3051
|
SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Int J Mol Sci 2020; 21:ijms21124549. [PMID: 32604730 PMCID: PMC7352545 DOI: 10.3390/ijms21124549] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA–ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein–glycan interaction and PCI stereochemistry potentiate the SA–ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.
Collapse
|
3052
|
Llanes A, Restrepo CM, Caballero Z, Rajeev S, Kennedy MA, Lleonart R. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. Int J Mol Sci 2020; 21:E4546. [PMID: 32604724 PMCID: PMC7352669 DOI: 10.3390/ijms21124546] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
In the 21st century, three highly pathogenic betacoronaviruses have emerged, with an alarming rate of human morbidity and case fatality. Genomic information has been widely used to understand the pathogenesis, animal origin and mode of transmission of coronaviruses in the aftermath of the 2002-2003 severe acute respiratory syndrome (SARS) and 2012 Middle East respiratory syndrome (MERS) outbreaks. Furthermore, genome sequencing and bioinformatic analysis have had an unprecedented relevance in the battle against the 2019-2020 coronavirus disease 2019 (COVID-19) pandemic, the newest and most devastating outbreak caused by a coronavirus in the history of mankind. Here, we review how genomic information has been used to tackle outbreaks caused by emerging, highly pathogenic, betacoronavirus strains, emphasizing on SARS-CoV, MERS-CoV and SARS-CoV-2. We focus on shared genomic features of the betacoronaviruses and the application of genomic information to phylogenetic analysis, molecular epidemiology and the design of diagnostic systems, potential drugs and vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Zuleima Caballero
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Sreekumari Rajeev
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Melissa A. Kennedy
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| |
Collapse
|
3053
|
Prasad K, Khatoon F, Rashid S, Ali N, AlAsmari AF, Ahmed MZ, Alqahtani AS, Alqahtani MS, Kumar V. Targeting hub genes and pathways of innate immune response in COVID-19: A network biology perspective. Int J Biol Macromol 2020; 163:1-8. [PMID: 32599245 PMCID: PMC7319641 DOI: 10.1016/j.ijbiomac.2020.06.228] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
The current pandemic of 2019 novel coronavirus disease (COVID-19) caused by a novel virus strain, 2019-nCoV/SARS-CoV-2 have posed a serious threat to global public health and economy. It is largely unknown how the human immune system responds to this infection. A better understanding of the immune response to SARS-CoV-2 will be important to develop therapeutics against COVID-19. Here, we have used transcriptomic profile of human alveolar adenocarcinoma cells (A549) infected with SARS-CoV-2 and employed a network biology approach to generate human-virus interactome. Network topological analysis discovers 15 SARS-CoV-2 targets, which belongs to a subset of interferon (IFN) stimulated genes (ISGs). These ISGs (IFIT1, IFITM1, IRF7, ISG15, MX1, and OAS2) can be considered as potential candidates for drug targets in the treatments of COVID-19. We have identified significant interaction between ISGs and TLR3 agonists, like poly I: C, and imiquimod, and suggests that TLR3 agonists can be considered as a potential drug for drug repurposing in COVID-19. Our network centric analysis suggests that moderating the innate immune response is a valuable approach to target COVID-19. Differential gene expression analysis of SARS-CoV-2 infected transcriptome Network based Human-SRAS-CoV-2 interactome analysis Interferon (IFN) stimulated genes (ISGs) are the most important targets. TLR3 agonists, like poly I:C, and imiquimod are identified as potential drugs. Targeting the innate immune response is a valuable approach against COVID-19.
Collapse
Affiliation(s)
- Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin AbdulAziz University, Al kharj 11942, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India.
| |
Collapse
|
3054
|
Ortega JT, Serrano ML, Jastrzebska B. Class A G Protein-Coupled Receptor Antagonist Famotidine as a Therapeutic Alternative Against SARS-CoV2: An In Silico Analysis. Biomolecules 2020; 10:E954. [PMID: 32599963 PMCID: PMC7355875 DOI: 10.3390/biom10060954] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The pandemic associated with Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV2) and its disease named COVID-19 challenged the scientific community to discover effective therapeutic solutions in a short period. Repurposing existing drugs is one viable approach that emphasizes speed during these urgent times. Famotidine, a class A G protein-coupled receptor antagonist used for the treatment of gastroesophageal reflux was recently identified in an in silico screening. Additionally, a recent retrospective clinical report showed that the treatment with famotidine provided a good outcome in patients infected with SARS-CoV2. A clinical trial testing effectiveness of famotidine in combination with hydroxychloroquine is currently ongoing in the United States (US). In the 1990s, famotidine was described as an antiviral agent against human immunodeficiency virus (HIV). Interestingly, some HIV protease inhibitors are presently being used against SARS-CoV2. However, it is not clear if famotidine could be effective against SARS-CoV2. Thus, by using a computational analysis, we aimed to examine if the antiviral effect of famotidine could be related to the inhibition of proteases involved in the virus replication. Our results showed that famotidine could interact within the catalytic site of the three proteases associated with SARS-CoV2 replication. However, weak binding affinity of famotidine to these proteases suggests that a successful famotidine therapy could likely be achieved only in combination with other antiviral drugs. Finally, analysis of famotidine's pharmacokinetic parameters indicated that its effect against SARS-CoV2 infection could be reached only upon intravenous administration. This work will contribute to the pharmacological knowledge of famotidine as an antiviral agent against SARS-CoV2.
Collapse
Affiliation(s)
- Joseph T. Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Luisa Serrano
- Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1041-A, Venezuela;
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3055
|
Addetia A, Xie H, Roychoudhury P, Shrestha L, Loprieno M, Huang ML, Jerome KR, Greninger AL. Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates. J Clin Virol 2020; 129:104523. [PMID: 32623351 PMCID: PMC7309833 DOI: 10.1016/j.jcv.2020.104523] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Amin Addetia
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - Lasata Shrestha
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Michelle Loprieno
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
3056
|
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu LG. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS NANO 2020; 14:6383-6406. [PMID: 32519842 PMCID: PMC7299399 DOI: 10.1021/acsnano.0c03697] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.
