251
|
Amiri P, Arefhosseini S, Bakhshimoghaddam F, Jamshidi Gurvan H, Hosseini SA. Mechanistic insights into the pleiotropic effects of butyrate as a potential therapeutic agent on NAFLD management: A systematic review. Front Nutr 2022; 9:1037696. [PMID: 36532559 PMCID: PMC9755748 DOI: 10.3389/fnut.2022.1037696] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 08/03/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic diseases worldwide. As a multifaceted disease, NAFLD's pathogenesis is not entirely understood, but recent evidence reveals that gut microbiota plays a significant role in its progression. Butyrate, a gut microbiota metabolite, has been reported to have hepato-protective effects in NAFLD animal models. The purpose of this systematic review is to determine how butyrate affects the risk factors for NAFLD. Searches were conducted using relevant keywords in electronic databases up to March 2022. According to the evidence presented in this study, butyrate contributes to a wide variety of biological processes in the gut-liver axis. Its beneficial properties include improving intestinal homeostasis and liver health as well as anti-inflammatory, metabolism regulatory and anti-oxidative effects. These effects may be attributed to butyrate's ability to regulate gene expression as an epigenetic modulator and trigger cellular responses as a signalling molecule. However, the exact underlying mechanisms remain unclear. Human trials have not been performed on the effect of butyrate on NAFLD, so there are concerns about whether the results of animal studies can be translated to humans. This review summarises the current knowledge about the properties of butyrate, particularly its potential effects and mechanisms on liver health and NAFLD management.
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnush Bakhshimoghaddam
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hannah Jamshidi Gurvan
- National Medical Emergency Organization, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
252
|
Feng J, Lu X, Li H, Wang S. The roles of hydrogen sulfide in renal physiology and disease states. Ren Fail 2022; 44:1289-1308. [PMID: 35930288 PMCID: PMC9359156 DOI: 10.1080/0886022x.2022.2107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signaling transmitter, has gained recognition for its physiological effects. In this review, we aim to summarize and discuss existing studies about the roles of H2S in renal functions and renal disease as well as the underlying mechanisms. H2S is mainly produced by four pathways, and the kidneys are major H2S–producing organs. Previous studies have shown that H2S can impact multiple signaling pathways via sulfhydration. In renal physiology, H2S promotes kidney excretion, regulates renin release and increases ATP production as a sensor for oxygen. H2S is also involved in the development of kidney disease. H2S has been implicated in renal ischemia/reperfusion and cisplatin–and sepsis–induced kidney disease. In chronic kidney diseases, especially diabetic nephropathy, hypertensive nephropathy and obstructive kidney disease, H2S attenuates disease progression by regulating oxidative stress, inflammation and the renin–angiotensin–aldosterone system. Despite accumulating evidence from experimental studies suggesting the potential roles of H2S donors in the treatment of kidney disease, these results need further clinical translation. Therefore, expanding the understanding of H2S can not only promote our further understanding of renal physiology but also lay a foundation for transforming H2S into a target for specific kidney diseases.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangxue Lu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
253
|
Wang Y, Liu T, Xie Y, Li N, Liu Y, Wen J, Zhang M, Feng W, Huang J, Guo Y, Kabbas Junior T, Wang D, Granato D. Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice. Food Res Int 2022; 162:112008. [DOI: 10.1016/j.foodres.2022.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
|
254
|
Kang HM, Lee J, Lee YJ, Park Y, Lee E, Shin AY, Han J, Lee HS, Lee JS, Lee KW. Transcriptional and toxic responses to saxitoxin exposure in the marine copepod Tigriopus japonicus. CHEMOSPHERE 2022; 309:136464. [PMID: 36122751 DOI: 10.1016/j.chemosphere.2022.136464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Saxitoxin (STX) is a highly toxic marine neurotoxin produced by phytoplankton and a growing threat to ecosystems worldwide due to the spread of toxic algae. Although STX is an established sodium channel blocker, the overall profile of transcriptional levels in STX-exposed organisms has yet to be described. Here, we describe a toxicity assay and transcriptome analysis of the copepod Tigriopus japonicus exposed to STX. The half-maximal lethal concentration of STX was 12.35 μM, and a rapid mortality slope was evident at concentrations between 12 and 13 μM. STX induced changes in swimming behavior among the copepods after 10 min of exposure. In transcriptome analysis, gene ontology revealed that the genes involved in nervous system and gene expression were highly enriched. In addition, the congenital neurological disorder and nuclear factor erythroid 2-related factor 2-mediated oxidative stress pathways were identified to be the most significant in network analysis and toxicity pathway analysis, respectively. This study provides valuable information about the effects of STX and related transcriptional responses in T. japonicus.
Collapse
Affiliation(s)
- Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jihoon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Yeon-Ju Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Euihyeon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - A-Young Shin
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jeonghoon Han
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Hyi-Seung Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jong Seok Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Kyun-Woo Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea.
| |
Collapse
|
255
|
Morais JBS, Dias TMDS, Cardoso BEP, de Paiva Sousa M, Sousa TGVD, Araújo DSCD, Marreiro DDN. Adipose Tissue Dysfunction: Impact on Metabolic Changes? Horm Metab Res 2022; 54:785-794. [PMID: 35952684 DOI: 10.1055/a-1922-7052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adipose tissue is a metabolically dynamic organ that is the primary site of storage for excess energy, but it serves as an endocrine organ capable of synthesizing a number of biologically active compounds that regulate metabolic homeostasis. However, when the capacity of expansion of this tissue exceeds, dysfunction occurs, favoring ectopic accumulation of fat in the visceral, which has been implicated in several disease states, most notably obesity. This review highlights the mechanisms involved in the structure of adipose tissue, tissue expandability, adipocyte dysfunction, as well as the impact of these events on the manifestation of important metabolic disorders associated with adipose tissue dysfunction. A literature search using Pubmed, Web of Science, Scopus, and Cochrane databases were used to identify relevant studies, using clinical trials, experimental studies in animals and humans, case-control studies, case series, letters to the editor, and review articles published in English, without restrictions on year of publication. The excessive ectopic lipid accumulation leads to local inflammation and insulin resistance. Indeed, overnutrition triggers uncontrolled inflammatory responses white adipose tissue, leading to chronic low-grade inflammation, therefore fostering the progression of important metabolic disorders. Thus, it is essential to advance the understanding of the molecular mechanisms involved in adipose tissue dysfunction in order to mitigate the negative metabolic consequences of obesity.
Collapse
|
256
|
Su L, Zeng Y, Li G, Chen J, Chen X. Quercetin improves high-fat diet-induced obesity by modulating gut microbiota and metabolites in C57BL/6J mice. Phytother Res 2022; 36:4558-4572. [PMID: 35906097 DOI: 10.1002/ptr.7575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022]
Abstract
High-fat diet-induced obesity is characterized by low-grade inflammation, which has been linked to gut microbiota dysbiosis. We hypothesized that quercetin supplementation would alter gut microbiota and reduce inflammation in obese mice. Male C57BL/6J mice, 4 weeks of age, were divided into 3 groups, including a low-fat diet group, a high-fat diet (HFD) group, and a high-fat diet plus quercetin (HFD+Q) group. The mice in HFD+Q group were given 50 mg per kg BW quercetin by gavage for 20 weeks. The body weight, fat accumulation, gut barrier function, glucose tolerance, and adipose tissue inflammation were determined in mice. 16 s rRNA amplicon sequence and non-targeted metabolomics analysis were used to explore the alteration of gut microbiota and metabolites. We found that quercetin significantly alleviated HFD-induced obesity, improved glucose tolerance, recovered gut barrier function, and reduced adipose tissue inflammation. Moreover, quercetin ameliorated HFD-induced gut microbiota disorder by regulating the abundance of gut microbiota, such as Adlercreutzia, Allobaculum, Coprococcus_1, Lactococcus, and Akkermansia. Quercetin influenced the production of metabolites that were linked to alterations in obesity-related inflammation and oxidative stress, such as Glycerophospho-N-palmitoyl ethanolamine, sanguisorbic acid dilactone, O-Phospho-L-serine, and P-benzoquinone. Our results demonstrate that the anti-obesity effects of quercetin may be mediated through regulation in gut microbiota and metabolites.
Collapse
Affiliation(s)
- Lijie Su
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yupeng Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Guokun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Jing Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyi Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
257
|
In vitro effects of vitamins C and E on adipocyte function and redox status in obesity. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
258
|
Firefighters With Higher Cardiorespiratory Fitness Demonstrate Lower Markers of Cardiovascular Disease Risk. J Occup Environ Med 2022; 64:1036-1040. [PMID: 35902372 DOI: 10.1097/jom.0000000000002632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE High cardiorespiratory fitness (CRF) is associated with reduced markers of oxidative stress and cardiovascular disease (CVD) risk factors; however, this relationship has not been elucidated in firefighters. The purpose of this study was to examine differences in markers of CVD risk between firefighters who have either high or low levels of CRF. METHODS Forty-six firefighters participated in a maximal graded exercise test and a dual-energy x-ray absorptiometry scan and provided a fasted blood sample. V˙O 2max values were categorized based on American College of Sports Medicine guidelines to establish high- and low-fitness groups. RESULTS High fitness firefighters demonstrated significantly higher high-density lipoprotein cholesterol and lower markers of CVD risk: cholesterol, triglycerides, low-density lipoprotein cholesterol, insulin, homeostatic model assessment for insulin resistance, C-reactive protein, and advanced oxidation protein products concentrations. CONCLUSION Firefighters are encouraged to maintain high CRF to reduce risk of CVD.
