4%) women died of ASVD-related causes. The mean ± SD vegetable nitrate intake was 67.0 ± 29.2 mg/d. Each SD higher vegetable nitrate intake was associated with a lower risk of ASVD mortality in both unadjusted [HR: 0.80 (95% CI: 0.70, 0.92), P = 0.002] and multivariable-adjusted [HR: 0.79 (95% CI: 0.68, 0.93), P = 0.004] analyses. This relation was attenuated after further adjustment for diet quality [HR: 0.85 (95% CI: 0.72, 1.01), P = 0.072]. Higher vegetable nitrate intake (per SD) also was associated with a lower risk of all-cause mortality [multivariable-adjusted HR: 0.87 (95% CI: 0.78, 0.97), P = 0.011].Conclusions: Nitrate intake from vegetables was inversely associated with ASVD mortality independent of lifestyle and cardiovascular disease risk factors in this population of older adult women without prevalent ASVD or diabetes. These results support the concept that nitrate-rich vegetables may reduce the risk of age-related ASVD mortality. This trial was registered at www.anzctr.org.au as ACTRN12617000640303.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia;
| | - Catherine P Bondonno
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Joshua R Lewis
- School of Medicine and Pharmacology, Queen Elizabeth Medical Centre Unit, University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,School of Public Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia; and
| | - Kevin D Croft
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Wai H Lim
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Centre for Transplant and Renal Research, Westmead Hospital, Westmead, New South Wales, Australia.,Department of Renal Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Germaine Wong
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,School of Public Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Lawrence J Beilin
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Richard L Prince
- School of Medicine and Pharmacology, Queen Elizabeth Medical Centre Unit, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
291
|
Notay K, Incognito AV, Millar PJ. Acute beetroot juice supplementation on sympathetic nerve activity: a randomized, double-blind, placebo-controlled proof-of-concept study. Am J Physiol Heart Circ Physiol 2017; 313:H59-H65. [DOI: 10.1152/ajpheart.00163.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/09/2023]
Abstract
Acute dietary nitrate ([Formula: see text]) supplementation reduces resting blood pressure in healthy normotensives. This response has been attributed to increased nitric oxide bioavailability and peripheral vasodilation, although nitric oxide also tonically inhibits central sympathetic outflow. We hypothesized that acute dietary [Formula: see text] supplementation using beetroot (BR) juice would reduce blood pressure and muscle sympathetic nerve activity (MSNA) at rest and during exercise. Fourteen participants (7 men and 7 women, age: 25 ± 10 yr) underwent blood pressure and MSNA measurements before and after (165–180 min) ingestion of 70ml high-[Formula: see text] (~6.4 mmol [Formula: see text]) BR or [Formula: see text]-depleted BR placebo (PL; ~0.0055 mmol [Formula: see text]) in a double-blind, randomized, crossover design. Blood pressure and MSNA were also collected during 2 min of static handgrip (30% maximal voluntary contraction). The changes in resting MSNA burst frequency (−3 ± 5 vs. 3 ± 4 bursts/min, P = 0.001) and burst incidence (−4 ± 7 vs. 4 ± 5 bursts/100 heart beats, P = 0.002) were lower after BR versus PL, whereas systolic blood pressure (−1 ± 5 vs. 2 ± 5 mmHg, P = 0.30) and diastolic blood pressure (4 ± 5 vs. 5 ± 7 mmHg, P = 0.68) as well as spontaneous arterial sympathetic baroreflex sensitivity ( P = 0.95) were not different. During static handgrip, the change in MSNA burst incidence (1 ± 8 vs. 8 ± 9 bursts/100 heart beats, P = 0.04) was lower after BR versus PL, whereas MSNA burst frequency (6 ± 6 vs. 11 ± 10 bursts/min, P = 0.11) as well as systolic blood pressure (11 ± 7 vs. 12 ± 8 mmHg, P = 0.94) and diastolic blood pressure (11 ± 4 vs. 11 ± 4 mmHg, P = 0.60) were not different. Collectively, these data provide proof of principle that acute BR supplementation can decrease central sympathetic outflow at rest and during exercise. Dietary [Formula: see text] supplementation may represent a novel intervention to target exaggerated sympathetic outflow in clinical populations. NEW & NOTEWORTHY The hemodynamic benefits of dietary nitrate supplementation have been attributed to nitric oxide-mediated peripheral vasodilation. Here, we provide proof of concept that acute dietary nitrate supplementation using beetroot juice can decrease muscle sympathetic outflow at rest and during exercise in a normotensive population. These results have applications for targeting central sympathetic overactivation in disease.