Collapse
Affiliation(s)
- Carsten Weiss
- Institute of Biological and Chemical
Systems, Biological Information Processing, Karlsruhe
Institute of Technology, Campus North,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,
Germany
| | - Marie Carriere
- Univ. Grenoble
Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, F-38000
Grenoble, France
| | - Laura Fusco
- Department of Chemical and
Pharmaceutical Sciences, University of
Trieste, 34127 Trieste,
Italy
- Cancer Research Department,
Sidra Medicine, Doha,
Qatar
| | - Ilaria Capua
- One Health Center of Excellence,
University of Florida, Gainesville,
Florida 32611, United States
| | - Jose Angel Regla-Nava
- Division of Inflammation Biology,
La Jolla Institute for Allergy and
Immunology, La Jolla, California 92037,
United States
| | - Matteo Pasquali
- Department of Chemical &
Biomolecular Engineering, Rice University,
Houston, Texas 77251, United States
- Department of Chemistry,
Rice University, Houston, Texas
77251, United States
- Department of Materials Science and
Nanoengineering, Rice University, Houston,
Texas 77251, United States
| | - James A. Scott
- Dalla Lana School of Public Health,
University of Toronto, 223 College
Street, M5T 1R4 Toronto, Ontario, Canada
| | - Flavia Vitale
- Department of Neurology,
Bioengineering, Physical Medicine & Rehabilitation, Center for
Neuroengineering and Therapeutics, University of
Pennsylvania, Philadelphia, Pennsylvania 19104,
United States
- Center for Neurotrauma,
Neurodegeneration, and Restoration, Corporal Michael J.
Crescenz Veterans Affairs Medical Center,
Philadelphia, Pennsylvania 19104, United
States
| | | | - Cecilia Mattevi
- Department of Materials,
Imperial College London, London SW7
2AZ, United Kingdom
| | | | - Arben Merkoçi
- Nanobioelectronics & Biosensors
Group, Catalan Institute of Nanoscience and
Nanotechnology (ICN2), CSIC and BIST, Campus UAB,
08193 Bellaterra, Spain
- ICREA -
Institució Catalana de Recerca i Estudis
Avançats, ES-08010 Barcelona,
Spain
| | - Ennio Tasciotti
- Orthopedics and Sports Medicine,
Houston Methodist Hospital, Houston,
Texas 77030, United States
- Department of Plastic Surgery,
MD Anderson, Houston, Texas 77230,
United States
| | - Açelya Yilmazer
- Stem Cell Institute,
Ankara University, Ankara, 06100
Turkey
- Department of Biomedical Engineering,
Faculty of Engineering, Ankara University,
Ankara, 06100 Turkey
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute,
and Materials Science and Engineering Department, Drexel
University, Philadelphia, Pennsylvania 19104,
United States
| | - Francesco Stellacci
- Institute of Materials,
Ecole Polytechnique Federale de Lausanne
(EPFL), 1015 Lausanne,
Switzerland
- Interfaculty Bioengineering Institute,
Ecole Polytechnique Fédérale de
Lausanne (EPFL), 1015 Lausanne,
Switzerland
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences,
University of Padua, 35122 Padova,
Italy
| |
Collapse
|
3057
|
De Savi C, Hughes DL, Kvaerno L. Quest for a COVID-19 Cure by Repurposing Small-Molecule Drugs: Mechanism of Action, Clinical Development, Synthesis at Scale, and Outlook for Supply. Org Process Res Dev 2020; 24:940-976. [PMID: 37556267 PMCID: PMC7294877 DOI: 10.1021/acs.oprd.0c00233] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Indexed: 02/08/2023]
Abstract
The outbreak of the COVID-19 pandemic has spurred an intense global effort to repurpose existing approved drugs for its treatment. In this review, we highlight the development of seven small-molecule drugs that are currently being assessed in clinical trials for the treatment of COVID-19. Three sections are presented for each drug: (1) history, mechanism of action, and status of clinical trials; (2) scalable synthetic routes and final forms; and (3) outlook for supply should clinical trials show treatment efficacy. A brief overview of diagnostic testing and vaccine development is also presented.
Collapse
Affiliation(s)
- Chris De Savi
- Kymera
Therapeutics, 300 Technology Square, Second Floor,
Cambridge, Massachusetts 02139, United
States
| | - David L. Hughes
- Cidara Therapeutics,
Inc., 6310 Nancy Ridge Drive, Suite 101, San
Diego, California 92121, United States
| | - Lisbet Kvaerno
- Hypha Discovery
Ltd, 154C Brook Drive, Milton Science Park,
Abingdon OX14 4SD, United Kingdom
| |
Collapse
|
3058
|
Schmidt NM, Wing PAC, McKeating JA, Maini MK. Cholesterol-modifying drugs in COVID-19. OXFORD OPEN IMMUNOLOGY 2020; 1:iqaa001. [PMID: 33047740 PMCID: PMC7337782 DOI: 10.1093/oxfimm/iqaa001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Infection with severe acute respiratory syndrom coronavirus 2 (SARS-CoV-2) is more likely to lead to poor outcomes in the elderly and those with cardiovascular disease, obesity or metabolic syndrome. Here, we consider mechanisms by which dyslipidaemia and the use of cholesterol-modifying drugs could influence the virus-host relationship. Cholesterol is essential for the assembly, replication and infectivity of enveloped virus particles; we highlight several cholesterol-modifying drugs with the potential to alter the SARS-CoV-2 life cycle that could be tested in in vitro and in vivo models. Although cholesterol is an essential component of immune cell membranes, excess levels can dysregulate protective immunity and promote exaggerated pulmonary and systemic inflammatory responses. Statins block the production of multiple sterols, oxysterols and isoprenoids, resulting in a pleiotropic range of context-dependent effects on virus infectivity, immunity and inflammation. We highlight antiviral, immunomodulatory and anti-inflammatory effects of cholesterol-modifying drugs that merit further consideration in the management of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nathalie M Schmidt
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| |
Collapse
|
3059
|
Wei J, Alfajaro MM, Hanna RE, DeWeirdt PC, Strine MS, Lu-Culligan WJ, Zhang SM, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB, Gasque V, de Miguel F, Chen H, Oguntuyo K, Abriola L, Surovtseva YV, Orchard RC, Lee B, Lindenbach B, Politi K, van Dijk D, Simon MD, Yan Q, Doench JG, Wilen CB. Genome-wide CRISPR screen reveals host genes that regulate SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.16.155101. [PMID: 32869025 PMCID: PMC7457610 DOI: 10.1101/2020.06.16.155101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Identification of host genes essential for SARS-CoV-2 infection may reveal novel therapeutic targets and inform our understanding of COVID-19 pathogenesis. Here we performed a genome-wide CRISPR screen with SARS-CoV-2 and identified known SARS-CoV-2 host factors including the receptor ACE2 and protease Cathepsin L. We additionally discovered novel pro-viral genes and pathways including the SWI/SNF chromatin remodeling complex and key components of the TGF-β signaling pathway. Small molecule inhibitors of these pathways prevented SARS-CoV-2-induced cell death. We also revealed that the alarmin HMGB1 is critical for SARS-CoV-2 replication. In contrast, loss of the histone H3.3 chaperone complex sensitized cells to virus-induced death. Together this study reveals potential therapeutic targets for SARS-CoV-2 and highlights host genes that may regulate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ruth E. Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter C. DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - William J. Lu-Culligan
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Chemical Biology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Vincent R. Graziano
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Cameron O. Schmitz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer S. Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Madeleine C. Mankowski
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Victor Gasque
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fernando de Miguel
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Huacui Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benhur Lee
- Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - David van Dijk
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3060
|
Perfetto L, Pastrello C, Del-Toro N, Duesbury M, Iannuccelli M, Kotlyar M, Licata L, Meldal B, Panneerselvam K, Panni S, Rahimzadeh N, Ricard-Blum S, Salwinski L, Shrivastava A, Cesareni G, Pellegrini M, Orchard S, Jurisica I, Hermjakob HH, Porras P. The IMEx Coronavirus interactome: an evolving map of Coronaviridae-Host molecular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.16.153817. [PMID: 32587962 PMCID: PMC7310617 DOI: 10.1101/2020.06.16.153817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spurred a wave of research of nearly unprecedented scale. Among the different strategies that are being used to understand the disease and develop effective treatments, the study of physical molecular interactions enables studying fine-grained resolution of the mechanisms behind the virus biology and the human organism response. Here we present a curated dataset of physical molecular interactions, manually extracted by IMEx Consortium curators focused on proteins from SARS-CoV-2, SARS-CoV-1 and other members of the Coronaviridae family. Currently, the dataset comprises over 2,200 binarized interactions extracted from 86 publications. The dataset can be accessed in the standard formats recommended by the Proteomics Standards Initiative (HUPO-PSI) at the IntAct database website ( www.ebi.ac.uk/intact ), and will be continuously updated as research on COVID-19 progresses.
