251
|
Osonoi T, Saito M, Koda N, Douguchi S, Nakano T, Ofuchi K, Katoh M. Add-On Therapy with DPP-4 Inhibitors May Improve Renal Function Decline in α-Glucosidase Inhibitor and Metformin Users: A Retrospective Observational Study. Diabetes Metab Syndr Obes 2020; 13:3497-3506. [PMID: 33116701 PMCID: PMC7547288 DOI: 10.2147/dmso.s273405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We retrospectively evaluated the long-term effect of dipeptidyl peptidase (DPP)-4 inhibitors on estimated glomerular filtration rate (eGFR) slopes, and then evaluated the beneficial interaction between DPP-4 inhibitor initiation and baseline use of α-glucosidase inhibitor and/or metformin in patients with diabetic kidney disease. PATIENTS AND METHODS Altogether, 1512 patients with type 2 diabetes were receiving DPP-4 inhibitor therapy over 1 year and were followed up for a maximum of 2 years before and after 7 years of treatment. The decline in renal function was estimated as the slope of the individual linear regression line of eGFR over 2-year follow-up. Prescription data on medications before and after DPP-4 inhibitor treatment were examined. RESULTS The mean length of DPP-4 inhibitor treatment was 5.3 ± 2.6 years. The baseline mean eGFR slope (mL/min/1.73m2/year) was -2.24 ± 6.05. After DPP-4 inhibitor treatment, mean eGFR slope was significantly improved (-1.53 ± 6.36, P < 0.01) in patients with type 2 diabetes. This effect appeared more pronounced for baseline use of α-glucosidase inhibitor and/or metformin in patients with diabetic kidney disease. These non-users showed a trend towards attenuation or no effects. CONCLUSION In the present study, patients treated with DPP-4 inhibitors had a significantly slower annual loss of kidney function. The benefit appears pronounced in α-glucosidase inhibitor and metformin users with advanced renal dysfunction. These results suggest that the beneficial effects of DPP-4 inhibitors on kidney function may have occurred in the presence of an α-glucosidase inhibitor and/or metformin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Makoto Katoh
- Naka Kinen Clinic, Ibaraki, Japan
- Correspondence: Makoto Katoh Naka Kinen Clinic, 745-5 Nakadai, Naka-Shi, Ibaraki311-0113, JapanTel +81-29-353-2800Fax +81-29-295-5400 Email
| |
Collapse
|
252
|
Beaudry JL, Drucker DJ. Proglucagon-Derived Peptides, Glucose-Dependent Insulinotropic Polypeptide, and Dipeptidyl Peptidase-4-Mechanisms of Action in Adipose Tissue. Endocrinology 2020; 161:5648010. [PMID: 31782955 DOI: 10.1210/endocr/bqz029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Proglucagon-derived peptides (PGDPs) and related gut hormones exemplified by glucose-dependent insulinotropic polypeptide (GIP) regulate energy disposal and storage through actions on metabolically sensitive organs, including adipose tissue. The actions of glucagon, glucagon-like peptide (GLP)-1, GLP-2, GIP, and their rate-limiting enzyme dipeptidyl peptidase-4, include direct and indirect regulation of islet hormone secretion, food intake, body weight, all contributing to control of white and brown adipose tissue activity. Moreover, agents mimicking actions of these peptides are in use for the therapy of metabolic disorders with disordered energy homeostasis such as diabetes, obesity, and intestinal failure. Here we highlight current concepts and mechanisms for direct and indirect actions of these peptides on adipose tissue depots. The available data highlight the importance of indirect peptide actions for control of adipose tissue biology, consistent with the very low level of endogenous peptide receptor expression within white and brown adipose tissue depots. Finally, we discuss limitations and challenges for the interpretation of available experimental observations, coupled to identification of enduring concepts supported by more robust evidence.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto ON, Canada
| |
Collapse
|
253
|
Virgen-Carrillo CA, Martínez Moreno AG, Valdés Miramontes EH. Potential Hypoglycemic Effect of Pomegranate Juice and Its Mechanism of Action: A Systematic Review. J Med Food 2020; 23:1-11. [DOI: 10.1089/jmf.2019.0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Alma Gabriela Martínez Moreno
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Elia Herminia Valdés Miramontes
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| |
Collapse
|
254
|
El Mouhayyar C, Riachy R, Khalil AB, Eid A, Azar S. SGLT2 Inhibitors, GLP-1 Agonists, and DPP-4 Inhibitors in Diabetes and Microvascular Complications: A Review. Int J Endocrinol 2020; 2020:1762164. [PMID: 32190049 PMCID: PMC7066394 DOI: 10.1155/2020/1762164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
The prevalence of diabetes and its associated complications is increasing throughout the decades. Promising diabetes medications were introduced to the market including GLP-1 agonists, DPP-4 inhibitors, and SGLT2 inhibitors aiming to target these complications. The literature lacks sufficient data regarding these new medications and their influence on nephropathy, retinopathy, and neuropathy. This review expands on the major results of effects of the 3 drug classes on microvascular complications. In our review, both SGLT2 inhibitors and GLP-1 agonists appear to have promising nephroprotective outcomes at this stage, with less promising outcomes seen with DPP-4 inhibitors. Moreover, the retinoprotective outcomes of both SGLT2 inhibitors and DPP-4 inhibitors were only tested on mice, while those of GLP-1 agonists were assessed in few trials. In addition, the results of both GLP-1 agonists and DPP-4 inhibitors showed discrepancies in these studies. On the contrary, conclusions regarding the effect of these medications on neuroprotective outcomes cannot be drawn at the time due to the lack of clinical trials targeting these complications. Hence, a clearer picture of the microvascular outcomes will manifest over time with the release of multiple upcoming clinical trials.
Collapse
Affiliation(s)
- Christopher El Mouhayyar
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
- Diabetes Program, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ruba Riachy
- Diabetes Program, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Internal Medicine, Division of Endocrinology and Diabetes, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Abir Bou Khalil
- Diabetes Program, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Internal Medicine, Division of Endocrinology and Diabetes, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Asaad Eid
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
- Diabetes Program, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Sami Azar
- Diabetes Program, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Internal Medicine, Division of Endocrinology and Diabetes, American University of Beirut-Medical Center, Beirut, Lebanon
| |
Collapse
|
255
|
Pan X, Xu S, Li J, Tong N. The Effects of DPP-4 Inhibitors, GLP-1RAs, and SGLT-2/1 Inhibitors on Heart Failure Outcomes in Diabetic Patients With and Without Heart Failure History: Insights From CVOTs and Drug Mechanism. Front Endocrinol (Lausanne) 2020; 11:599355. [PMID: 33335511 PMCID: PMC7736403 DOI: 10.3389/fendo.2020.599355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023] Open
Abstract
Patients with type 2 diabetes (T2D) have a higher risk of heart failure (HF) than healthy people, and the prognosis of patients with diabetes and current or previous HF is worse than that of patients with only diabetes. We reviewed the HF outcomes in recently published cardiovascular outcome trials (CVOTs) of three new classes of anti-diabetic agents, namely, dipeptidyl peptidase-4 inhibitors (DPP-4is), glucagon-like-peptide 1 receptor agonists (GLP-1RAs), and sodium glucose cotransporter-2 inhibitors (SGLT-2is) or SGLT-2 and SGLT-1 dual inhibitors and divided the patients into two groups based on the history of HF (with or without) and analyzed their risks of HHF based on the receipt of the aforementioned anti-diabetes drug types. Since the follow-up period differed among the trials, we expressed the rate of HHF as events/1,000 person-years to describe the HF outcome. At last we pooled the data and analyzed their different effects and mechanisms on heart failure outcomes. Although DPP-4is did not increase the risk of HHF in T2D patients with a history of HF, they were associated with a significantly higher risk of HHF among patients without history of HF. Some GLP-1RAs reduced the risk of macrovascular events, but none of these drugs reduced the risk of HHF in patients with T2D irrespective of their HF history. It was not clarified whether SGLT-1/2is can improve the prognosis of macrovascular events in patients with T2D, but these drugs reduced the risk of HHF regardless of patients' histories of HF. This information may be useful or referential for the "precise" selection of hyperglycemic medications. Further researches still needed to clarify the mechanisms of these anti-diabetic medications.
Collapse
|
256
|
Tewary S, Lucas ES, Fujihara R, Kimani PK, Polanco A, Brighton PJ, Muter J, Fishwick KJ, Da Costa MJMD, Ewington LJ, Lacey L, Takeda S, Brosens JJ, Quenby S. Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells: A randomised, double-blind placebo-controlled feasibility trial. EBioMedicine 2020; 51:102597. [PMID: 31928963 PMCID: PMC7000352 DOI: 10.1016/j.ebiom.2019.102597] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is associated with the loss of endometrial mesenchymal stem-like progenitor cells (eMSC). DPP4 inhibitors may increase homing and engraftment of bone marrow-derived cells to sites of tissue injury. Here, we evaluated the effect of the DPP4 inhibitor sitagliptin on eMSC in women with RPL, determined the impact on endometrial decidualization, and assessed the feasibility of a full-scale clinical trial. METHODS A double-blind, randomised, placebo-controlled feasibility trial on women aged 18 to 42 years with a history of 3 or more miscarriages, regular menstrual cycles, and no contraindications to sitagliptin. Thirty-eight subjects were randomised to either 100 mg sitagliptin daily for 3 consecutive cycles or identical placebo capsules. Computer generated, permuted block randomisation was used to allocate treatment packs. Colony forming unit (CFU) assays were used to quantify eMSC in midluteal endometrial biopsies. The primary outcome measure was CFU counts. Secondary outcome measures were endometrial thickness, study acceptability, and first pregnancy outcome within 12 months following the study. Tissue samples were subjected to explorative investigations. FINDINGS CFU counts following sitagliptin were higher compared to placebo only when adjusted for baseline CFU counts and age (RR: 1.52, 95% CI: 1.32-1.75, P<0.01). The change in CFU count was 1.68 in the sitagliptin group and 1.08 in the placebo group. Trial recruitment, acceptability, and drug compliance were high. There were no serious adverse events. Explorative investigations showed that sitagliptin inhibits the expression of DIO2, a marker gene of senescent decidual cells. INTERPRETATION Sitagliptin increases eMSCs and decreases decidual senescence. A large-scale clinical trial evaluating the impact of preconception sitagliptin treatment on pregnancy outcome in RPL is feasible and warranted. FUNDING Tommy's Baby Charity. CLINICAL TRIAL REGISTRATION EU Clinical Trials Register no. 2016-001120-54.