Collapse
Affiliation(s)
- Karambir Notay
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Anthony V. Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
292
|
Nyakayiru J, Kouw IWK, Cermak NM, Senden JM, van Loon LJC, Verdijk LB. Sodium nitrate ingestion increases skeletal muscle nitrate content in humans. J Appl Physiol (1985) 2017; 123:637-644. [PMID: 28663382 DOI: 10.1152/japplphysiol.01036.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 01/08/2023] Open
Abstract
Nitrate ([Formula: see text]) ingestion has been shown to have vasoactive and ergogenic effects that have been attributed to increased nitric oxide (NO) production. Recent observations in rodents suggest that skeletal muscle tissue serves as an endogenous [Formula: see text] "reservoir." The present study determined [Formula: see text] contents in human skeletal muscle tissue in a postabsorptive state and following ingestion of a sodium nitrate bolus (NaNO3). Seventeen male, type 2 diabetes patients (age 72 ± 1 yr; body mass index 26.5 ± 0.5 kg/m2; means ± SE) were randomized to ingest a dose of NaNO3 (NIT; 9.3 mg [Formula: see text]/kg body wt) or placebo (PLA; 8.8 mg NaCl/kg body wt). Blood and muscle biopsy samples were taken before and up to 7 h following [Formula: see text] or placebo ingestion to assess [Formula: see text] [and plasma nitrite ([Formula: see text])] concentrations. Additionally, basal plasma and muscle [Formula: see text] concentrations were assessed in 10 healthy young (CON-Y; age 21 ± 1 yr) and 10 healthy older (CON-O; age 75 ± 1 yr) control subjects. In all groups, baseline [Formula: see text] concentrations were higher in muscle (NIT, 57 ± 7; PLA, 61 ± 7; CON-Y, 80 ± 10; CON-O, 54 ± 6 µmol/l) than in plasma (NIT, 35 ± 3; PLA, 32 ± 3; CON-Y, 38 ± 3; CON-O, 33 ± 3 µmol/l; P ≤ 0.011). Ingestion of NaNO3 resulted in a sustained increase in plasma [Formula: see text], plasma [Formula: see text], and muscle [Formula: see text] concentrations (up to 185 ± 25 µmol/l) in the NIT group (time effect P < 0.001) compared with PLA (treatment effect P < 0.05). In conclusion, basal [Formula: see text] concentrations are substantially higher in human skeletal muscle tissue compared with plasma. Ingestion of a bolus of dietary [Formula: see text] increases both plasma and muscle [Formula: see text] contents in humans.NEW & NOTEWORTHY Literature of the pharmacokinetics following dietary nitrate ingestion is usually limited to the changes observed in plasma nitrate and nitrite concentrations. The present investigation assessed the skeletal muscle nitrate content in humans during the postabsorptive state, as well as following dietary nitrate ingestion. We show that basal nitrate content is higher in skeletal muscle tissue than in plasma and that ingestion of a dietary nitrate bolus strongly increases both plasma and muscle nitrate concentrations.