Collapse
|
259
|
Zhang B, Ren D, Zhao A, Cheng Y, Liu Y, Zhao Y, Yang X. Eurotium cristatum reduces obesity by alleviating gut microbiota dysbiosis and modulating lipid and energy metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7039-7051. [PMID: 35690883 DOI: 10.1002/jsfa.12065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fuzhuan brick tea (FBT) has been shown to prevent obesity, but little is known about the effect of Eurotium cristatum, a critical fungus from FBT. This study examined the effects of live E. cristatum on lipid metabolism and gut microbiota composition in high-fat (HF) diet-induced obese mice. RESULTS Male HF diet-fed mice were treated with E. cristatum for 12 weeks. The results showed that E. cristatum administration caused strong inhibition against HF-induced body weight gain, dyslipidemia and liver oxidative stress damage. Additionally, Firmicutes and Bacteroidetes in phylum level and six types of bacterial including short-chain fatty acids (SCFAs) producing bacteria in genus level were found to be significantly changed in E. cristatum treated mice as compared to HF fed mice. As expected, E. cristatum could increase total SCFAs levels in feces. Interestingly, E. cristatum markedly increased the proportion of Akkermansia to resist obesity. Functional prediction analysis indicated that E. cristatum changed lipid and energy metabolism. Furthermore, E. cristatum ingestion can modulate hepatic acetyl-coa carboxylase (ACC), fatty acid synthase (FAS), sterol-regulatory element binding protein-1 (SREBP-1) and adipose uncoupling protein-1 (UCP-1) expression. CONCLUSION Conclusively, these findings suggest that E. cristatum can prevent the HF-induced lipid accumulation and other complications by modulating gut microbiota, lipid and energy metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yukun Cheng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
260
|
Szallasi A. Dietary Capsaicin: A Spicy Way to Improve Cardio-Metabolic Health? Biomolecules 2022; 12:biom12121783. [PMID: 36551210 PMCID: PMC9775666 DOI: 10.3390/biom12121783] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Today's sedentary lifestyle with too much food and too little exercise has made metabolic syndrome a pandemic. Metabolic syndrome is a major risk factor for type-2 diabetes and cardiovascular disease. New knowledge of medical and nutraceutical intervention in the early stages of metabolic syndrome is central to prevent these deadly complications. People who eat chili pepper on a regular basis seem to stay healthier and live longer than those who do not. Animal experiments suggest a therapeutic potential for dietary capsaicin, the active principle in hot chili pepper, to reduce the risk of developing metabolic syndrome. This is an attractive theory since capsaicin has been a culinary staple for thousands of years, and is generally deemed safe when consumed in hedonically acceptable doses. The broad expression of the capsaicin receptor TRPV1 in metabolically active tissues lends experimental support to this theory. This review critically evaluates the available experimental and clinical evidence for and against dietary capsaicin being an effective dietary means to improve cardio-metabolic health. It comes to the conclusion that although a chili pepper-rich diet is associated with a reduced risk of dying due to cardiovascular disease, dietary capsaicin has no clear effect on blood glucose or lipid profiles. Therefore, the reduced mortality risk may reflect the beneficial action of digested capsaicin on gut microbiota.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
261
|
Hongrong W, Qingqi L, Rong G, Shuangyang T, Kaifang Z, Jianfeng Z. BMI Modifies the Association Between Depression Symptoms and Serum Copper Levels. Biol Trace Elem Res 2022:10.1007/s12011-022-03505-y. [PMID: 36437432 DOI: 10.1007/s12011-022-03505-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Depression is one of the most common mental disorders which dramatically threatens public health and wellness. Copper has been known to be involved in many biological processes that could help explaining the occurrence of depression. However, studies focusing on its effect have yielded mixed results. The present study aims to evaluate the association between serum copper levels and depression symptoms. It also investigates the effect of modification of BMI (body mass index) on depression symptoms. A total of 5419 US adults aged 20 years or older from the National Health and Nutrition Examination Survey (NHANES) 2011-2016 participated in the cross-sectional study. Logistic regression models were applied using depression levels as the outcome and serum cooper/selenium/zinc categories as the main predictor, with the adjustments of gender, age, marital status, race, education, family income level, alcohol drinking, cigarette smoking, diabetes, pressure, stroke, and BMI. The interaction terms for copper levels and other covariates were further incorporated into the model to assess their roles in predicting depression symptoms. The prevalence of depression symptoms was significantly higher in samples with a high copper level. Among the levels of serum copper, selenium, and zinc, only the association between depression symptoms and serum copper levels was observed to be significant in the unadjusted model (P = 0.002). Individuals with a high copper level (114-134 μg/dL) and a very high copper level (≥ 134 μg/dL) had 1.85 (95% CI 1.24, 2.77)- and 1.72 (95% CI 1.21, 2.44)-fold higher odds ratio of depression symptoms, respectively, compared to those with a normal serum copper level. Although the association was not significant in the adjusted models, in which confounders were added, the interaction of copper level, including high and very high copper levels, and obesity (BMI ≥ 30 kg/m2) exhibited significantly higher odds ratio (4.12 (95% CI 1.38, 12.27) and 4.53 (95% CI 1.87, 10.96)) of having depression symptoms. The concentration of serum copper was positively associated with the prevalence of depression symptoms. Obesity exacerbated the risk of having depression symptoms in people with high serum copper levels.
Collapse
Affiliation(s)
- Wu Hongrong
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Li Qingqi
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001, Hengyang, People's Republic of China
| | - Gao Rong
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Tang Shuangyang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Zhang Kaifang
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Zhao Jianfeng
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001, Hengyang, People's Republic of China.
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, People's Republic of China.
| |
Collapse
|
262
|
Bangar NS, Gvalani A, Ahmad S, Khan MS, Tupe RS. Understanding the role of glycation in the pathology of various non-communicable diseases along with novel therapeutic strategies. Glycobiology 2022; 32:1068-1088. [PMID: 36074518 DOI: 10.1093/glycob/cwac060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Glycation refers to carbonyl group condensation of the reducing sugar with the free amino group of protein, which forms Amadori products and advanced glycation end products (AGEs). These AGEs alter protein structure and function by configuring a negative charge on the positively charged arginine and lysine residues. Glycation plays a vital role in the pathogenesis of metabolic diseases, brain disorders, aging, and gut microbiome dysregulation with the aid of 3 mechanisms: (i) formation of highly reactive metabolic pathway-derived intermediates, which directly affect protein function in cells, (ii) the interaction of AGEs with its associated receptors to create oxidative stress causing the activation of transcription factor NF-κB, and (iii) production of extracellular AGEs hinders interactions between cellular and matrix molecules affecting vascular and neural genesis. Therapeutic strategies are thus required to inhibit glycation at different steps, such as blocking amino and carbonyl groups, Amadori products, AGEs-RAGE interactions, chelating transition metals, scavenging free radicals, and breaking crosslinks formed by AGEs. The present review focused on explicitly elaborating the impact of glycation-influenced molecular mechanisms in developing and treating noncommunicable diseases.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Armaan Gvalani
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, University of Hail, Hail City 2440, Saudi Arabia
| | - Mohd S Khan
- Department of Biochemistry, Protein Research Chair, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
263
|
Effects of Ambient Particulate Matter (PM 2.5) Exposure on Calorie Intake and Appetite of Outdoor Workers. Nutrients 2022; 14:nu14224858. [PMID: 36432544 PMCID: PMC9699249 DOI: 10.3390/nu14224858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Malaysia has been experiencing smoke-haze episodes almost annually for the past few decades. PM2.5 is the main component in haze and causes harmful impacts on health due to its small aerodynamic size. This study aimed to explore the implications of PM2.5 exposure on the dietary intake of working individuals. Two phased 13-weeks follow-up study was conducted involving 440 participants, consisting of two cohorts of outdoor and indoor workers. Ambient PM2.5 concentrations were monitored using DustTrakTM DRX Aerosol Monitor. Data on Simplified Nutritional Appetite Questionnaire (SNAQ) and 24 h diet recall were collected weekly. The highest PM2.5 concentration of 122.90 ± 2.07 µg/m3 was recorded in August, and it vastly exceeded the standard value stipulated by US EPA and WHO. SNAQ scores and calorie intake were found to be significantly (p < 0.05) associated with changes in PM2.5 exposure of outdoor workers. Several moderate and positive correlations (R-value ranged from 0.4 to 0.6) were established between SNAQ scores, calorie intake and PM2.5 exposure. Overall findings suggested that long hours of PM2.5 exposure affect personal dietary intake, potentially increasing the risk of metabolic syndromes and other undesired health conditions. The current policy should be strengthened to safeguard the well-being of outdoor workers.
Collapse
|
264
|
Mahmoud AM, da Silva ALG, André LD, Hwang CL, Severin R, Sanchez-Johnsen L, Borghi-Silva A, Elokda A, Arena R, Phillips SA. Effects of Exercise Mode on Improving Cardiovascular Function and Cardiorespiratory Fitness After Bariatric Surgery: A Narrative Review. Am J Phys Med Rehabil 2022; 101:1056-1065. [PMID: 35034058 PMCID: PMC9279514 DOI: 10.1097/phm.0000000000001946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Obesity affects 600 million people globally and increases the risk of developing cardiovascular disease, stroke, diabetes, and cancer. Bariatric surgery is an increasingly popular therapeutic intervention for morbid obesity to induce rapid weight loss and reduce obesity-related comorbidities. However, some bariatric surgery patients, after what is considered a successful surgical procedure, continue to manifest obesity-related health issues, including weight gain, reduced physical function, persistent elevations in blood pressure, and reduced cardiorespiratory fitness. Cardiorespiratory fitness is a strong predictor of mortality and several health outcomes and could be improved by an appropriate exercise prescription after bariatric surgery. This review provides a broad overview of exercise training for patients after bariatric surgery and discusses cardiorespiratory fitness and other potential physiological adaptations in response to exercise training.