Collapse
Affiliation(s)
- Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Department of Obstetrics & Gynaecology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Peter K Kimani
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Angela Polanco
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Maria José Minhoto Diniz Da Costa
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Lauren J Ewington
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Lauren Lacey
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Satoru Takeda
- Department of Obstetrics & Gynaecology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK.
| |
Collapse
|
257
|
Soare A, Györfi HA, Matei AE, Dees C, Rauber S, Wohlfahrt T, Chen C, Ludolph I, Horch RE, Bäuerle T, Hörsten S, Mihai C, Distler O, Ramming A, Schett G, Distler JHW. Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2019; 72:137-149. [DOI: 10.1002/art.41058] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alina Soare
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany, and Davila University of Medicine and Pharmacy Bucharest Romania
| | - Hermina A. Györfi
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Alexandru E. Matei
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Clara Dees
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Simon Rauber
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Thomas Wohlfahrt
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Chih‐Wei Chen
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Ingo Ludolph
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Raymund E. Horch
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Tobias Bäuerle
- Friedrich‐Alexander University Erlangen‐Nuremberg Erlangen Germany
| | - Stephan Hörsten
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Carina Mihai
- University Hospital Zurich, Zurich, Switzerland, and Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | | | - Andreas Ramming
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Georg Schett
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Jörg H. W. Distler
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| |
Collapse
|
258
|
Design, synthesis and biological evaluation of vincamine derivatives as potential pancreatic β-cells protective agents for the treatment of type 2 diabetes mellitus. Eur J Med Chem 2019; 188:111976. [PMID: 31918073 DOI: 10.1016/j.ejmech.2019.111976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
A series of vincamine derivatives were designed, synthesized and evaluated as pancreatic β-cells protective agents for type 2 diabetes mellitus. Most of the compounds displayed potent pancreatic β-cells protective activities and five derivatives were found to exhibit 20-50-fold higher activities than vincamine. Especially for compounds Vin-C01 and Vin-F03, exhibited a remarkable EC50 value of 0.22 μM and 0.27 μM, respectively. Their pancreatic β-cells protective activities increased approximately 2 times than vincamine. In cell viability assay, compounds Vin-C01 and Vin-F03 could effectively promote β-cell survival and protect β-cells from STZ-induced apoptosis. Further cellular mechanism of action studies demonstrated that their potent β-cells protective activities were achieved by regulating IRS2/PI3K/Akt signaling pathway. The present study evidently showed that compounds Vin-C01 and Vin-F03 were two more potent pancreatic β-cells protective agents compared to vincamine and might serve as promising lead candidates for the treatment of type 2 diabetes mellitus.
Collapse
|
259
|
Avalos-de León CG, Jiménez-Castro MB, Cornide-Petronio ME, Casillas-Ramírez A, Peralta C. The Role of GLP1 in Rat Steatotic and Non-Steatotic Liver Transplantation from Cardiocirculatory Death Donors. Cells 2019; 8:cells8121599. [PMID: 31835410 PMCID: PMC6953101 DOI: 10.3390/cells8121599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023] Open
Abstract
In liver transplantation (LT), organ shortage has led to the use of steatotic and non-steatotic grafts from donors after cardiocirculatory death (DCD). However, these grafts, especially those with steatosis, exhibit poor post-operative outcomes. To address this problem, we investigated the roles of gut-derived glucagon-like peptide 1 (GLP1) and dipeptidyl peptidase 4 (DPP4), the serine protease that cleaves it, in steatotic and non-steatotic LT from DCDs. Using Zucker rats, liver grafts from DCDs were cold stored and transplanted to recipients. GLP1 was administered to donors. The levels of GLP1 in intestine and of both GLP1 and DDP4 in circulation were unaltered following cardiocirculatory death (CD). In steatotic livers from DCD, increased GLP1 and decreased DPP4 were recorded, and administration of GLP1 caused a rise in hepatic GLP1 and a reduction in DDP4. This protected against inflammation, damage, and proliferation failure. Conversely, low GLP1 and high DDP4 were observed in non-steatotic livers from DCD. The exogenous GLP1 did not modify hepatic DDP4, and the accumulated GLP1 exerted harmful effects, increasing damage, inflammation, and regeneration failure. Herein, we show that there are differences in GLP1/DDP4 regulation depending on the type of liver implanted, suggesting that GLP1 can be used as a novel and effective therapy in steatotic grafts from DCDs but that it is not appropriate for non-steatotic DCDs.
Collapse
Affiliation(s)
- Cindy G. Avalos-de León
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - María Eugenia Cornide-Petronio
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
- Correspondence: (A.C.-R.); (C.P.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Correspondence: (A.C.-R.); (C.P.)
| |
Collapse
|
260
|
Zhang D, Ma M, Liu Y. Protective Effects of Incretin Against Age-Related Diseases. Curr Drug Deliv 2019; 16:793-806. [PMID: 31622202 DOI: 10.2174/1567201816666191010145029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Incretin contains two peptides named glucagon-like peptide-1(GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP). Drug therapy using incretin has become a new strategy for diabetic
treatments due to its significant effects on improving insulin receptors and promoting insulinotropic
secretion. Considering the fact that diabetes millitus is a key risk factor for almost all age-related diseases,
the extensive protective roles of incretin in chronic diseases have received great attention. Based
on the evidence from animal experiments, where incretin can protect against the pathophysiological
processes of neurodegenerative diseases, clinical trials for the treatments of Alzheimer’s disease (AD)
and Parkinson’s disease (PD) patients are currently ongoing. Moreover, the protective effect of incretin
on heart has been observed in cardiac myocytes, smooth muscle cells and endothelial cells of vessels.
Meanwhile, incretin can also inhibit the proliferation of aortic vascular smooth muscle cells, which can
induce atherosclerogenesis. Incretin is also beneficial for diabetic microvascular complications, including
nephropathy, retinopathy and gastric ulcer, as well as the hepatic-related diseases such as NAFLD
and NASH. Besides, the anti-tumor properties of incretin have been proven in diverse cancers including
ovarian cancer, pancreas cancer, prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Di Zhang
- Chemistry Department, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingzhu Ma
- Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yueze Liu
- Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
261
|
Huang F, Ning M, Wang K, Liu J, Guan W, Leng Y, Shen J. Discovery of Highly Polar β-Homophenylalanine Derivatives as Nonsystemic Intestine-Targeted Dipeptidyl Peptidase IV Inhibitors. J Med Chem 2019; 62:10919-10925. [PMID: 31747282 DOI: 10.1021/acs.jmedchem.9b01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although intensively expressed within intestine, the precise roles of intestinal dipeptidyl peptidase IV (DPPIV) in numerous pathologies remain incompletely understood. Here, we first reported a nonsystemic intestine-targeted (NSIT) DPPIV inhibitor with β-homophenylalanine scaffold, compound 7, which selectively inhibited the intestinal rather than plasmatic DPPIV at an oral dosage as high as 30 mg/kg. We expect that compound 7 could serve as a qualified tissue-selective tool to determine undetected physiological or pathological roles of intestinal DPPIV.
Collapse
Affiliation(s)
| | | | | | | | - Wenbo Guan
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing , 100049 , China
| | - Ying Leng
- University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing , 100049 , China
| | | |
Collapse
|
262
|
Inhibition of dipeptidyl peptidase 4 (DPP4) activates immune cells chemotaxis in hepatocellular carcinoma. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.onsig.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
263
|
Abstract
PURPOSE OF REVIEW The age-related accumulation of bone marrow adipose tissue (BMAT) negatively impacts bone metabolism and hematopoiesis. This review provides an overview about BMAT-secreted factors as biomarkers for BMAT accumulation and osteoporosis risk. RECENT FINDINGS The adipokines leptin and adiponectin are regulators of BMAT. It remains to be clarified if locally produced adipokines substantially contribute to their peripheral serum levels and if they influence bone metabolism beyond that of extraosseous adipokine production. Existing data also suggests that BMAT disturbs bone metabolism primarily through palmitate-mediated toxic effects on osteoblasts and osteocytes, including dysregulated autophagy and apoptosis. BMAT-secreted factors are important modulators of bone metabolism. However, the majority of our understanding about MAT-secreted factors and their paracrine and endocrine effects is derived from in vitro studies and animal experiments. Therefore, more research is needed before BMAT-secreted biomarkers can be applied in medical practice.
Collapse
Affiliation(s)
- Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15/1, 8036, Graz, Austria.
| |
Collapse
|
264
|
Iheagwam FN, Ogunlana OO, Chinedu SN. Model Optimization and In Silico Analysis of Potential Dipeptidyl Peptidase IV Antagonists from GC-MS Identified Compounds in Nauclea latifolia Leaf Extracts. Int J Mol Sci 2019; 20:ijms20235913. [PMID: 31775302 PMCID: PMC6929178 DOI: 10.3390/ijms20235913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a pharmacotherapeutic target in type 2 diabetes. Inhibitors of this enzyme constitute a new class of drugs used in the treatment and management of type 2 diabetes. In this study, phytocompounds in Nauclea latifolia (NL) leaf extracts, identified using gas chromatography–mass spectroscopy (GC-MS), were tested for potential antagonists of DPP-IV via in silico techniques. Phytocompounds present in N. latifolia aqueous (NLA) and ethanol (NLE) leaf extracts were identified using GC–MS. DPP-IV model optimization and molecular docking of the identified compounds/standard inhibitors in the binding pocket was simulated. Drug-likeness, pharmacokinetic and pharmacodynamic properties of promising docked leads were also predicted. Results showed the presence of 50 phytocompounds in NL extracts of which only 2-O-p-methylphenyl-1-thio-β-d-glucoside, 3-tosylsedoheptulose, 4-benzyloxy-6-hydroxymethyl-tetrahydropyran-2,3,5-triol and vitamin E exhibited comparable or better binding iGEMDOCK and AutoDock Vina scores than the clinically prescribed standards. These four compounds exhibited promising drug-likeness as well as absorption, distribution, metabolism, excretion and toxicity (ADMET) properties suggesting their candidature as novel leads for developing DPP-IV inhibitors.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, PMB 1023, Ota 112212, Ogun State, Nigeria; (O.O.O.); (S.N.C.)
- Covenant University Public Health and Wellness Research Cluster (CUPHWERC), Covenant University, PMB 1023, Ota 112212, Ogun State, Nigeria
- Correspondence: ; Tel.: +234-8163615298
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, PMB 1023, Ota 112212, Ogun State, Nigeria; (O.O.O.); (S.N.C.)
- Covenant University Public Health and Wellness Research Cluster (CUPHWERC), Covenant University, PMB 1023, Ota 112212, Ogun State, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, Covenant University, PMB 1023, Ota 112212, Ogun State, Nigeria; (O.O.O.); (S.N.C.)