Collapse
Affiliation(s)
- Jean Nyakayiru
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Imre W K Kouw
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Naomi M Cermak
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Joan M Senden
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and.,Institute of Sports and Exercise Studies, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| |
Collapse
|
293
|
Nagababu E, Scott AV, Johnson DJ, Goyal A, Lipsitz JA, Barodka VM, Berkowitz DE, Frank SM. The Impact of Surgery and Stored Red Blood Cell Transfusions on Nitric Oxide Homeostasis. Anesth Analg 2017; 123:274-82. [PMID: 27308950 DOI: 10.1213/ane.0000000000001392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cell-free hemoglobin (Hb) forms in stored red blood cells (RBCs) as a result of hemolysis. Studies suggest that this cell-free Hb may decrease nitric oxide (NO) bioavailability, potentially leading to endothelial dysfunction, vascular injury, and multiorgan dysfunction after transfusion. We tested the hypothesis that moderate doses of stored RBC transfusions increase cell-free Hb and decrease NO availability in postoperative surgical patients. METHODS Twenty-six patients undergoing multilevel spine fusion surgery were studied. We compared those who received no stored RBCs (n = 9) with those who received moderate amounts (6.1 ± 3.0 units) of stored RBCs over 3 perioperative days (n = 17). Percent hemolysis (cell-free Hb), RBC-NO (heme-NO), and plasma nitrite and nitrate were measured in samples from the stored RBC bags and from patients' blood, before and after surgery. RESULTS Posttransfusion hemolysis was increased approximately 3.5-fold over preoperative levels (P = 0.0002) in blood samples collected immediately after surgery but not on postoperative days 1 to 3. Decreases in both heme-NO (by approximately 50%) and plasma nitrite (by approximately 40%) occurred postoperatively, both in nontransfused patients (P = 0.036 and P = 0.026, respectively) and transfused patients (P = 0.0068 and P = 0.003, respectively) and returned to preoperative baseline levels by postoperative day 2 or 3. Postoperative plasma nitrite and nitrate were decreased significantly in both groups, and this change was slower to return to baseline in the transfused patients, suggesting that blood loss and hemodilution from crystalloid administration contribute to this finding. CONCLUSIONS The decrease in NO metabolites occurred irrespective of stored RBC transfusions, suggesting this decrease may be related to blood loss during surgery and hemodilution rather than to scavenging of NO or inhibition of NO synthesis by stored RBC transfusions.
Collapse
Affiliation(s)
- Enika Nagababu
- From the Departments of *Anesthesiology/Critical Care Medicine and ‡Biomedical Engineering, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and †Department of Radiology, Era Medical College, Lucknow, India
| | | | | | | | | | | | | | | |
Collapse
|
294
|
de Oliveira GA, Cheng RYS, Ridnour LA, Basudhar D, Somasundaram V, McVicar DW, Monteiro HP, Wink DA. Inducible Nitric Oxide Synthase in the Carcinogenesis of Gastrointestinal Cancers. Antioxid Redox Signal 2017; 26:1059-1077. [PMID: 27494631 PMCID: PMC5488308 DOI: 10.1089/ars.2016.6850] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Gastrointestinal (GI) cancer taken together constitutes one of the most common cancers worldwide with a broad range of etiological mechanisms. In this review, we have examined the impact of nitric oxide (NO) on the etiology of colon, colorectal, gastric, esophageal, and liver cancers. Recent Advances: Despite differences in etiology, initiation, and progression, chronic inflammation has been shown to be a common element within these cancers showing interactions of numerous pathways. NO generated at the inflammatory site contributes to the initiation and progression of disease. The amount of NO generated, time, and site vary and are an important determinant of the biological effects initiated. Among the nitric oxide synthase enzymes, the inducible isoform has the most diverse range, participating in numerous carcinogenic processes. There is emerging evidence showing that inducible nitric oxide synthase (NOS2) plays a central role in the process of tumor initiation and/or development. CRITICAL ISSUES Redox inflammation through NOS2 and cyclooxygenase-2 participates in driving the mechanisms of initiation and progression in GI cancers. FUTURE DIRECTIONS Understanding the underlying mechanism involved in NOS2 activation can provide new insights into important prevention and treatment strategies. Antioxid. Redox Signal. 26, 1059-1077.
