251
|
Cecílio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol 2022; 5:305. [PMID: 35379881 PMCID: PMC8979968 DOI: 10.1038/s42003-022-03240-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Blood-sucking arthropods transmit a variety of human pathogens acting as disseminators of the so-called vector-borne diseases. Leishmaniasis is a spectrum of diseases caused by different Leishmania species, transmitted quasi worldwide by sand flies. However, whereas many laboratories focus on the disease(s) and etiological agents, considerably less study the respective vectors. In fact, information on sand flies is neither abundant nor easy to find; aspects including basic biology, ecology, and sand-fly-Leishmania interactions are usually reported separately. Here, we compile elemental information on sand flies, in the context of leishmaniasis. We discuss the biology, distribution, and life cycle, the blood-feeding process, and the Leishmania-sand fly interactions that govern parasite transmission. Additionally, we highlight some outstanding questions that need to be answered for the complete understanding of parasite–vector–host interactions in leishmaniasis. In this review, numerous aspects of sand flies as vectors of Leishmania parasites—from biology to the vector parasite interactions—are discussed.
Collapse
Affiliation(s)
- Pedro Cecílio
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal.
| | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
252
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
253
|
Madgwick PG, Kanitz R. Modelling new insecticide-treated bed nets for malaria-vector control: how to strategically manage resistance? Malar J 2022; 21:102. [PMID: 35331237 PMCID: PMC8944051 DOI: 10.1186/s12936-022-04083-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The program to eradicate malaria is at a critical juncture as a new wave of insecticides for mosquito control enter their final stages of development. Previous insecticides have been deployed one-at-a-time until their utility was compromised, without the strategic management of resistance. Recent investment has led to the near-synchronous development of new insecticides, and with it the current opportunity to build resistance management into mosquito-control methods to maximize the chance of eradicating malaria. METHODS Here, building on the parameter framework of an existing mathematical model, resistance-management strategies using multiple insecticides are compared to suggest how to deploy combinations of available and new insecticides on bed nets to achieve maximum impact. RESULTS Although results support the use of different strategies in different settings, deploying new insecticides ideally together in (or at least as a part of) a mixture is shown to be a robust strategy across most settings. CONCLUSIONS Substantially building on previous works, alternative solutions for the resistance management of new insecticides to be used in bed nets for malaria vector control are found. The results support a mixture product concept as the most robust way to deploy new insecticides, even if they are mixed with a pyrethroid that has lower effectiveness due to pre-existing resistance. This can help deciding on deployment strategies and policies around the sustainable use of these new anti-malaria tools.
Collapse
Affiliation(s)
- Philip G Madgwick
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Ricardo Kanitz
- Syngenta Crop Protection, Rosentalstrasse 67, 4058, Basel, Switzerland.
| |
Collapse
|
254
|
Ojianwuna CC, Omotayo AI, Enwemiwe VN, Adetoro FA, Eyeboka DN, Adesalu K, Egedegbe A, Esiwo E, Oyeniyi TA. Pyrethroid Susceptibility in Culex quinquefasciatus Say. (Diptera: Culicidae) Populations from Delta State, Niger-Delta Region, Nigeria. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:758-763. [PMID: 35024861 DOI: 10.1093/jme/tjab217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 06/14/2023]
Abstract
The development of insecticide resistance in different species of mosquitoes to Pyrethroids is a major challenge for vector-borne diseases transmitted by mosquitoes. Failure of Pyrethroids in control of mosquitoes would impact negatively on the gains recorded in control of mosquito-borne diseases in previous years. In anticipation of a country-wide deployment of Pyrethroid-treated nets for control of mosquito-borne diseases in Nigeria, this study assessed susceptibility of Culex quinquefasciatus Say. (Diptera: Culicidae) to Pyrethroids in Owhelogbo, Ejeme and Oria-Abraka communities in Delta State, Niger-Delta, Nigeria. Three to five day old Cx. quinquefasciatus were exposed to Deltamethrin (0.05%), Permethrin (0.75%), and Alphacypermethrin (0.05%) using World Health Organization bioassay method. Polymerase chain reaction (PCR) was employed in characterization of species and knockdown mutation. Results revealed that Cx. quinquefasciatus were generally susceptible (98-100%) to Deltamethrin, Permethrin, and Alphacypermethrin in the three communities with the exception of Owhelogbo where resistance to Deltamethrin (97%) was suspected. Knockdown time to Deltamethrin (11.51, 11.23, and 12.68 min), Permethrin (28.75, 13.26, and 14.49 min), and Alphacypermethrin (15.07, 12.50, and 13.03 min) were considerably low for Owhelogbo, Ejeme, and Oria-Abraka Cx. quinquefasciatus populations, respectively. Species identification result showed that all amplified samples were Cx. quinquefasciatus; however, no kdr allele was found in the three populations. Deployment of pyrethroid-treated nets for control of mosquito-borne diseases in Niger-Delta region of Nigeria is capable of reducing burden of diseases transmitted by Cx. quinquefasciatus as well as addressing nuisance value of the vector; however, caution must be entertained so as not to increase selection pressure thereby aiding resistance development.
Collapse
Affiliation(s)
- Chioma C Ojianwuna
- Department of Animal and Environmental Biology, Delta State University, Abraka, Nigeria
| | - Ahmed I Omotayo
- Molecular Entomology and Vector Control Research Laboratory, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Victor N Enwemiwe
- Department of Animal and Environmental Biology, Delta State University, Abraka, Nigeria
| | - Fouad A Adetoro
- Department of Zoology, University of Lagos, Akoka, Yaba, Lagos, Nigeria
| | - Destiny N Eyeboka
- Department of Animal and Environmental Biology, Delta State University, Abraka, Nigeria
| | - Kemi Adesalu
- Molecular Entomology and Vector Control Research Laboratory, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Allan Egedegbe
- Department of Animal and Environmental Biology, Delta State University, Abraka, Nigeria
| | - Eric Esiwo
- Department of Animal and Environmental Biology, Delta State University, Abraka, Nigeria
| | - Tolulope A Oyeniyi
- Molecular Entomology and Vector Control Research Laboratory, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| |
Collapse
|
255
|
Hernández C, Alvarado M, Salgado-Roa FC, Ballesteros N, Rueda-M N, Oliveira J, Alevi KCC, da Rosa JA, Urbano P, Salazar C, Ramírez JD. Phylogenetic relationships and evolutionary patterns of the genus Psammolestes Bergroth, 1911 (Hemiptera: Reduviidae: Triatominae). BMC Ecol Evol 2022; 22:30. [PMID: 35279099 PMCID: PMC8918316 DOI: 10.1186/s12862-022-01987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary history of biodiversity in South America has been poorly studied in the seasonal dry tropical forest (SDTF). Species diversification in this ecosystem may have a twofold explanation. First, intermittent connections in the middle and late Pleistocene promoted species dispersal and/or genetic connectivity between lineages isolated in disjunct patches of forest. Second, allopatric speciation proceeded immediately after the formation and colonization of the SDTF in the Neogene. Here we studied the diversification of Psammolestes, a genus endemic of the SDTF and naturally infected with Trypanosoma cruzi (agent of Chagas disease), using a combination of phylogenetic, population genetics and niche model methods, and evaluated the reliability of the three morphospecies currently recognized. RESULTS Our multilocus analyses recovered P. coreodes and P. tertius in a monophyletic clade sister to P. arthuri. Species delimitation tests recovered these lineages as different species despite the shared genetic variation observed between P. coreodes and P. tertius in five genes. Also, genetic variation of the genus clustered in three groups that were consistent with the three morphospecies. Our demographic model predicted a scenario of divergence in absence of gene flow, suggesting that mixed haplotypes may be the result of shared ancestral variation since the divergence of the subtropical-temperate species P. coreodes and P. tertius. In contrast, the tropical species P. arthuri was highly differentiated from the other two in all tests of genetic structure, and consistently, the Monmonier's algorithm identified a clear geographical barrier that separates this species from P. coreodes and P. tertius. CONCLUSIONS We found three genetically structured lineages within Psammolestes that diverged in absence of gene flow in the late Miocene. This result supports a scenario of species formation driven by geographical isolation rather than by divergence in the face of gene flow associated with climatic oscillations in the Pleistocene. Also, we identified the Amazon basin as a climatic barrier that separates tropical from subtropical-temperate species, thus promoting allopatric speciation after long range dispersion. Finally, each species of Psammolestes occupies different climatic niches suggesting that niche conservatism is not crucial for species differentiation. These findings influence the current vector surveillance programs of Chagas disease in the region.
Collapse
Affiliation(s)
- Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMIBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Mateo Alvarado
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMIBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Fabian C Salgado-Roa
- Grupo de Genética Evolutiva y Filogeografía, Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMIBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicol Rueda-M
- Grupo de Genética Evolutiva y Filogeografía, Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Jader Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Sao Paulo, 01000, Brazil.,Universidade de São Paulo (USP), Faculdade de Saúde Pública, São Paulo, SP, Brazil
| | - Kaio Cesar Chaboli Alevi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Sao Paulo, 01000, Brazil
| | - Joao Aristeu da Rosa
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, Sao Paulo, 01000, Brazil
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Camilo Salazar
- Grupo de Genética Evolutiva y Filogeografía, Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMIBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
256
|
Guo X, Ma C, Wang L, Zhao N, Liu S, Xu W. The impact of COVID-19 continuous containment and mitigation strategy on the epidemic of vector-borne diseases in China. Parasit Vectors 2022; 15:78. [PMID: 35248146 PMCID: PMC8898061 DOI: 10.1186/s13071-022-05187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background This study explored the effect of a continuous mitigation and containment strategy for coronavirus disease 2019 (COVID-19) on five vector-borne diseases (VBDs) in China from 2020 to 2021. Methods Data on VBDs from 2015 to 2021 were obtained from the National Health Commission of the People’s Republic of China, and the actual trend in disease activity in 2020–2021 was compared with that in 2015–2019 using a two-ratio Z-test and two proportional tests. Similarly, the estimated trend in disease activity was compared with the actual trend in disease activity in 2020. Results There were 13,456 and 3684 average yearly cases of VBDs in 2015–2019 and 2020, respectively. This represents a decrease in the average yearly incidence of total VBDs of 72.95% in 2020, from 0.9753 per 100,000 population in 2015–2019 to 0.2638 per 100,000 population in 2020 (t = 75.17, P < 0.001). The observed morbidity rates of the overall VBDs were significantly lower than the predicted rates (47.04% reduction; t = 31.72, P < 0.001). The greatest decline was found in dengue, with a 77.13% reduction (observed rate vs predicted rate: 0.0574 vs. 0.2510 per 100,000; t = 41.42, P < 0.001). Similarly, the average yearly mortality rate of total VBDs decreased by 77.60%, from 0.0064 per 100,000 population in 2015–2019 to 0.0014 per 100,000 population in 2020 (t = 6.58, P < 0.001). A decreasing trend was also seen in the monthly incidence of total VBDs in 2021 compared to 2020 by 43.14% (t = 5.48, P < 0.001). Conclusions The results of this study verify that the mobility and mortality rates of VBDs significantly decreased from 2015–2019 to 2020–2021, and that they are possibly associated to the continuous COVID-19 mitigation and contamination strategy implemented in China in 2020–2021. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05187-w.