Collapse
Affiliation(s)
- Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andréa Lúcia Gonçalves da Silva
- Department of Physical Education and Health, Physiotherapy‘ Course at University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS, Brazil
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | - Larissa Delgado André
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
- Cardiopulmonary Physiotherapy Laboratory, Nucleus of Research in Physical Exercise, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Chueh-Lung Hwang
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | - Richard Severin
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | - Lisa Sanchez-Johnsen
- Departments of Surgery, Psychiatry, and Psychology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, USA
- Department of Family Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Nucleus of Research in Physical Exercise, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Ahmed Elokda
- Department of Rehabilitation Sciences, Florida Gulf Coast University, Fort Myers, FL
| | - Ross Arena
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | - Shane A. Phillips
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
265
|
Li Y, Wang H, Chen H, Liao Y, Gou S, Yan Q, Zhuang Z, Li H, Wang J, Suo Y, Lan T, Liu Y, Zhao Y, Zou Q, Nie T, Hui X, Lai L, Wu D, Fan N. Generation of a genetically modified pig model with CREBRF R457Q variant. FASEB J 2022; 36:e22611. [PMID: 36250915 DOI: 10.1096/fj.202201117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hai Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huangyao Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hao Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangyang Suo
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Tao Nie
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
266
|
Kataoka T. Elucidation of Pathology in Urological Diseases and Creation of New Therapeutics. YAKUGAKU ZASSHI 2022; 142:1129-1136. [DOI: 10.1248/yakushi.22-00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomoya Kataoka
- Department of Clinical Pharmaceutics Graduate School of Medical Sciences, Nagoya City University
| |
Collapse
|
267
|
Yadav N, Chaudhary V, Saraswathy KN, Devi NK. Vitamin intake in obesity and hypertension: A population-based study from Haryana, North India. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022. [DOI: 10.1016/j.cegh.2022.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
268
|
Caudet J, Trelis M, Cifre S, Tapia G, Soriano JM, Rodrigo R, Merino-Torres JF. Do Intestinal Unicellular Parasites Have a Role in the Inflammatory and Redox Status among the Severely Obese? Antioxidants (Basel) 2022; 11:2090. [PMID: 36358463 PMCID: PMC9686585 DOI: 10.3390/antiox11112090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The diagnosis of obesity comprises subjects with totally different phenotypes and metabolic profiles. Systemic inflammation and oxidative stress derived from the white adipose tissue are suggested as the link between this disease and the development of insulin resistance and metabolic comorbidities. The presence of unicellular eukaryotic parasites colonizing the human gut ecosystem is a common circumstance, and yet their influence on the inflammatory and redox status of the obese host has not been assessed. Herein, a set of inflammatory and redox biomarkers were assessed together with a parasitological analysis of 97 severely obese subjects. Information was also collected on insulin resistance and on the antioxidant composition of the diet. The global prevalence of intestinal unicellular parasites was 49.5%, with Blastocystis sp. the most prevalent protozoan found (42.3%). Colonized subjects displayed a higher total antioxidant capacity and a trend towards higher extracellular superoxide dismutase activity, regardless of their insulin resistance status, along with lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratios in plasma in the insulin-resistant subgroup. No changes in malondialdehyde levels, or in inflammatory cytokines in plasma, were found in regard to the colonization status. In conclusion, enteric eukaryotic unicellular parasites may play an important role in modulating the antioxidant defenses of an obese host, thus could have beneficial effects with respect to the development of systemic metabolic disorders.
Collapse
Affiliation(s)
- Jana Caudet
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - María Trelis
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - Susana Cifre
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - Gabriela Tapia
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - José M. Soriano
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain
| | - Regina Rodrigo
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Joint Research Unit on Rare Diseases, CIPF-Health Research Institute Hospital La Fe, 46012 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Juan F. Merino-Torres
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
269
|
Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules 2022; 27:molecules27196545. [PMID: 36235082 PMCID: PMC9571766 DOI: 10.3390/molecules27196545] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Quercetin, as a flavonol compound found in plants, has a variety of biological activities. It is widely present in nature and the human diet, with powerful oxidative properties and biological activities. In this review, the antioxidant mechanism and broad-spectrum antibacterial properties of quercetin are revealed; the intervention effects of quercetin on pesticide poisoning and the pathway of action are investigated; the toxic effects of main mycotoxins on the collection and the detoxification process of quercetin are summarized; whether it is able to reduce the toxicity of mycotoxins is proved; and the harmful effects of heavy metal poisoning on the collection, the prevention, and control of quercetin are evaluated. This review is expected to enrich the understanding of the properties of quercetin and promote its better application in clinical practice.
Collapse
|
270
|
Brombach C, Tong W, Giussani DA. Maternal obesity: new placental paradigms unfolded. Trends Mol Med 2022; 28:823-835. [PMID: 35760668 DOI: 10.1016/j.molmed.2022.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/24/2023]
Abstract
The prevalence of maternal obesity is increasing at an alarming rate, and is providing a major challenge for obstetric practice. Adverse effects on maternal and fetal health are mediated by complex interactions between metabolic, inflammatory, and oxidative stress signaling in the placenta. Endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are common downstream pathways of cell stress, and there is evidence that this conserved homeostatic response may be a key mediator in the pathogenesis of placental dysfunction. We summarize the current literature on the placental cellular and molecular changes that occur in obese women. A special focus is cast onto placental ER stress in obese pregnancy, which may provide a novel link for future investigation.
Collapse
Affiliation(s)
| | - Wen Tong
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge CB2 3EL, Cambridge UK.
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge CB2 3EL, Cambridge UK; Cambridge Cardiovascular Centre for Research Excellence, Cambridge CB2 0QQ, UK.
| |
Collapse
|
271
|
Moorkens K, Leroy JLMR, Verheyen S, Marei WFA. Effects of an obesogenic diet on the oviduct depend on the duration of feeding. PLoS One 2022; 17:e0275379. [PMID: 36174086 PMCID: PMC9522283 DOI: 10.1371/journal.pone.0275379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Research question How long does it take for an obesogenic (high-fat/high-sugar, HF/HS) diet to influence the oviductal microenvironment? What are the affected cellular pathways and are they dependent on the genetic background of the mouse model? Design Female Swiss (outbred) and C57BL/6N (B6, inbred) mice were fed either a control (10% fat) or HF/HS (60% fat, 20% fructose) diet. Body weight was measured weekly. Mice were sacrificed at 3 days (3d), 1 week (1w), 4w, 8w, 12w and 16w on the diet (n = 5 per treatment per time point). Total cholesterol concentrations and inflammatory cytokines were measured in serum. Oviductal epithelial cells (OECs) were used to study the expression of genes involved in (mitochondrial) oxidative stress (OS), endoplasmic reticulum (ER) stress and inflammation using qPCR. Results Body weight and blood cholesterol increased significantly in the HF/HS mice in both strains compared to controls. In Swiss mice, HF/HS diet acutely increased ER-stress and OS-related genes in the OECs already after 3d. Subsequently, mitochondrial and cytoplasmic antioxidants were upregulated and ER-stress was alleviated at 1w. After 4-8w (mid-phase), the expression of ER-stress and OS-related genes was increased again and persisted throughout the late-phase (12-16w). Serum inflammatory cytokines and inflammatory marker-gene expression in the OECs were increased only in the late-phase. Some of the OEC stress responses were stronger or earlier in the B6. Conclusions OECs are sensitive to an obesogenic diet and may exhibit acute stress responses already after a few days of feeding. This may impact the oviductal microenvironment and contribute to diet-induced subfertility.
Collapse
Affiliation(s)
- Kerlijne Moorkens
- Department of Veterinary Sciences, Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Antwerp, Belgium
- * E-mail:
| | - Jo L. M. R. Leroy
- Department of Veterinary Sciences, Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Sara Verheyen
- Department of Veterinary Sciences, Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Waleed F. A. Marei
- Department of Veterinary Sciences, Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Antwerp, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
272
|
Souza FRM, Silva GMM, Cadavid COM, Lisboa LDS, Silva MMCL, Paiva WS, Ferreira MJP, de Paula Oliveira R, Rocha HAO. Antioxidant Baccharis trimera Leaf Extract Suppresses Lipid Accumulation in C. elegans Dependent on Transcription Factor NHR-49. Antioxidants (Basel) 2022; 11:antiox11101913. [PMID: 36290635 PMCID: PMC9598929 DOI: 10.3390/antiox11101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a global public health problem that is associated with oxidative stress. One of the strategies for the treatment of obesity is the use of drugs; however, these are expensive and have numerous side effects. Therefore, the search for new alternatives is necessary. Baccharis trimera is used in Brazilian folk medicine for the treatment of obesity. Here, B. trimera leaf extract (BT) showed antioxidant activity in seven in vitro tests, and it was not toxic to 3T3 murine fibroblasts or Caenorhabditis elegans. Furthermore, BT reduces the intracellular amount of reactive oxygen species and increases C. elegans survival. Moreover, these effects were not dependent on transcription factors. The inhibition of fat accumulation by BT in the C. elegans model was also investigated. BT reduced lipid accumulation in animals fed diets without or with high amount of glucose. Furthermore, it was observed using RNA interference (iRNA) that BT depends on the transcription factor NHR-49 to exert its effect. Phytochemical analysis of BT revealed rutin, hyperoside, and 5-caffeoylquinic acid as the main BT components. Thus, these data demonstrate that BT has antioxidant and anti-obesity effects. However, further studies should be conducted to understand the mechanisms involved in its action.