Collapse
Affiliation(s)
- L Perfetto
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - C Pastrello
- Krembil Research Institute, Data Science Discovery Centre for Chronic Diseases, University Health Network, 5KD-407, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - N Del-Toro
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - M Duesbury
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
- UCLA-DOE Institute, UCLA, Los Angeles, USA
| | - M Iannuccelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - M Kotlyar
- Krembil Research Institute, Data Science Discovery Centre for Chronic Diseases, University Health Network, 5KD-407, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - L Licata
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - B Meldal
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - K Panneerselvam
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - S Panni
- Department of Biology, Ecology and Earth Sciences, Università della Calabria, Rende, Italy
| | - N Rahimzadeh
- UCLA-DOE Institute, UCLA, Los Angeles, USA
- Providence John Wayne Cancer Institute, Santa Monica, USA
| | - S Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne, France
| | | | - A Shrivastava
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - G Cesareni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - M Pellegrini
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, USA
| | - S Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - I Jurisica
- Krembil Research Institute, Data Science Discovery Centre for Chronic Diseases, University Health Network, 5KD-407, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - H H Hermjakob
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - P Porras
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| |
Collapse
|
3061
|
Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM. Immunology of COVID-19: Current State of the Science. Immunity 2020; 52:910-941. [PMID: 32505227 PMCID: PMC7200337 DOI: 10.1016/j.immuni.2020.05.002] [Citation(s) in RCA: 1165] [Impact Index Per Article: 233.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Graham J Britton
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conor Gruber
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Kim
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Kuksin
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Levantovsky
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Malle
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Moreira
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luisanna Pia
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Risson
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Saffern
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bérengère Salomé
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myvizhi Esai Selvan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew P Spindler
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Tan
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Verena van der Heide
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill K Gregory
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nina Bhardwaj
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Greenbaum
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dirk Homann
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Saurabh Mehandru
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Samstein
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3062
|
Leon K, Ott M. An 'Arms Race' between the Nonsense-mediated mRNA Decay Pathway and Viral Infections. Semin Cell Dev Biol 2020; 111:101-107. [PMID: 32553580 PMCID: PMC7295464 DOI: 10.1016/j.semcdb.2020.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
The Nonsense-mediated mRNA Decay (NMD) pathway is an RNA quality control pathway conserved among eukaryotic cells. While historically thought to predominantly recognize transcripts with premature termination codons, it is now known that the NMD pathway plays a variety of roles, from homeostatic events to control of viral pathogens. In this review we highlight the reciprocal interactions between the host NMD pathway and viral pathogens, which have shaped both the host antiviral defense and viral pathogenesis.
Collapse
Affiliation(s)
- Kristoffer Leon
- J. David Gladstone Institutes, United States; Department of Medicine, University of California, San Francisco, United States
| | - Melanie Ott
- J. David Gladstone Institutes, United States; Department of Medicine, University of California, San Francisco, United States.
| |
Collapse
|
3063
|
Walker JS, Garzon R, Lapalombella R. Selinexor for advanced hematologic malignancies. Leuk Lymphoma 2020; 61:2335-2350. [DOI: 10.1080/10428194.2020.1775210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Janek S. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3064
|
Affiliation(s)
- Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto F.no, Italy
| |
Collapse
|
3065
|
Marzo T, Messori L. A Role for Metal-Based Drugs in Fighting COVID-19 Infection? The Case of Auranofin. ACS Med Chem Lett 2020; 11:1067-1068. [PMID: 32547693 PMCID: PMC7216761 DOI: 10.1021/acsmedchemlett.0c00190] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto F.no, Italy
| |
Collapse
|
3066
|
Kaur G, Lungarella G, Rahman I. SARS-CoV-2 COVID-19 susceptibility and lung inflammatory storm by smoking and vaping. JOURNAL OF INFLAMMATION-LONDON 2020; 17:21. [PMID: 32528233 PMCID: PMC7284674 DOI: 10.1186/s12950-020-00250-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
The current pandemic of COVID-19 has caused severe morbidity and mortality across the globe. People with a smoking history have severe disease outcomes by COVID-19 infection. Epidemiological studies show that old age and pre-existing disease conditions (hypertension and diabetes) result in severe disease outcome and mortality amongst COVID-19 patients. Evidences suggest that the S1 domain of the SARS-CoV-2 (causative agent of COVID-19) membrane spike has a high affinity towards the angiotensin-converting enzyme 2 (ACE2) receptor found on the host’s lung epithelium. Likewise, TMPRSS2 protease has been shown to be crucial for viral activation thus facilitating the viral engulfment. The viral entry has been shown to cause ‘cytokine storm’ involving excessive production of pro-inflammatory cytokines/chemokines including IL-6, TNF-α, IFN-γ, IL-2, IL-7, IP-10, MCP-3 or GM-CSF, which is augmented by smoking. Future research could target these inflammatory-immunological responses to develop effective therapy for COVID-19. This mini-review provides a consolidated account on the role of inflammation and immune responses, proteases, and epithelial permeability by smoking and vaping during SARS-CoV2 infection with future directions of research, and provides a list of the potential targets for therapies particularly controlling cytokine storms in the lung.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
3067
|
Messina F, Giombini E, Agrati C, Vairo F, Ascoli Bartoli T, Al Moghazi S, Piacentini M, Locatelli F, Kobinger G, Maeurer M, Zumla A, Capobianchi MR, Lauria FN, Ippolito G. COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. J Transl Med 2020; 18:233. [PMID: 32522207 PMCID: PMC7286221 DOI: 10.1186/s12967-020-02405-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. Methods We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV–host interactome was carried out in order to provide a theoretic host–pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein–protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. Results Although the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. Conclusions In this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets.