Collapse
Affiliation(s)
- Xiangyu Guo
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, China
| | - Chenjin Ma
- College of Statistics and Data Science, Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Lan Wang
- Department of Geriatrics, The First Affiliated Hospital-Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Na Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, Anhui Province, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China.
| | - Wangli Xu
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
257
|
Collins MH, Potter GE, Hitchings MDT, Butler E, Wiles M, Kennedy JK, Pinto SB, Teixeira ABM, Casanovas-Massana A, Rouphael NG, Deye GA, Simmons CP, Moreira LA, Nogueira ML, Cummings DAT, Ko AI, Teixeira MM, Edupuganti S. EVITA Dengue: a cluster-randomized controlled trial to EValuate the efficacy of Wolbachia-InfecTed Aedes aegypti mosquitoes in reducing the incidence of Arboviral infection in Brazil. Trials 2022; 23:185. [PMID: 35236394 PMCID: PMC8889395 DOI: 10.1186/s13063-022-05997-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Arboviruses transmitted by Aedes aegypti including dengue, Zika, and chikungunya are a major global health problem, with over 2.5 billion at risk for dengue alone. There are no licensed antivirals for these infections, and safe and effective vaccines are not yet widely available. Thus, prevention of arbovirus transmission by vector modification is a novel approach being pursued by multiple researchers. However, the field needs high-quality evidence derived from randomized, controlled trials upon which to base the implementation and maintenance of vector control programs. Here, we report the EVITA Dengue trial design (DMID 17-0111), which assesses the efficacy in decreasing arbovirus transmission of an innovative approach developed by the World Mosquito Program for vector modification of Aedes mosquitoes by Wolbachia pipientis. METHODS DMID 17-0111 is a cluster-randomized trial in Belo Horizonte, Brazil, with clusters defined by primary school catchment areas. Clusters (n = 58) will be randomized 1:1 to intervention (release of Wolbachia-infected Aedes aegypti mosquitoes) vs. control (no release). Standard vector control activities (i.e., insecticides and education campaigns for reduction of mosquito breeding sites) will continue as per current practice in the municipality. Participants (n = 3480, 60 per cluster) are children aged 6-11 years enrolled in the cluster-defining school and living within the cluster boundaries who will undergo annual serologic surveillance for arboviral infection. The primary objective is to compare sero-incidence of arboviral infection between arms. DISCUSSION DMID 17-0111 aims to determine the efficacy of Wolbachia-infected mosquito releases in reducing human infections by arboviruses transmitted by Aedes aegypti and will complement the mounting evidence for this method from large-scale field releases and ongoing trials. The trial also represents a critical step towards robustness and rigor for how vector control methods are assessed, including the simultaneous measurement and correlation of entomologic and epidemiologic outcomes. Data from this trial will inform further the development of novel vector control methods. TRIAL REGISTRATION ClinicalTrials.gov NCT04514107 . Registered on 17 August 2020 Primary sponsor: National Institute of Health, National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Matthew H Collins
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Gail E Potter
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- The Emmes Company, LLC, Rockville, USA
| | - Matt D T Hitchings
- Emerging Pathogens Institute and Department of Biology, University of Florida, Gainesville, FL, USA
| | - Ellie Butler
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Michelle Wiles
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | | | - Sofia B Pinto
- World Mosquito Program, Monash University, Melbourne, 3800, Australia
| | - Adla B M Teixeira
- School of Education, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nadine G Rouphael
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Gregory A Deye
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Cameron P Simmons
- World Mosquito Program, Monash University, Melbourne, 3800, Australia
| | - Luciano A Moreira
- Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio L Nogueira
- Medical School of São Jose do Rio Preto FAMERP, São Jose do Rio Preto, São Paulo, Brazil
| | - Derek A T Cummings
- Emerging Pathogens Institute and Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Salvador, Bahia, Brazil.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
258
|
Omotayo AI, Ande AT, Oduola AO, Adelaja OJ, Adesalu O, Jimoh TR, Ghazali AI, Awolola ST. Multiple insecticide resistance mechanisms in urban population of Anopheles coluzzii (Diptera: culicidae) from Lagos, South-West Nigeria. Acta Trop 2022; 227:106291. [PMID: 34958768 DOI: 10.1016/j.actatropica.2021.106291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/01/2022]
Abstract
Malaria is a major public health challenge in Africa with Nigeria accounting for the highest burden of the disease in the world. Vector control has proved to be a highly effective component of malaria control, however, the development and spread of insecticide resistance in major vectors of malaria have been a major challenge. This study assessed resistance mechanisms in Anopheles coluzzii populations from Kosofe, Lagos mainland and Ojo Local Government Areas in Lagos, Nigeria where An. gambiae s.l is resistant to DDT and Permethrin. WHO susceptibility bioassay test was used in determining resistance status of An. coluzzii to discriminating doses of DDT and Permethrin while synergist assay was used to assess the involvement of monooxygenases in resistance development. Sub-species of An. gambiae s.l (An. gambiae and An. coluzzii) were identified using polymerase chain reaction (PCR) and Restriction Fragment Length Polymorphism (PCR-RFLP) while Allele-Specific Polymerase Chain Reaction (AS-PCR) assay was used to detect knockdown mutation (kdr-West; L1014F). Biochemical assays were used in determining the activities of metabolic enzymes. High DDT resistance was recorded in An. coluzzii populations from the three sites. Mortality rate of mosquitoes exposed confirmed Permethrin resistance in Kosofe (50%) and Lagos mainland (48%) but resistance was suspected in Ojo (96%). All specimens tested were confirmed as An. coluzzii with low kdr frequency; 11.6%, 16.4% and 6.7% in Kosofe, Lagos mainland and Ojo respectively. Pre-exposure to synergist (PBO) before exposure to Permethrin led to increased mortality in all populations. Esterase activity was insignificantly overexpressed in Kosofe (p = 0.849) and Lagos mainland (p = 0.229) populations. In contrast, GST activity was significantly lower in populations from Lagos mainland (63.650 ± 9.861; p = 0.007) and Ojo (91.765 ± 4.959; p = 0.042) than Kisumu susceptible strains (120.250 ± 13.972). Monooxygenase activity was higher in Lagos mainland (2.371 ± 0.261) and Ojo (1.361 ± 0.067) populations, albeit significantly in Lagos mainland (p = 0.007) only. Presence of target-site mutation in all populations, increased mortality with pre-exposure to PBO and elevated monooxygenase in Lagos mainland population were confirmed. Multiple resistance mechanisms in some urban populations of An. coluzzii from Lagos, Nigeria calls for appropriate resistance management strategies.
Collapse
|
259
|
Bottino-Rojas V, Ferreira-Almeida I, Nunes RD, Feng X, Pham TB, Kelsey A, Carballar-Lejarazú R, Gantz V, Oliveira PL, James AA. Beyond the eye: Kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103720. [PMID: 34999199 PMCID: PMC11055609 DOI: 10.1016/j.ibmb.2022.103720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Insect ommochrome biosynthesis pathways metabolize tryptophan to generate eye-color pigments and wild-type alleles of pathway genes are useful phenotypic markers in transgenesis studies. Pleiotropic effects of mutations in some genes exert a load on both survival and reproductive success in blood-feeding species. Here, we investigated the challenges imposed on mosquitoes by the increase of tryptophan metabolites resulting from blood meal digestion and the impact of disruptions of the ommochrome biosynthesis pathway. Female mosquitoes with spontaneous and induced mutations in the orthologs of the genes encoding kynurenine hydroxylase in Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus exhibited impaired survival and reproductive phenotypes that varied in type and severity among the species. A compromised midgut permeability barrier function was also observed in An. stephensi. Surprisingly, mutant mosquitoes displayed an increase in microbiota compared to controls that was not accompanied by a general induction of immune genes. Antibiotic treatment rescued some deleterious traits implicating a role for the kynurenine pathway (KP) in midgut homeostasis. Supplemental xanthurenic acid, a KP end-product, rescued lethality and limited microbiota proliferation in Ae. aegypti. These data implicate the KP in the regulation of the host/microbiota interface. These pleiotropic effects on mosquito physiology are important in the development of genetic strategies targeting vector mosquitoes.
Collapse
Affiliation(s)
- Vanessa Bottino-Rojas
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | - Igor Ferreira-Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo D Nunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | - Adam Kelsey
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | | | - Valentino Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
260
|
Standardised bioassays reveal that mosquitoes learn to avoid compounds used in chemical vector control after a single sub-lethal exposure. Sci Rep 2022; 12:2206. [PMID: 35177630 PMCID: PMC8854624 DOI: 10.1038/s41598-022-05754-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Vector-borne diseases are worldwide public health issues. Despite research focused on vectorial capacity determinants in pathogen transmitting mosquitoes, their behavioural plasticity remains poorly understood. Memory and associative learning have been linked to behavioural changes in several insect species, but their relevance in behavioural responses to pesticide vector control has been largely overlooked. In this study, female Aedes aegypti and Culex quinquefasciastus were exposed to sub-lethal doses of 5 pesticide compounds using modified World Health Organization (WHO) tube bioassays. Conditioned females, subsequently exposed to the same pesticides in WHO tunnel assays, exhibited behavioural avoidance by forgoing blood-feeding to ensure survival. Standardized resting site choice tests showed that pre-exposed females avoided the pesticides smell and choose to rest in a pesticide-free compartment. These results showed that, following a single exposure, mosquitoes can associate the olfactory stimulus of pesticides with their detrimental effects and subsequently avoid pesticide contact. Findings highlight the importance of mosquito cognition as determinants of pesticide resistance in mosquito populations targeted by chemical control.
Collapse
|
261
|
Adult mosquito predation and potential impact on the sterile insect technique. Sci Rep 2022; 12:2561. [PMID: 35169252 PMCID: PMC8847352 DOI: 10.1038/s41598-022-06565-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The sterile insect technique is a promising environmentally friendly method for mosquito control. This technique involves releasing laboratory-produced sterile males into a target field site, and its effectiveness may be affected by the extent of adult mosquito predation. Sterile males undergo several treatments. Therefore, it is vital to understand which treatments are essential in minimizing risks to predation once released. The present study investigates the predation propensity of four mantis species (Phyllocrania paradoxa, Hymenopus coronatus, Blepharopsis mendica, Deroplatys desiccata) and two gecko species (Phelsuma standingi, P. laticauda) on adult Aedes aegypti, Ae. albopictus and Anopheles arabiensis mosquitoes in a laboratory setting. First, any inherent predation preferences regarding mosquito species and sex were evaluated. Subsequently, the effects of chilling, marking, and irradiation, on predation rates were assessed. The selected predators effectively preyed on all mosquito species regardless of the treatment. Predation propensity varied over days for the same individuals and between predator individuals. Overall, there was no impact of laboratory treatments of sterile males on the relative risk of predation by the test predators, unless purposely exposed to double the required sterilizing irradiation dose. Further investigations on standardized predation trials may lead to additional quality control tools for irradiated mosquitoes.
Collapse
|
262
|
Constructing and validating a transferable epidemic risk index in data scarce environments using open data: A case study for dengue in the Philippines. PLoS Negl Trop Dis 2022; 16:e0009262. [PMID: 35120122 PMCID: PMC8849499 DOI: 10.1371/journal.pntd.0009262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/16/2022] [Accepted: 12/21/2021] [Indexed: 01/21/2023] Open
Abstract
Epidemics are among the most costly and destructive natural hazards globally. To reduce the impacts of infectious disease outbreaks, the development of a risk index for infectious diseases can be effective, by shifting infectious disease control from emergency response to early detection and prevention. In this study, we introduce a methodology to construct and validate an epidemic risk index using only open data, with a specific focus on scalability. The external validation of our risk index makes use of distance sampling to correct for underreporting of infections, which is often a major source of biases, based on geographical accessibility to health facilities. We apply this methodology to assess the risk of dengue in the Philippines. The results show that the computed dengue risk correlates well with standard epidemiological metrics, i.e. dengue incidence (p = 0.002). Here, dengue risk constitutes of the two dimensions susceptibility and exposure. Susceptibility was particularly associated with dengue incidence (p = 0.048) and dengue case fatality rate (CFR) (p = 0.029). Exposure had lower correlations to dengue incidence (p = 0.193) and CFR (p = 0.162). Highest risk indices were seen in the south of the country, mainly among regions with relatively high susceptibility to dengue outbreaks. Our findings reflect that the modelled epidemic risk index is a strong indication of sub-national dengue disease patterns and has therefore proven suitability for disease risk assessments in the absence of timely epidemiological data. The presented methodology enables the construction of a practical, evidence-based tool to support public health and humanitarian decision-making processes with simple, understandable metrics. The index overcomes the main limitations of existing indices in terms of construction and actionability. Epidemics are among the most costly and destructive natural hazards occurring globally; currently, the response to epidemics is still focused on reaction rather than prevention or preparedness. The development of an epidemic risk index can support identifying high-risk areas and can guide prioritization of preventive action and humanitarian response. While several frameworks for epidemic risk assessment exist, they suffer from several limitations, which resulted in limited uptake by local health actors—such as governments and humanitarian relief workers—in their decision-making processes. In this study, we present a methodology to develop epidemic risk indices, which overcomes the major limitations of previous work: strict data requirements, insufficient geographical granularity, validation against epidemiological data. We take as a case study dengue in the Philippines and develop an epidemic risk index; we correct dengue incidence for underreporting based on accessibility to healthcare and show that it correlates well with the risk index (Pearson correlation coefficient 0.69, p-value 0.002). Our methodology enables the development of disease-specific epidemic risk indices at a sub-national level, even in countries with limited data availability; these indices can guide local actors in programming prevention and response activities. Our findings on the case study show that the epidemic risk index is a strong indicator of sub-national dengue disease patterns and is therefore suitable for disease risk assessments in the absence of timely and complete epidemiological data.