Collapse
Affiliation(s)
- Flávia Roberta Monteiro Souza
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Giovanna Melo Martins Silva
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Cesar Orlando Muñoz Cadavid
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Lucas dos Santos Lisboa
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Maylla Maria Correia Leite Silva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Weslley Souza Paiva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Marcelo José Pena Ferreira
- Laboratório de Fitoquímica, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo—USP, Rua do Matão, 277, São Paulo 05508-090, Brazil
| | - Riva de Paula Oliveira
- Laboratório de Genética Bioquímica (LGB), Programa de Pós-graduação em Biotecnologia, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
- Correspondence: ; Tel.: +55-84-99999-9561
| |
Collapse
|
273
|
Positive or U-Shaped Association of Elevated Hemoglobin Concentration Levels with Metabolic Syndrome and Metabolic Components: Findings from Taiwan Biobank and UK Biobank. Nutrients 2022; 14:nu14194007. [PMID: 36235661 PMCID: PMC9572591 DOI: 10.3390/nu14194007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Iron overnutrition has been implicated with a higher risk of developing metabolic and cardiovascular diseases, including metabolic syndrome (MetS), whereas iron deficiency anemia exacerbates many underlying chronic conditions. Hemoglobin (Hb) concentration in the blood, which reflects a major functional iron (i.e., heme iron) in the body, may serve as a surrogate of the nutritional status of iron. We conducted sex-specific observational association studies in which we carefully titrated the association between Hb deciles and MetS and its components among the Taiwanese Han Chinese (HC) from the Taiwan Biobank and Europeans of White ancestry from the UK Biobank, representing two large ethnicities. Our data show that at higher-than-normal levels of Hb, increasing deciles of Hb concentration were significantly associated with MetS across all sex subgroups in both ethnicities, with the highest deciles resulting in up to three times greater risk than the reference group [Taiwanese HC: OR = 3.17 (95% CI, 2.75-3.67) for Hb ≥ 16.5 g/dL in men, OR = 3.11 (2.78-3.47) for Hb ≥ 14.5 g/dL in women; European Whites: OR = 1.89 (1.80-1.98) for Hb ≥ 16.24 g/dL in men, OR = 2.35 (2.24-2.47) for Hb ≥ 14.68 g/dL in women]. The association between stronger risks and increasing Hb deciles was similarly observed with all metabolic components except diabetes. Here we found that both the highest Hb decile groups and contrarily the lowest ones, with respect to the reference, were associated with higher odds of diabetes in both ethnic groups [e.g., Taiwanese HC men: OR = 1.64 (1.33-2.02) for Hb ≥ 16.5 g/dL, OR = 1.71 (1.39-2.10) for Hb ≤ 13.5 g/dL; European Whites women: OR = 1.39 (1.26-1.45) for Hb ≥ 14.68 g/dL, OR = 1.81 (1.63-2.01) for Hb ≤ 12.39 g/dL]. These findings confirm that elevated Hb concentrations, a potential indicator of iron overnutrition, may play a role in the pathophysiology of MetS and metabolic components.
Collapse
|
274
|
Hernandez-Hernandez ME, Torres-Rasgado E, Pulido-Perez P, Nicolás-Toledo L, Martínez-Gómez M, Rodríguez-Antolín J, Pérez-Fuentes R, Romero JR. Disordered Glucose Levels Are Associated with Xanthine Oxidase Activity in Overweight Type 2 Diabetic Women. Int J Mol Sci 2022; 23:11177. [PMID: 36232479 PMCID: PMC9569528 DOI: 10.3390/ijms231911177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress plays an important role in vascular complications observed in patients with obesity and Type 2 Diabetes (T2D). Xanthine oxidase (XO) breaks down purine nucleotides into uric acid and contributes to the production of reactive oxygen species (ROS). However, the relationship between XO activity and glucose homeostasis in T2D subjects with obesity is unclear. We hypothesized that disordered glucose levels are associated with serum XO activity in overweight women and men with T2D and without hyperuricemia. We studied serum XO activity in women and men with and without T2D. Our results show that serum XO activity was greater in T2D patients with body mass index (BMI) ≥ 25 kg/m2 than in those with BMI < 25 kg/m2 (p < 0.0001). Sex-based comparative analyses of overweight T2D patients showed that serum XO activity correlated with homeostasis model assessment of β-cell function (HOMA-β), fasting plasma glucose (FPG), and hemoglobin A1C in overweight T2D women but not in overweight T2D men. In addition, as compared to overweight T2D men, women had higher high-sensitivity C-reactive protein (hs-CRP) levels. However, overweight T2D men had higher XO activity and uric acid levels than women. Our results suggest that XO activity is higher in overweight T2D patients, especially in men, but is more sensitive to disordered glucose levels in overweight women with T2D.
Collapse
Affiliation(s)
- Maria Elena Hernandez-Hernandez
- Doctorate in Biological Sciences, Autonomous University of Tlaxcala, Tlaxcala 90070, Mexico
- Faculty of Medicine, Autonomous University of Puebla, Puebla 72420, Mexico
- Center for Biomedical Research East, Mexican Social Security Institute of Puebla, Atlixco 74360, Mexico
| | - Enrique Torres-Rasgado
- Faculty of Medicine, Autonomous University of Puebla, Puebla 72420, Mexico
- Center for Biomedical Research East, Mexican Social Security Institute of Puebla, Atlixco 74360, Mexico
| | - Patricia Pulido-Perez
- Faculty of Medicine, Autonomous University of Puebla, Puebla 72420, Mexico
- Center for Biomedical Research East, Mexican Social Security Institute of Puebla, Atlixco 74360, Mexico
| | - Leticia Nicolás-Toledo
- Tlaxcala Center for Biology of Behavior, Autonomous University of Tlaxcala, Tlaxcala 90070, Mexico
| | - Margarita Martínez-Gómez
- Tlaxcala Center for Biology of Behavior, Autonomous University of Tlaxcala, Tlaxcala 90070, Mexico
- Department of Cellular Biology and Physiology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Jorge Rodríguez-Antolín
- Tlaxcala Center for Biology of Behavior, Autonomous University of Tlaxcala, Tlaxcala 90070, Mexico
| | - Ricardo Pérez-Fuentes
- Faculty of Medicine, Autonomous University of Puebla, Puebla 72420, Mexico
- Center for Biomedical Research East, Mexican Social Security Institute of Puebla, Atlixco 74360, Mexico
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
275
|
Effects of Moderate-Intensity Continuous Training and High-Intensity Interval Training on Testicular Oxidative Stress, Apoptosis and m6A Methylation in Obese Male Mice. Antioxidants (Basel) 2022; 11:antiox11101874. [PMID: 36290597 PMCID: PMC9598593 DOI: 10.3390/antiox11101874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Exercise is an effective way to improve reproductive function in obese males. Oxidative stress and apoptosis are important pathological factors of obesity-related male infertility. Accumulating studies have demonstrated that N6-methyladenosine (m6A) methylation is associated with obesity and testicular reproductive function. Our study aimed to investigate and compare the effect of 8 weeks of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on testicular oxidative stress, apoptosis and m6A methylation in obese male mice. Male C57BL/6 mice were randomly allocated into the four groups: normal diet (ND) group, high-fat diet (HFD) group, high-fat diet with moderate-intensity continuous training (HFD-MICT) group and high-fat diet with high-intensity interval training (HFD-HIIT) group. Mice in the HFD-MICT and HFD-HIIT groups were subjected to 8 weeks of MICT or HIIT treadmill protocols after 12 weeks of HFD feeding. We found that MICT and HIIT increased the protein expression of Nrf2, HO-1 and NQO-1 in the testes of obese mice, and HIIT increased it more than MICT. The Bax/Bcl-2 ratio, Cleaved Caspase-3 protein expression and TUNEL-positive cells were consistently up-regulated in the testes of obese mice, but MICT and HIIT restrained these HFD-induced effects. In addition, HFDs increased m6A levels and the gene expression of METTL3, YTHDF2 and FTO in the testes, but these effects were reversed by MICT and HIIT. However, HIIT was more effective than MICT in reducing m6A methylation in the testes of obese mice. These results demonstrate that both MICT and HIIT protected against HFD-induced oxidative stress, apoptosis and m6A methylation in testicular tissues; as a result, testicular morphological and functional impairment improved. In particular, HIIT was more beneficial than MICT in increasing the mRNA expression of steroidogenic enzymes and testicular antioxidant capacity and decreasing m6A methylation in the testes of HFD-fed mice.
Collapse
|
276
|
Wakui H, Ozawa M, Tamura K. TRPC5 as a possible therapeutic target for vascular dysfunction associated with obesity. Hypertens Res 2022; 45:2018-2020. [PMID: 36123400 DOI: 10.1038/s41440-022-01022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Moe Ozawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
277
|
Pasteurized Akkermansia muciniphila Reduces Fat Accumulation via nhr-49-Mediated Nuclear Hormone Signaling Pathway in Caenorhabditis elegans. Molecules 2022; 27:molecules27196159. [PMID: 36234692 PMCID: PMC9572206 DOI: 10.3390/molecules27196159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pasteurized Akkermansia muciniphila (p-AKK) is related to lipid metabolism and helps control obesity. The main goal of this study was to investigate the role and mechanism of p-AKK in lipid metabolism using Caenorhabditis elegans. The results showed that p-AKK increased the healthy lifespan of nematodes and helped maintain exercise ability in aging, suggesting a potential increase in energy expenditure. The overall fat deposition and triglyceride level were significantly decreased and the p-AKK anti-oxidative stress helped to regulate fatty acid composition. Additionally, the transcriptome results showed that p-AKK increased the expression of lipo-hydrolase and fatty acid β-oxidation-related genes, including lipl-4, nhr-49, acs-2 and acdh-8, while it decreased the expression of fat synthesis-related genes, including fat-7, elo-2 and men-1. These results partially explain the mechanisms underlying the fact that p-AKK decreases fat accumulation of C. elegans via nhr-49/acs-2-mediated signaling involved in fatty acid β-oxidation and synthesis.