Collapse
Affiliation(s)
- Graciele Almeida de Oliveira
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Robert Y S Cheng
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Lisa A Ridnour
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Debashree Basudhar
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Veena Somasundaram
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Daniel W McVicar
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Hugo Pequeno Monteiro
- 2 Laboratório de Sinalização Celular, Universidade Federal de São Paulo , São Paulo, Brazil
| | - David A Wink
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| |
Collapse
|
295
|
Yang T, Zhang XM, Tarnawski L, Peleli M, Zhuge Z, Terrando N, Harris RA, Olofsson PS, Larsson E, Persson AEG, Lundberg JO, Weitzberg E, Carlstrom M. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox Biol 2017. [PMID: 28623824 PMCID: PMC5473548 DOI: 10.1016/j.redox.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury.
Collapse
Affiliation(s)
- Ting Yang
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Medicine, Div. of Nephrology (T.Y.), Dept. of Anesthesiology (N.T.), Duke University Medical Center, Durham, NC, USA.
| | - Xing-Mei Zhang
- Dept. of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Laura Tarnawski
- Dept. of Medicine, Center for Molecular Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Peleli
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhengbing Zhuge
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Niccolo Terrando
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Medicine, Div. of Nephrology (T.Y.), Dept. of Anesthesiology (N.T.), Duke University Medical Center, Durham, NC, USA
| | - Robert A Harris
- Dept. of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Peder S Olofsson
- Dept. of Medicine, Center for Molecular Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Larsson
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - A Erik G Persson
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dept. of Medical Cell Biology, Uppsala University, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlstrom
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
296
|
Abstract
AbstractCVD is the leading cause of death worldwide, a consequence of mostly poor lifestyle and dietary behaviours. Although whole fruit and vegetable consumption has been consistently shown to reduce CVD risk, the exact protective constituents of these foods are yet to be clearly identified. A recent and biologically plausible hypothesis supporting the cardioprotective effects of vegetables has been linked to their inorganic nitrate content. Approximately 60–80 % inorganic nitrate exposure in the human diet is contributed by vegetable consumption. Although inorganic nitrate is a relatively stable molecule, under specific conditions it can be metabolised in the body to produce NO via the newly discovered nitrate–nitrite–NO pathway. NO is a major signalling molecule in the human body, and has a key role in maintaining vascular tone, smooth muscle cell proliferation, platelet activity and inflammation. Currently, there is accumulating evidence demonstrating that inorganic nitrate can lead to lower blood pressure and improved vascular compliance in humans. The aim of this review is to present an informative, balanced and critical review of the current evidence investigating the role of inorganic nitrate and nitrite in the development, prevention and/or treatment of CVD. Although there is evidence supporting short-term inorganic nitrate intakes for reduced blood pressure, there is a severe lack of research examining the role of long-term nitrate intakes in the treatment and/or prevention of hard CVD outcomes, such as myocardial infarction and cardiovascular mortality. Epidemiological evidence is needed in this field to justify continued research efforts.
Collapse
|
297
|
Oggioni C, Jakovljevic DG, Klonizakis M, Ashor AW, Ruddock A, Ranchordas M, Williams E, Siervo M. Dietary nitrate does not modify blood pressure and cardiac output at rest and during exercise in older adults: a randomised cross-over study. Int J Food Sci Nutr 2017; 69:74-83. [PMID: 28562133 PMCID: PMC5952182 DOI: 10.1080/09637486.2017.1328666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Dietary nitrate (NO3-) supplementation has been associated with improved vascular and metabolic health. We conducted a double-blind, cross-over, placebo-controlled RCT to investigate the effects of 7-d consumption of beetroot juice compared with placebo on (1) blood pressure (BP) measured in resting conditions and during exercise, (2) cardiac and peripheral vascular function and (3) biomarkers of inflammation, oxidative stress and endothelial integrity. Twenty non-smoking healthy participants aged 60–75 years and BMI 20.0–29.9 kg/m2 were recruited. Measurement was conducted before and after each 7-d intervention period. Consumption of NO3- had no effect on resting systolic and diastolic BP. NO3- consumption did not improve indexes of central and peripheral cardiac function responses during cardiopulmonary exercise testing. Dietary NO3- supplementation did not modify biomarkers of inflammation, oxidative stress and endothelial integrity. This study does not support the short-term benefits of dietary NO3- supplementation on physiological and biochemical markers of vascular health in older healthy adults.