Collapse
|
263
|
Russell TL, Horwood PF, Harrington H, Apairamo A, Kama NJ, Bobogare A, MacLaren D, Burkot TR. Seroprevalence of dengue, Zika, chikungunya and Ross River viruses across the Solomon Islands. PLoS Negl Trop Dis 2022; 16:e0009848. [PMID: 35143495 PMCID: PMC8865700 DOI: 10.1371/journal.pntd.0009848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/23/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Across the Pacific, and including in the Solomon Islands, outbreaks of arboviruses such as dengue, chikungunya, and Zika are increasing in frequency, scale and impact. Outbreaks of mosquito-borne disease have the potential to overwhelm the health systems of small island nations. This study mapped the seroprevalence of dengue, Zika, chikungunya and Ross River viruses in 5 study sites in the Solomon Islands. Serum samples from 1,021 participants were analysed by ELISA. Overall, 56% of participants were flavivirus-seropositive for dengue (28%), Zika (1%) or both flaviviruses (27%); and 53% of participants were alphavirus-seropositive for chikungunya (3%), Ross River virus (31%) or both alphaviruses (18%). Seroprevalence for both flaviviruses and alphaviruses varied by village and age of the participant. The most prevalent arboviruses in the Solomon Islands were dengue and Ross River virus. The high seroprevalence of dengue suggests that herd immunity may be a driver of dengue outbreak dynamics in the Solomon Islands. Despite being undetected prior to this survey, serology results suggest that Ross River virus transmission is endemic. There is a real need to increase the diagnostic capacities for each of the arboviruses to support effective case management and to provide timely information to inform vector control efforts and other outbreak mitigation interventions. The occurrence of arboviruses is increasing and causing significant impacts on human health. This is of high concern in small Pacific island nations where fragile health systems are regularly overwhelmed by disease outbreaks. To effectively prevent and control disease transmission there is a need to understand which viruses have been in circulation. Therefore, we conducted a cross-sectional survey of residents from 5 study sites distributed across the Solomon Islands. The serum samples were tested for antibodies that indicate prior infection for four arboviruses. We found evidence that the residents of the Solomon Islands have been exposed to substantial transmission of dengue and Ross River viruses, with lower levels of Zika and chikungunya transmission. Two large dengue outbreaks have been recently experienced and the outbreak pattern suggests that natural herd immunity may still be a driver of dengue outbreak dynamics in the Solomon Islands. Regarding Ross River virus, transmission is endemic despite being undetected prior to this survey. There is a real need to increase the capacity to accurately diagnose each of these arboviruses to support effective case management and to provide timely information to inform vector control efforts.
Collapse
Affiliation(s)
- Tanya L. Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- * E-mail:
| | - Paul F. Horwood
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Humpress Harrington
- College of Medicine and Dentistry, James Cook University, Cairns, Australia
- Atoifi College of Nursing, Atoifi Adventist Hospital, Atoifi, Malaita, Solomon Islands
| | - Allan Apairamo
- National Vector Borne Disease Control Program, Ministry of Health and Medical Services, Honiara, Solomon Islands
| | - Nathan J. Kama
- National Vector Borne Disease Control Program, Ministry of Health and Medical Services, Honiara, Solomon Islands
| | - Albino Bobogare
- National Vector Borne Disease Control Program, Ministry of Health and Medical Services, Honiara, Solomon Islands
| | - David MacLaren
- College of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Thomas R. Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
264
|
Bancroft D, Power GM, Jones RT, Massad E, Iriat JB, Preet R, Kinsman J, Logan JG. Vector control strategies in Brazil: a qualitative investigation into community knowledge, attitudes and perceptions following the 2015-2016 Zika virus epidemic. BMJ Open 2022; 12:e050991. [PMID: 35105618 PMCID: PMC8808399 DOI: 10.1136/bmjopen-2021-050991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The World Health Organization declared a Public Health Emergency of International Concern following the rapid emergence of neonatal microcephaly in Brazil during the 2015-2016 Zika virus (ZIKV) epidemic. In response, a national campaign sought to control Aedes mosquito populations and reduce ZIKV transmission. Achieving adherence to vector control or mosquito-bite reduction behaviours, including the use of topical mosquito repellents, is challenging. Coproduction of research at the community level is needed to understand and mitigate social determinants of lower engagement with Aedes preventive measures, particularly within disempowered groups. DESIGN In 2017, the Zika Preparedness Latin America Network (ZikaPLAN) conducted a qualitative study to understand individual and community level experiences of ZIKV and other mosquito-borne disease outbreaks. Presented here is a thematic analysis of 33 transcripts from community focus groups and semistructured interviews, applying the Health Belief Model (HBM) to elaborate knowledge, attitudes and perceptions of ZIKV and vector control strategies. PARTICIPANTS 120 purposively sampled adults of approximate reproductive age (18-45); 103 women participated in focus groups and 17 men in semistructured interviews. SETTING Two sociopolitically and epidemiologically distinct cities in Brazil: Jundiaí (57 km north of São Paolo) and Salvador (Bahia state capital). RESULTS Four key and 12 major themes emerged from the analysis: (1) knowledge and cues to action; (2) attitudes and normative beliefs (perceived threat, barriers, benefits and self-efficacy); (3) behaviour change (household prevention and community participation); and (4) community preferences for novel repellent tools, vector control strategies and ZIKV messaging. CONCLUSIONS Common barriers to repellent adherence were accessibility, appearance and effectiveness. A strong case is made for the transferability of the HBM to inform epidemic preparedness for mosquito-borne disease outbreaks at the community level. Nationally, a health campaign targeting men is recommended, in addition to local mobilisation of funding to strengthen surveillance, risk communication and community engagement.
Collapse
Affiliation(s)
- Dani Bancroft
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Grace M Power
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert T Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Eduardo Massad
- School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- School of Applied Mathematics, Fundação Getulio Vargas, Rio de Janeiro, RJ, Brazil
| | | | - Raman Preet
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - John Kinsman
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - James G Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
265
|
Abbasi E, Vahedi M, Bagheri M, Gholizadeh S, Alipour H, Moemenbellah-Fard MD. Monitoring of synthetic insecticides resistance and mechanisms among malaria vector mosquitoes in Iran: A systematic review. Heliyon 2022; 8:e08830. [PMID: 35128113 PMCID: PMC8808063 DOI: 10.1016/j.heliyon.2022.e08830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/03/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In Iran, the prospect of malaria control relies mainly on insecticides used against the genus Anopheles (Diptera: Culicidae) as important vectors of malaria, arboviruses, and so on. Only eight out of 30 malaria mosquito vectors (Anopheles species) have been examined for insecticide resistance in Iran. This study aimed to review articles related to the incremental trend in insecticide resistance and their mechanisms among anopheline malaria vectors in Iran. METHODS A literature review was conducted based on such search engines as Iran doc, Web of Science, SID, PubMed, Scopus, and Google Scholar websites using the following keywords: "Anopheles," "Malaria," "Resistance," "Vectors," "Insecticide Resistance," and "Iran" for data collection. Published papers in English or Persian covering 1980 to 2020 were reviewed. RESULTS A total of 1125 articles were screened, only 16 of which were filtered to be pertinent in this review. While most of the mosquito vectors of malaria, such as Anopheles stephensi, were resistant to DDT, dieldrin, malathion, and becoming less susceptible to deltamethrin and other synthetic pyrethroid insecticides, few like Anopheles fluviatilis s. l. were susceptible to all insecticides. A disseminating trend in insecticide resistance among different anopheline mosquito vector species was evident. Metabolic and insecticide target-site resistance mechanisms were involved with organochlorines and pyrethroids, respectively. CONCLUSIONS Insecticide resistance is becoming a severe scourge to the effectiveness of vector-borne disease management measures. This event is especially critical in developing and marginalized communities that applied chemical-based vector elimination programs for malaria; therefore, it is crucial to monitor insecticide resistance in malaria vectors in Iran using biochemical and molecular tools.
Collapse
Affiliation(s)
- Ebrahim Abbasi
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozaffar Vahedi
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Bagheri
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saber Gholizadeh
- School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Dept. of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Djaefar Moemenbellah-Fard
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Dept. of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
266
|
Olajiga OM, Maldonado-Ruiz LP, Fatehi S, Cardenas JC, Gonzalez MU, Gutierrez-Silva LY, Londono-Renteria B, Park Y. Association of dengue infection with anti-alpha-gal antibodies, IgM, IgG, IgG1, and IgG2. Front Immunol 2022; 13:1021016. [PMID: 36311743 PMCID: PMC9614307 DOI: 10.3389/fimmu.2022.1021016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus (DENV) transmitted by the Aedes mosquitoes is the etiological agent of dengue fever, one of the fastest-growing reemerging mosquito-borne diseases on the planet with a 30-fold surge in the last five decades. Interestingly, many arthropod-borne pathogens, including DENV type 2, have been reported to contain an immunogenic glycan galactose-alpha1,3-galactose (alpha-Gal or aGal). The aGal molecule is a common oligosaccharide found in many microorganisms and in most mammals, except for humans and the Old-World primates. The loss of aGal in humans is considered to be an evolutionary innovation for enabling the production of specific antibodies against aGal that could be presented on the glycan of pathogens. The objective of this study was to evaluate different anti-aGal antibodies (IgM, IgG, IgG1, and IgG2) in people exposed to DENV. We observed a significant difference in anti-aGal IgG and IgG1 levels among dengue severity classifications. Furthermore, a significant positive correlation was observed between the anti-aGal IgG and the number of days with dengue symptoms in patients. Additionally, both anti-aGal IgM and IgG levels differ between the two geographical locations of patients. While the anti-aGal IgM and IgG2 levels were not significantly different according to the dengue severity levels, age was negatively correlated with anti-aGal IgM and positively correlated with anti-aGal IgG2. Significant involvement of aGal antibodies in Dengue infection processes is suggested based on the results. Our results open the need for further studies on the exact roles and the mechanisms of the aGal antibodies in Dengue infection.
Collapse
Affiliation(s)
- Olayinka M. Olajiga
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | | - Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Jenny C. Cardenas
- Laboratorio Clínico, Hospital Local Los Patios, Los Patios, Norte de Santander, Colombia
| | - Maria U. Gonzalez
- Laboratorio Clinico, Empresa Social Del Estado Hospital Emiro Quintero Cañizares, Ocaña, Norte de Santander, Colombia
| | | | - Berlin Londono-Renteria
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
- *Correspondence: Yoonseong Park, ; Berlin Londono-Renteria,
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Yoonseong Park, ; Berlin Londono-Renteria,
| |
Collapse
|
267
|
Efon Ekangouo A, Nana Djeunga HC, Sempere G, Kamgno J, Njiokou F, Moundipa Fewou P, Geiger A. Bacteriome Diversity of Blackflies' Gut and Association with Onchocerca volvulus, the Causative Agent of Onchocerciasis in Mbam Valley (Center Region, Cameroon). Pathogens 2021; 11:pathogens11010044. [PMID: 35055992 PMCID: PMC8779297 DOI: 10.3390/pathogens11010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Vector control using larvicides is the main alternative strategy to address limits of preventive chemotherapy using ivermectin for the control of onchocerciasis. However, it remains substantially limited by implementation difficulties, ecological concerns and the resistance of vector populations. Therefore, efficient and environmentally safe alternative control strategies are still needed. This study explores the composition of the blackfly bacteriome and its variability in the presence of Onchocerca volvulus infection, in order to determine their potential as a novel vector control-based approach to fight onchocerciasis. An entomological survey of a collection of samples was performed in the Bafia health district, a historical endemic focus for onchocerciasis in Cameroon. A total of 1270 blackflies were dissected and the infection rate was 10.1%, indicative of ongoing transmission of onchocerciasis in the surveyed communities. Sequencing process of blackflies’ gut DNA for bacteria screening revealed 14 phyla and 123 genera, highlighting the diversity of gut blackflies bacterial communities. Eight bacteria formed the core of blackfly bacteriome and Wolbachia was the predominant genus with 73.4% of relative abundance of blackflies’ gut bacterial communities. Acidomonas and Roseanomas genera were significantly abundant among infected blackflies (p = 0.01), whereas other genera such as Brevibacterium and Fructobacillus were associated with the absence of infection (p = 0.0009). Differences in gut bacterial distribution of blackflies according to their infection status by the parasite suggest a causal relationship between the bacteriome composition and the onset of blackflies’ infection by O. volvulus or vice versa. Blackfly native bacteria are then potentially involved in infection by O. volvulus, either by facilitating or preventing the parasite infestation of the vector. These bacteria represent an interesting potential as a biological tool/target for a novel approach of vector control to fight onchocerciasis.