Collapse
Affiliation(s)
- Francesco Messina
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Emanuela Giombini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Francesco Vairo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | | | - Samir Al Moghazi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Gary Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec, QC, Canada
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I. Medizinische Klinik Johannes Gutenberg-Universität, University of Mainz, Mainz, Germany
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, London, UK.,National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Maria R Capobianchi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy.
| | | | - Giuseppe Ippolito
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | | |
Collapse
|
3068
|
Moriel-Carretero M. The hypothetical role of phosphatidic acid in subverting ER membranes during SARS-CoV infection. Traffic 2020; 21:545-551. [PMID: 32424954 PMCID: PMC7276787 DOI: 10.1111/tra.12738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Positive sense (+) RNA viruses exploit membranes from a variety of cellular organelles to support the amplification of their genomes. This association concurs with the formation of vesicles whose main morphological feature is that of being wrapped by a double membrane. In the case of the SARS‐CoV virus, the outer membrane is not discrete for each vesicle, but seems to be continuous and shared between many individual vesicles, a difference with other +RNA viruses whose nature has remained elusive. I present morphological, biochemical and pharmacological arguments defending the striking analogy of this arrangement and that of entangled, nascent Lipid Droplets whose birth has been aborted by an excess of Phosphatidic Acid. Since Phosphatidic Acid can be targeted with therapeutical purposes, considering this working hypothesis may prove important in tackling SARS‐CoV infection.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), University of Montpellier - CNRS, Montpellier, France
| |
Collapse
|
3069
|
Perdikari TM, Murthy AC, Ryan VH, Watters S, Naik MT, Fawzi NL. SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation stimulated by RNA and partitions into phases of human ribonucleoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.09.141101. [PMID: 32577653 PMCID: PMC7302208 DOI: 10.1101/2020.06.09.141101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and may assemble within viral factories, dynamic compartments formed within the host cells. Here, we examine the possibility that the multivalent RNA-binding nucleocapsid protein (N) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) compacts RNA via protein-RNA liquid-liquid phase separation (LLPS) and that N interactions with host RNA-binding proteins are mediated by phase separation. To this end, we created a construct expressing recombinant N fused to a N-terminal maltose binding protein tag which helps keep the oligomeric N soluble for purification. Using in vitro phase separation assays, we find that N is assembly-prone and phase separates avidly. Phase separation is modulated by addition of RNA and changes in pH and is disfavored at high concentrations of salt. Furthermore, N enters into in vitro phase separated condensates of full-length human hnRNPs (TDP-43, FUS, and hnRNPA2) and their low complexity domains (LCs). However, N partitioning into the LC of FUS, but not TDP-43 or hnRNPA2, requires cleavage of the solubilizing MBP fusion. Hence, LLPS may be an essential mechanism used for SARS-CoV-2 and other RNA viral genome packing and host protein co-opting, functions necessary for viral replication and hence infectivity.
Collapse
Affiliation(s)
| | - Anastasia C Murthy
- Molecular Biology, Cell Biology & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| | - Scott Watters
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
3070
|
Wang S, Zeng X, Wang Y, Zhao Y, Chen W, Chen YZ. East meets West in COVID-19 therapeutics. Pharmacol Res 2020; 159:105008. [PMID: 32531323 PMCID: PMC7282746 DOI: 10.1016/j.phrs.2020.105008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Shanshan Wang
- The Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, PR China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, PR China
| | - Yali Wang
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yufen Zhao
- The Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, PR China
| | - Weiping Chen
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, 117543, Singapore.
| |
Collapse
|
3071
|
Yu J, Chai P, Ge S, Fan X. Recent Understandings Toward Coronavirus Disease 2019 (COVID-19): From Bench to Bedside. Front Cell Dev Biol 2020; 8:476. [PMID: 32582719 PMCID: PMC7296090 DOI: 10.3389/fcell.2020.00476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 01/18/2023] Open
Abstract
In late December 2019, an unprecedented outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronavirus 2 (SARS-CoV-2) (previously named 2019-nCoV) in Wuhan became the most challenging health emergency. Since its rapid spread in China and many other countries, the World Health Organization (WHO) declared COVID-19 a public health emergency of international concern (PHEIC) on 30th January 2020 and a pandemic on 11th March 2020. Thousands of people have died, and there are currently no vaccines or specific antiviral drugs for COVID-19. Therefore, it is critical to have a comprehensive understanding of the virus. In this review, we highlight the etiology, epidemiology, pathogenesis and pathology, clinical characteristics, diagnosis, clinical management, prognosis, infection control and prevention of COVID-19 based on recent studies.
Collapse
Affiliation(s)
| | | | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Nineth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Nineth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
3072
|
Saçar Demirci MD, Adan A. Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ 2020; 8:e9369. [PMID: 32547891 PMCID: PMC7278893 DOI: 10.7717/peerj.9369] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression found in more than 200 diverse organisms. Although it is still not fully established if RNA viruses could generate miRNAs, there are examples of miRNA like sequences from RNA viruses with regulatory functions. In the case of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there are several mechanisms that would make miRNAs impact the virus, like interfering with viral replication, translation and even modulating the host expression. In this study, we performed a machine learning based miRNA prediction analysis for the SARS-CoV-2 genome to identify miRNA-like hairpins and searched for potential miRNA-based interactions between the viral miRNAs and human genes and human miRNAs and viral genes. Overall, 950 hairpin structured sequences were extracted from the virus genome and based on the prediction results, 29 of them could be precursor miRNAs. Targeting analysis showed that 30 viral mature miRNA-like sequences could target 1,367 different human genes. PANTHER gene function analysis results indicated that viral derived miRNA candidates could target various human genes involved in crucial cellular processes including transcription, metabolism, defense system and several signaling pathways such as Wnt and EGFR signalings. Protein class-based grouping of targeted human genes showed that host transcription might be one of the main targets of the virus since 96 genes involved in transcriptional processes were potential targets of predicted viral miRNAs. For instance, basal transcription machinery elements including several components of human mediator complex (MED1, MED9, MED12L, MED19), basal transcription factors such as TAF4, TAF5, TAF7L and site-specific transcription factors such as STAT1 were found to be targeted. In addition, many known human miRNAs appeared to be able to target viral genes involved in viral life cycle such as S, M, N, E proteins and ORF1ab, ORF3a, ORF8, ORF7a and ORF10. Considering the fact that miRNA-based therapies have been paid attention, based on the findings of this study, comprehending mode of actions of miRNAs and their possible roles during SARS-CoV-2 infections could create new opportunities for the development and improvement of new therapeutics.