- Covenant University Public Health and Wellness Research Cluster (CUPHWERC), Covenant University, PMB 1023, Ota 112212, Ogun State, Nigeria
| |
Collapse
|
265
|
Tomovic K, Ilic BS, Miljkovic M, Dimov S, Yancheva D, Kojic M, Mavrova AT, Kocic G, Smelcerovic A. Benzo[4,5]thieno[2,3-d]pyrimidine phthalimide derivative, one of the rare noncompetitive inhibitors of dipeptidyl peptidase-4. Arch Pharm (Weinheim) 2019; 353:e1900238. [PMID: 31710123 DOI: 10.1002/ardp.201900238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 11/11/2022]
Abstract
A small library of benzo[4,5]thieno[2,3-d]pyrimidine phthalimide and amine derivatives was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4). The phthalimide derivatives exhibited better activity than the amine precursors, with 2-(2-(3-chlorobenzyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)isoindoline-1,3-dione (compound 14) as the most effective inhibitor (IC50 = 34.17 ± 5.11 μM). The five most potent selected inhibitors did not show cytotoxicity to a greater extent on Caco-2 cells, even at a concentration of 250 μM. Compound 14 is considered as a novel representative of the rare noncompetitive DPP-4 inhibitors. Molecular docking and dynamics simulation indicated the importance of the Tyr547, Lys554, and Trp629 residues of DPP-4 in the formation of the enzyme-inhibitor complex. These observations could be potentially utilized for the rational design and optimization of novel (structurally similar, with phthalimide moiety, or different) noncompetitive DPP-4 inhibitors, which are anyway rare, but favorable in terms of the saturation of substrate competition.
Collapse
Affiliation(s)
- Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Budimir S Ilic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Marija Miljkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Stefan Dimov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Anelia T Mavrova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
266
|
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest 2019; 42:1257-1272. [PMID: 31073969 DOI: 10.1007/s40618-019-01052-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
Adipose tissue (AT) is one of the largest endocrine organs contributing to metabolic homeostasis. The functional pleiotropism of AT depends on its ability to secrete a large number of hormones, cytokines, extracellular matrix proteins and growth factors, all influencing many local and systemic physiological and pathophysiological processes. In condition of chronic positive energy balance, adipocyte expansion, hypoxia, apoptosis and stress all lead to AT inflammation and dysfunction, and it has been demonstrated that this sick fat is a main risk factor for many metabolic disorders, such as type 2 diabetes mellitus, fatty liver, cardiovascular disease and cancer. AT dysfunction is tightly associated with aberrant secretion of bioactive peptides, the adipocytokines, and their blood concentrations often reflect the expression in the AT. Despite the existence of an association between AT dysfunction and systemic pro-inflammatory state, most of the circulating molecules detectable in obese and dysmetabolic individuals do not identify specifically the condition of sick fat. Based on this premise, this review provides a concise overview of "classic" and novel promising adipocytokines associated with AT inflammation and discusses possible critical approaches to their interpretation in clinical practice.
Collapse
Affiliation(s)
- I Barchetta
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - F A Cimini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - G Ciccarelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - M G Baroni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| | - M G Cavallo
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
267
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
268
|
Kim TH, Lee K, Park IB, Choi CS, Ahn TH, Lee DH. The effects of DPP4 inhibitors on the levels of plasma catecholamines and their metabolites in patients with type 2 diabetes. Diabetes Res Clin Pract 2019; 156:107832. [PMID: 31513823 DOI: 10.1016/j.diabres.2019.107832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 01/21/2023]
Abstract
AIMS Dipeptidyl peptidase 4 inhibitors (DPP4Is) can increase sympathetic activity. We aimed to evaluate the direct association between serum DPP4 activity and sympathetic activity in humans. METHODS Fasting serum DPP4 activity and plasma levels of catecholamines and their metabolites were measured in 211 patients with type 2 diabetes mellitus (T2DM) treated with DPP4I (n = 146) or non-DPP4I therapy (n = 65) and in healthy control subjects (n = 30). RESULTS Although there were no differences in plasma levels of catecholamines and their metabolites between the DPP4I and non-DPP4I groups, the levels in both of these groups were lower than those in the healthy control group. In DPP4I-treated patients, serum DPP4 activity showed an inverse correlation with plasma levels of norepinephrine (NE) (r = -0.339, p < 0.01), metanephrine (MET) (r = -0.251, p < 0.01) and normetanephrine (r = -0.312, p < 0.001). In addition, plasma MET level showed a weak inverse correlation with serum DPP4 activity in the combined T2DM group. In DPP4I-treated patients, the inverse correlation between DPP4 activity and plasma NE remained significant even after multiple adjustments. CONCLUSIONS Our results suggest that although sympathetic activity is lower in patients with T2DM, the greater the suppression of DPP4 activity by DPP4I therapy, the greater the increase in sympathetic activity is, which may have clinical implications in high risk T2DM patients.
Collapse
Affiliation(s)
- Tae Hun Kim
- Gachon University, School of Medicine, Incheon, Republic of Korea
| | - Kiyoung Lee
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ie Byung Park
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Cheol Soo Choi
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Tae Hoon Ahn
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.
| | - Dae Ho Lee
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
269
|
Hutch CR, Roelofs K, Haller A, Sorrell J, Leix K, D'Alessio DD, Augustin R, Seeley RJ, Klein T, Sandoval DA. The role of GIP and pancreatic GLP-1 in the glucoregulatory effect of DPP-4 inhibition in mice. Diabetologia 2019; 62:1928-1937. [PMID: 31414143 PMCID: PMC6732043 DOI: 10.1007/s00125-019-4963-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two peptides that function to promote insulin secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors increase the bioavailability of both GLP-1 and GIP but the dogma continues to be that it is the increase in GLP-1 that contributes to the improved glucose homeostasis. We have previously demonstrated that pancreatic rather than intestinal GLP-1 is necessary for improvements in glucose homeostasis in mice. Therefore, we hypothesise that a combination of pancreatic GLP-1 and GIP is necessary for the full effect of DPP-4 inhibitors on glucose homeostasis. METHODS We have genetically engineered mouse lines in which the preproglucagon gene (Gcg) is absent in the entire body (GcgRAΔNull) or is expressed exclusively in the intestine (GcgRAΔVilCre) or pancreas and duodenum (GcgRAΔPDX1Cre). These mice were used to examine oral glucose tolerance and GLP-1 and GIP responses to a DPP-4 inhibitor alone, or in combination with incretin receptor antagonists. RESULTS Administration of the DPP-4 inhibitor, linagliptin, improved glucose tolerance in GcgRAΔNull mice and control littermates and in GcgRAΔVilCre and GcgRAΔPDX1Cre mice. The potent GLP-1 receptor antagonist, exendin-[9-39] (Ex9), blunted improvements in glucose tolerance in linagliptin-treated control mice and in GcgRAΔPDX1Cre mice. Ex9 had no effect on glucose tolerance in linagliptin-treated GcgRAΔNull or in GcgRAΔVilCre mice. In addition to GLP-1, linagliptin also increased postprandial plasma levels of GIP to a similar degree in all genotypes. When linagliptin was co-administered with a GIP-antagonising antibody, the impact of linagliptin was partially blunted in wild-type mice and was fully blocked in GcgRAΔNull mice. CONCLUSIONS/INTERPRETATION Taken together, these data suggest that increases in pancreatic GLP-1 and GIP are necessary for the full effect of DPP-4 inhibitors on glucose tolerance.
Collapse
Affiliation(s)
- Chelsea R Hutch
- Department of Surgery, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Karen Roelofs
- Department of Surgery, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - April Haller
- Department of Internal Medicine-Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Joyce Sorrell
- Department of Internal Medicine-Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Kyle Leix
- Department of Surgery, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - David D D'Alessio
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, USA
| | - Robert Augustin
- Cardiometabolic Diseases Research (Biberach), Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Randy J Seeley
- Department of Surgery, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Thomas Klein
- Cardiometabolic Diseases Research (Biberach), Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
270
|
Beaudry JL, Kaur KD, Varin EM, Baggio LL, Cao X, Mulvihill EE, Bates HE, Campbell JE, Drucker DJ. Physiological roles of the GIP receptor in murine brown adipose tissue. Mol Metab 2019; 28:14-25. [PMID: 31451430 PMCID: PMC6822254 DOI: 10.1016/j.molmet.2019.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Glucose-dependent insulinotropic polypeptide (GIP) is secreted from the gut in response to nutrient ingestion and promotes meal-dependent insulin secretion and lipid metabolism. Loss or attenuation of GIP receptor (GIPR) action leads to resistance to diet-induced obesity through incompletely understood mechanisms. The GIPR is expressed in white adipose tissue; however, its putative role in brown adipose tissue (BAT) has not been explored. METHODS We investigated the role of the GIPR in BAT cells in vitro and in BAT-specific (GiprBAT-/-) knockout mice with selective elimination of the Gipr within the Myf5+ expression domain. We analyzed body weight, adiposity, glucose homeostasis, insulin and lipid tolerance, energy expenditure, food intake, body temperature, and iBAT oxygen consumption ex vivo. High-fat diet (HFD)-fed GiprBAT-/- mice were studied at room temperature (21 °C), 4 °C, and 30 °C ambient temperatures. RESULTS The mouse Gipr gene is expressed in BAT, and GIP directly increased Il6 mRNA and IL-6 secretion in BAT cells. Additionally, levels of thermogenic, lipid and inflammation mRNA transcripts were altered in BAT cells transfected with Gipr siRNA. Body weight gain, energy expenditure, and glucose and insulin tolerance were normal in HFD-fed GiprBAT-/- mice housed at room temperature. However, GiprBAT-/- mice exhibited higher body temperatures during an acute cold challenge and a lower respiratory exchange ratio and impaired lipid tolerance at 21 °C. In contrast, body weight was lower and iBAT oxygen consumption was higher in HFD-fed mice housed at 4 °C but not at 30 °C. CONCLUSIONS The BAT GIPR is linked to the control of metabolic gene expression, fuel utilization, and oxygen consumption. However, the selective loss of the GIPR within BAT is insufficient to recapitulate the findings of decreased weight gain and resistance to obesity arising in experimental models with systemic disruption of GIP action.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Kiran D Kaur
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Holly E Bates
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
271
|
Lin SR, Chang CH, Tsai MJ, Cheng H, Chen JC, Leong MK, Weng CF. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Ther Adv Chronic Dis 2019; 10:2040622319875305. [PMID: 31555430 PMCID: PMC6753520 DOI: 10.1177/2040622319875305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-4), an incretin glucagon-like peptide-1 (GLP-1) degrading enzyme, contains two forms and it can exert various physiological functions particular in controlling blood glucose through the action of GLP-1. In diabetic use, the DPP-4 inhibitor can block the DDP-4 to attenuate GLP-1 degradation and prolong GLP-1 its action and sensitize insulin activity for the purpose of lowering blood glucose. Nonetheless the adverse effects of DPP-4 inhibitors severely hinder their clinical applications, and notably there is a clinical demand for novel DPP-4 inhibitors from various sources including chemical synthesis, herbs, and plants with fewer side effects. In this review, we highlight various strategies, namely computational biology (in silico), in vitro enzymatic and cell assays, and in vivo animal tests, for seeking natural DPP-4 inhibitors from botanic sources including herbs and plants. The pros and cons of all approaches for new inhibitor candidates or hits will be under discussion.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of
Biotechnology, National Dong Hwa University, Hualien
| | - Chia-Hsiang Chang
- Department of Life Science and Institute of
Biotechnology, National Dong Hwa University, Hualien
| | - May-Jwan Tsai
- Neural Regeneration Laboratory, Neurological
Institute, Taipei Veterans General Hospital, Beitou, Taipei
| | - Henrich Cheng
- Neural Regeneration Laboratory, Neurological
Institute, Taipei Veterans General Hospital, Beitou, Taipei
| | - Jian-Chyi Chen
- Department of Biotechnology, Southern Taiwan
University of Science and Technology, Yungkang, Tainan
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa
University, No.1, Sec.2, Da-Hsueh Road, Shoufeng, Hualien, 97401,
Taiwan
| | - Ching-Feng Weng
- Department of Basic Medical Science, Center for
Transitional Medicine, Xiamen Medical College, Xiamen, 361023, China
| |
Collapse
|
272
|
Harney DJ, Hutchison AT, Su Z, Hatchwell L, Heilbronn LK, Hocking S, James DE, Larance M. Small-protein Enrichment Assay Enables the Rapid, Unbiased Analysis of Over 100 Low Abundance Factors from Human Plasma. Mol Cell Proteomics 2019; 18:1899-1915. [PMID: 31308252 PMCID: PMC6731089 DOI: 10.1074/mcp.tir119.001562] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Unbiased and sensitive quantification of low abundance small proteins in human plasma (e.g. hormones, immune factors, metabolic regulators) remains an unmet need. These small protein factors are typically analyzed individually and using antibodies that can lack specificity. Mass spectrometry (MS)-based proteomics has the potential to address these problems, however the analysis of plasma by MS is plagued by the extremely large dynamic range of this body fluid, with protein abundances spanning at least 13 orders of magnitude. Here we describe an enrichment assay (SPEA), that greatly simplifies the plasma dynamic range problem by enriching small-proteins of 2-10 kDa, enabling the rapid, specific and sensitive quantification of >100 small-protein factors in a single untargeted LC-MS/MS acquisition. Applying this method to perform deep-proteome profiling of human plasma we identify C5ORF46 as a previously uncharacterized human plasma protein. We further demonstrate the reproducibility of our workflow for low abundance protein analysis using a stable-isotope labeled protein standard of insulin spiked into human plasma. SPEA provides the ability to study numerous important hormones in a single rapid assay, which we applied to study the intermittent fasting response and observed several unexpected changes including decreased plasma abundance of the iron homeostasis regulator hepcidin.