Collapse
Affiliation(s)
- Arnauld Efon Ekangouo
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Hugues C. Nana Djeunga
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- Correspondence: ; Tel.: +237-699-076-499
| | - Guilhem Sempere
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- South Green Bioinformatics Platform, Biodiversity, F-34934 Montpellier, France
- UMR InterTryp, CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour le Développement), Campus International de Baillarguet, F-34398 Montpellier, France
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Paul Moundipa Fewou
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Anne Geiger
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| |
Collapse
|
268
|
Zamble BZH, Yao SS, Adja AM, Bakli M, Zoh DD, Mathieu-Daudé F, Assi SB, Remoue F, Almeras L, Poinsignon A. First evaluation of antibody responses to Culex quinquefasciatus salivary antigens as a serological biomarker of human exposure to Culex bites: A pilot study in Côte d'Ivoire. PLoS Negl Trop Dis 2021; 15:e0010004. [PMID: 34898609 PMCID: PMC8699949 DOI: 10.1371/journal.pntd.0010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/23/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Culex mosquitoes are vectors for a variety of pathogens of public health concern. New indicators of exposure to Culex bites are needed to evaluate the risk of transmission of associated pathogens and to assess the efficacy of vector control strategies. An alternative to entomological indices is the serological measure of antibodies specific to mosquito salivary antigens. This study investigated whether the human IgG response to both the salivary gland extract and the 30 kDa salivary protein of Culex quinquefasciatus may represent a proxy of human exposure to Culex bites. Methodology/Principal findings A multidisciplinary survey was conducted with children aged 1 to 14 years living in neighborhoods with varying exposure to Culex quinquefasciatus in the city of Bouaké, Côte d’Ivoire. Children living in sites with high exposure to Cx quinquefasciatus had a significantly higher IgG response to both salivary antigens compared with children living in the control site where only very few Culex were recorded. Moreover, children from any Culex-high exposed sites had significantly higher IgG responses only to the salivary gland extract compared with children from the control village, whereas no difference was noted in the anti-30 kDa IgG response. No significant differences were noted in the specific IgG responses between age and gender. Sites and the use of a bed net were associated with the level of IgG response to the salivary gland extract and to the 30 kDa antigen, respectively. Conclusions/Significance These findings suggest that the IgG response to Culex salivary gland extracts is suitable as proxy of exposure; however, the specificity to the Culex genus needs further investigation. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other specific antibody responses might be more relevant as a biomarker of exposure. These epidemiological observations may form a starting point for additional work on developing serological biomarkers of Culex exposure. The evaluation of exposure to mosquitoes is a key parameter in assessing the risk of transmission of associated pathogens, including zoonoses. Entomological methods represent the gold standard but have several limitations, and efforts are being made to develop new indicators to accurately assess human–Culex contact. This study showed the IgG response to Culex quinquefasciatus salivary gland extract is suitable proxy of exposure to Culex bites. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other isotypic antibody responses specific to this salivary antigen might be more relevant as a biomarker of exposure.
Collapse
Affiliation(s)
- Bi Zamble H. Zamble
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
- * E-mail:
| | - Serge S. Yao
- Institut Pasteur de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Akré M. Adja
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- UFR Biosciences, University Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | - Dounin D. Zoh
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- UFR Biosciences, University Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | - Serge B. Assi
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- Programme National de Lutte contre le Paludisme, Abidjan, Côte d’Ivoire
| | - Franck Remoue
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Lionel Almeras
- IHU Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
| | - Anne Poinsignon
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
269
|
Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Sci Rep 2021; 11:23867. [PMID: 34903838 PMCID: PMC8669011 DOI: 10.1038/s41598-021-03367-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022] Open
Abstract
Insecticides have played a major role in the prevention, control, and elimination of vector-borne diseases, but insecticide resistance threatens the efficacy of available vector control tools. A global survey was conducted to investigate vector control insecticide use from 2010 to 2019. Out of 140 countries selected as sample for the study, 87 countries responded. Also, data on ex-factory deliveries of insecticide-treated nets (ITNs) were analyzed. Insecticide operational use was highest for control of malaria, followed by dengue, leishmaniasis and Chagas disease. Vector control relied on few insecticide classes with pyrethroids the most used overall. Results indicated that IRS programs have been slow to react to detection of pyrethroid resistance, while proactive resistance management using insecticides with unrelated modes of action was generally weak. The intensive use of recently introduced insecticide products raised concern about product stewardship regarding the preservation of insecticide susceptibility in vector populations. Resistance management was weakest for control of dengue, leishmaniasis or Chagas disease. Therefore, it will be vital that vector control programs coordinate on insecticide procurement, planning, implementation, resistance monitoring, and capacity building. Moreover, increased consideration should be given to alternative vector control tools that prevent the development of insecticide resistance.
Collapse
|
270
|
Telleria EL, Azevedo-Brito DA, Kykalová B, Tinoco-Nunes B, Pitaluga AN, Volf P, Traub-Csekö YM. Leishmania infantum Infection Modulates the Jak-STAT Pathway in Lutzomyia longipalpis LL5 Embryonic Cells and Adult Females, and Affects Parasite Growth in the Sand Fly. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.747820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phlebotomine sand flies (Diptera, Psychodidae) belonging to the Lutzomyia genus transmit zoonoses in the New World. Lutzomyia longipalpis is the main vector of Leishmania infantum, which is the causative agent of visceral leishmaniasis in Brazil. To identify key molecular aspects involved in the interaction between vector and pathogens and contribute to developing disease transmission controls, we investigated the sand fly innate immunity mediated by the Janus kinase/signal transducer and activator of transcription (Jak-STAT) pathway in response to L. infantum infection. We used two study models: L. longipalpis LL5 embryonic cells co-cultured with L. infantum and sand fly females artificially infected with the parasite. We used qPCR to follow the L. longipalpis gene expression of molecules involved in the Jak-STAT pathway. Also, we modulated the Jak-STAT mediated immune response to understand its role in Leishmania parasite infection. For that, we used RNAi to silence the pathway regulators, protein inhibitor of activated STATs (PIAS) in LL5 cells, and STAT in adult females. In addition, the pathway suppression effect on parasite development within the vector was assessed by light microscopy in late-phase infection. The silencing of the repressor PIAS in LL5 cells led to a moderate increase in a protein tyrosine phosphatase 61F (PTP61F) expression. It suggests a compensatory regulation between these two repressors. L. infantum co-culture with LL5 cells upregulated repressors PIAS, suppressor of cytokine signaling (SOCS), and PTP61F. It also downmodulated virus-induced RNA-1 (VIR-1), a pathway effector, indicating that the parasite could repress the Jak-STAT pathway in LL5 cells. In Leishmania-infected L. longipalpis females, STAT and the antimicrobial peptide attacin were downregulated on the third day post-infection, suggesting a correlation that favors the parasite survival at the end of blood digestion in the sand fly. The antibiotic treatment of infected females showed that the reduction of gut bacteria had little effect on the Jak-STAT pathway regulation. STAT gene silencing mediated by RNAi reduced the expression of inducible nitric oxide synthase (iNOS) and favored Leishmania growth in sand flies on the first day post-infection. These results indicate that STAT participated in the iNOS regulation with subsequent effect on parasite survival.
Collapse
|
271
|
Kampango A, Furu P, Sarath DL, Haji KA, Konradsen F, Schiøler KL, Alifrangis M, Weldon CW, Saleh F. Targeted elimination of species-rich larval habitats can rapidly collapse arbovirus vector mosquito populations at hotel compounds in Zanzibar. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:523-533. [PMID: 33970496 PMCID: PMC9292405 DOI: 10.1111/mve.12525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 05/12/2023]
Abstract
Understanding the dynamics of larval habitat utilization by mosquito communities is crucial for the design of efficient environmental control strategies. The authors investigated the structure of mosquito communities found at hotel compounds in Zanzibar, networks of mosquito interactions with larval habitats and robustness of mosquito communities to elimination of larval habitats. A total of 23 698 mosquitoes comprising 26 species in six genera were found. Aedes aegypti (n = 16 207), Aedes bromeliae/Aedes lillie (n = 1340), Culex quinquefasciatus (n = 1300) and Eretmapodites quinquevitattus (n = 659) were the most dominant species. Ecological network analyses revealed the presence of dominant, larval habitat generalist species (e.g., A. aegypti), exploiting virtually all types of water holding containers and few larval habitat specialist species (e.g., Aedes natalensis, Orthopodomyia spp). Simulations of mosquito community robustness to systematic elimination of larval habitats indicate that mosquito populations are highly sensitive to elimination of larval habitats sustaining higher mosquito species diversity. This study provides insights on potential foci of future mosquito-borne arboviral disease outbreaks in Zanzibar and underscores the need for detailed knowledge on the ecological function of larval habitats for effective mosquito control by larval sources management.
Collapse
Affiliation(s)
- A. Kampango
- Sector de Estudos de VectoresInstituto Nacional de Saúde (INS)MaputoMozambique
- Department of Zoology and EntomologyUniversity of PretoriaHatfieldSouth Africa
| | - P. Furu
- Global Health Section, Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - D. L. Sarath
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of MedicineUniversity of PeradeniyaKandySri Lanka
| | - K. A. Haji
- Zanzibar Malaria Elimination Programme (ZAMEP)ZanzibarTanzania
| | - F. Konradsen
- Global Health Section, Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - K. L. Schiøler
- Global Health Section, Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - M. Alifrangis
- Center for Medical Parasitology, Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesCopenhagen University Hospital (Rigshospitalet)CopenhagenDenmark
| | - C. W. Weldon
- Department of Zoology and EntomologyUniversity of PretoriaHatfieldSouth Africa
| | - F. Saleh
- Department of Allied Health Sciences, School of Health and Medical SciencesThe State University of ZanzibarZanzibarTanzania
| |
Collapse
|
272
|
Viswanatha R, Mameli E, Rodiger J, Merckaert P, Feitosa-Suntheimer F, Colpitts TM, Mohr SE, Hu Y, Perrimon N. Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. Nat Commun 2021; 12:6825. [PMID: 34819517 PMCID: PMC8613219 DOI: 10.1038/s41467-021-27129-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mosquito-borne diseases present a worldwide public health burden. Current efforts to understand and counteract them have been aided by the use of cultured mosquito cells. Moreover, application in mammalian cells of forward genetic approaches such as CRISPR screens have identified essential genes and genes required for host-pathogen interactions, and in general, aided in functional annotation of genes. An equivalent approach for genetic screening of mosquito cell lines has been lacking. To develop such an approach, we design a new bioinformatic portal for sgRNA library design in several mosquito genomes, engineer mosquito cell lines to express Cas9 and accept sgRNA at scale, and identify optimal promoters for sgRNA expression in several mosquito species. We then optimize a recombination-mediated cassette exchange system to deliver CRISPR sgRNA and perform pooled CRISPR screens in an Anopheles cell line. Altogether, we provide a platform for high-throughput genome-scale screening in cell lines from disease vector species.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Pierre Merckaert
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Tonya M Colpitts
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- HHMI, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
273
|
Ávila MI, Vajda ÉA, Gutiérrez EJ, Gibson DA, Renteria MM, Presley N, O'Reilly D, Burton TA, Tatarsky A, Lobo NF. Anopheles drivers of persisting malaria transmission in Guna Yala, Panamá: an operational investigation. Malar J 2021; 20:443. [PMID: 34819092 PMCID: PMC8611962 DOI: 10.1186/s12936-021-03972-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background Though most of Panamá is free from malaria, localized foci of transmission persist, including in the Guna Yala region. Government-led entomological surveillance using an entomological surveillance planning tool (ESPT) sought to answer programmatically-relevant questions that would enhance the understanding of both local entomological drivers of transmission and gaps in protection that result in persisting malaria transmission to guide local vector control decision-making. Methods The ESPT was used to design a sampling plan centered around the collection of minimum essential indicators to investigate the relevance of LLINs and IRS in the communities of Permé and Puerto Obaldía, Guna Yala, as well as to pinpoint any remaining spaces and times where humans are exposed to Anopheles bites (gaps in protection). Adult Anopheles were collected at three time points via human landing catches (HLCs), CDC Light Traps (LT), and pyrethrum spray catches (PSCs) during the rainy and dry seasons. Mosquitoes were identified to species via molecular methods. Insecticide susceptibility testing of the main vector species to fenitrothion was conducted. Results In total, 7537 adult Anopheles were collected from both sites. Of the 493 specimens molecularly confirmed to species, two thirds (n = 340) were identified as Nyssorhynchus albimanus, followed by Anopheles aquasalis. Overall Anopheles human biting rates (HBRs) were higher outdoors than indoors, and were higher in Permé than in Puerto Obaldía: nightly outdoor HBR ranged from 2.71 bites per person per night (bpn) (Puerto Obaldía), to 221.00 bpn (Permé), whereas indoor nightly HBR ranged from 0.70 bpn (Puerto Obaldía) to 81.90 bpn (Permé). Generally, peak biting occurred during the early evening. The CDC LT trap yields were significantly lower than that of HLCs and this collection method was dropped after the first collection. Pyrethrum spray catches resulted in only three indoor resting Anopheles collected. Insecticide resistance (IR) of Ny. albimanus to fenitrothion was confirmed, with only 65.5% mortality at the diagnostic time. Conclusion The early evening exophagic behaviour of Anopheles vectors, the absence of indoor resting behaviours, and the presence of resistance to the primary intervention insecticide demonstrate limitations of the current malaria strategy, including indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs), and point to both gaps in protection and to the drivers of persisting malaria transmission in Guna Yala. These findings highlight the need for continued and directed entomological surveillance, based on programmatic questions, that generates entomological evidence to inform an adaptive malaria elimination strategy.