Collapse
Affiliation(s)
| | - Aysun Adan
- Molecular Biology and Genetics, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
3073
|
Brimacombe KR, Zhao T, Eastman RT, Hu X, Wang K, Backus M, Baljinnyam B, Chen CZ, Chen L, Eicher T, Ferrer M, Fu Y, Gorshkov K, Guo H, Hanson QM, Itkin Z, Kales SC, Klumpp-Thomas C, Lee EM, Michael S, Mierzwa T, Patt A, Pradhan M, Renn A, Shinn P, Shrimp JH, Viraktamath A, Wilson KM, Xu M, Zakharov AV, Zhu W, Zheng W, Simeonov A, Mathé EA, Lo DC, Hall MD, Shen M. An OpenData portal to share COVID-19 drug repurposing data in real time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.04.135046. [PMID: 32511420 PMCID: PMC7276055 DOI: 10.1101/2020.06.04.135046] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.
Collapse
Affiliation(s)
- Kyle R. Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Tongan Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Richard T. Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Ke Wang
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Mark Backus
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Tara Eicher
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Ying Fu
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Quinlin M. Hanson
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health
| | | | - Emily M. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Tim Mierzwa
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Andrew Patt
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Alex Renn
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Jonathan H. Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Amit Viraktamath
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Wei Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Ewy A. Mathé
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Donald C. Lo
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health
| |
Collapse
|
3074
|
Jindal C, Kumar S, Sharma S, Choi YM, Efird JT. The Prevention and Management of COVID-19: Seeking a Practical and Timely Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3986. [PMID: 32512826 PMCID: PMC7312104 DOI: 10.3390/ijerph17113986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
We read with interest several manuscripts recently published in the International Journal of Environmental Research and Public Health (IJERPH) on the ongoing coronavirus pandemic. While these articles provide a well-rounded overview on the risk and current status of this virus, we herein add some relevant information on its etiology, prevention and management, especially for resource-limited healthcare systems. The use of protective actions is both complex and expensive. Affordable options are essential to respond to this and future viral outbreaks.
Collapse
Affiliation(s)
- Charulata Jindal
- Faculty of Science, University of Newcastle, Newcastle 2308, Australia;
| | - Sandeep Kumar
- Department of Surgery, King George Medical University, Lucknow 226003, India;
| | - Sunil Sharma
- Department of Medicine, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA;
| | | | - Jimmy T. Efird
- Cooperative Studies Program Epidemiology Center, Health Services Research and Development (DVAHCS/Duke Affiliated Center), Durham, NC 27705, USA
| |
Collapse
|
3075
|
Hsiao WK, Lorber B, Paudel A. Can 3D printing of oral drugs help fight the current COVID-19 pandemic (and similar crisis in the future)? Expert Opin Drug Deliv 2020; 17:899-902. [PMID: 32427004 DOI: 10.1080/17425247.2020.1772229] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 crisis has highlighted the importance of a robust drug supply chain which can be quickly and flexibly ramped up to produce life-saving drug treatments. 3D printing (3DP) of oral solid dosage forms (OSDF) could be a viable part of the emergency drug production response to support vulnerable patients in rural regions and other isolated locations. In the context of the current pandemic, the suitability of different 3DP technologies will depend on the physicochemical properties, unit dose strength and BCS classification of the repurposed drug compounds currently being trialed for COVID-19. Furthermore, the deployment strategy should focus on simplifying dosage forms and formulations, scaling down the size and complexity of the printing systems and real-time quality assurance via process analytical technologies (PAT).
Collapse
Affiliation(s)
- Wen-Kai Hsiao
- Research Center Pharmaceutical Engineering GmbH , Graz, Austria
| | - Barbara Lorber
- Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Graz University of Technology , Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH , Graz, Austria.,Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Graz University of Technology , Graz, Austria
| |
Collapse
|
3076
|
Brufsky A, Lotze MT. Ratcheting down the virulence of SARS-CoV-2 in the COVID-19 pandemic. J Med Virol 2020; 92:2379-2380. [PMID: 32458475 PMCID: PMC7283725 DOI: 10.1002/jmv.26067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 11/22/2022]
Affiliation(s)
- Adam Brufsky
- Department of Hematology‐Oncology, UPMC Hillman Cancer Center, Magee Women's HospitalUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Michael T. Lotze
- Department of SurgeryUPMC Hillman Cancer CenterPittsburghPennsylvania
| |
Collapse
|
3077
|
Bonny V, Maillard A, Mousseaux C, Plaçais L, Richier Q. [COVID-19: Pathogenesis of a multi-faceted disease]. Rev Med Interne 2020; 41:375-389. [PMID: 32507520 PMCID: PMC7250743 DOI: 10.1016/j.revmed.2020.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection, named COVID-19, can lead to a dysregulated immune response and abnormal coagulation responsible for a viral sepsis. In this review, we specify physiopathological mechanisms of each phase of COVID-19 - viral, immune and pro-thrombotic - notably because they involve different treatment. Finally, we specify the physiopathological mechanisms of organ injury.
Collapse
Affiliation(s)
- V Bonny
- Interne en DES de pneumologie, Sorbonne-université, France
| | - A Maillard
- Interne en DES de maladies infectieuses, MSc, Université de Paris, France
| | - C Mousseaux
- DES de néphrologie, MSc, Sorbonne-université, France
| | - L Plaçais
- Interne en DES de médecine interne, MSc, Sorbonne-université, France
| | - Q Richier
- Interne en DES de médecine interne Paris, MSc, Université de Paris, France.
| |
Collapse
|
3078
|
Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J 2020; 39:198-216. [PMID: 32447571 PMCID: PMC7245191 DOI: 10.1007/s10930-020-09901-4] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The devastating effects of the recent global pandemic (termed COVID-19 for "coronavirus disease 2019") caused by the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) are paramount with new cases and deaths growing at an exponential rate. In order to provide a better understanding of SARS CoV-2, this article will review the proteins found in the SARS CoV-2 that caused this global pandemic.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, TX, 78249-0698, USA.