Collapse
Affiliation(s)
- Dylan J Harney
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Amy T Hutchison
- ¶Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Zhiduan Su
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Luke Hatchwell
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Samantha Hocking
- §Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David E James
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Mark Larance
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| |
Collapse
|
273
|
Proença C, Freitas M, Ribeiro D, Tomé SM, Araújo AN, Silva AMS, Fernandes PA, Fernandes E. The dipeptidyl peptidase-4 inhibitory effect of flavonoids is hindered in protein rich environments. Food Funct 2019; 10:5718-5731. [PMID: 31441917 DOI: 10.1039/c9fo00722a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors present a unique approach for the management of type 2 diabetes (T2D). In the present study, the inhibition of DPP-4 was evaluated for a large panel of flavonoids, important components of the human diet, using in vitro and ex vivo models. The activity of the isolated enzyme was assayed in vitro. Subsequently, the most active flavonoids were tested ex vivo in human whole blood and plasma. In this study, contrary to the in vitro fluorometric tests, flavonoids did not show inhibitory activity against DPP-4. Due to the discrepancy in the results between the in vitro and ex vivo approaches, plasma protein binding values were determined, presenting values from 43.9 to 100.0%. This work provides a new insight into the inhibitory activity for DPP-4, based on the flavonoid scaffold. Additionally, the obtained results showed that the inhibitory effect of flavonoids against DPP-4 was hindered in protein rich environments, like that occurring in blood, and indicated the need for experimental refinement in drug discovery for blood targets.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Sara M Tomé
- QOPNA and LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alberto N Araújo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Artur M S Silva
- QOPNA and LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
274
|
Varin EM, McLean BA, Lovshin JA. Glucagon-Like Peptide-1 Receptor Agonists in Adult Patients With Type 2 Diabetes: Review of Cardiovascular Outcome Trials. Can J Diabetes 2019; 44:68-77. [PMID: 31699625 DOI: 10.1016/j.jcjd.2019.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
People with type 2 diabetes are at heightened risk for developing cardiovascular (CV) events. CV disease is the leading cause of premature death among adults with type 2 diabetes. Unfortunately, historically, some antidiabetes agents were implicated in worsening CV function, despite improving glycemic and metabolic control. Accordingly, over a decade ago, health regulatory bodies modified approval requirements for novel antidiabetes pharmacotherapies, requiring prospective evaluation of CV safety through cardiovascular outcome trials (CVOTs). To meet regulatory requirements, CVOTs were primarily designed around establishing CV safety by demonstrating noninferiority to placebo in addition to standard of care, without significant differences in blood glucose. If appropriately designed and powered, however, these CVOTs could also determine superiority, and hence CV protection. Although many of these CVOTs were initiated several years ago, the recent reporting of the results for these CVOTs has been pivotal and practice-changing. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are one such class of antidiabetes therapies, wherein multiple GLP-1RA CVOTs, but interestingly, not all, have demonstrated CV benefits. In this review, we provide a comprehensive summary of all the reported CVOTs completed with GLP-1RAs to date. Although it remains unclear why some GLP-1RAs are associated with reducing CV events, whereas others have been consistent with CV safety alone, we highlight and provide an overview of some key differences between the various GLP-1RAs and their respective CVOTs and possible implications of study design differences. We also speculate on potential mechanisms of action for glucagon-like peptide-1 receptor signalling in the CV system.
Collapse
Affiliation(s)
- Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Brent A McLean
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julie A Lovshin
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medicine, Division of Endocrinology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, Toronto, Ontario, Canada.
| |
Collapse
|
275
|
More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol Res 2019; 147:104391. [PMID: 31401210 DOI: 10.1016/j.phrs.2019.104391] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.
Collapse
|
276
|
Makrilakis K. The Role of DPP-4 Inhibitors in the Treatment Algorithm of Type 2 Diabetes Mellitus: When to Select, What to Expect. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152720. [PMID: 31366085 PMCID: PMC6696077 DOI: 10.3390/ijerph16152720] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is a growing global public health problem, the prevalence of which is projected to increase in the succeeding decades. It is potentially associated with many complications, affecting multiple organs and causing a huge burden to the society. Due to its multi-factorial pathophysiology, its treatment is varied and based upon a multitude of pharmacologic agents aiming to tackle the many aspects of the disease pathophysiology (increasing insulin availability [either through direct insulin administration or through agents that promote insulin secretion], improving sensitivity to insulin, delaying the delivery and absorption of carbohydrates from the gastrointestinal tract, or increasing urinary glucose excretion). DPP-4 (dipeptidyl peptidase-4) inhibitors (or “gliptins”) represent a class of oral anti-hyperglycemic agents that inhibit the enzyme DPP-4, thus augmenting the biological activity of the “incretin” hormones (glucagon-like peptide-1 [GLP-1] and glucose-dependent insulinotropic polypeptide [GIP]) and restoring many of the pathophysiological problems of diabetes. They have already been used over more than a decade in the treatment of the disease. The current manuscript will review the mechanism of action, therapeutic utility, and the role of DPP-4 inhibitors for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Konstantinos Makrilakis
- National and Kapodistrian University of Athens Medical School, Laiko General Hospital, 17 Ag. Thoma St., 11527 Athens, Greece.
| |
Collapse
|
277
|
Contribution of intestinal dipeptidyl peptidase-4 inhibition for incretin-dependent improved glucose tolerance in mice. Eur J Pharmacol 2019; 859:172521. [PMID: 31276666 DOI: 10.1016/j.ejphar.2019.172521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors prevent the degradation of glucagon-like peptide-1 (GLP-1) and improve glycemic control. The GLP-1 insulinotropic effect involves a pathway through vagus nerve GLP-1 receptors in the gut, in addition to a direct effect on the pancreas. Therefore, this study verified whether DPP-4 inhibition in the gut contributed to the improvement of glycemic control. Anagliptin, a DPP-4 inhibitor, was administered orally or subcutaneously (with or without passing through the gastrointestinal tract, respectively) to mice. The association between blood glucose suppression following oral glucose challenge and DPP-4 inhibition in the small intestine and plasma was assessed. Oral administration of anagliptin (0.03-0.3 mg/kg) in normal mice significantly suppressed blood glucose, which was associated with an increase in insulin secretion at a dose of ≥0.1 mg/kg (P < 0.05). Subcutaneous administration of anagliptin (0.01-0.1 mg/kg) produced similar results. However, plasma DPP-4 inhibition following oral administration was weaker than that following subcutaneous administration; blood glucose suppression was significantly correlated with small intestinal DPP-4 inhibition (r = 0.949, P < 0.01), but not with plasma DPP-4 inhibition. Additionally, similar results were observed in a type 2 diabetes model (r = 0.975, P < 0.001). Thus, these results demonstrated that an improvement in glycemic control was dependent upon small intestinal DPP-4 inhibition. As these effects were accompanied by the elevation of intact GLP-1 in the portal, this suggests that improvement in glucose tolerance after anagliptin treatment might be related to an increase in GLP-1 receptor signaling in the small intestine and portal vein.
Collapse
|
278
|
Lee YS, Riopel M, Cabrales P, Bandyopadhyay GK. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. SCIENCE ADVANCES 2019; 5:eaaw4176. [PMID: 31281892 PMCID: PMC6609217 DOI: 10.1126/sciadv.aaw4176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/30/2019] [Indexed: 05/04/2023]
Abstract
The decrease in incretin effects is an important etiologic component of type 2 diabetes with unknown mechanisms. In an attempt to understand obesity-induced changes in liver oxygen homeostasis, we found that liver HIF-1α expression was increased mainly by soluble factors released from obese adipocytes, leading to decreased incretin effects. Deletion of hepatocyte HIF-1α protected obesity-induced glucose intolerance without changes in body weight, liver steatosis, or insulin resistance. In-depth mouse metabolic phenotyping revealed that obesity increased first-pass degradation of an incretin hormone GLP-1 with increased liver DPP4 expression and decreased sinusoidal blood flow rate, reducing active GLP-1 levels in peripheral circulation. Hepatocyte HIF-1α KO blocked these changes induced by obesity. Deletion of hepatocyte HIF-2α did not change liver DPP4 expression but improved hepatic steatosis. Our results identify a previously unknown pathway for obesity-induced impaired beta cell glucose response (incretin effects) and the development of glucose intolerance through inter-organ communications.