Collapse
Affiliation(s)
- Mario I Ávila
- Ministerio de Salud de Panamá (MINSA), Panama City, República de Panamá
| | - Élodie A Vajda
- Malaria Elimination Initiative (MEI), University of California, San Francisco (UCSF), USA.
| | | | - Daragh A Gibson
- Clinton Health Access Initiative (CHAI), Panama City, Panama
| | | | | | - Daniel O'Reilly
- Ministerio de Salud de Panamá (MINSA), Panama City, República de Panamá
| | - Timothy A Burton
- Eck Institute for Global Health, University of Notre Dame (UND), Notre Dame, IN, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative (MEI), University of California, San Francisco (UCSF), USA
| | - Neil F Lobo
- Malaria Elimination Initiative (MEI), University of California, San Francisco (UCSF), USA.,Eck Institute for Global Health, University of Notre Dame (UND), Notre Dame, IN, USA
| |
Collapse
|
274
|
Tayipto Y, Liu Z, Mueller I, Longley RJ. Serology for Plasmodium vivax surveillance: A novel approach to accelerate towards elimination. Parasitol Int 2021; 87:102492. [PMID: 34728377 DOI: 10.1016/j.parint.2021.102492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023]
Abstract
Plasmodium vivax is the most widespread causative agent of human malaria in the world. Despite the ongoing implementation of malaria control programs, the rate of case reduction has declined over the last 5 years. Hence, surveillance of malaria transmission should be in place to identify and monitor areas that require intensified malaria control interventions. Serological tools may offer additional insights into transmission intensity over parasite and entomological measures, especially as transmission levels decline. Antibodies can be detected in the host system for months to even years after parasite infections have been cleared from the blood, enabling malaria exposure history to be captured. Because the Plasmodium parasite expresses more than 5000 proteins, it is important to a) understand antibody longevity following infection and b) measure antibodies to more than one antigen in order to accurately inform on the exposure and/or immune status of populations. This review summarises current practices for surveillance of P. vivax malaria, the current state of research into serological exposure markers and their potential role for accelerating malaria elimination, and discusses further studies that need to be undertaken to see such technology implemented in malaria-endemic areas.
Collapse
Affiliation(s)
- Yanie Tayipto
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Zoe Liu
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, Victoria, Australia; School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhea J Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
275
|
Boedeker W, Watts M, Clausing P, Marquez E. Response to: "letter to the editor regarding the article "the global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review"" by Dunn et al. 2021 in BMC public health. BMC Public Health 2021; 21:1943. [PMID: 34702250 PMCID: PMC8549342 DOI: 10.1186/s12889-021-11941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
In a correspondence to BMC Public Health, Dunn et al. (Dunn SE, Reed J and Neumann C. BMC Public Health (n.d)) respond to our review on the occurrence of unintentional, acute pesticide poisoning (UAPP). Based on a systematic review and further data sources we estimated that about 385 million cases of UAPP occur annually world-wide including around 11,000 fatalities (Boedeker W. et al. BMC Public Health:1875, 2020).
Collapse
Affiliation(s)
- Wolfgang Boedeker
- Pesticide Action Network (PAN) Germany, Nernstweg 32, 22765, Hamburg, Germany.
| | - Meriel Watts
- Pesticide Action Network (PAN) Asia Pacific, P.O. Box 1170, 10850, Penang, Malaysia
| | - Peter Clausing
- Pesticide Action Network (PAN) Germany, Nernstweg 32, 22765, Hamburg, Germany
| | - Emily Marquez
- Pesticide Action Network (PAN) North America, 2029 University Ave., Suite 200, Berkeley, CA, 94704, USA
| |
Collapse
|
276
|
Chala B, Hamde F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front Public Health 2021; 9:715759. [PMID: 34676194 PMCID: PMC8524040 DOI: 10.3389/fpubh.2021.715759] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Vector-borne emerging and re-emerging diseases pose considerable public health problem worldwide. Some of these diseases are emerging and/or re-emerging at increasing rates and appeared in new regions in the past two decades. Studies emphasized that the interactions among pathogens, hosts, and the environment play a key role for the emergence or re-emergence of these diseases. Furthermore, social and demographic factors such as human population growth, urbanization, globalization, trade exchange and travel and close interactions with livestock have significantly been linked with the emergence and/or re-emergence of vector-borne diseases. Other studies emphasize the ongoing evolution of pathogens, proliferation of reservoir populations, and antimicrobial drug use to be the principal exacerbating forces for emergence and re-emergence of vector-borne infectious diseases. Still other studies equivocally claim that climate change has been associated with appearance and resurgence of vector-borne infectious diseases. Despite the fact that many important emerging and re-emerging vector-borne infectious diseases are becoming better controlled, our success in stopping the many new appearing and resurging vector-borne infectious diseases that may happen in the future seems to be uncertain. Hence, this paper reviews and synthesizes the existing literature to explore global patterns of emerging and re-emerging vector-borne infections and the challenges for their control. It also attempts to give insights to the epidemiological profile of major vector-borne diseases including Zika fever, dengue, West Nile fever, Crimean-Congo hemorrhagic fever, Chikungunya, Yellow fever, and Rift Valley fever.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Feyissa Hamde
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
277
|
Jori F, Hernandez-Jover M, Magouras I, Dürr S, Brookes VJ. Wildlife-livestock interactions in animal production systems: what are the biosecurity and health implications? Anim Front 2021; 11:8-19. [PMID: 34676135 PMCID: PMC8527523 DOI: 10.1093/af/vfab045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ferran Jori
- UMR ASTRE (Animal, Health, Territories, Risks and Ecosystems), Bios Department, CIRAD, INRAE, Campus International de Baillarguet, University de Montpellier, Montpellier, Cedex 5, France
- Department of Zoology and Entomology, University of Pretoria, Hatfield, Gauteng, South Africa
| | - Marta Hernandez-Jover
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Ioannis Magouras
- Centre for Applied One Health Research and Policy Advice, Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Salome Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Victoria J Brookes
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
278
|
Amoah B, McCann RS, Kabaghe AN, Mburu M, Chipeta MG, Moraga P, Gowelo S, Tizifa T, van den Berg H, Mzilahowa T, Takken W, van Vugt M, Phiri KS, Diggle PJ, Terlouw DJ, Giorgi E. Identifying Plasmodium falciparum transmission patterns through parasite prevalence and entomological inoculation rate. eLife 2021; 10:65682. [PMID: 34672946 PMCID: PMC8530514 DOI: 10.7554/elife.65682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Monitoring malaria transmission is a critical component of efforts to achieve targets for elimination and eradication. Two commonly monitored metrics of transmission intensity are parasite prevalence (PR) and the entomological inoculation rate (EIR). Comparing the spatial and temporal variations in the PR and EIR of a given geographical region and modelling the relationship between the two metrics may provide a fuller picture of the malaria epidemiology of the region to inform control activities. Methods Using geostatistical methods, we compare the spatial and temporal patterns of Plasmodium falciparum EIR and PR using data collected over 38 months in a rural area of Malawi. We then quantify the relationship between EIR and PR by using empirical and mechanistic statistical models. Results Hotspots identified through the EIR and PR partly overlapped during high transmission seasons but not during low transmission seasons. The estimated relationship showed a 1-month delayed effect of EIR on PR such that at lower levels of EIR, increases in EIR are associated with rapid rise in PR, whereas at higher levels of EIR, changes in EIR do not translate into notable changes in PR. Conclusions Our study emphasises the need for integrated malaria control strategies that combine vector and human host managements monitored by both entomological and parasitaemia indices. Funding This work was supported by Stichting Dioraphte grant number 13050800.
Collapse
Affiliation(s)
- Benjamin Amoah
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Robert S McCann
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, United States
| | - Alinune N Kabaghe
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Monicah Mburu
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Michael G Chipeta
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Malawi-Liverpool Wellcome Trust Research Programme, Blantyre, Malawi.,Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Paula Moraga
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Steven Gowelo
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Tinashe Tizifa
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Themba Mzilahowa
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Michele van Vugt
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Kamija S Phiri
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Peter J Diggle
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Dianne J Terlouw
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Malawi-Liverpool Wellcome Trust Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emanuele Giorgi
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
279
|
Li X, Hu S, Zhang H, Yin H, Wang H, Zhou D, Sun Y, Ma L, Shen B, Zhu C. MiR-279-3p regulates deltamethrin resistance through CYP325BB1 in Culex pipiens pallens. Parasit Vectors 2021; 14:528. [PMID: 34641939 PMCID: PMC8507342 DOI: 10.1186/s13071-021-05033-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background The overuse of insecticides to control insect vectors has promoted extensive insecticide resistance in mosquitoes. In this study, the functions of microRNA (miR)-279-3p and its target CYP325BB1 in the regulation of deltamethrin resistance in Culex pipiens pallens was investigated. Methods Quantitative real-time reverse transcription PCR was used to detect the expression levels of miR-279-3p and CYP325BB1. Then, the dual-luciferase reporter assay system, RNA interference, CDC bottle bioassay and Cell Counting Kit-8 (CCK-8) assay were used to explore the roles of these molecules in deltamethrin resistance both in vivo and in vitro. Results The expression patterns of miR-279-3p and CYP325BB1 were compared between deltamethrin-sensitive (DS-strain) and deltamethrin-resistant (DR-strain) mosquitoes. Luciferase activity was downregulated by miR-279-3p, the effect of which was ablated by a mutation of the putative binding site for CYP325BB1. In DR-strain mosquitoes, the expression of miR-279-3p was increased by microinjection and oral feeding of miR-279-3p agomir (mimic). CYP325BB1 mRNA levels were downregulated, which resulted in a higher mortality of the mosquitoes in miR-279-3p mimic-treated groups. In the DS-strain mosquitoes, microinjection of a miR-279-3p inhibitor decreased miR-279-3p expression, whereas the expression of CYP325BB1 was increased; the mortality of these mosquitoes decreased significantly. In addition, overexpression of pIB/V5-His-CYP325BB1 changed the sensitivity of C6/36 cells to deltamethrin in vitro. Also in DR-strain mosquitoes, downregulation of CYP325BB1 expression by microinjection of si-CYP325BB1 increased mosquito mortality in vivo. Conclusions These findings provide empirical evidence of the involvement of miRNAs in the regulation of insecticide resistance and indicate that miR-279-3p suppresses the expression of CYP325BB1, which in turn decreases deltamethrin resistance, resulting in increased mosquito mortality. Taken together, the results provide important information for use in the development of future mosquito control strategies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Department of Pathogen Biology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, People's Republic of China
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Department of Stomatology, Fifty People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311199, People's Republic of China
| | - Hongbo Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
280
|
Stromsky VE, Hajkazemian M, Vaisbourd E, Mozūraitis R, Noushin Emami S. Plasmodium metabolite HMBPP stimulates feeding of main mosquito vectors on blood and artificial toxic sources. Commun Biol 2021; 4:1161. [PMID: 34620990 PMCID: PMC8497504 DOI: 10.1038/s42003-021-02689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Recent data show that parasites manipulate the physiology of mosquitoes and human hosts to increase the probability of transmission. Here, we investigate phagostimulant activity of Plasmodium-metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), in the primary vectors of multiple human diseases, Anopheles coluzzii, An. arabiensis, An. gambiae s.s., Aedes aegypti, and Culex pipiens/Culex torrentium complex species. The addition of 10 µM HMBPP to blood meals significantly increased feeding in all the species investigated. Moreover, HMBPP also exhibited a phagostimulant property in plant-based-artificial-feeding-solution made of beetroot juice adjusted to neutral pH similar to that of blood. The addition of AlbuMAXTM as a lipid/protein source significantly improved the feeding rate of An. gambiae s.l. females providing optimised plant-based-artificial-feeding-solution for delivery toxins to control vector populations. Among natural and synthetic toxins tested, only fipronil sulfone did not reduce feeding. Overall, the toxic-plant-based-artificial-feeding-solution showed potential as an effector in environmentally friendly vector-control strategies.