Collapse
|
278
|
Kahrizi MS, Patra I, Jalil AT, Achmad H, Alesaeidi S, Al-Gazally ME, Alesaeidi S. Leukocyte telomere length and obesity in children and adolescents: A systematic review and meta-analysis. Front Genet 2022; 13:861101. [PMID: 36160016 PMCID: PMC9490371 DOI: 10.3389/fgene.2022.861101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Several studies have revealed the negative effects of adiposity on telomere length shortening. However, the results of the studies assessing the negative relationship between obesity and leukocyte telomere length (LTL) are not consistent. This systematic review and meta-analysis are aimed to pool the results of articles assessing the relationship between obesity and LTL among children and adolescents. Methods: To retrieve the related studies, four online databases including PubMed, Embase, ProQuest, and Scopus were searched until May 2022. Observational studies evaluating the relationship between obesity and LTL among apparently healthy children and adolescents (aged ≤18 years) were included in the study. We considered the studies that had reported a mean ± standard deviation of LTL. The random-effects model was used to assess the pooled weighted mean difference (WMD) and a 95% confidence interval (CI). Results: The search yielded seven studies from an initial 3,403 records identified. According to the results of seven articles with 4,546 participants, obesity was associated with LTL shortening among children and adolescents (WMD = -0.081; 95% CI: -0.137 to -0.026; p = 0.004; I2 = 99.9%). Also, no publication bias was observed. According to the results of subgrouping, significant results were only attributed to the studies conducted in Europe, with high quality scores, among overweight and obese adolescents, with a baseline LTL lower than 1, and performed in community-based school settings. Also, according to the subgrouping and meta-regression results, the obesity definition criteria and baseline LTL were the possible sources of between-study heterogeneity. Conclusion: We observed shorter LTL among overweight and obese children and adolescents. To obtain more reliable results, further longitudinal prospective studies with large sample sizes and more consistent and accurate definitions of obesity are required.
Collapse
Affiliation(s)
| | - Indrajit Patra
- An Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India
| | | | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sogol Alesaeidi
- Department of Pediatric Medicine, Imam Hossein Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
279
|
Qiao YS, Tang X, Chai YH, Gong HJ, Xu H, Patel I, Li L, Lu T, Zhao WY, Li ZY, Cardoso MA, Zhou JB. Cerebral Blood Flow Alterations and Obesity: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 90:15-31. [DOI: 10.3233/jad-220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Reduction in cerebral blood flow (CBF) plays an essential role in the cognitive impairment and dementia in obesity. However, current conclusions regarding CBF changes in patients with obesity are inconsistent. Objective: A systematic review and meta-analysis was performed to evaluate the relationship between obesity and CBF alterations. Methods: We systematically screened published cross-sectional and longitudinal studies focusing on the differences in CBF between obese and normal-weight individuals. Eighteen studies including 24,866 participants, of which seven articles reported longitudinal results, were evaluated in the present study. Results: The results of the meta-analysis showed that in cross-sectional studies, body mass index (BMI) was negatively associated with CBF (β= –0.31, 95% confidence interval [CI]: –0.44, –0.19). Moreover, this systematic review demonstrated that obese individuals showed global and regional reductions in the CBF and increased CBF in diverse functional areas of the frontal lobe, including the prefrontal cortex, left frontal superior orbital, right frontal mid-orbital cortex, and left premotor superior frontal gyrus. Conclusion: Our findings suggest that BMI, rather than waist circumference and waist-to-hip ratio, is inversely associated with CBF in cross-sectional studies. The CBF of obese individuals showed global and regional reductions, including the frontal lobe, temporal and parietal lobes, cerebellum, hippocampus, and thalamus.
Collapse
Affiliation(s)
- Yu-Shun Qiao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Yin-He Chai
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hong-Jian Gong
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hui Xu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ikramulhaq Patel
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tong Lu
- Department of Clinical Nutrition, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wan-Ying Zhao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ze-Yu Li
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
280
|
Othman ZA, Zakaria Z, Suleiman JB, Mustaffa KMF, Jalil NAC, Wan Ghazali WS, Zulkipli NN, Mohamed M. Orlistat Mitigates Oxidative Stress-Linked Myocardial Damage via NF-κβ- and Caspase-Dependent Activities in Obese Rats. Int J Mol Sci 2022; 23:ijms231810266. [PMID: 36142178 PMCID: PMC9499462 DOI: 10.3390/ijms231810266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress contributes to major complications of obesity. This study intended to identify whether orlistat could mitigate myocardial damage in obese animal models. The tested rats were divided into two groups and fed either with normal chow (n = 6 per group) or with a high-fat diet (HFD) for 6 weeks to induce obesity (n = 12 per group). Obese rats were further subjected to treatment either with distilled water (OB group) or orlistat 10 mg/kg/day (OB + OR group). Key indices of oxidative stress, inflammation, and apoptosis were assessed using an immunohistochemical-based technique and real-time PCR. The OB group showed significant increases of oxidative stress markers (TBARs and PCO), with significant decreases of anti-oxidant markers (Nrf2, SOD, CAT, and GPx). Furthermore, mRNA expression of pro-inflammatory markers (TNF-α and NF-κβ) and pro-apoptosis markers (Bax, Caspase-3, Caspase-8, and Caspase-9) were significantly upregulated in the OB group. Obese rats developed pathological changes of myocardial damages as evidenced by the presence of myocardial hypertrophy and inflammatory cells infiltration. Orlistat dampened the progression of myocardial damage in obese rats by ameliorating the oxidative stress, and by inhibiting NF-κβ pathway and caspase-dependent cell apoptosis. Our study proposed that orlistat could potentially mitigate oxidative stress-linked myocardial damage by mitigating inflammation and apoptosis, thus rationalizing its medical usage.
Collapse
Affiliation(s)
- Zaidatul Akmal Othman
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Joseph Bagi Suleiman
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.M.B. 1007, Afikpo, Ebonyi State, Nigeria
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ninie Nadia Zulkipli
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: ; Tel.: +60-9767-6158
| |
Collapse
|
281
|
Madrigal-Santillán E, Portillo-Reyes J, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Izquierdo-Vega J, Delgado-Olivares L, Vargas-Mendoza N, Álvarez-González I, Morales-González Á, Morales-González JA. Opuntia spp. in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 2. PLANTS (BASEL, SWITZERLAND) 2022; 11:2333. [PMID: 36145735 PMCID: PMC9505094 DOI: 10.3390/plants11182333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Plants of the genus Opuntia spp are widely distributed in Africa, Asia, Australia and America. Specifically, Mexico has the largest number of wild species; mainly O. streptacantha, O. hyptiacantha, O. albicarpa, O. megacantha and O. ficus-indica. The latter being the most cultivated and domesticated species. Its main bioactive compounds include pigments (carotenoids, betalains and betacyanins), vitamins, flavonoids (isorhamnetin, kaempferol, quercetin) and phenolic compounds. Together, they favor the different plant parts and are considered phytochemically important and associated with control, progression and prevention of some chronic and infectious diseases. Part 1 collected information on its preventive actions against atherosclerotic cardiovascular diseases, diabetes and obesity, hepatoprotection, effects on human infertility and chemopreventive capacity. Now, this second review (Part 2), compiles the data from published research (in vitro, in vivo, and clinical studies) on its neuroprotective, anti-inflammatory, antiulcerative, antimicrobial, antiviral potential and in the treatment of skin wounds. The aim of both reviews is to provide scientific evidences of its beneficial properties and to encourage health professionals and researchers to expand studies on the pharmacological and therapeutic effects of Opuntia spp.
Collapse
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Jacqueline Portillo-Reyes
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Julieta Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| |
Collapse
|
282
|
Sinha S, Haque M. Obesity, Diabetes Mellitus, and Vascular Impediment as Consequences of Excess Processed Food Consumption. Cureus 2022; 14:e28762. [PMID: 36105908 PMCID: PMC9441778 DOI: 10.7759/cureus.28762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 12/15/2022] Open
Abstract
Regular intake of ready-to-eat meals is related to obesity and several noninfectious illnesses, such as cardiovascular diseases, hypertension, diabetes mellitus (DM), and tumors. Processed foods contain high calories and are often enhanced with excess refined sugar, saturated and trans fat, Na+ andphosphate-containing taste enhancers, and preservatives. Studies showed that monosodium glutamate (MSG) induces raised echelons of oxidative stress, and excessive hepatic lipogenesis is concomitant to obesity and type 2 diabetes mellitus (T2DM). Likewise, more than standard salt intake adversely affects the cardiovascular system, renal system, and central nervous system (CNS), especially the brain. Globally, excessive utilization of phosphate-containing preservatives and additives contributes unswervingly to excessive phosphate intake through food. In addition, communities and even health experts, including medical doctors, are not well-informed about the adverse effects of phosphate preservatives on human health. Dietary phosphate excess often leads to phosphate toxicity, ultimately potentiating kidney disease development. The mechanisms involved in phosphate-related adverse effects are not explainable. Study reports suggested that high blood level of phosphate causes vascular ossification through the deposition of Ca2+ and substantially alters fibroblast growth factor-23 (FGF23) and calcitriol.
Collapse
|
283
|
Lentoor AG. Obesity and Neurocognitive Performance of Memory, Attention, and Executive Function. NEUROSCI 2022; 3:376-386. [PMID: 39483430 PMCID: PMC11523749 DOI: 10.3390/neurosci3030027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Obesity has been linked to an increased risk of dementia in the future. Obesity is known to affect core neural structures, such as the hippocampus, and frontotemporal parts of the brain, and is linked to memory, attention, and executive function decline. The overwhelming majority of the data, however, comes from high-income countries. In undeveloped countries, there is little evidence of a link between obesity and neurocognition. The aim of this study was to investigate the effects of BMI on the key cognitive functioning tasks of attention, memory, and executive function in a South African cohort. METHODS A total of 175 females (NW: BMI = 18.5-24.9 kg/m2 and OB: BMI > 30.0 kg/m2) aged 18-59 years (M = 28, SD = 8.87 years) completed tasks on memory, attention, and executive functioning. RESULTS There was a statistically significant difference between the groups. The participants who had a BMI corresponding with obesity performed poorly on the tasks measuring memory (p = 0.01), attention (p = 0.01), and executive function (p = 0.02) compared to the normal-weight group. CONCLUSIONS When compared to normal-weight participants, the findings confirm the existence of lowered cognitive performance in obese persons on tasks involving planning, decision making, self-control, and regulation. Further research into the potential underlying mechanism by which obesity impacts cognition is indicated.