| |
Collapse
|
3079
|
Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:425-435. [PMID: 32414646 PMCID: PMC7201239 DOI: 10.1016/j.jmii.2020.04.015] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged in Chinese people in December 2019 and has currently spread worldwide causing the COVID-19 pandemic with more than 150,000 deaths. In order for a SARS-CoV like virus circulating in wild life for a very long time to infect the index case-patient, a number of conditions must be met, foremost among which is the encounter with humans and the presence in homo sapiens of a cellular receptor allowing the virus to bind. Recently it was shown that the SARS-CoV-2 spike protein, binds to the human angiotensin I converting enzyme 2 (ACE2). This molecule is a peptidase expressed at the surface of lung epithelial cells and other tissues, that regulates the renin-angiotensin-aldosterone system. Humans are not equal with respect to the expression levels of the cellular ACE2. Moreover, ACE2 polymorphisms were recently described in human populations. Here we review the most recent evidence that ACE2 expression and/or polymorphism could influence both the susceptibility of people to SARS-CoV-2 infection and the outcome of the COVID-19 disease. Further exploration of the relationship between the virus, the peptidase function of ACE2 and the levels of angiotensin II in SARS-CoV-2 infected patients should help to better understand the pathophysiology of the disease and the multi-organ failures observed in severe COVID-19 cases, particularly heart failure.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
3080
|
Neerukonda SN, Katneni U. A Review on SARS-CoV-2 Virology, Pathophysiology, Animal Models, and Anti-Viral Interventions. Pathogens 2020; 9:E426. [PMID: 32485970 PMCID: PMC7350325 DOI: 10.3390/pathogens9060426] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of CoV disease 2019 (COVID-19) is a highly pathogenic and transmissible CoV that is presently plaguing the global human population and economy. No proven effective antiviral therapy or vaccine currently exists, and supportive care remains to be the cornerstone treatment. Through previous lessons learned from SARS-CoV-1 and MERS-CoV studies, scientific groups worldwide have rapidly expanded the knowledge pertaining to SARS-CoV-2 virology that includes in vitro and in vivo models for testing of antiviral therapies and randomized clinical trials. In the present narrative, we review SARS-CoV-2 virology, clinical features, pathophysiology, and animal models with a specific focus on the antiviral and adjunctive therapies currently being tested or that require testing in animal models and randomized clinical trials.
Collapse
Affiliation(s)
| | - Upendra Katneni
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Current address: Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3081
|
Singh M, Bansal V, Feschotte C. A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. SSRN 2020:3611279. [PMID: 32714119 PMCID: PMC7366802 DOI: 10.2139/ssrn.3611279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/27/2020] [Indexed: 02/06/2023]
Abstract
To predict the tropism of human coronaviruses, we profile 28 SCARFs using scRNA-seq data from a wide range of healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Among adult organs, enterocytes and goblet cells of small intestine and colon, kidney proximal tubule cells, and gallbladder basal cells appear permissive to SARS-CoV-2, consistent with clinical data. Our analysis also suggests alternate entry paths for SARS-CoV-2 infection of the lung, CNS, and heart. We predict spermatogonial cells and prostate endocrine cells, but not ovarian cells, are highly permissive to SARS-CoV-2, suggesting male-specific vulnerabilities. Early embryonic and placental development show a moderate risk of infection. The nasal epithelium is characterized by high expression of both promoting and restricting factors and a potential age-dependent shift in SCARF expression. Lastly, SCARF expression appears broadly conserved across primate organs examined. Our study establishes an important resource for investigations of coronavirus pathology. Funding: M.S. is supported by a Presidential Postdoctoral Fellowship from Cornell University. V.B. is supported by a Career Development Fellowship at DZNE Tuebingen. Work on host-virus interactions in the Feschotte lab is funded by R35 GM122550 from the National Institutes of Health. Conflict of Interest: The authors declare that there is no conflict of interest.
Collapse
Affiliation(s)
- Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, DZNE, Tübingen, Germany
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3082
|
Glinsky GV. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells. Biomedicines 2020; 8:E129. [PMID: 32455629 PMCID: PMC7277789 DOI: 10.3390/biomedicines8050129] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Genes required for SARS-CoV-2 entry into human cells, ACE2 and FURIN, were employed as baits to build genomic-guided molecular maps of upstream regulatory elements, their expression and functions in the human body, and pathophysiologically relevant cell types. Repressors and activators of the ACE2 and FURIN genes were identified based on the analyses of gene silencing and overexpression experiments as well as relevant transgenic mouse models. Panels of repressors (VDR; GATA5; SFTPC; HIF1a) and activators (HMGA2; INSIG1; RUNX1; HNF4a; JNK1/c-FOS) were then employed to identify existing drugs manifesting in their effects on gene expression signatures of potential coronavirus infection mitigation agents. Using this strategy, vitamin D and quercetin have been identified as putative 2019 coronavirus disease (COVID-19) mitigation agents. Quercetin has been identified as one of top-scoring candidate therapeutics in the supercomputer SUMMIT drug-docking screen and Gene Set Enrichment Analyses (GSEA) of expression profiling experiments (EPEs), indicating that highly structurally similar quercetin, luteolin, and eriodictyol could serve as scaffolds for the development of efficient inhibitors of SARS-CoV-2 infection. In agreement with this notion, quercetin alters the expression of 98 of 332 (30%) of human genes encoding protein targets of SARS-CoV-2, thus potentially interfering with functions of 23 of 27 (85%) of the SARS-CoV-2 viral proteins in human cells. Similarly, Vitamin D may interfere with functions of 19 of 27 (70%) of the SARS-CoV-2 proteins by altering expression of 84 of 332 (25%) of human genes encoding protein targets of SARS-CoV-2. Considering the potential effects of both quercetin and vitamin D, the inference could be made that functions of 25 of 27 (93%) of SARS-CoV-2 proteins in human cells may be altered. GSEA and EPEs identify multiple drugs, smoking, and many disease conditions that appear to act as putative coronavirus infection-promoting agents. Discordant patterns of testosterone versus estradiol impacts on SARS-CoV-2 targets suggest a plausible molecular explanation of the apparently higher male mortality during the coronavirus pandemic. Estradiol, in contrast with testosterone, affects the expression of the majority of human genes (203 of 332; 61%) encoding SARS-CoV-2 targets, thus potentially interfering with functions of 26 of 27 SARS-CoV-2 viral proteins. A hypothetical tripartite combination consisting of quercetin/vitamin D/estradiol may affect expression of 244 of 332 (73%) human genes encoding SARS-CoV-2 targets. Of major concern is the ACE2 and FURIN expression in many human cells and tissues, including immune cells, suggesting that SARS-CoV-2 may infect a broad range of cellular targets in the human body. Infection of immune cells may cause immunosuppression, long-term persistence of the virus, and spread of the virus to secondary targets. Present analyses and numerous observational studies indicate that age-associated vitamin D deficiency may contribute to the high mortality of older adults and the elderly. Immediate availability for targeted experimental and clinical interrogations of potential COVID-19 pandemic mitigation agents, namely vitamin D and quercetin, as well as of the highly selective (Ki, 600 pm) intrinsically specific FURIN inhibitor (a1-antitrypsin Portland (a1-PDX), is considered an encouraging factor. Observations reported in this contribution are intended to facilitate follow-up targeted experimental studies and, if warranted, randomized clinical trials to identify and validate therapeutically viable interventions to combat the COVID-19 pandemic. Specifically, gene expression profiles of vitamin D and quercetin activities and their established safety records as over-the-counter medicinal substances strongly argue that they may represent viable candidates for further considerations of their potential utility as COVID-19 pandemic mitigation agents. In line with the results of present analyses, a randomized interventional clinical trial evaluating effects of estradiol on severity of the coronavirus infection in COVID19+ and presumptive COVID19+ patients and two interventional randomized clinical trials evaluating effects of vitamin D on prevention and treatment of COVID-19 were listed on the ClinicalTrials.gov website.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0435, La Jolla, CA 92093-0435, USA