Collapse
Affiliation(s)
- Viktoria E Stromsky
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elizabeth Vaisbourd
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Attraction AB, Elektravägen 10, 126 30 Hägersten, Stockholm, Sweden.
- Natural Resources Institute, FES, University of Greenwich, London, UK.
| |
Collapse
|
281
|
Genetic Diversity and Population Structure of the Asian Tiger Mosquito ( Aedes albopictus) in Vietnam: Evidence for Genetic Differentiation by Climate Region. Genes (Basel) 2021; 12:genes12101579. [PMID: 34680974 PMCID: PMC8535633 DOI: 10.3390/genes12101579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Aedes albopictus is a native mosquito to Southeast Asia with a high potential for disease transmission. Understanding how Ae. albopictus populations that develop in the species' native range is useful for planning future control strategies and for identifying the sources of invasive ranges. The present study aims to investigate the genetic diversity and population structure of Ae. albopictus across various climatic regions of Vietnam. We analyzed mitochondrial cytochrome oxidase I (COI) gene sequences from specimens collected from 16 localities, and we used distance-based redundancy analysis to evaluate the amount of variation in the genetic distance that could be explained by both geographic distance and climatic factors. High levels of genetic polymorphism were detected, and the haplotypes were similar to those sequences from both temperate and tropical regions worldwide. Of note, these haplotype groups were geographically distributed, resulting in a distinct population structure in which northeastern populations and the remaining populations were genetically differentiated. Notably, genetic variation among the Ae. albopictus populations was driven primarily by climatic factors (64.55%) and to a lesser extent was also influenced by geographic distance (33.73%). These findings fill important gaps in the current understanding of the population genetics of Ae. albopictus in Vietnam, especially with respect to providing data to track the origin of the invaded regions worldwide.
Collapse
|
282
|
Manrique-Saide P, Herrera-Bojórquez J, Villegas-Chim J, Puerta-Guardo H, Ayora-Talavera G, Parra-Cardeña M, Medina-Barreiro A, Ramírez-Medina M, Chi-Ku A, Trujillo-Peña E, Méndez-Vales RE, Delfín-González H, Toledo-Romaní ME, Bazzani R, Bolio-Arceo E, Gómez-Dantés H, Che-Mendoza A, Pavía-Ruz N, Kirstein OD, Vazquez-Prokopec GM. Protective effect of house screening against indoor Aedes aegypti in Mérida, Mexico: A cluster randomised controlled trial. Trop Med Int Health 2021; 26:1677-1688. [PMID: 34587328 PMCID: PMC9298035 DOI: 10.1111/tmi.13680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the protective effect of house screening (HS) on indoor Aedes aegypti infestation, abundance and arboviral infection in Merida, Mexico. METHODS In 2019, we performed a cluster randomised controlled trial (6 control and 6 intervention areas: 100 households/area). Intervention clusters received permanently fixed fiberglass HS on all windows and doors. The study included two cross-sectional entomologic surveys, one baseline (dry season in May 2019) and one post-intervention (PI, rainy season between September and October 2019). The presence and number of indoor Aedes females and blood-fed females (indoor mosquito infestation) as well as arboviral infections with dengue (DENV) and Zika (ZIKV) viruses were evaluated in a subsample of 30 houses within each cluster. RESULTS HS houses had significantly lower risk for having Aedes aegypti female mosquitoes (odds ratio [OR] = 0.56, 95% CI 0.33-0.97, p = 0.04) and blood-fed females (OR = 0.53, 95% CI 0.28-0.97, p = 0.04) than unscreened households from the control arm. Compared to control houses, HS houses had significantly lower indoor Ae. aegypti abundance (rate ratio [RR] = 0.50, 95% CI 0.30-0.83, p = 0.01), blood-fed Ae. aegypti females (RR = 0.48, 95% CI 0.27-0.85, p = 0.01) and female Ae. aegypti positive for arboviruses (OR = 0.29, 95% CI 0.10-0.86, p = 0.02). The estimated intervention efficacy in reducing Ae. aegypti arbovirus infection was 71%. CONCLUSIONS These results provide evidence supporting the use of HS as an effective pesticide-free method to control house infestations with Aedes aegypti and reduce the transmission of Aedes-transmitted viruses such as DENV, chikungunya (CHIKV) and ZIKV.
Collapse
Affiliation(s)
- Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Josué Herrera-Bojórquez
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Josué Villegas-Chim
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Henry Puerta-Guardo
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Guadalupe Ayora-Talavera
- Laboratorio de Virología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Mérida, México
| | - Manuel Parra-Cardeña
- Laboratorio de Virología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Mérida, México
| | - Anuar Medina-Barreiro
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Marypaz Ramírez-Medina
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Aylin Chi-Ku
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Emilio Trujillo-Peña
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | | | - Hugo Delfín-González
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - María E Toledo-Romaní
- Departamento de Epidemiología, Instituto de Medicina Tropical 'Pedro Kourí', La Habana, Cuba
| | - Roberto Bazzani
- International Development Research Centre of Canada, Regional Office for Latin America and the Caribbean, Montevideo, Uruguay
| | | | - Hector Gómez-Dantés
- Centro de Investigación en Sistemas de Salud, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Azael Che-Mendoza
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Norma Pavía-Ruz
- Laboratorio de Hematología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Mérida, México
| | - Oscar D Kirstein
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
283
|
Saleh EA, Nassar AMK, Amer HH. Organochlorine pesticide residues in raw and grilled freshwater fish (Oreochromis niloticus) collected from various locations along the Nile basin in Egypt. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:673. [PMID: 34564761 DOI: 10.1007/s10661-021-09455-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The current study aimed to assess meat quality of samples of Nile tilapia fish (Oreochromis niloticus), along with examining organochlorine pesticide (OCP) residues in these samples and their potential risks to humans. About 55 samples were collected from eleven sites on the Nile River in Egypt: Damietta, El-Behera, El-Dakahlia, Kafrelsheikh, El-Gharbia, El-Menoufia, Cairo, El-Giza, El-Fayoum, El-Menia, and Aswan Governorates. Fish samples were analyzed fresh and grilled for meat quality characteristics and the presence of OCP residues using the QuEChERS method for extraction and cleanup accompanied by detection using GC-MS (gas chromatography-mass spectrometry) system. Then, risk hazards of OCP residues were calculated. Results showed that all quality criteria of raw and cooked meat samples were within the permissible levels set by the Egyptian Organization for Standardization and Quality (EOS). The detected residues of OCPs in fresh samples were hexachlorocyclohexanes (α-HCH, β-HCH, and δ-HCH), heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin aldehyde, endosulfan, and p,p'-DDE. Endrin aldehyde was detected in all tested sites, while heptachlor epoxide was found in eight (73%) out of the 11 tested locations. After grilling, aldrin, heptachlor epoxide, endosulfan, and endrin aldehyde compounds were found in fish meat. Cooking fish samples reduced the OCP residue amounts by at least 95% of detected amounts in fresh meat.
Collapse
Affiliation(s)
- Ebeed A Saleh
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Behera, Egypt
| | - Atef M K Nassar
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, El-Behera, PO Box 59, Damanhour, Egypt.
| | - Hanaa H Amer
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Behera, Egypt
| |
Collapse
|
284
|
Prioritizing mosquito-borne diseases during and after the COVID-19 pandemic. Western Pac Surveill Response J 2021; 12:40-41. [PMID: 34540311 PMCID: PMC8421746 DOI: 10.5365/wpsar.2020.11.3.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
285
|
Abstract
The parasite that causes African sleeping sickness can be transmitted from mammals to tsetse flies in two stages of its lifecycle, rather than one as was previously thought.
Collapse
Affiliation(s)
- Fabien Guegan
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Luisa Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| |
Collapse
|
286
|
To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents. Pathogens 2021; 10:pathogens10091171. [PMID: 34578203 PMCID: PMC8471886 DOI: 10.3390/pathogens10091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although control efforts are improving, vector-borne diseases remain a global public health challenge. There is a need to shift vector control paradigms while developing new products and programmes. The importance of modifying vector behaviour has been recognised for decades but has received limited attention from the public health community. This study aims to: (1) explore how the use of spatial repellents at sublethal doses could promote public health worldwide; (2) propose new methods for evaluating insecticides for use by the general public; and (3) identify key issues to address before spatial repellents can be adopted as complementary vector control tools. Two field experiments were performed to assess the effects of an insecticidal compound, the pyrethroid transfluthrin, on Aedes albopictus mosquitoes. The first examined levels of human protection, and the second looked at mosquito knockdown and mortality. For the same transfluthrin dose and application method, the percent protection remained high (>80%) at 5 h even though mosquito mortality had declined to zero at 1 h. This result underscores that it matters which evaluation parameters are chosen. If the overarching goal is to decrease health risks, sublethal doses could be useful as they protect human hosts even when mosquito mortality is null.
Collapse
|
287
|
Stone CM. Highlights of Medical Entomology, 2020. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2006-2011. [PMID: 34342359 PMCID: PMC8385844 DOI: 10.1093/jme/tjab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Medical Entomology as a field is inherently global - thriving on international and interdisciplinary collaborations and affected dramatically by arthropod and pathogen invasions and introductions. This past year also will be remembered as the year in which the SARS-CoV-2 COVID-19 pandemic affected every part of our lives and professional activities and impacted (or changed, sometimes in good ways) our ability to collaborate and detect or respond to invasions. This incredible year is the backdrop for the 2020 Highlights in Medical Entomology. This article highlights the broad scope of approaches and disciplines represented in the 2020 published literature, ranging from sensory and chemical ecology, population genetics, impacts of human-mediated environmental change on vector ecology, life history and the evolution of vector behaviors, to the latest developments in vector surveillance and control.
Collapse
Affiliation(s)
- Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak Drive, Champaign, IL 61820, USA
| |
Collapse
|
288
|
Lucas ER, Darby AC, Torr SJ, Donnelly MJ. A gene expression panel for estimating age in males and females of the sleeping sickness vector Glossina morsitans. PLoS Negl Trop Dis 2021; 15:e0009797. [PMID: 34555037 PMCID: PMC8491940 DOI: 10.1371/journal.pntd.0009797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
Many vector-borne diseases are controlled by methods that kill the insect vectors responsible for disease transmission. Recording the age structure of vector populations provides information on mortality rates and vectorial capacity, and should form part of the detailed monitoring that occurs in the wake of control programmes, yet tools for obtaining estimates of individual age remain limited. We investigate the potential of using markers of gene expression to predict age in tsetse flies, which are the vectors of deadly and economically damaging African trypanosomiases. We use RNAseq to identify candidate expression markers, and test these markers using qPCR in laboratory-reared Glossina morsitans morsitans of known age. Measuring the expression of six genes was sufficient to obtain a prediction of age with root mean squared error of less than 8 days, while just two genes were sufficient to classify flies into age categories of ≤15 and >15 days old. Further testing of these markers in field-caught samples and in other species will determine the accuracy of these markers in the field.