Collapse
Affiliation(s)
- Antonio G Lentoor
- Department of Clinical Psychology, School of Medicine, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0208, South Africa; ; Tel.: +27-(0)-125214767
| |
Collapse
|
284
|
Effects of Antioxidant Supplementation on Metabolic Disorders in Obese Patients from Randomized Clinical Controls: A Meta-Analysis and Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255413. [PMID: 36092166 PMCID: PMC9459443 DOI: 10.1155/2022/7255413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Purpose This systematic review and meta-analysis aim at elucidating the heterogeneity in beneficial effects of antioxidant supplementation in obese adults by exploring the differential effects of antioxidant supplementation on basic indicators of obesity, lipid metabolism, systemic antioxidant capacity, inflammatory biomarkers, and liver function. Methods The inclusion criteria specified randomized controlled trials with antioxidant intervention for adults (mean body mass index (BMI) > 30), from inception to Aug. 8, 2021, in the PubMed, Embase, The Cochrane Library, Web of Science, and Scopus databases. Meta-analysis and publication bias were performed using RevMan 5.4 software. Stata16 software was used to detect publication bias with Egger's and Begg's methods being mainly used. The data of basic indicators of obesity, lipid metabolism index, oxidative stress index, inflammatory biomarkers, and liver function index were collected to analyze the beneficial effects of antioxidant supplementation in obese patients. Results A total of 30 studies were included in this study with a sample of 845 obese patients from the antioxidant supplementation group and 766 obese patients from the placebo control group. The meta-analysis showed that obese patients with antioxidant supplementation had lower BMI (mean difference (MD): − 0.44 [95%confidence interval (CI): − 0.84, −0.04], p = 0.03), waist circumference (MD : −0.78 [95%CI:−1.45, −0.11], p = 0.02), fasting blood glucose (FBG) level (standardized mean difference (SMD): − 4.92 [95%CI:−6.87, −2.98], p < 0.001) and homeostasis model assessment of insulin resistance (MD : −0.45 [95%CI:−0.61, −0.3], p < 0.001) when compared to the placebo group. Obese patients on antioxidant supplementation had lower levels of total cholesterol (SMD : −0.43 [95%CI:−0.84, −0.02], p = 0.04), triglycerides (SMD : −0.17 [95%CI:−0.31, −0.04], p = 0.01), low-density lipoprotein (SMD : −0.15 [95%CI:−0.29, −0.01], p = 0.03), malondialdehyde (SMD : −1.67 [95%CI:−2.69, −0.65], p = 0.001), and tumor necrosis factor-alpha (SMD : −0.29 [95%CI:−0.56, −0.02], p = 0.03), respectively, when compared to the placebo group. In addition, obese patients with antioxidant supplementation had higher levels of high-density lipoprotein (SMD : 0.25 [95%CI : 0.03, 0.46], p = 0.03) and superoxide dismutase (SMD : 1.09 [95%CI : 0.52, 1.65], p < 0.001) when compared to the placebo group. Antioxidant supplementation had no effects on other analyzed parameters including waist–hip ratio, leptin, fat mass, interleukin-6, C-reactive protein, alanine transaminase, and aspartate transaminase in obese patients. Conclusion The meta-analysis results indicated that antioxidant supplementation exerted potential beneficial effects in obese patients by regulating FBG, oxidative stress, and inflammation, whilst more high-quality studies are required to confirm these effects. The present study may provide important insights for the treatment of clinical obesity and obesity-associated complications.
Collapse
|
285
|
Krause-Hauch M, Fedorova J, Zoungrana LI, Wang H, Fatmi MK, Li Z, Iglesias M, Slotabec L, Li J. Targeting on Nrf2/Sesn2 Signaling to Rescue Cardiac Dysfunction during High-Fat Diet-Induced Obesity. Cells 2022; 11:cells11162614. [PMID: 36010689 PMCID: PMC9406590 DOI: 10.3390/cells11162614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity is of concern to the population because it is known to cause inflammation and oxidative stress throughout the body, leading to patient predisposition for health conditions such as diabetes, hypertension, and some cancers. However, some proteins that are activated in times of oxidative stress may provide cytoprotective properties. In this study, we aim to gain further understanding of the interconnection between Nrf2 and Sesn2 during obesity-related stress and how this relationship can play a role in cardio-protection. Cardiomyocyte-specific Sesn2 knockout (cSesn2-/-) and Sesn2 overexpressed (tTa-tet-Sesn2) mice and their wildtype littermates (Sesn2flox/flox and tet-Sesn2, respectively) were assigned to either a normal chow (NC) or a high-fat (HF) diet to induce obesity. After 16 weeks of dietary intervention, heart function was evaluated via echocardiography and cardiac tissue was collected for analysis. Immunoblotting, histology, and ROS staining were completed. Human heart samples were obtained via the LifeLink Foundation and were also subjected to analysis. Overall, these results indicated that the overexpression of Sesn2 appears to have cardio-protective effects on the obese heart through the reduction of ROS and fibrosis present in the tissues and in cardiac function. These results were consistent for both mouse and human heart samples. In human samples, there was an increase in Sesn2 and Nrf2 expression in the obese patients' LV tissue. However, there was no observable pattern of Sesn2/Nrf2 expression in mouse LV tissue samples. Further investigation into the link between the Sesn2/Nrf2 pathway and obesity-related oxidative stress is needed.
Collapse
Affiliation(s)
- Meredith Krause-Hauch
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Julia Fedorova
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Linda Ines Zoungrana
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Hao Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Zehui Li
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, Tampa, FL 33612, USA
| | - Migdalia Iglesias
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lily Slotabec
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-4917
| |
Collapse
|
286
|
Mochida N, Matsumura Y, Kitabatake M, Ito T, Kayano SI, Kikuzaki H. Antioxidant Potential of Non-Extractable Fractions of Dried Persimmon (Diospyros kaki Thunb.) in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2022; 11:antiox11081555. [PMID: 36009274 PMCID: PMC9404935 DOI: 10.3390/antiox11081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress causes the progression of diabetes and its complications; thus, maintaining the balance between reactive oxygen species produced by hyperglycemia and the antioxidant defense system is important. We herein examined the antioxidant potential of non-extractable fractions of dried persimmon (NEP) against oxidative stress in diabetic rats. Rats with streptozotocin-induced type 1 diabetes (50 mg/kg body weight) were administered NEP for 9 weeks. Antioxidant enzyme activities and concentration of antioxidants in liver tissues were analyzed with a microplate reader. Extensor digitorum longus (EDL) and soleus muscle fibers were stained with succinate dehydrogenase and muscle fiber sizes were measured. The administration of NEP increased the body weight of diabetes rats. Regarding antioxidant activities, the oxygen radical absorbance capacity and superoxide dismutase activity in liver tissues significantly increased. In addition, increases in glutathione peroxidase activity in liver tissues and reductions in the cross-sectional area of EDL muscle fibers were significantly suppressed. In these results, NEP improved the antioxidant defense system in the liver tissues of diabetic rats, in addition to attenuating of muscle fibers atrophy against oxidative damage induced by hyperglycemia.
Collapse
Affiliation(s)
- Naoko Mochida
- Department of Food Science & Nutrition, School of Humanities & Science, Nara Women’s University, Nara 630-8506, Japan
| | - Yoko Matsumura
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara City 634-8521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara City 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Correspondence: ; Tel.: +81-745-54-1601
| | - Hiroe Kikuzaki
- Department of Food Science & Nutrition, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
287
|
Sharma P, Yadav RK, Khadgawat R, Dada R. Transcriptional modulation of inflammation, and aging in Indian obese adults following a 12-week yoga-based lifestyle intervention: A randomized controlled trial. Front Med (Lausanne) 2022; 9:898293. [PMID: 36004368 PMCID: PMC9393383 DOI: 10.3389/fmed.2022.898293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Obesity is one of the major global problems in today's world, both in children, and the adult age group. Current evidence suggests obesity alters the expression of various genes related to oxidative stress, inflammation, and aging. In recent times complementary therapy like yoga-based lifestyle intervention (YBLI) is used as an adjunct therapy to modern medicine. This study examines the efficacy of 12 weeks of yoga-based lifestyle intervention with standard care (SC) on the expression of genes related to oxidative stress, inflammation, and aging in obese adults. Methods This was a two-arm parallel randomized control trial implemented at Integral Health Clinic (IHC), an outpatient facility that regularly conducted YBLI programs for the prevention of lifestyle diseases like obesity and diabetes in the Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi. Blood samples at baseline and weeks 2,4, and 12 were collected from 72 adults (male n = 21; female n = 51) of age 20-45 years with a body-mass index (BMI) of 25-35 kg/m2 who were randomized to receive either a 12-week SC (n = 36) or YBLI (n = 36). SC included recommendations for the management of obesity as per Indian guidelines including a low-calorie individualized diet and physical activity. Asana (physical postures), pranayama (breathing exercises), and meditation were all part of the YBLI. Primary outcomes were relative fold change in the expression of genes associated with oxidative stress [Nuclear factor-kappa B (NF-Kappa B)], inflammation [Tumor necrosis factor-α (TNFα), interleukin-6 (IL-6)], and aging [human telomerase reverse transcriptase (TERT)] in peripheral blood mononuclear cells between the two groups at week-12. Results There were no significant changes in fold change of TERT, IL-6, and NF-kappa B between the groups at week 12. The relative fold change of TERT was significantly greater in the YBLI group (p = <0.0001) vs the SC group at 2 weeks. The relative fold change of TNF α was significantly lower at week 12 in YBLI though the change was not continuous and reliable. Within both groups, TERT expression was significantly increased at week 2 though the change was greater in the YBLI group (p < 0.0001). TNF α gene expression was significantly lower at weeks 2 and 4, compared to baseline level, in the SC group but it increased at week 12. Conclusion The results while did not confirm our hypothesis, are important to share with the scientific society, to be able to improve prospective study designs and find optimal time/intervention/biological marker settings for this highly important scientific field. The results are suggestive of a positive impact of YBLI and SC on the fold change of aging-related TERT gene in obesity, though the benefit was not evident till week 12. However, the results should be evaluated with caution and in light of other published studies. To better understand the positive effects of YBLI on oxidative stress, inflammation, and aging-related gene expression in obesity, larger studies are recommended.