| |
Collapse
|
3083
|
Ruscica M, Corsini A, Ferri N, Banach M, Sirtori CR. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res 2020; 159:104916. [PMID: 32445957 PMCID: PMC7238995 DOI: 10.1016/j.phrs.2020.104916] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Inflammation is an obligatory marker of arterial disease, both stemming from the inflammatory activity of cholesterol itself and from well-established molecular mechanisms. Raised progenitor cell recruitment after major events and clonal hematopoiesis related mechanisms have provided an improved understanding of factors regulating inflammatory phenomena. Trials with inflammation antagonists have led to an extensive evaluation of biomarkers such as the high sensitivity C reactive protein (hsCRP), not exerting a causative role, but frequently indicative of the individual cardiovascular (CV) risk. Aim of this review is to provide indication on the anti-inflammatory profile of agents of general use in CV prevention, i.e. affecting lipids, blood pressure, diabetes as well nutraceuticals such as n-3 fatty acids. A crucial issue in the evaluation of the benefit of the anti-inflammatory activity is the frequent discordance between a beneficial activity on a major risk factor and associated changes of hsCRP, as in the case of statins vs PCSK9 antagonists. In hypertension, angiotensin converting enzyme inhibitors exert an optimal anti-inflammatory activity, vs the case of sartans. The remarkable preventive activity of SLGT-2 inhibitors in heart failure is not associated with a clear anti-inflammatory mechanism. Finally, icosapent ethyl has been shown to reduce the CV risk in hypertriglyceridemia, with a 27 % reduction of hsCRP. The inflammation-based approach to arterial disease has considerably gained from an improved understanding of the clinical diagnostic strategy and from a better knowledge on the mode of action of numerous agents, including nutraceuticals.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milano, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Cesare R Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3084
|
Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells 2020; 9:E1267. [PMID: 32443810 PMCID: PMC7291026 DOI: 10.3390/cells9051267] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/18/2023] Open
Abstract
The current coronavirus disease-2019 (COVID-19) pandemic is due to the novel coronavirus SARS-CoV-2. The scientific community has mounted a strong response by accelerating research and innovation, and has quickly set the foundation for understanding the molecular determinants of the disease for the development of targeted therapeutic interventions. The replication of the viral genome within the infected cells is a key stage of the SARS-CoV-2 life cycle. It is a complex process involving the action of several viral and host proteins in order to perform RNA polymerization, proofreading and final capping. This review provides an update of the structural and functional data on the key actors of the replicatory machinery of SARS-CoV-2, to fill the gaps in the currently available structural data, which is mainly obtained through homology modeling. Moreover, learning from similar viruses, we collect data from the literature to reconstruct the pattern of interactions among the protein actors of the SARS-CoV-2 RNA polymerase machinery. Here, an important role is played by co-factors such as Nsp8 and Nsp10, not only as allosteric activators but also as molecular connectors that hold the entire machinery together to enhance the efficiency of RNA replication.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Giovanni Maga
- Institute of Molecular Genetics, IGM, CNR, 27100 Pavia, Italy;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| |
Collapse
|
3085
|
Singh M, Bansal V, Feschotte C. A single-cell RNA expression map of human coronavirus entry factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.08.084806. [PMID: 32511375 PMCID: PMC7263504 DOI: 10.1101/2020.05.08.084806] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell RNA-sequencing data from a wide range of healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Among adult organs, enterocytes and goblet cells of the small intestine and colon, kidney proximal tubule cells, and gallbladder basal cells appear most permissive to SARS-CoV-2, consistent with clinical data. Our analysis also suggests alternate entry paths for SARS-CoV-2 infection of the lung, central nervous system, and heart. We predict spermatogonial cells and prostate endocrine cells, but not ovarian cells, to be highly permissive to SARS-CoV-2, suggesting male-specific vulnerabilities. Early stages of embryonic and placental development show a moderate risk of infection. The nasal epithelium looks like another battleground, characterized by high expression of both promoting and restricting factors and a potential age-dependent shift in SCARF expression. Lastly, SCARF expression appears broadly conserved across human, chimpanzee and macaque organs examined. Our study establishes an important resource for investigations of coronavirus biology and pathology.
Collapse
Affiliation(s)
- Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, DZNE, Tübingen, Germany
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3086
|
Laise P, Bosker G, Sun X, Shen Y, Douglass EF, Karan C, Realubit RB, Pampou S, Califano A, Alvarez MJ. The Host Cell ViroCheckpoint: Identification and Pharmacologic Targeting of Novel Mechanistic Determinants of Coronavirus-Mediated Hijacked Cell States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.12.091256. [PMID: 32511361 PMCID: PMC7263489 DOI: 10.1101/2020.05.12.091256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most antiviral agents are designed to target virus-specific proteins and mechanisms rather than the host cell proteins that are critically dysregulated following virus-mediated reprogramming of the host cell transcriptional state. To overcome these limitations, we propose that elucidation and pharmacologic targeting of host cell Master Regulator proteins-whose aberrant activities govern the reprogramed state of coronavirus-infected cells-presents unique opportunities to develop novel mechanism-based therapeutic approaches to antiviral therapy, either as monotherapy or as a complement to established treatments. Specifically, we propose that a small module of host cell Master Regulator proteins (ViroCheckpoint) is hijacked by the virus to support its efficient replication and release. Conventional methodologies are not well suited to elucidate these potentially targetable proteins. By using the VIPER network-based algorithm, we successfully interrogated 12h, 24h, and 48h signatures from Calu-3 lung adenocarcinoma cells infected with SARS-CoV, to elucidate the time-dependent reprogramming of host cells and associated Master Regulator proteins. We used the NYS CLIA-certified Darwin OncoTreat algorithm, with an existing database of RNASeq profiles following cell perturbation with 133 FDA-approved and 195 late-stage experimental compounds, to identify drugs capable of virtually abrogating the virus-induced Master Regulator signature. This approach to drug prioritization and repurposing can be trivially extended to other viral pathogens, including SARS-CoV-2, as soon as the relevant infection signature becomes available.