Collapse
Affiliation(s)
- Eric R. Lucas
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alistair C. Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Stephen J. Torr
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
289
|
Niang A, Sawadogo SP, Millogo AA, Akpodiete NO, Dabiré RK, Tripet F, Diabaté A. Entomological baseline data collection and power analyses in preparation of a mosquito swarm-killing intervention in south-western Burkina Faso. Malar J 2021; 20:346. [PMID: 34425839 PMCID: PMC8381508 DOI: 10.1186/s12936-021-03877-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Background Insecticides are currently the main tools used to reduce the transmission of malaria; therefore, the development of resistance to insecticides in malaria vectors is of major concern for malaria control. The resistance level to pyrethroids is particularly high in the Western region of Burkina Faso and may affect the efficacy of insecticidal bed nets and indoor residual spraying. Adult mosquito swarming and other nocturnal behaviours exhibit spatial and temporal patterns that suggest potential vulnerability to targeted space spraying with effective insecticides. Indeed, targeted space-spraying against adult mosquito swarms has been used to crash mosquito populations and disrupt malaria transmission. Methods Prior to impact assessment of swarm killing, a baseline data collection was conducted from June to November 2016 in 10 villages divided into two areas in western Burkina Faso. The data considered both ecological and demographic characteristics to monitor the key entomological parameters. Results The mean number of swarms observed was 35 per village, ranging from 25 to 70 swarms according to the village. Female density in both areas varied significantly as a function of the village and the period of collection. The human biting rate was significantly affected by the period of collection and depended upon whether the collection was carried out indoors or outdoors. Averages of parity rate were high in both areas for all periods of collection, ranging from 60 to 90%. These values ranged from 80 to 100% for inseminated females. Sporozoite rates ranged between 1.6 and 7.2% depending upon the village. The molecular identification of resting and swarming mosquitoes showed the presence of the three major malaria vectors in Burkina Faso, but in different proportions for each village. Conclusions The distribution of the potential swarm markers and swarms in villages suggested that swarms are clustered across space, making intervention easier. Power simulations showed that the direct sampling of swarms provides the highest statistical power, thereby reducing the number of villages needed for a trial. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03877-x.
Collapse
Affiliation(s)
- Abdoulaye Niang
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.
| | - Simon P Sawadogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoul A Millogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut des Sciences des Sociétés (INSS), Ouagadougou, Burkina Faso
| | - Nwamaka O Akpodiete
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
290
|
Evaluation of Total Female and Male Aedes aegypti Proteomes Reveals Significant Predictive Protein-Protein Interactions, Functional Ontologies, and Differentially Abundant Proteins. INSECTS 2021; 12:insects12080752. [PMID: 34442320 PMCID: PMC8396896 DOI: 10.3390/insects12080752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Aedes aegypti is a significant vector for flavivirus diseases. Only the female mosquito transmits pathogens, while the male plays a vital role in mating and species continuity. In this study, female and male Ae. aegypti proteins were analysed using a mass analyser. Then, we identified proteins for the examination of protein-protein interactions, functional enrichment, and differential protein abundance analysis. This study identified 422 and 682 proteins exclusive to male and female Ae. aegypti, respectively, with 608 proteins found in both sexes. The most significant protein-protein interaction clusters and functional enrichments were observed in the biological process, molecular function, and cellular component for the proteins of both sexes. The abundance of the proteins differed, with one protein showing an increase (elongation factor 1 α, EF1α) and two showing reductions (actin family) in females versus males. The study highlights the protein differences in male and female Ae. aegypti, and future research could further investigate their roles in mosquito–viral interactions for blocking disease transmission. Abstract Aedes aegypti is a significant vector for many tropical and subtropical flavivirus diseases. Only the female mosquito transmits pathogens, while the male plays a vital role in mating and species continuity. This study explored the total proteomes of females and males based on the physiological and genetic differences of female and male mosquitoes. Protein extracts from mosquitoes were analysed using LC–ESI–MS/MS for protein identification, protein interaction network analysis, functional ontology enrichment, and differential protein abundance analyses. Protein identification revealed 422 and 682 proteins exclusive to males and females, respectively, with 608 common proteins found in both sexes. The most significant PPIs (<1.0 × 10−16) were for common proteins, followed by proteins exclusive to females (<1.0 × 10−16) and males (1.58 × 10−12). Significant functional enrichments were observed in the biological process, molecular function, and cellular component for the male and female proteins. The abundance of the proteins differed, with one protein showing an increase (elongation factor 1 α, EF1α) and two showing reductions (actin family) in females versus males. Overall, the study verified the total proteomes differences between male and female Ae. aegypti based on protein identification and interactions, functional ontologies, and differentially abundant proteins. Some of the identified proteins merit further investigation to elucidate their roles in blocking viral transmission.
Collapse
|
291
|
Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021; 9:microorganisms9081771. [PMID: 34442850 PMCID: PMC8397937 DOI: 10.3390/microorganisms9081771] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond.
Collapse
|
292
|
Picciotti U, Lahbib N, Sefa V, Porcelli F, Garganese F. Aphrophoridae Role in Xylella fastidiosa subsp. pauca ST53 Invasion in Southern Italy. Pathogens 2021; 10:1035. [PMID: 34451499 PMCID: PMC8399165 DOI: 10.3390/pathogens10081035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
The Philaenus spumarius L. (Hemiptera Aphrophoridae) is a xylem-sap feeder vector that acquires Xylella fastidiosa subsp. pauca ST53 during feeding on infected plants. The bacterium is the plant pathogen responsible for olive quick decline syndrome that has decimated olive trees in Southern Italy. Damage originates mainly from the insect vector attitude that multiplies the pathogen potentialities propagating Xf in time and space. The principal action to manage insect-borne pathogens and to contain the disease spread consists in vector and transmission control. The analysis of an innovative and sustainable integrated pest management quantitative strategy that targets the vector and the infection by combining chemical and physical control means demonstrates that it is possible to stop the Xylella invasion. This review updates the available topics addressing vectors' identification, bionomics, infection management, and induced disease by Xylella invasion to discuss major available tools to mitigate the damage consequent to the disease.
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- Department of Marine Science and Applied Biology, Laboratory of Plant Pathology, University of Alicante, 03080 Alicante, Spain
| | - Nada Lahbib
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
- INRAT—National Institute of Agronomic Research of Tunisia, Laboratory of Plant Protection, Rue Hédi Karray, Ariana 2049, Tunisia
| | - Valdete Sefa
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- CIHEAM—Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Bari, 70010 Valenzano, BA, Italy
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
| |
Collapse
|
293
|
Balaska S, Fotakis EA, Chaskopoulou A, Vontas J. Chemical control and insecticide resistance status of sand fly vectors worldwide. PLoS Negl Trop Dis 2021; 15:e0009586. [PMID: 34383751 PMCID: PMC8360369 DOI: 10.1371/journal.pntd.0009586] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies are prominent vectors of Leishmania parasites that cause leishmaniasis, which comes second to malaria in terms of parasitic causative fatalities globally. In the absence of human vaccines, sand fly chemical-based vector control is a key component of leishmaniasis control efforts. METHODS AND FINDINGS We performed a literature review on the current interventions, primarily, insecticide-based used for sand fly control, as well as the global insecticide resistance (IR) status of the main sand fly vector species. Indoor insecticidal interventions, such as residual spraying and treated bed nets are the most widely deployed, while several alternative control strategies are also used in certain settings and/or are under evaluation. IR has been sporadically detected in sand flies in India and other regions, using non-standardized diagnostic bioassays. Molecular studies are limited to monitoring of known pyrethroid resistance mutations (kdr), which are present at high frequencies in certain regions. CONCLUSIONS As the leishmaniasis burden remains a major problem at a global scale, evidence-based rational use of insecticidal interventions is required to meet public health demands. Standardized bioassays and molecular markers are a prerequisite for this task, albeit are lagging behind. Experiences from other disease vectors underscore the need for the implementation of appropriate IR management (IRM) programs, in the framework of integrated vector management (IVM). The implementation of alternative strategies seems context- and case-specific, with key eco-epidemiological parameters yet to be investigated. New biotechnology-based control approaches might also come into play in the near future to further reinforce sand fly/leishmaniasis control efforts.
Collapse
Affiliation(s)
- Sofia Balaska
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Emmanouil Alexandros Fotakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
294
|
Fonseca-Portilla R, Martínez-Gil M, Morgenstern-Kaplan D. Risk factors for hospitalization and mortality due to dengue fever in a Mexican population: a retrospective cohort study. Int J Infect Dis 2021; 110:332-336. [PMID: 34332086 DOI: 10.1016/j.ijid.2021.07.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Identify risk factors associated with increased hospital admission and mortality due to dengue fever (DF), and estimate the risk magnitude associated with each individual variable. METHODS Records of patients diagnosed with dengue were obtained from the Mexican National Epidemiological Surveillance System. Descriptive statistics were performed in all variables. Demographic characteristics and comorbidities were compared between patients based on type of care and mortality. Multivariable analysis was done with a logistic regression model, using two different outcomes: hospitalization and mortality. RESULTS A total of 24,495 patients were included in the analysis, with a DF case fatality rate of 0.58%. Patients younger than 10 and older than 60, were found to have a greater risk of both hospitalization and mortality due to DF. Comorbidities associated with a higher risk for hospital admission include cirrhosis, CKD, immunosuppression, diabetes, and hypertension. For mortality, CKD, diabetes, and hypertension were identified as risk factors, along with pregnancy. CONCLUSION Identification of risk factors associated with increased hospitalization and mortality due to DF can help categorize patients that require close monitoring and inpatient care. Early identification of warning signs and patients at increased risk is key to avoiding delay of supportive care.
Collapse
Affiliation(s)
- Rodrigo Fonseca-Portilla
- Centro de Investigación en Ciencias de la Salud Anáhuac (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac, Mexico City
| | - Mercedes Martínez-Gil
- Centro de Investigación en Ciencias de la Salud Anáhuac (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac, Mexico City
| | - Dan Morgenstern-Kaplan
- Centro de Investigación en Ciencias de la Salud Anáhuac (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac, Mexico City.
| |
Collapse
|
295
|
Phuphisut O, Nitatsukprasert C, Pathawong N, Jaichapor B, Pongsiri A, Adisakwattana P, Ponlawat A. Sand fly identification and screening for Leishmania spp. in six provinces of Thailand. Parasit Vectors 2021; 14:352. [PMID: 34217359 PMCID: PMC8254935 DOI: 10.1186/s13071-021-04856-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/20/2021] [Indexed: 11/11/2022] Open
Abstract
Background Phlebotomine sand flies are vectors of Leishmania spp. At least 27 species of sand flies have been recorded in Thailand. Although human leishmaniasis cases in Thailand are mainly imported, autochthonous leishmaniasis has been increasingly reported in several regions of the country since 1999. Few studies have detected Leishmania infection in wild-caught sand flies, although these studies were carried out only in those areas reporting human leishmaniasis cases. The aim of this study was therefore to identity sand fly species and to investigate Leishmania infection across six provinces of Thailand. Methods Species of wild-caught sand flies were initially identified based on morphological characters. However, problems identifying cryptic species complexes necessitated molecular identification using DNA barcoding in parallel with identification based on morphological characters. The wild-caught sand flies were pooled and the DNA isolated prior to the detection of Leishmania infection by a TaqMan real-time PCR assay. Results A total of 4498 sand flies (1158 males and 3340 females) were caught by trapping in six provinces in four regions of Thailand. The sand flies were morphologically classified into eight species belonging to three genera (Sergentomyia, Phlebotomus and Idiophlebotomus). Sergentomyia iyengari was found at all collection sites and was the dominant species at most of these, followed in frequency by Sergentomyia barraudi and Phlebotomus stantoni, respectively. DNA barcodes generated from 68 sand flies allowed sorting into 14 distinct species with 25 operational taxonomic units, indicating a higher diversity (by 75%) than that based on morphological identification. Twelve barcoding sequences could not be assigned to any species for which cytochrome c oxidase subunit I sequences are available. All tested sand flies were negative for Leishmania DNA. Conclusions Our results confirm the presence of several sand fly species in different provinces of Thailand, highlighting the importance of using DNA barcoding as a tool to study sand fly species diversity. While all female sand flies tested in this study were negative for Leishmania, the circulation of Leishmania spp. in the investigated areas cannot be ruled out. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04856-6.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Chanyapat Nitatsukprasert
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Nattaphol Pathawong
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Boonsong Jaichapor
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Arissara Pongsiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Alongkot Ponlawat
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand.