Collapse
Affiliation(s)
- Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pedro Cabrales
- Department of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Guatam K. Bandyopadhyay
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
279
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
280
|
Chittepu VCSR, Kalhotra P, Osorio-Gallardo T, Gallardo-Velázquez T, Osorio-Revilla G. Repurposing of FDA-Approved NSAIDs for DPP-4 Inhibition as an Alternative for Diabetes Mellitus Treatment: Computational and in Vitro Study. Pharmaceutics 2019; 11:E238. [PMID: 31108878 PMCID: PMC6572294 DOI: 10.3390/pharmaceutics11050238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
A drug repurposing strategy could be a potential approach to overcoming the economic costs for diabetes mellitus (DM) treatment incurred by most countries. DM has emerged as a global epidemic, and an increase in the outbreak has led developing countries like Mexico, India, and China to recommend a prevention method as an alternative proposed by their respective healthcare sectors. Incretin-based therapy has been successful in treating diabetes mellitus, and inhibitors like sitagliptin, vildagliptin, saxagliptin, and alogliptin belong to this category. As of now, drug repurposing strategies have not been used to identify existing therapeutics that can become dipeptidyl peptidase-4 (DPP-4) inhibitors. Hence, this work presents the use of bioinformatics tools like the Activity Atlas model, flexible molecular docking simulations, and three-dimensional reference interaction site model (3D-RISM) calculations to assist in repurposing Food and Drug Administration (FDA)-approved drugs into specific nonsteroidal anti-inflammatory medications such as DPP-4 inhibitors. Initially, the Activity Atlas model was constructed based on the top scoring DPP-4 inhibitors, and then the model was used to understand features of nonsteroidal anti-inflammatory drugs (NSAIDs) as a function of electrostatic, hydrophobic, and active shape features of DPP-4 inhibition. The FlexX algorithm was used to infer protein-ligand interacting residues, and binding energy, to predict potential draggability towards the DPP-4 mechanism of action. 3D-RISM calculations on piroxicam-bound DPP-4 were used to understand the stability of water molecules at the active site. Finally, piroxicam was chosen as the repurposing drug to become a new DPP-4 inhibitor and validated experimentally using fluorescence spectroscopy assay. These findings are novel and provide new insights into the role of piroxicam as a new lead to inhibit DPP-4 and, taking into consideration the biological half-life of piroxicam, it can be proposed as a possible therapeutic strategy for treating diabetes mellitus.
Collapse
Affiliation(s)
- Veera C S R Chittepu
- Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo Lopez Mateos, Zacatenco, C.P. Ciudad de Mexico 07738, Mexico.
| | - Poonam Kalhotra
- Departamento de Biofisica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala S/N, Col. Santo Tomas, CP. Ciudad de Mexico 11340, Mexico.
| | - Tzayhri Osorio-Gallardo
- Departamento de Microbiologia e Immunologia, Facultad de Medicina Vetererneria Y Zootecnia, Universidad Nacional Autonoma de Mexico, Av. Universidad #3000, Delegacion Coyoacan, Col. Ciudad Universitaria, Ciudad de Mexico 04510, Mexico.
| | - Tzayhri Gallardo-Velázquez
- Departamento de Biofisica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plan de Ayala S/N, Col. Santo Tomas, CP. Ciudad de Mexico 11340, Mexico.
| | - Guillermo Osorio-Revilla
- Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo Lopez Mateos, Zacatenco, C.P. Ciudad de Mexico 07738, Mexico.
| |
Collapse
|
281
|
Griswold AR, Cifani P, Rao SD, Axelrod AJ, Miele MM, Hendrickson RC, Kentsis A, Bachovchin DA. A Chemical Strategy for Protease Substrate Profiling. Cell Chem Biol 2019; 26:901-907.e6. [PMID: 31006619 DOI: 10.1016/j.chembiol.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/14/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The dipeptidyl peptidases (DPPs) regulate hormones, cytokines, and neuropeptides by cleaving dipeptides after proline from their amino termini. Due to technical challenges, many DPP substrates remain unknown. Here, we introduce a simple method, termed CHOPS (chemical enrichment of protease substrates), for the discovery of protease substrates. CHOPS exploits a 2-pyridinecarboxaldehyde (2PCA)-biotin probe, which selectively biotinylates protein N-termini except those with proline in the second position. CHOPS can, in theory, discover substrates for any protease, but is particularly well suited to discover canonical DPP substrates, as cleaved but not intact DPP substrates can be identified by gel electrophoresis or mass spectrometry. Using CHOPS, we show that DPP8 and DPP9, enzymes that control the Nlrp1 inflammasome through an unknown mechanism, do not directly cleave Nlrp1. We further show that DPP9 robustly cleaves short peptides but not full-length proteins. More generally, this work delineates a practical technology for identifying protease substrates, which we anticipate will complement available "N-terminomic" approaches.
Collapse
Affiliation(s)
- Andrew R Griswold
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sahana D Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abram J Axelrod
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew M Miele
- Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
282
|
Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 2019; 48:683-722. [PMID: 30520895 DOI: 10.1039/c7cs00907k] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional biochemical methods for enzyme detection are mainly based on antibody-based immunoassays, which lack the ability to monitor the spatiotemporal distribution and, in particular, the in situ activity of enzymes in live cells and in vivo. In this review, we comprehensively summarize recent progress that has been made in the development of small-molecule as well as material-based fluorogenic probes for sensitive detection of the activities of enzymes that are related to a number of human diseases. The principles utilized to design these probes as well as their applications are reviewed. Specific attention is given to fluorogenic probes that have been developed for analysis of the activities of enzymes including oxidases and reductases, those that act on biomacromolecules including DNAs, proteins/peptides/amino acids, carbohydrates and lipids, and those that are responsible for translational modifications. We envision that this review will serve as an ideal reference for practitioners as well as beginners in relevant research fields.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
283
|
Bae JH, Kim S, Park EG, Kim SG, Hahn S, Kim NH. Effects of Dipeptidyl Peptidase-4 Inhibitors on Renal Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Endocrinol Metab (Seoul) 2019; 34:80-92. [PMID: 30912341 PMCID: PMC6435854 DOI: 10.3803/enm.2019.34.1.80] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/03/2019] [Accepted: 02/26/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To investigate the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on renal outcomes in patients with type 2 diabetes. METHODS MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched to identify randomized controlled trials (RCTs) of DPP-4 inhibitors from inception to September 2017. We selected eligible RCTs comparing DPP-4 inhibitors with placebo or other antidiabetic agents and reporting at least one renal outcome. A meta-analysis was conducted to calculate standardized mean differences, weighted mean differences (WMDs), relative risks (RRs), and 95% confidence intervals (CIs) for each renal outcome. RESULTS We included 23 RCTs with 19 publications involving 41,359 patients. Overall changes in urine albumin-to-creatinine ratio were comparable between DPP-4 inhibitors and controls (P=0.150). However, DPP-4 inhibitors were associated with significantly lower risk of incident microalbuminuria (RR, 0.89; 95% CI, 0.80 to 0.98; P=0.022) and macroalbuminuria (RR, 0.77; 95% CI, 0.61 to 0.97; P=0.027), as well as higher rates of regression of albuminuria (RR, 1.22; 95% CI, 1.10 to 1.35; P<0.001) compared with controls. Although DPP-4 inhibitors were associated with small but significantly lower estimated glomerular filtration rate (WMD, -1.11 mL/min/1.73 m²; 95% CI, -1.78 to -0.44; P=0.001), there was no difference in the risk of end-stage renal disease between two groups (RR, 0.93; 95% CI, 0.76 to 1.14; P=0.475). CONCLUSION DPP-4 inhibitors had beneficial renal effects mainly by reducing the risk of development or progression of albuminuria compared with placebo or other antidiabetic agents.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sunhee Kim
- Interdisciplinary Program in Medical Informatics, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Gee Park
- Interdisciplinary Program in Medical Informatics, Seoul National University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seokyung Hahn
- Division of Medical Statistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Nam Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
284
|
Kluess HA, Neidert LE, Sandage MJ, Plexico LW. Neuropeptide Y and dipeptidyl peptidase IV in normally cycling and postmenopausal women: A prospective pilot study. Medicine (Baltimore) 2019; 98:e14982. [PMID: 30921206 PMCID: PMC6456031 DOI: 10.1097/md.0000000000014982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose was to investigate changes in neuropeptide Y (NPY) protein and dipeptidyl peptidase IV (DPP-IV) activity in the plasma and saliva in normally cycling women and women after menopause. We recruited 7 cycling women and 7 postmenopausal women for a cross-sectional, prospective pilot study. Blood via venipuncture and saliva samples were taken at each point in the menstrual cycle (premenopausal) or once per week (postmenopausal) for 2 months. Blood and saliva were analyzed for estrogen, NPY using ELISA and DPP-IV activity using a fluorometric assay. Plasma β-estradiol was an average of 96.45 ± 57.04 pg/mL over 2 cycles in the premenopausal group and 1.72 ± 0.35 pg/mL over 2 months in the postmenopausal group (P < .05). In the cycling group, there were no significant differences in saliva or plasma NPY or DPP-IV over the cycle. For the postmenopausal group, salivary NPY and DPP-IV did not change over 2 months. Plasma NPY was lowest in the middle 2 weeks (average: 0.52 ± 0.10 ng/mL) compared to the first and fourth weeks (average of week 1 and 4: 0.60 ± 0.14 ng/mL; P < .05). Plasma NPY in postmenopausal women was higher overall (0.56 ± 0.13 ng/mL) compared to cycling women (0.30 ± 0.11 ng/mL; P < .05). Plasma DPP-IV activity was unchanged by time in the postmenopausal group. Saliva DPP-IV and saliva NPY in the cycling group had a significant negative correlation (R = -0.95; P < .05). We found that saliva measures of NPY and DPP-IV activity appear to be poor estimates of plasma concentrations and activities, but a larger sample size is required to conform this. Differences in plasma NPY concentrations between the groups and the relationship between salivary NPY and DPP-IV suggests that there may be some unique differences between these groups.