Collapse
Affiliation(s)
- C Oggioni
- a Human Nutrition Research Centre, Institute of Cellular Medicine , Newcastle University , Newcastle on Tyne , UK
| | - D G Jakovljevic
- b Institute of Cellular Medicine, MoveLab , Newcastle University , Newcastle upon Tyne , UK
| | - M Klonizakis
- c Centre for Sport and Exercise Science , Sheffield Hallam University , Sheffield , UK
| | - A W Ashor
- a Human Nutrition Research Centre, Institute of Cellular Medicine , Newcastle University , Newcastle on Tyne , UK
| | - A Ruddock
- c Centre for Sport and Exercise Science , Sheffield Hallam University , Sheffield , UK
| | - M Ranchordas
- c Centre for Sport and Exercise Science , Sheffield Hallam University , Sheffield , UK
| | - E Williams
- d Human Nutrition Unit, Department of Oncology & Metabolism, Faculty of Medicine, Dentistry and Health , University of Sheffield , Sheffield , UK
| | - M Siervo
- a Human Nutrition Research Centre, Institute of Cellular Medicine , Newcastle University , Newcastle on Tyne , UK
| |
Collapse
|
298
|
Affiliation(s)
- Chetan P Phadke
- Spasticity Research Program, West Park Healthcare Centre; Department of Physical Therapy, University of Toronto; Graduate Program in Kinesiology and Health Science, York University, Toronto
| |
Collapse
|
299
|
Shaltout HA, Eggebeen J, Marsh AP, Brubaker PH, Laurienti PJ, Burdette JH, Basu S, Morgan A, Dos Santos PC, Norris JL, Morgan TM, Miller GD, Rejeski WJ, Hawfield AT, Diz DI, Becton JT, Kim-Shapiro DB, Kitzman DW. Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction. Nitric Oxide 2017; 69:78-90. [PMID: 28549665 DOI: 10.1016/j.niox.2017.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 01/25/2023]
Abstract
Aerobic exercise training is an effective therapy to improve peak aerobic power (peak VO2) in individuals with hypertension (HTN, AHA/ACC class A) and heart failure patients with preserved ejection fraction (HFpEF). High nitrate containing beetroot juice (BRJ) also improves sub-maximal endurance and decreases blood pressure in both HTN and HFpEF. We hypothesized that combining an aerobic exercise and dietary nitrate intervention would result in additive or even synergistic positive effects on exercise tolerance and blood pressure in HTN or HFpEF. We report results from two pilot studies examining the effects of supervised aerobic exercise combined with dietary nitrate in patients with controlled HTN (n = 26, average age 65 ± 5 years) and in patients with HFpEF (n = 20, average age 69 ± 7 years). All patients underwent an aerobic exercise training regimen; half were randomly assigned to consume a high nitrate-containing beet juice beverage (BRJ containing 6.1 mmol nitrate for the HFpEF study consumed three times a week and 8 mmol nitrate for the HTN study consumed daily) while the other half consumed a beet juice beverage with the nitrate removed (placebo). The main result was that there was no added benefit observed for any outcomes when comparing BRJ to placebo in either HTN or HFpEF patients undergoing exercise training (p ≥ 0.14). There were within-group benefits. In the pilot study in patients with HFpEF, aerobic endurance (primary outcome), defined as the exercise time to volitional exhaustion during submaximal cycling at 75% of maximal power output, improved during exercise training within each group from baseline to end of study, 369 ± 149 s vs 520 ± 257 s (p = 0.04) for the placebo group and 384 ± 129 s vs 483 ± 258 s for the BRJ group (p = 0.15). Resting systolic blood pressure in patients with HFpEF also improved during exercise training in both groups, 136 ± 16 mm Hg vs 122 ± 3 mm Hg for the placebo group (p < 0.05) and 132 ± 12 mm Hg vs 119 ± 9 mm Hg for the BRJ group (p < 0.05). In the HTN pilot study, during a treadmill graded exercise test, peak oxygen consumption (primary outcome) did not change significantly, but time to exhaustion (also a primary outcome) improved in both groups, 504 ± 32 s vs 601 ± 38 s (p < 0.05) for the placebo group and 690 ± 38 s vs 772 ± 95 s for the BRJ group (p < 0.05) which was associated with a reduction in supine resting systolic blood pressure in BRJ group. Arterial compliance also improved during aerobic exercise training in both the HFpEF and the HTN patients for both BRJ and placebo groups. Future work is needed to determine if larger nitrate doses would provide an added benefit to supervised aerobic exercise in HTN and HFpEF patients.