| |
Collapse
|
296
|
Parkash V, Ashwin H, Sadlova J, Vojtkova B, Jones G, Martin N, Greensted E, Allgar V, Kamhawi S, Valenzuela JG, Layton AM, Jaffe CL, Volf P, Kaye PM, Lacey CJN. A clinical study to optimise a sand fly biting protocol for use in a controlled human infection model of cutaneous leishmaniasis (the FLYBITE study). Wellcome Open Res 2021; 6:168. [PMID: 34693027 PMCID: PMC8506224 DOI: 10.12688/wellcomeopenres.16870.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Leishmaniasis is a globally important yet neglected parasitic disease transmitted by phlebotomine sand flies. With new candidate vaccines in or near the clinic, a controlled human challenge model (CHIM) using natural sand fly challenge would provide a method for early evaluation of prophylactic efficacy. Methods : We evaluated the biting frequency and adverse effects resulting from exposure of human volunteers to bites of either Phlebotomus papatasi or P. duboscqi, two natural vectors of Leishmania major. 12 healthy participants were recruited (mean age 40.2 ± 11.8 years) with no history of significant travel to regions where L. major-transmitting sand flies are prevalent. Participants were assigned to either vector by 1:1 allocation and exposed to five female sand flies for 30 minutes in a custom biting chamber. Bite frequency was recorded to confirm a bloodmeal was taken. Participant responses and safety outcomes were monitored using a visual analogue scale (VAS), clinical examination, and blood biochemistry. Focus groups were subsequently conducted to explore participant acceptability. Results: All participants had at least one successful sand fly bite with none reporting any serious adverse events, with median VAS scores of 0-1/10 out to day 21 post-sand fly bite. Corresponding assessment of sand flies confirmed that for each participant at least 1/5 sand flies had successfully taken a bloodmeal (overall mean 3.67±1.03 bites per participant). There was no significant difference between P. papatasi and P. duboscqi in the number of bites resulting from 5 sand flies applied to human participants (3.3±0.81 vs 3.00±1.27 bites per participant; p=0.56) . In the two focus groups (n=5 per group), themes relating to positive participant-reported experiences of being bitten and the overall study, were identified. Conclusions: These results validate a protocol for achieving successful sand fly bites in humans that is safe, well-tolerated and acceptable for participants. Clinicaltrials.gov registration: NCT03999970 (27/06/2019).
Collapse
Affiliation(s)
- Vivak Parkash
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
- Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| | - Jovana Sadlova
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Barbora Vojtkova
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Georgina Jones
- School of Social Sciences, Leeds Beckett University, Leeds, UK
| | - Nina Martin
- School of Social Sciences, Leeds Beckett University, Leeds, UK
| | - Elizabeth Greensted
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| | - Victoria Allgar
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, MD, USA
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, MD, USA
| | - Alison M. Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| | - Charles L. Jaffe
- Department of Microbiology and Molecular Genetics, The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| | - Charles J. N. Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| |
Collapse
|
297
|
Taconet P, Porciani A, Soma DD, Mouline K, Simard F, Koffi AA, Pennetier C, Dabiré RK, Mangeas M, Moiroux N. Data-driven and interpretable machine-learning modeling to explore the fine-scale environmental determinants of malaria vectors biting rates in rural Burkina Faso. Parasit Vectors 2021; 14:345. [PMID: 34187546 PMCID: PMC8243492 DOI: 10.1186/s13071-021-04851-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/12/2021] [Indexed: 12/02/2022] Open
Abstract
Background Improving the knowledge and understanding of the environmental determinants of malaria vector abundance at fine spatiotemporal scales is essential to design locally tailored vector control intervention. This work is aimed at exploring the environmental tenets of human-biting activity in the main malaria vectors (Anopheles gambiae s.s., Anopheles coluzzii and Anopheles funestus) in the health district of Diébougou, rural Burkina Faso. Methods Anopheles human-biting activity was monitored in 27 villages during 15 months (in 2017–2018), and environmental variables (meteorological and landscape) were extracted from high-resolution satellite imagery. A two-step data-driven modeling study was then carried out. Correlation coefficients between the biting rates of each vector species and the environmental variables taken at various temporal lags and spatial distances from the biting events were first calculated. Then, multivariate machine-learning models were generated and interpreted to (i) pinpoint primary and secondary environmental drivers of variation in the biting rates of each species and (ii) identify complex associations between the environmental conditions and the biting rates. Results Meteorological and landscape variables were often significantly correlated with the vectors’ biting rates. Many nonlinear associations and thresholds were unveiled by the multivariate models, for both meteorological and landscape variables. From these results, several aspects of the bio-ecology of the main malaria vectors were identified or hypothesized for the Diébougou area, including breeding site typologies, development and survival rates in relation to weather, flight ranges from breeding sites and dispersal related to landscape openness. Conclusions Using high-resolution data in an interpretable machine-learning modeling framework proved to be an efficient way to enhance the knowledge of the complex links between the environment and the malaria vectors at a local scale. More broadly, the emerging field of interpretable machine learning has significant potential to help improve our understanding of the complex processes leading to malaria transmission, and to aid in developing operational tools to support the fight against the disease (e.g. vector control intervention plans, seasonal maps of predicted biting rates, early warning systems). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04851-x.
Collapse
Affiliation(s)
- Paul Taconet
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France. .,Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso.
| | | | - Dieudonné Diloma Soma
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.,Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Karine Mouline
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Frédéric Simard
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | | | - Cedric Pennetier
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.,Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Morgan Mangeas
- ESPACE-DEV, Université Montpellier, IRD, Université Antilles, Université Guyane, Université Réunion, Montpellier, France
| | - Nicolas Moiroux
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.,Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
298
|
MacLeod HJ, Dimopoulos G, Short SM. Larval Diet Abundance Influences Size and Composition of the Midgut Microbiota of Aedes aegypti Mosquitoes. Front Microbiol 2021; 12:645362. [PMID: 34220739 PMCID: PMC8249813 DOI: 10.3389/fmicb.2021.645362] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The midgut microbiota of the yellow fever mosquito Aedes aegypti impacts pathogen susceptibility and transmission by this important vector species. However, factors influencing the composition and size of the microbiome in mosquitoes are poorly understood. We investigated the impact of larval diet abundance during development on the composition and size of the larval and adult microbiota by rearing Aedes aegypti under four larval food regimens, ranging from nutrient deprivation to nutrient excess. We assessed the persistent impacts of larval diet availability on the microbiota of the larval breeding water, larval mosquitoes, and adult mosquitoes under sugar and blood fed conditions using qPCR and high-throughput 16S amplicon sequencing to determine bacterial load and microbiota composition. Bacterial loads in breeding water increased with increasing larval diet. Larvae reared with the lowest diet abundance had significantly fewer bacteria than larvae from two higher diet treatments, but not from the highest diet abundance. Adults from the lowest diet abundance treatment had significantly fewer bacteria in their midguts compared to all higher diet abundance treatments. Larval diet amount also had a significant impact on microbiota composition, primarily within larval breeding water and larvae. Increasing diet correlated with increased relative levels of Enterobacteriaceae and Flavobacteriaceae and decreased relative levels of Sphingomonadaceae. Multiple individual OTUs were significantly impacted by diet including one mapping to the genus Cedecea, which increased with higher diet amounts. This was consistent across all sample types, including sugar fed and blood fed adults. Taken together, these data suggest that availability of diet during development can cause lasting shifts in the size and composition of the microbiota in the disease vector Aedes aegypti.
Collapse
Affiliation(s)
- Hannah J MacLeod
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sarah M Short
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
299
|
Larvicidal Activities against Aedes aegypti of Supernatant and Pellet Fractions from Cultured Bacillus spp. Isolated from Amazonian Microenvironments. Trop Med Infect Dis 2021; 6:tropicalmed6020104. [PMID: 34204476 PMCID: PMC8293452 DOI: 10.3390/tropicalmed6020104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/30/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
The Aedes aegypti mosquito is the primary vector of Dengue, Chikungunya and Zika causing major problems for public health, which requires new strategies for its control, like the use of entomopathogenic microorganisms. In this study, bacteria from various Amazonian environments were isolated and tested for their pathogenicity to A. aegypti larvae. Following thermal shock to select sporulated Bacillus spp., 77 bacterial strains were isolated. Molecular identification per 16S RNA sequences revealed that the assembled strains contained several species of the genus Bacillus and one species each of Brevibacillus, Klebsiella, Serratia, Achromobacter and Brevundimonas. Among the isolated Bacillus sp. strains, 19 showed larvicidal activity against A. aegypti. Two strains of Brevibacillus halotolerans also displayed larvicidal activity. For the first time, larvicidal activity against A. aegypti was identified for a strain of Brevibacillus halotolerans. Supernatant and pellet fractions of bacterial cultures were tested separately for larvicidal activities. Eight strains contained isolated fractions resulting in at least 50% mortality when tested at a concentration of 5 mg/mL. Further studies are needed to characterize the active larvicidal metabolites produced by these microorganisms and define their mechanisms of action.
Collapse
|
300
|
Gonçalves R, Logan RAE, Ismail HM, Paine MJI, Bern C, Courtenay O. Indoor residual spraying practices against Triatoma infestans in the Bolivian Chaco: contributing factors to suboptimal insecticide delivery to treated households. Parasit Vectors 2021; 14:327. [PMID: 34134775 PMCID: PMC8207695 DOI: 10.1186/s13071-021-04831-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) of insecticides is a key method to reduce vector transmission of Trypanosoma cruzi, causing Chagas disease in a large part of South America. However, the successes of IRS in the Gran Chaco region straddling Bolivia, Argentina, and Paraguay, have not equalled those in other Southern Cone countries. AIMS This study evaluated routine IRS practices and insecticide quality control in a typical endemic community in the Bolivian Chaco. METHODS Alpha-cypermethrin active ingredient (a.i.) captured onto filter papers fitted to sprayed wall surfaces, and in prepared spray tank solutions, were measured using an adapted Insecticide Quantification Kit (IQK™) validated against HPLC quantification methods. The data were analysed by mixed-effects negative binomial regression models to examine the delivered insecticide a.i. concentrations on filter papers in relation to the sprayed wall heights, spray coverage rates (surface area / spray time [m2/min]), and observed/expected spray rate ratios. Variations between health workers and householders' compliance to empty houses for IRS delivery were also evaluated. Sedimentation rates of alpha-cypermethrin a.i. post-mixing of prepared spray tanks were quantified in the laboratory. RESULTS Substantial variations were observed in the alpha-cypermethrin a.i. concentrations delivered; only 10.4% (50/480) of filter papers and 8.8% (5/57) of houses received the target concentration of 50 mg ± 20% a.i./m2. The delivered concentrations were not related to those in the matched spray tank solutions. The sedimentation of alpha-cypermethrin a.i. in the surface solution of prepared spray tanks was rapid post-mixing, resulting in a linear 3.3% loss of a.i. content per minute and 49% loss after 15 min. Only 7.5% (6/80) of houses were sprayed at the WHO recommended rate of 19 m2/min (± 10%), whereas 77.5% (62/80) were sprayed at a lower than expected rate. The median a.i. concentration delivered to houses was not significantly associated with the observed spray coverage rate. Householder compliance did not significantly influence either the spray coverage rates or the median alpha-cypermethrin a.i. concentrations delivered to houses. CONCLUSIONS Suboptimal delivery of IRS is partially attributable to the insecticide physical characteristics and the need for revision of insecticide delivery methods, which includes training of IRS teams and community education to encourage compliance. The IQK™ is a necessary field-friendly tool to improve IRS quality and to facilitate health worker training and decision-making by Chagas disease vector control managers.
Collapse
Affiliation(s)
- Raquel Gonçalves
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rhiannon A E Logan
- Liverpool School of Tropical Medicine, Department of Vector Biology, Faculty of Biological Sciences, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hanafy M Ismail
- Liverpool School of Tropical Medicine, Department of Vector Biology, Faculty of Biological Sciences, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mark J I Paine
- Liverpool School of Tropical Medicine, Department of Vector Biology, Faculty of Biological Sciences, Pembroke Place, Liverpool, L3 5QA, UK
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Orin Courtenay
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|