Collapse
Affiliation(s)
| | | | - Mary J. Sandage
- Department of Communication Disorders, Auburn University, Auburn, Alabama
| | - Laura W. Plexico
- Department of Communication Disorders, Auburn University, Auburn, Alabama
| |
Collapse
|
285
|
Hasan AA, von Websky K, Reichetzeder C, Tsuprykov O, Gaballa MMS, Guo J, Zeng S, Delić D, Tammen H, Klein T, Kleuser B, Hocher B. Mechanisms of GLP-1 receptor-independent renoprotective effects of the dipeptidyl peptidase type 4 inhibitor linagliptin in GLP-1 receptor knockout mice with 5/6 nephrectomy. Kidney Int 2019; 95:1373-1388. [PMID: 30979564 DOI: 10.1016/j.kint.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/01/2023]
Abstract
Dipeptidyl peptidase type 4 (DPP-4) inhibitors were reported to have beneficial effects in experimental models of chronic kidney disease. The underlying mechanisms are not completely understood. However, these effects could be mediated via the glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP1R) pathway. Here we investigated the renal effects of the DPP-4 inhibitor linagliptin in Glp1r-/- knock out and wild-type mice with 5/6 nephrectomy (5/6Nx). Mice were allocated to groups: sham+wild type+placebo; 5/6Nx+ wild type+placebo; 5/6Nx+wild type+linagliptin; sham+knock out+placebo; 5/6Nx+knock out+ placebo; 5/6Nx+knock out+linagliptin. 5/6Nx caused the development of renal interstitial fibrosis, significantly increased plasma cystatin C and creatinine levels and suppressed renal gelatinase/collagenase, matrix metalloproteinase-1 and -13 activities; effects counteracted by linagliptin treatment in wildtype and Glp1r-/- mice. Two hundred ninety-eight proteomics signals were differentially regulated in kidneys among the groups, with 150 signals specific to linagliptin treatment as shown by mass spectrometry. Treatment significantly upregulated three peptides derived from collagen alpha-1(I), thymosin β4 and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) and significantly downregulated one peptide derived from Y box binding protein-1 (YB-1). The proteomics results were further confirmed using western blot and immunofluorescence microscopy. Also, 5/6Nx led to significant up-regulation of renal transforming growth factor-β1 and pSMAD3 expression in wild type mice and linagliptin significantly counteracted this up-regulation in wild type and Glp1r-/- mice. Thus, the renoprotective effects of linagliptin cannot solely be attributed to the GLP-1/GLP1R pathway, highlighting the importance of other signaling pathways (collagen I homeostasis, HNRNPA1, YB-1, thymosin β4 and TGF-β1) influenced by DPP-4 inhibition.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany; Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; UP Transfer GmbH, University of Potsdam, Potsdam, Germany
| | - Karoline von Websky
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Christoph Reichetzeder
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; UP Transfer GmbH, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Oleg Tsuprykov
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany; Center for Cardiovascular Research, Charité, Berlin, Germany; IFLB GmbH, Institute for Laboratory Medicine, Berlin, Germany
| | - Mohamed M S Gaballa
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Jingli Guo
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Shufei Zeng
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Denis Delić
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany; LADR GmbH Neuruppin MVZ, Neuruppin, Germany; Department of Basic Medicine, Medical college of Hunan Normal University, Changsha, China.
| |
Collapse
|
286
|
Qiu DD, Liu J, Shi JS, An Y, Ge YC, Zhou ML, Jiang S. Renoprotection Provided by Dipeptidyl Peptidase-4 Inhibitors in Combination with Angiotensin Receptor Blockers in Patients with Type 2 Diabetic Nephropathy. Chin Med J (Engl) 2019; 131:2658-2665. [PMID: 30425192 PMCID: PMC6247590 DOI: 10.4103/0366-6999.245277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Treatment with the dipeptidyl peptidase-4 inhibitors (DPP4i) and angiotensin receptor blockers (ARBs) in patients with type 2 diabetic nephropathy (DN) has not been well characterized. This study aimed to assess the renoprotection of this combined treatment in DN patients. Methods: A total of 159 type 2 DN patients from 2013 to 2015 were enrolled retrospectively from a prospective DN cohort at the National Clinical Research Center of Kidney Diseases, Jinling Hospital (China). Fifty-seven patients received DPP4i and ARB treatment, and 102 patients were treated with ARBs alone. All patients were followed up for at least 12 months. Statistical analyses were performed using Stata version 12.0. Results: There were no significant differences at baseline for age, sex, body mass index, duration of diabetes, fasting blood glucose (FBG), hemoglobin A1c (HbA1c), and estimated glomerular filtration rate (eGFR) between the two groups. Antihypertensive and antidiabetic medication use was similar in each group except calcium channel antagonists (P = 0.032). No significant changes in FBG and HbA1c were observed in the two groups after treatment. The eGFR decreased slower in the DPP4i + ARB group than in the ARB group at 12 months (Δ12 months: −2.48 ± 13.86 vs. −6.81 ± 12.52 ml·min–1·1.73m–2, P = 0.044). In addition, proteinuria was decreased further in the DPP4i + ARB group than in the ARB group after 24 months of treatment (Δ24 months: −0.18 [−1.00, 0.17] vs. 0.32 [−0.35, 0.88], P = 0.031). There were 36 patients with an eGFR decrease of more than 30% over 24 months. After adjusting for FBG, HbA1c, and other risk factors, DPP4i + ARB treatment was still associated with a reduced incidence of an eGFR decrease of 20% or 30%. Conclusions: The combined treatment of DPP4i and ARBs is superior to ARBs alone, as evidenced by the greater proteinuria reduction and lower eGFR decline. In addition, the renoprotection of DPP4i combined with ARBs was independent of glycemic control.
Collapse
Affiliation(s)
- Dan-Dan Qiu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jing Liu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jing-Song Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yong-Chun Ge
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Min-Lin Zhou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| |
Collapse
|
287
|
Bistola V, Lambadiari V, Dimitriadis G, Ioannidis I, Makrilakis K, Tentolouris N, Tsapas A, Parissis J. Possible mechanisms of direct cardiovascular impact of GLP-1 agonists and DPP4 inhibitors. Heart Fail Rev 2019; 23:377-388. [PMID: 29383638 DOI: 10.1007/s10741-018-9674-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a leading cause of cardiovascular morbidity and mortality worldwide. Traditional antidiabetic therapies targeting hyperglycemia reduce diabetic microvascular complications but have minor effects on macrovascular complications, including cardiovascular disease. Instead, cardiovascular complications are improved by antidiabetic medications (metformin) and other therapies (statins, antihypertensive medications) ameliorating insulin resistance and other associated metabolic abnormalities. Novel classes of antidiabetic drugs have proven efficacious in improving glycemia, while at the same time exert beneficial effects on pathophysiologic mechanisms of diabetes-related cardiovascular disease. In the present review, we will present current evidence of the cardiovascular effects of two new classes of antidiabetic medications, glucagon-like peptide 1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP4) inhibitors, focusing from mechanistic preclinical and clinical investigation to late-phase clinical testing.
Collapse
Affiliation(s)
- Vasiliki Bistola
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1 Chaidari, 12461, Athens, Greece.
| | - Vaia Lambadiari
- 2nd Department of Internal medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioannis Ioannidis
- Diabetes and Obesity Center, Konstantopouleio Hospital, Athens, Greece
| | - Konstantinos Makrilakis
- First Department of Propaedeutic Internal Medicine, Diabetes Center, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Diabetes Center, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1 Chaidari, 12461, Athens, Greece
| |
Collapse
|
288
|
Asleh R, Sheikh-Ahmad M, Briasoulis A, Kushwaha SS. The influence of anti-hyperglycemic drug therapy on cardiovascular and heart failure outcomes in patients with type 2 diabetes mellitus. Heart Fail Rev 2019; 23:445-459. [PMID: 29270818 DOI: 10.1007/s10741-017-9666-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with type 2 diabetes mellitus (DM) are at a substantially increased risk of heart failure (HF) and HF mortality. Despite the lack of evidence that tight glycemic control reduces the incidence of cardiovascular (CV) events, a growing body of evidence suggests that the choice of glucose-lowering agents may influence outcomes including HF. Thiazolidinediones are associated with a significant risk of HF. For metformin, sulphonylureas and insulin, little data is available to indicate the impact on HF. The glucagon-like peptide-1 (GLP-1) agonists, liraglutide and semaglutide, have been shown to reduce major CV events, but did not affect rates of hospitalization for HF. Clinical trials have demonstrated diverse effects of Dipeptidyl peptidase-4 (DPP-4) inhibitors on HF; saxagliptin showed an increased risk of HF admissions, alogliptin was associated with higher rates of new HF admissions, while sitagliptin had a neutral effect. The sodium-glucose cotransporter 2 (SGLT2) inhibitors, empagliflozin and canagliflozin, have been recently shown to reduce the incidence of HF and cardiovascular mortality in patients with and without a history of HF. This review will summarize key findings of the impact of glucose-lowering agents on CV safety and HF-associated outcomes, present available data on the underlying mechanisms for the benefits of the SGLT2 inhibitors on HF, and discuss strategies to improve outcomes in patients with DM and high CV risk.
Collapse
Affiliation(s)
- Rabea Asleh
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Gonda 5 S, Rochester, MN, 55905, USA.
| | | | - Alexandros Briasoulis
- Department of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. SW, Gonda 5 S, Rochester, MN, 55905, USA
| |
Collapse
|
289
|
Li S, Qin C, Cui S, Xu H, Wu F, Wang J, Su M, Fang X, Li D, Jiao Q, Zhang M, Xia C, Zhu L, Wang R, Li J, Jiang H, Zhao Z, Li J, Li H. Discovery of a Natural-Product-Derived Preclinical Candidate for Once-Weekly Treatment of Type 2 Diabetes. J Med Chem 2019; 62:2348-2361. [PMID: 30694668 DOI: 10.1021/acs.jmedchem.8b01491] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Poor medication adherence is one of the leading causes of suboptimal glycaemic control in approximately half of the patients with type 2 diabetes mellitus (T2DM). Long-acting antidiabetic drugs are clinically needed for improving patients' compliance. Dipeptidyl peptidase-4 (DPP-4) inhibitors play an increasingly important role in the treatment of T2DM because of their favorable properties of weight neutrality and hypoglycemia avoidance. Herein, we report the successful discovery and scale-up synthesis of compound 5, a structurally novel, potent, and long-acting DPP-4 inhibitor for the once-weekly treatment of T2DM. Inhibitor 5 has fast-associating and slow-dissociating binding kinetics profiles as well as slow clearance rate and long terminal half-life pharmacokinetic properties. A single-dose oral administration of 5 (3 mg/kg) inhibited >80% of DPP-4 activity for more than 7 days in diabetic mice. The long-term antidiabetic efficacies of 5 (10 mg/kg, qw) were better than those of the once-weekly trelagliptin and omarigliptin, especially in decreasing the hemoglobin A1c level.