Collapse
Affiliation(s)
- Piyush Sharma
- Integral Health and Wellness Clinic, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Raj Kumar Yadav
- Integral Health and Wellness Clinic, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Endocrinology, Metabolism and Diabetes, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Khadgawat
- Department of Endocrinology, Metabolism and Diabetes, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
288
|
Ntamo Y, Jack B, Ziqubu K, Mazibuko-Mbeje SE, Nkambule BB, Nyambuya TM, Mabhida SE, Hanser S, Orlando P, Tiano L, Dludla PV. Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties. Crit Rev Food Sci Nutr 2022; 64:87-109. [PMID: 35916835 DOI: 10.1080/10408398.2022.2104805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigallocatechin gallate (EGCG) is one of the most abundant and powerful flavonoids contained in green tea. Because of the global increase in green tea consumption, there has been a general interest in understanding its health benefits, including its bioactive compounds like EGCG. Indeed, preclinical evidence already indicates that EGCG demonstrated a strong antioxidant and anti-inflammatory properties that could be essential in protecting against metabolic syndrome. The current review explores clinical evidence reporting on the beneficial effects of EGCG supplementation in obese subjects or patients with diverse metabolic complications that include type 2 diabetes and cardiovascular disease. The discussion incorporates the impact of different formulations of EGCG, as well as the effective doses and treatment duration. Importantly, besides highlighting the potential use of EGCG as a nutraceutical, the current review also discusses crucial evidence related to its pharmaceutical development as an agent to hinder metabolic diseases, including its bioavailability and metabolism profile, as well as its well-known biological properties.
Collapse
Affiliation(s)
- Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | | | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, South Africa
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
289
|
Dhanasekara CS, Schrader K, Chandrahas S, Aickareth G, Dissanaike S, Griswold JA. Higher baseline copper levels are associated with worse outcome in burn patients with overweight and obesity. Burns 2022; 48:1246-1252. [PMID: 34629187 DOI: 10.1016/j.burns.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We examined the interactive effects of copper (Cu) and overweight (overweight) and obesity on outcomes of burn patients. We posited that higher baseline Cu among burn patients with overweight or obesity will be associated with poor clinical outcomes vs. patients with a normal weight. METHODS A retrospective review was conducted on patients with ≥20% total burn surface area (TBSA) with an initial measurement of Cu. Patients were grouped by body mass index (BMI). The interactions between baseline Cu and BMI groups on multiple burn patient outcomes were examined in a series of multiple regression models. RESULTS One-hundred-and-sixty patients met eligibility (age 43.9 ± 17.5, males 86.3%, normal weight:overweight:obesity = 53:38:69). BMI groups did not differ significantly on demographics, burn severity, or baseline biochemistry. Normal weight patients with higher baseline Cu had shorter ICU stay (ICUS), shorter length of stay (LOS), and had fewer operations (Ps < 0.05). In contrast, overweight and obese patients with higher baseline Cu had longer ICU stay (p = 0.001 and p = 0.034), LOS (p = 0.005 and p = 0.066), and increased operations (p = 0.001 and p = 0.067). CONCLUSIONS Higher baseline Cu seems associated with adverse outcomes in overweight and obese burn patients. Further research is needed to confirm this association and explore the direction of causality.
Collapse
Affiliation(s)
| | - Kaylee Schrader
- Department of Surgery, Texas Tech University Health Science Center, Lubbock, Texas, USA
| | - Sheila Chandrahas
- Department of Surgery, Texas Tech University Health Science Center, Lubbock, Texas, USA
| | | | - Sharmila Dissanaike
- Department of Surgery, Texas Tech University Health Science Center, Lubbock, Texas, USA
| | - John A Griswold
- Department of Surgery, Texas Tech University Health Science Center, Lubbock, Texas, USA.
| |
Collapse
|
290
|
Khalil M, Shanmugam H, Abdallah H, John Britto JS, Galerati I, Gómez-Ambrosi J, Frühbeck G, Portincasa P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022; 14:3112. [PMID: 35956289 PMCID: PMC9370259 DOI: 10.3390/nu14153112] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The abnormal expansion of body fat paves the way for several metabolic abnormalities including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity, and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens, contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies, dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in obesity and MetS. The term "Mitochondria nutrients" has been adopted in recent years, and it depicts the adequate nutrients to keep proper mitochondrial function. Different experimental models show that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables, nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to decrease the burden of disease and medications at a later stage. In this comprehensive review, we discuss the effects of the MD and its bioactive components on improving mitochondrial structure and activity.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Jerlin Stephy John Britto
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Ilaria Galerati
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| |
Collapse
|
291
|
Redox Status of Postmenopausal Women with Single or Multiple Cardiometabolic Diseases Has a Similar Response to Mat Pilates Training. Antioxidants (Basel) 2022; 11:antiox11081445. [PMID: 35892647 PMCID: PMC9331979 DOI: 10.3390/antiox11081445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Postmenopausal women have a high prevalence of cardiometabolic diseases and that may associate with higher oxidative stress. Exercise can contribute to the treatment of such diseases, but some modalities, such as Mat Pilates, need to be further studied in terms of their physiological responses. Our aim was to investigate the effects of 12 weeks of Mat Pilates on redox status in postmenopausal women with one or multiple comorbidities of cardiometabolic diseases. Forty-four postmenopausal women were divided into two groups: SINGLE, composed of women with one cardiometabolic disease (n = 20) and MULT, with multimorbidity (n = 24). Mat Pilates training was conducted three times a week for 12 weeks, and each session lasted 50 min. Plasma samples were collected before and after training to analyze the following redox markers: superoxide dismutase, catalase, glutathione peroxidase, total antioxidant capacity due to ferric-reducing antioxidant power (FRAP), reduced glutathione (GSH), uric acid, and carbonyl protein. ANCOVA showed interaction effects in FRAP (p = 0.014). Both groups had reduced levels of catalase (p = 0.240) and GSH (p = 0.309), and increased levels of carbonyl protein (p = 0.053) after intervention. In conclusion, the redox status of postmenopausal women shows no changes mediated by Mat Pilates training between SINGLE and MULT, except for greater reductions of FRAP in SINGLE.
Collapse
|
292
|
Cavalheiro EKFF, da Silva LE, Oliveira MP, Silva MG, Damiani AP, Ribeiro CB, Magenis ML, Cucker L, Michels M, Joaquim L, Machado RS, Vilela TC, Bitencourt RM, Andrade VM, Dal-Pizzol F, Petronilho F, Tuon T, Rezin GT. Effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced Parkinson's disease. Behav Brain Res 2022; 434:114019. [PMID: 35872330 DOI: 10.1016/j.bbr.2022.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 12/06/2022]
Abstract
Obesity is associated with low-grade chronic inflammation and oxidative stress, affecting the brain's reward system by decreasing dopaminergic neurotransmission. It is known that dopaminergic neurotransmission is also reduced in Parkinson's disease (PD), and high adiposity is considered a risk factor for the development of several neurodegenerative diseases, including PD. This study aimed to assess the effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced PD. The obese group showed increased inflammation and oxidative damage as well as inhibition of mitochondrial respiratory chain complexes I and II and DNA damage in the evaluated structures. The PD group did not show inflammation or mitochondrial dysfunction but exhibited oxidative damage in the hippocampus. The combination group (obesity + PD) showed reduced inflammation and oxidative stress and increased activity of complexes I and II of the mitochondrial respiratory chain in most of the analyzed structures. On the other hand, obesity + PD caused oxidative damage to proteins in the liver, prefrontal cortex, striatum, and cerebral cortex and oxidative stress in the hypothalamus, resulting in reduced catalase activity. Furthermore, the combination group showed DNA damage in blood, liver, and cerebral cortex. In conclusion, it was observed that the association of obesity and PD did not increase inflammation, oxidative stress, or mitochondrial dysfunction in most of the evaluated structures but increased oxidative damage and induced mechanisms that led to DNA damage in peripheral tissues and brain structures.
Collapse
Affiliation(s)
- Eulla Keimili Fernandes Ferreira Cavalheiro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina G Silva
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Catharina B Ribeiro
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Marina L Magenis
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Luana Cucker
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Rafael M Bitencourt
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, UNESC, Avenida Universitária, 1105, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Talita Tuon
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| |
Collapse
|
293
|
Neurobiological Mechanisms Modulating Emotionality, Cognition and Reward-Related Behaviour in High-Fat Diet-Fed Rodents. Int J Mol Sci 2022; 23:ijms23147952. [PMID: 35887310 PMCID: PMC9317076 DOI: 10.3390/ijms23147952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Affective and substance-use disorders are associated with overweight and obesity-related complications, which are often due to the overconsumption of palatable food. Both high-fat diets (HFDs) and psychostimulant drugs modulate the neuro-circuitry regulating emotional processing and metabolic functions. However, it is not known how they interact at the behavioural level, and whether they lead to overlapping changes in neurobiological endpoints. In this literature review, we describe the impact of HFDs on emotionality, cognition, and reward-related behaviour in rodents. We also outline the effects of HFD on brain metabolism and plasticity involving mitochondria. Moreover, the possible overlap of the neurobiological mechanisms produced by HFDs and psychostimulants is discussed. Our in-depth analysis of published results revealed that HFDs have a clear impact on behaviour and underlying brain processes, which are largely dependent on the developmental period. However, apart from the studies investigating maternal exposure to HFDs, most of the published results involve only male rodents. Future research should also examine the biological impact of HFDs in female rodents. Further knowledge about the molecular mechanisms linking stress and obesity is a crucial requirement of translational research and using rodent models can significantly advance the important search for risk-related biomarkers and the development of clinical intervention strategies.