Collapse
Affiliation(s)
- Hossam A Shaltout
- Section on Obstetrics & Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Joel Eggebeen
- Sections on Cardiovascular Medicine and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27157, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA
| | - Peter H Brubaker
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27157, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA
| | - Paul J Laurienti
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA; Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 2757, USA
| | - Jonathan H Burdette
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA; Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 2757, USA
| | - Swati Basu
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA; Department of Physics, Wake Forest University, Winston-Salem, NC 27104, USA
| | - Ashley Morgan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 2757, USA
| | - Patricia C Dos Santos
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA; Department of Chemistry, Wake Forest University, Winston-Salem, NC 27104, USA
| | - James L Norris
- Department of Mathematics, Wake Forest University, Winston-Salem, NC 27104, USA
| | - Timothy M Morgan
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27157, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA
| | - W Jack Rejeski
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27157, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA
| | - Amret T Hawfield
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA; Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Debra I Diz
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - J Thomas Becton
- Sections on Cardiovascular Medicine and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Daniel B Kim-Shapiro
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA; Department of Physics, Wake Forest University, Winston-Salem, NC 27104, USA.
| | - Dalane W Kitzman
- Sections on Cardiovascular Medicine and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27104, USA.
| |
Collapse
|
300
|
Abstract
Dietary nitrate is mainly obtained from vegetables, especially green leafy vegetables and beetroot. As a result of early research, dietary nitrate is currently viewed as a contaminant linked to increased risks of stomach cancer and methaemoglobinaemia. Consequently, nitrate levels are restricted in certain vegetables and in water supplies to ensure exposure levels remain below an acceptable daily intake of 3·7 mg/kg per d. The average nitrate intake in the UK is approximately 70 mg/d, although some population groups, such as vegetarians, may consume three times that amount. However, recent studies in the last decade suggest that dietary nitrate can significantly reduce systolic blood pressure via the nitrate-nitrite-NO pathway. A small, downward shift in systolic blood pressure across the population could significantly reduce the incidence of hypertension and mortality from CVD such as stroke. Interestingly, vegetarians tend to have lower levels of blood pressure than omnivores and epidemiological studies suggest that vegetarians have lower risks of CVD. Recent evidence is mainly focused on the acute effects of dietary nitrate supplementation and there is a lack of data looking at the chronic effects of high nitrate consumption in humans. Nevertheless, due to potential health benefits, some authors are recommending that nitrate should be considered as a nutrient necessary for health, rather than as a contaminant which needs to be restricted. This review will discuss the emerging role of dietary nitrate in the control of blood pressure and whether there is sufficient evidence to state that nitrate is a 'new' nutrient.
Collapse
|