Collapse
Affiliation(s)
- Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Chun Qin
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Shichao Cui
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , P. R. China
| | - Hongling Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Fangshu Wu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Jiawei Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Mingbo Su
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xiaoyu Fang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Dan Li
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Qian Jiao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Ming Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Chunmei Xia
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Jia Li
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Jingya Li
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , P. R. China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
290
|
Rao X, Zhao S, Braunstein Z, Mao H, Razavi M, Duan L, Wei Y, Toomey AC, Rajagopalan S, Zhong J. Oxidized LDL upregulates macrophage DPP4 expression via TLR4/TRIF/CD36 pathways. EBioMedicine 2019; 41:50-61. [PMID: 30738832 PMCID: PMC6441950 DOI: 10.1016/j.ebiom.2019.01.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
Background We and others have shown that dipeptidyl peptidase-IV (DPP4) expression is increased in obesity/atherosclerosis and is positively correlated with atherosclerotic burden. However, the mechanism by which DPP4 expression is regulated in obesity remains unclear. In this study, we investigated the pathways regulating the expression of DPP4 on macrophages. Methods Flowsight® Imaging Flow Cytometry was employed for the detection of DPP4 and immunophenotyping. DPP4 enzymatic activity was measured by a DPPIV-Glo™ Protease Assay kit. Findings Human monocytes expressed a moderate level of membrane-bound DPP4. Obese patients with body mass index (BMI) ≥ 30 had a higher level of monocyte DPP4 expression, in parallel with higher levels of HOMA-IR, blood glucose, triglycerides, and non-HDL cholesterol, compared to those in the non-obese (BMI < 30) patients. Oxidized low-density lipoprotein (oxLDL), but not native LDL, up-regulated DPP4 expression on macrophages with a preferential increase in CD36+ cells. OxLDL mediated DPP4 up-regulation was considerably diminished by Toll-like receptor-4 (TLR4) knockdown and CD36 deficiency. TRIF deficiency, but not MyD88 deficiency, attenuated oxLDL-induced DPP4 increase. Interpretation Our study suggests a key role for oxLDL and downstream CD36/TLR4/TRIF in regulating DPP4 expression. Increased DPP4 in response to oxidized lipids may represent an integrated mechanism linking post-prandial glucose metabolism to lipoprotein abnormality-potentiated atherosclerosis.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Shi Zhao
- Department of Endocrinology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zachary Braunstein
- Department of Internal Medicine, Wexnel Medical Center, The Ohio State University, Columbus, OH, USA
| | - Hong Mao
- Department of Endocrinology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Michael Razavi
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Lihua Duan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Yingying Wei
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Amelia C Toomey
- Department of Health Sciences, University of Missouri, Columbia, MO, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
291
|
Varin EM, Mulvihill EE, Beaudry JL, Pujadas G, Fuchs S, Tanti JF, Fazio S, Kaur K, Cao X, Baggio LL, Matthews D, Campbell JE, Drucker DJ. Circulating Levels of Soluble Dipeptidyl Peptidase-4 Are Dissociated from Inflammation and Induced by Enzymatic DPP4 Inhibition. Cell Metab 2019; 29:320-334.e5. [PMID: 30393019 DOI: 10.1016/j.cmet.2018.10.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/15/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) controls glucose homeostasis through enzymatic termination of incretin action. We report that plasma DPP-4 activity correlates with body weight and fat mass, but not glucose control, in mice. Genetic disruption of adipocyte Dpp4 expression reduced plasma DPP-4 activity in older mice but did not perturb incretin levels or glucose homeostasis. Knockdown of hepatocyte Dpp4 completely abrogated the obesity-associated increase in plasma DPP-4 activity, reduced liver cytokine expression, and partially attenuated inflammation in adipose tissue without changes in incretin levels or glucose homeostasis. In contrast, circulating levels of soluble DPP4 (sDPP4) were dissociated from inflammation in mice with endothelial-selective or global genetic inactivation of Dpp4. Remarkably, inhibition of DPP-4 enzymatic activity upregulated circulating levels of sDPP4 originating from endothelial or hematopoietic cells without inducing systemic or localized inflammation. Collectively, these findings reveal unexpected complexity in regulation of soluble versus enzymatic DPP-4 and control of inflammation and glucose homeostasis.
Collapse
Affiliation(s)
- Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Gemma Pujadas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Shai Fuchs
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Jean-François Tanti
- INSERM U1065, Mediterranean Center of Molecular Medicine, University Côte d'Azur, Faculty of Medicine, 06204 Nice, France
| | - Sofia Fazio
- INSERM U1065, Mediterranean Center of Molecular Medicine, University Côte d'Azur, Faculty of Medicine, 06204 Nice, France
| | - Kirandeep Kaur
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada.
| |
Collapse
|
292
|
Luo Y, Lu K, Liu G, Wang J, Laurent I, Zhou X. The Effects of Novel Antidiabetic Drugs on Albuminuria in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Clin Drug Investig 2019; 38:1089-1108. [PMID: 30255388 DOI: 10.1007/s40261-018-0707-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE The effects of novel antidiabetic drugs, including sodium-glucose cotransporter 2 (SGLT-2) inhibitors, glucagon-like peptide 1 (GLP-1) receptor agonists, and dipeptidyl peptidase 4 (DPP-4) inhibitors, on albuminuria in patients with type 2 diabetes mellitus (T2DM) are still controversial. Therefore, we performed a meta-analysis to evaluate the effects of novel antidiabetic drugs on albuminuria in patients with T2DM. METHODS We conducted a random-effects meta-analysis of randomized controlled trials (RCTs) by searching the MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials databases up to 16 August 2018. The effects of novel antidiabetic drugs on albuminuria were evaluated as percent changes from baseline to follow-up urinary albumin excretion/urinary albumin to creatinine ratio (UAE/UACR) levels in both the intervention and control groups. Data regarding percent changes were used to generate weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS In this meta-analysis, 26 RCTs involving 14,929 patients were included. Pooled analysis suggested that SGLT-2 inhibitors (WMD - 26.23%, 95% CI - 35.90 to - 16.56; p < 0.00001) and GLP-1 receptor agonists (WMD - 13.85%, 95% CI - 15.96 to - 11.74; p < 0.00001) were associated with a significant reduction in albuminuria compared with other conventional therapies or placebo. DPP-4 inhibitors (WMD - 6.19%, 95% CI - 14.03 to 1.66; p = 0.12) were not significantly associated with lower albuminuria than other conventional therapies or placebo. CONCLUSION This meta-analysis indicates that SGLT-2 inhibitors and GLP-1 receptor agonists were associated with a reduction in albuminuria compared with other conventional therapies or placebo, while DPP-4 inhibitors were not associated with albuminuria-reducing effects compared with other conventional therapies or placebo.
Collapse
Affiliation(s)
- Ya Luo
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Kai Lu
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Liu
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Wang
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Irakoze Laurent
- Department of Endocrinology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoli Zhou
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
293
|
Almutairi M, Al Batran R, Ussher JR. Glucagon-like peptide-1 receptor action in the vasculature. Peptides 2019; 111:26-32. [PMID: 30227157 DOI: 10.1016/j.peptides.2018.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists augment insulin secretion and are thus used clinically to improve glycemia in subjects with type 2 diabetes (T2D). As recent data reveal marked improvements in cardiovascular outcomes in T2D subjects treated with the GLP-1R agonists liraglutide and semaglutide in the LEADER and SUSTAIN-6 clinical trials respectively, there is growing interest in delineating the mechanism(s) of action for GLP-1R agonist-induced cardioprotection. Of importance, negligible GLP-1R expression in ventricular cardiac myocytes suggests that cardiac-independent actions of GLP-1R agonists may account for the reduced death rates from cardiovascular causes in T2D subjects enrolled in the LEADER trial. Conversely, vascular smooth muscle cells (VSMCs) appear to express the canonical GLP-1R, and GLP-1/GLP-1R agonists exhibit a number of salutary actions on the vascular endothelium that could potentially contribute to GLP-1R agonists directly improving cardiovascular outcomes in subjects with T2D. We review herein the described actions of GLP-1/GLP-1R agonists on the vascular endothelium, which include antiproliferative actions on VSMCs and endothelial cells, reductions in oxidative stress, and increases in nitric oxide generation. GLP-1 also increases microvascular recruitment and microvascular blood flow. Taken together, such actions may explain the antihypertensive and/or antiatherosclerotic actions attributed to GLP-1/GLP-1R agonists in preclinical and clinical studies. Nonetheless, further mechanistic studies are still necessary to determine the relative importance of such actions in accounting for reductions in macrovascular cardiovascular disease in human subjects with T2D treated with GLP-1R agonists.
Collapse
Affiliation(s)
- Malak Almutairi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
294
|
Sarkar J, Nargis T, Tantia O, Ghosh S, Chakrabarti P. Increased Plasma Dipeptidyl Peptidase-4 (DPP4) Activity Is an Obesity-Independent Parameter for Glycemic Deregulation in Type 2 Diabetes Patients. Front Endocrinol (Lausanne) 2019; 10:505. [PMID: 31402899 PMCID: PMC6670725 DOI: 10.3389/fendo.2019.00505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Increase in circulating dipeptidyl peptidase-4 (DPP4) activity and levels has been reported to associate both with hyperglycemia and obesity. Here we aim to decipher the role of enhanced plasma DPP4 activity in obese type 2 diabetes (T2DM) patients. Materials and methods: Plasma DPP4 levels and activity were measured in obese and non-obese newly diagnosed T2DM patients (n = 123). Visceral and subcutaneous adipose tissue DPP4 expression and activity were determined in 43 obese subjects (T2DM = 21 and non-T2DM = 22). 20 subjects undergoing Mini-Gastric Bypass (MGB) surgery were followed up over 4-6 weeks for plasma DPP4. Results: Plasma DPP4 levels and activity both were increased in T2DM patients compared to control group. However, DPP4 levels and not DPP4 activity were increased in obese T2DM patients compared to non-obese T2DM (62.49 ± 26.27 μg/ml vs. 48.4 ± 30.98 μg/ml, respectively, p = 0.028). DPP4 activity in visceral adipose tissue (VAT) from obese T2DM and obese non-T2DM groups were similar (5.05 ± 3.96 nmol/min/ml vs. 5.83 ± 4.13 nmol/min/ml respectively, p = 0.548) in spite of having increased DPP4 expression in the obese T2DM group. Moreover, in obese patients, plasma DPP4 levels and activity did not show any significant change after weight reduction and glycemic control following MGB surgery. Conclusion: Enhanced plasma DPP4 activity in T2DM occurs independently of obesity. Thus, adipose derived DPP4 may not be playing any significant role in glycemic deregulation in obese T2DM patients.