Collapse
|
294
|
Comparison of Five Oxidative Stress Biomarkers in Vegans and Omnivores from Germany and Finland. Nutrients 2022; 14:nu14142918. [PMID: 35889875 PMCID: PMC9323774 DOI: 10.3390/nu14142918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
When the amount of reactive oxygen species produced by human metabolism cannot be balanced by antioxidants, this phenomenon is commonly referred to as oxidative stress. It is hypothesised that diets with high amounts of plant food products may have a beneficial impact on oxidative stress status. However, few studies have examined whether a vegan diet is associated with lower oxidative stress compared to an omnivorous diet. The present cross-sectional study aimed to compare the levels of five oxidative stress biomarkers in vegans and omnivores. Data of 36 vegans and 36 omnivores from Germany and of 21 vegans and 18 omnivores from Finland were analysed. HPLC coupled with mass spectrometry or fluorescence detection and ELISA methods were used to measure the oxidative stress biomarkers malondialdehyde (MDA), protein carbonyls and 3-nitrotyrosine in plasma and 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α) in 24 h urine. Analyses of variance and covariance, considering potential confounders, were used. Vegans and omnivores showed no differences in MDA and protein carbonyl concentrations. In Finnish but not in German vegans, the concentrations of 3-nitrotyrosine were lower compared to those in omnivores (p = 0.047). In Germany, vegans showed lower excretion levels of 8-iso-PGF2α than omnivores (p = 0.002) and with a trend also of 8-OHdG (p = 0.05). The sensitivity analysis suggests lower 8-iso-PGF2α excretion levels in women compared to men, independently of the dietary group. The present study contributes to expanding our knowledge of the relationship between diet and oxidative stress and showed that 3-nitrotyrosine, 8-OHdG and 8-iso-PGF2α tended to be lower in vegans. Furthermore, studies are recommended to validate the present findings.
Collapse
|
295
|
Effects of Avocado Oil Supplementation on Insulin Sensitivity, Cognition, and Inflammatory and Oxidative Stress Markers in Different Tissues of Diet-Induced Obese Mice. Nutrients 2022; 14:nu14142906. [PMID: 35889863 PMCID: PMC9319255 DOI: 10.3390/nu14142906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity induces insulin resistance, chronic inflammation, oxidative stress, and neurocognitive impairment. Avocado oil (AO) has antioxidants and anti-inflammatory effects. This study evaluated the effect of AO supplementation on obese mice in the adipose tissue, muscle, liver, and hippocampus. Male C57BL/6J mice received a standard and high-fat diet (20 weeks) and then were supplemented with AO (4 mL/kg of body weight, 90 days) and divided into the following groups: control (control), control + avocado oil (control + AO), diet-induced obesity (DIO), and diet-induced obesity + avocado oil (DIO + AO) (n = 10/group). AO supplementation was found to improve insulin sensitivity and decrease hepatic fat accumulation and serum triglyceride levels in DIO mice. AO improved cognitive performance and did not affect mood parameters. Oxidative marker levels were decreased in DIO + AO mice in all the tissues and were concomitant with increased catalase and superoxide dismutase activities in the epididymal adipose tissue and quadriceps, as well as increased catalase activity in the liver. AO in obese animals further induced reductions in TNF-α and IL-1β expressions in the epididymal adipose tissue and quadriceps. These results suggest that AO supplementation has the potential to be an effective strategy for combating the effects of obesity in rats, and human studies are needed to confirm these findings.
Collapse
|
296
|
Effects of 2-Year Nutritional and Lifestyle Intervention on Oxidative and Inflammatory Statuses in Individuals of 55 Years of Age and over at High Cardiovascular Risk. Antioxidants (Basel) 2022; 11:antiox11071326. [PMID: 35883817 PMCID: PMC9312253 DOI: 10.3390/antiox11071326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and overweight are disorders with high impact on the morbidity and mortality of chronic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). We aim to assess the effects of 2-year nutritional and lifestyle intervention on oxidative and inflammatory status in individuals of 55 years of age and over at high CVD risk. Participants (n = 100 individuals of 55 years of age and over living in the Balearic Islands, Spain) were randomized into control and intervention group. Anthropometric and haematological parameters, blood pressure and physical activity were measured before and after the intervention. Oxidative and inflammatory biomarkers in plasma, urine, peripheral blood mononuclear cells (PBMCs) and neutrophils were determined. A higher reduction in abdominal obesity, blood pressure and triglycerides levels was observed after a 2-year intervention. An improvement of oxidative stress and proinflammatory status was demonstrated with a significant reduction in myeloperoxidase, xanthine oxidase, malondialdehyde and monocyte chemoattractant protein-1 (MCP1) levels, and an increase in polyphenols in plasma was observed. A decrease in reactive oxygen species production in PBMCs and neutrophils levels after zymosan and lipopolysaccharide activation was found in the intervention group with respect to the control group. The intervention with hypocaloric Mediterranean Diet and customized physical activity improves oxidative stress and proinflammatory status and could contribute to decreasing the CVD risk.
Collapse
|
297
|
Katsouda A, Valakos D, Dionellis VS, Bibli SI, Akoumianakis I, Karaliota S, Zuhra K, Fleming I, Nagahara N, Havaki S, Gorgoulis VG, Thanos D, Antoniades C, Szabo C, Papapetropoulos A. MPST sulfurtransferase maintains mitochondrial protein import and cellular bioenergetics to attenuate obesity. J Exp Med 2022; 219:e20211894. [PMID: 35616614 PMCID: PMC9143789 DOI: 10.1084/jem.20211894] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022] Open
Abstract
Given the clinical, economic, and societal impact of obesity, unraveling the mechanisms of adipose tissue expansion remains of fundamental significance. We previously showed that white adipose tissue (WAT) levels of 3-mercaptopyruvate sulfurtransferase (MPST), a mitochondrial cysteine-catabolizing enzyme that yields pyruvate and sulfide species, are downregulated in obesity. Here, we report that Mpst deletion results in fat accumulation in mice fed a high-fat diet (HFD) through transcriptional and metabolic maladaptation. Mpst-deficient mice on HFD exhibit increased body weight and inguinal WAT mass, reduced metabolic rate, and impaired glucose/insulin tolerance. At the molecular level, Mpst ablation activates HIF1α, downregulates subunits of the translocase of outer/inner membrane (TIM/TOM) complex, and impairs mitochondrial protein import. MPST deficiency suppresses the TCA cycle, oxidative phosphorylation, and fatty acid oxidation, enhancing lipid accumulation. Sulfide donor administration to obese mice reverses the HFD-induced changes. These findings reveal the significance of MPST for white adipose tissue biology and metabolic health and identify a potential new therapeutic target for obesity.
Collapse
Affiliation(s)
- Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sevasti Karaliota
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute/National Institutes of Health, Frederick, MD
| | - Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research Partner Site Rhein-Main, Frankfurt am Main, Germany
| | | | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G. Gorgoulis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Thanos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
298
|
Estébanez B, Huang CJ, Rivera-Viloria M, González-Gallego J, Cuevas MJ. Exercise Outcomes in Childhood Obesity-Related Inflammation and Oxidative Status. Front Nutr 2022; 9:886291. [PMID: 35859754 PMCID: PMC9289530 DOI: 10.3389/fnut.2022.886291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Childhood obesity is identified as one of the major public health issues to increase the risk for cardiometabolic diseases and related complications in adulthood. The literature has supported inflammation and oxidative stress as the primary underlying mechanisms involved in the pathogenesis of obesity-related diseases. Epidemiological evidence consistently shows the benefits of physical activity in the improvement of obesity-mediated inflammation and oxidative stress status. In this narrative mini-review, the available scientific evidence on the potential effects of exercise in alleviating these susceptibilities in childhood obesity will be assessed.
Collapse
Affiliation(s)
- Brisamar Estébanez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- *Correspondence: Brisamar Estébanez,
| | - Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, United States
| | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María J. Cuevas
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
299
|
Bisdemethoxycurcumin Attenuated Renal Injury via Activation of Keap1/Nrf2 Pathway in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23137395. [PMID: 35806399 PMCID: PMC9266686 DOI: 10.3390/ijms23137395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bisdemethoxycurcumin (BDMC), a principal and active component of edible turmeric, was previously found to have beneficial effects on metabolic diseases. Chronic kidney disease (CKD) may benefit from its potential therapeutic use. Using a high-fat diet (HFD)-fed mouse model, we examined the effects of BDMC on renal injury and tried to determine how its associated mechanism works. A number of metabolic disorders are significantly improved by BDMC, including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and inflammation. Further research on renal histopathology and function showed that BDMC could repair renal pathological changes and enhance renal function. Moreover, decreased serum malondialdehyde (MDA), elevated superoxide dismutase (SOD) activity, and the inhibition of renal reactive oxygen species (ROS) overproduction revealed the alleviation of oxidative stress after BDMC administration. In addition, renal Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway was activated in BDMC-treated mice. In conclusion, these findings demonstrated BDMC as a potential therapy for HFD-induced CKD via the activation of the Keap1/Nrf2 pathway.
Collapse
|
300
|
Adedeji TG, Jeje SO, Omayone TP, Agbonifo WO. Oxidative Stress and Inflammatory Response to High Dietary Fat and Carbonated Soda Intake in Male and Female Wistar Rats. Nutrition 2022; 103-104:111800. [DOI: 10.1016/j.nut.2022.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 10/31/2022]
|