Collapse
Affiliation(s)
- Jit Sarkar
- Division of Cell Biology and Physiology, Indian Institute of Chemical Biology (CSIR), Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Community Health Program, SWANIRVAR, North 24 Parganas, India
| | - Titli Nargis
- Division of Cell Biology and Physiology, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| | - Om Tantia
- Department of Minimal Access & Bariatric Surgery, ILS Hospitals, Kolkata, India
| | - Sujoy Ghosh
- Department of Endocrinology and Metabolism, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, Indian Institute of Chemical Biology (CSIR), Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- *Correspondence: Partha Chakrabarti
| |
Collapse
|
295
|
Li Y, Meng Y, Yu X. The Unique Metabolic Characteristics of Bone Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2019; 10:69. [PMID: 30800100 PMCID: PMC6375842 DOI: 10.3389/fendo.2019.00069] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Bone marrow adipose tissue (MAT) is distinct from white adipose tissue (WAT) or brown adipose tissue (BAT) for its location, feature and function. As a largely ignored adipose depot, it is situated in bone marrow space and resided with bone tissue side-by-side. MAT is considered not only as a regulator of bone metabolism through paracrine, but also as a functionally particular adipose tissue that may contribute to global metabolism. Adipokines, inflammatory factors and other molecules derived from bone marrow adipocytes may exert systematic effects. In this review, we summary the evidence from several aspects including development, distribution, histological features and phenotype to elaborate the basic characteristics of MAT. We discuss the association between bone metabolism and MAT, and highlight our current understanding of this special adipose tissue. We further demonstrate the probable relationship between MAT and energy metabolism, as well as glucose metabolism. On the basis of preliminary results from animal model and clinical studies, we propose that MAT has its unique secretory and metabolic function, although there is no in-depth study at present.
Collapse
Affiliation(s)
- Yujue Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu ;
| |
Collapse
|
296
|
Deacon CF. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front Endocrinol (Lausanne) 2019; 10:80. [PMID: 30828317 PMCID: PMC6384237 DOI: 10.3389/fendo.2019.00080] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as the T-cell antigen CD26, is a multi-functional protein which, besides its catalytic activity, also functions as a binding protein and a ligand for a variety of extracellular molecules. It is an integral membrane protein expressed on cells throughout the body, but is also shed from the membrane and circulates as a soluble protein in the plasma. A large number of bioactive molecules can be cleaved by DPP-4 in vitro, but only a few of these have been demonstrated to be physiological substrates. One of these is the incretin hormone, glucagon-like peptide-1 (GLP-1), which plays an important role in the maintenance of normal glucose homeostasis, and DPP-4 has been shown to be the key enzyme regulating its biological activity. This pathway has been targeted pharmacologically through the development of DPP-4 inhibitors, and these are now a successful class of anti-hyperglycaemic agents used to treat type 2 diabetes (T2DM). DPP-4 may additionally influence metabolic control via its proteolytic effect on other regulatory peptides, but it has also been reported to affect insulin sensitivity, potentially mediated through its non-enzymatic interactions with other membrane proteins. Given that altered expression and activity of DPP-4 are associated with increasing body mass index and hyperglycaemia, DPP-4 has been proposed to play a role in linking obesity and the pathogenesis of T2DM by functioning as a local mediator of inflammation and insulin resistance in adipose and hepatic tissue. As well as these broader systemic effects, it has also been suggested that DPP-4 may be able to modulate β-cell function as part of a paracrine system involving GLP-1 produced locally within the pancreatic islets. However, while it is evident that DPP-4 has the potential to influence glycaemic control, its overall significance for the normal physiological regulation of glucose homeostasis in humans and its role in the pathogenesis of metabolic disease remain to be established.
Collapse
|
297
|
Qiao J, Li L, Ma Y, Shi R, Teng M. Biological function of dipeptidyl peptidase-4 on type 2 diabetes patients and diabetic mice. Curr Res Transl Med 2018; 67:89-92. [PMID: 30591375 DOI: 10.1016/j.retram.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Type 2 diabetes (TD2) is a sustained metabolic disorder, characterized by high blood glucose, insulin resistance (IR). Dipeptidyl peptidase-4 (DPP4) functions as an antigenic enzyme involved in hyperglycaemia, oxidative stress, and inflammation-associated IR. Therefore, association between DPP4 and TD2 warrants to be investigated. METHODS In this study, blood samples of clinically diagnosed TD2 patients were harvested for biochemical tests. In addition, diabetic mice induced by high-fat diet (HFD) and single dose of streptozotocin (STZ) were used to assess the biological characteristics of DPP4 through biochemical and enzyme-linked immunosorbent assay (ELISA) tests, immunofluorescence staining, and western blot assay. RESULTS Compared to controls, the clinical data of patients with TD2 resulted in increased contents of fasting blood glucose (FBG), glycated hemoglobin (HbA1c), homeostatic model assessment (HOMA)-IR, blood lipids of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), and interleukin 6 (IL6) in plasma samples (p < 0.05). Notably, blood levels of DPP4 in TD2 patients were increased significantly in comparison to that in non-diabetic adults (p < 0.01). In animal study, diabetic mice showed increased levels of glucose, insulin, lipids, DPP4 activity in sera. Visibly, hepatocellular DPP4 expression was up-regulated in diabetic mice. Interestingly, DPP4 inhibitor-treated mice showed significantly reduced DPP4 expression in serum (p < 0.01), and lowered DPP4-positive cells and protein content in the liver were observed when compared to those in diabetic mice (p < 0.01). CONCLUSIONS Collectively, these findings reveal that DPP4 biomolecule may be positively associated with TD2 development, and the underlying mechanism may be attributed to activation of DPP4 expression in liver cells.
Collapse
Affiliation(s)
- Jing Qiao
- Department of VIP, Gaomi People's Hospital, Shandong, China.
| | - Lei Li
- Department of VIP, Gaomi People's Hospital, Shandong, China
| | - Yanchun Ma
- Department of Ophthalmology, Gaomi People's Hospital, Shandong, China
| | - Ruhui Shi
- Department of Endocrinology, Gaomi People's Hospital, Shandong, China
| | - Mei Teng
- Department of VIP, Gaomi People's Hospital, Shandong, China
| |
Collapse
|
298
|
Brandt SJ, Müller TD, DiMarchi RD, Tschöp MH, Stemmer K. Peptide-based multi-agonists: a new paradigm in metabolic pharmacology. J Intern Med 2018; 284:581-602. [PMID: 30230640 DOI: 10.1111/joim.12837] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity and its comorbidities, such as type 2 diabetes, are pressing worldwide health concerns. Available anti-obesity treatments include weight loss pharmacotherapies and bariatric surgery. Whilst surgical interventions typically result in significant and sustained weight loss, available pharmacotherapies are far less effective, typically decreasing body weight by no more than 5-10%. An emerging class of multi-agonist drugs may eventually bridge this gap. This new class of specially tailored drugs hybridizes the amino acid sequences of key metabolic hormones into one single entity with enhanced potency and sustained action. Successful examples of this strategy include multi-agonist drugs targeting the receptors for glucagon-like peptide-1 (GLP-1), glucagon and the glucose-dependent insulinotropic polypeptide (GIP). Due to the simultaneous activity at several metabolically relevant receptors, these multi-agonists offer improved body weight loss and glucose tolerance relative to their constituent monotherapies. Further advancing this concept, chimeras were generated that covalently link nuclear acting hormones such as oestrogen, thyroid hormone (T3 ) or dexamethasone to peptide hormones such as GLP-1 or glucagon. The benefit of this strategy is to restrict the nuclear hormone action exclusively to cells expressing the peptide hormone receptor, thereby maximizing combinatorial metabolic efficacy of both drug constituents in the target cells whilst preventing the nuclear hormone cargo from entering and acting on cells devoid of the peptide hormone receptor, in which the nuclear hormone might have unwanted effects. Many of these multi-agonists are in preclinical and clinical development and may represent new and effective tools in the fight against obesity and its comorbidities.
Collapse
Affiliation(s)
- S J Brandt
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - R D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
299
|
Panaro BL, Coppage AL, Beaudry JL, Varin EM, Kaur K, Lai JH, Wu W, Liu Y, Bachovchin WW, Drucker DJ. Fibroblast activation protein is dispensable for control of glucose homeostasis and body weight in mice. Mol Metab 2018; 19:65-74. [PMID: 30477988 PMCID: PMC6323180 DOI: 10.1016/j.molmet.2018.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Fibroblast Activation Protein (FAP), an enzyme structurally related to dipeptidyl peptidase-4 (DPP-4), has garnered interest as a potential metabolic drug target due to its ability to cleave and inactivate FGF-21 as well as other peptide substrates. Here we investigated the metabolic importance of FAP for control of body weight and glucose homeostasis in regular chow-fed and high fat diet-fed mice. Methods FAP enzyme activity was transiently attenuated using a highly-specific inhibitor CPD60 and permanently ablated by genetic inactivation of the mouse Fap gene. We also assessed the FAP-dependence of CPD60 and talabostat (Val-boroPro), a chemical inhibitor reportedly targeting both FAP and dipeptidyl peptidase-4 Results CPD60 robustly inhibited plasma FAP activity with no effect on DPP-4 activity. Fap gene disruption was confirmed by assessment of genomic DNA, and loss of FAP enzyme activity in plasma and tissues. CPD60 did not improve lipid tolerance but modestly improved acute oral and intraperitoneal glucose tolerance in a FAP-dependent manner. Genetic inactivation of Fap did not improve glucose or lipid tolerance nor confer resistance to weight gain in male or female Fap−/− mice fed regular chow or high-fat diets. Moreover, talabostat markedly improved glucose homeostasis in a FAP- and FGF-21-independent, DPP-4 dependent manner. Conclusion Although pharmacological FAP inhibition improves glucose tolerance, the absence of a metabolic phenotype in Fap−/−mice suggest that endogenous FAP is dispensable for the regulation of murine glucose homeostasis and body weight. These findings highlight the importance of characterizing the specificity and actions of FAP inhibitors in different species and raise important questions about the feasibility of mouse models for targeting FAP as a treatment for diabetes and related metabolic disorders. Acute inhibition of FAP enzyme activity improves glucose tolerance in mice. Fap knockout mice exhibit normal glucose and lipid tolerance. Fap knockout mice do not resist obesity after high fat feeding. Talabostat robustly lowers glucose in a FAP and FGF21-independent manner. Talabostat, but not CPD60, requires DPP4 to exert its full metabolic activity.
Collapse
Affiliation(s)
- Brandon L Panaro
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Andrew L Coppage
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kirandeep Kaur
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jack H Lai
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Wengen Wu
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Yuxin Liu
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - William W Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
300
|
Goldmannová D, Spurná J, Krystyník O, Schovánek J, Cibičková L, Karásek D, Zadražil J. Adipocytokines and new onset diabetes mellitus after transplantation. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|