Collapse
Affiliation(s)
- Pasquale Laise
- DarwinHealth Inc, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Yao Shen
- DarwinHealth Inc, New York, NY, USA
| | - Eugene F Douglass
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ronald B Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Pampou
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariano J Alvarez
- DarwinHealth Inc, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
3087
|
Wang Z, Guo K, Gao P, Pu Q, Wu M, Li C, Hur J. Identification of Repurposable Drugs and Adverse Drug Reactions for Various Courses of COVID-19 Based on Single-Cell RNA Sequencing Data. ARXIV 2020:arXiv:2005.07856v2. [PMID: 33299905 PMCID: PMC7724679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 12/04/2020] [Indexed: 10/26/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has impacted almost every part of human life worldwide, posing a massive threat to human health. There is no specific drug for COVID-19, highlighting the urgent need for the development of effective therapeutics. To identify potentially repurposable drugs, we employed a systematic approach to mine candidates from U.S. FDA-approved drugs and preclinical small-molecule compounds by integrating the gene expression perturbation data for chemicals from the Library of Integrated Network-Based Cellular Signatures project with a publicly available single-cell RNA sequencing dataset from mild and severe COVID-19 patients. We identified 281 FDA-approved drugs that have the potential to be effective against SARS-CoV-2 infection, 16 of which are currently undergoing clinical trials to evaluate their efficacy against COVID-19. We experimentally tested the inhibitory effects of tyrphostin-AG-1478 and brefeldin-a on the replication of the single-stranded ribonucleic acid (ssRNA) virus influenza A virus. In conclusion, we have identified a list of repurposable anti-SARS-CoV-2 drugs using a systems biology approach.
Collapse
Affiliation(s)
- Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
3088
|
Janowitz T, Tuveson DA. The Era of COVID-19 and the Rise of Science Collectivism in Cancer Research. Cancer Discov 2020; 10:913-915. [PMID: 32404307 DOI: 10.1158/2159-8290.cd-20-0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coronavirus SARS-CoV-2 has created a global pandemic that has killed more than a quarter million people since December 2019, halted commerce, and disrupted our ability to research cancer in the laboratory and clinic and care for our patients. A return to a functioning society can be facilitated by the active participation of cancer researchers to diagnose and treat SARS-CoV-2-infected patients, and the direct and indirect benefits of our involvement cannot be overstated.
Collapse
Affiliation(s)
- Tobias Janowitz
- Cancer Center at Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
| | - David A Tuveson
- Cancer Center at Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. .,Lustgarten Foundation for Pancreatic Cancer Research Dedicated Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
3089
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
3090
|
Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020; 5:5/47/eabc3582. [PMID: 32404436 DOI: 10.1101/2020.04.21.054015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA are frequently observed in COVID-19 patients. However, it is unclear whether SARS-CoV-2 replicates in the human intestine and contributes to possible fecal-oral transmission. Here, we report productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. Expression of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, facilitated SARS-CoV-2 spike fusogenic activity and promoted virus entry into host cells. We also demonstrate that viruses released into the intestinal lumen were inactivated by simulated human colonic fluid, and infectious virus was not recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.
Collapse
Affiliation(s)
- Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi M Sonnek
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin F Brulois
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harry B Greenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Ciorba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3091
|
Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020; 5:eabc3582. [PMID: 32404436 PMCID: PMC7285829 DOI: 10.1126/sciimmunol.abc3582] [Citation(s) in RCA: 748] [Impact Index Per Article: 149.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA are frequently observed in COVID-19 patients. However, it is unclear whether SARS-CoV-2 replicates in the human intestine and contributes to possible fecal-oral transmission. Here, we report productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. Expression of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, facilitated SARS-CoV-2 spike fusogenic activity and promoted virus entry into host cells. We also demonstrate that viruses released into the intestinal lumen were inactivated by simulated human colonic fluid, and infectious virus was not recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.
Collapse
Affiliation(s)
- Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi M Sonnek
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin F Brulois
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harry B Greenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Ciorba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3092
|
Encinar JA, Menendez JA. Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA. Viruses 2020; 12:E525. [PMID: 32397643 PMCID: PMC7291090 DOI: 10.3390/v12050525] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing the COVID-19 respiratory disease pandemic utilizes unique 2'-O-methyltransferase (2'-O-MTase) capping machinery to camouflage its RNA from innate immune recognition. The nsp16 catalytic subunit of the 2'-O-MTase is unusual in its requirement for a stimulatory subunit (nsp10) to catalyze the ribose 2'-O-methylation of the viral RNA cap. Here we provide a computational basis for drug repositioning or de novo drug development based on three differential traits of the intermolecular interactions of the SARS-CoV-2-specific nsp16/nsp10 heterodimer, namely: (1) the S-adenosyl-l-methionine-binding pocket of nsp16, (2) the unique "activating surface" between nsp16 and nsp10, and (3) the RNA-binding groove of nsp16. We employed ≈9000 U.S. Food and Drug Administration (FDA)-approved investigational and experimental drugs from the DrugBank repository for docking virtual screening. After molecular dynamics calculations of the stability of the binding modes of high-scoring nsp16/nsp10-drug complexes, we considered their pharmacological overlapping with functional modules of the virus-host interactome that is relevant to the viral lifecycle, and to the clinical features of COVID-19. Some of the predicted drugs (e.g., tegobuvir, sonidegib, siramesine, antrafenine, bemcentinib, itacitinib, or phthalocyanine) might be suitable for repurposing to pharmacologically reactivate innate immune restriction and antagonism of SARS-CoV-2 RNAs lacking 2'-O-methylation.
Collapse
Affiliation(s)
- José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Alicante, Spain
| | - Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17005 Girona, Spain
- Girona Biomedical Research Institute, 17007 Girona, Spain
| |
Collapse
|
3093
|
Uddin M, Mustafa F, Rizvi TA, Loney T, Al Suwaidi H, Al-Marzouqi AHH, Kamal Eldin A, Alsabeeha N, Adrian TE, Stefanini C, Nowotny N, Alsheikh-Ali A, Senok AC. SARS-CoV-2/COVID-19: Viral Genomics, Epidemiology, Vaccines, and Therapeutic Interventions. Viruses 2020; 12:E526. [PMID: 32397688 PMCID: PMC7290442 DOI: 10.3390/v12050526] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic is due to infection caused by the novel SARS-CoV-2 virus that impacts the lower respiratory tract. The spectrum of symptoms ranges from asymptomatic infections to mild respiratory symptoms to the lethal form of COVID-19 which is associated with severe pneumonia, acute respiratory distress, and fatality. To address this global crisis, up-to-date information on viral genomics and transcriptomics is crucial for understanding the origins and global dispersion of the virus, providing insights into viral pathogenicity, transmission, and epidemiology, and enabling strategies for therapeutic interventions, drug discovery, and vaccine development. Therefore, this review provides a comprehensive overview of COVID-19 epidemiology, genomic etiology, findings from recent transcriptomic map analysis, viral-human protein interactions, molecular diagnostics, and the current status of vaccine and novel therapeutic intervention development. Moreover, we provide an extensive list of resources that will help the scientific community access numerous types of databases related to SARS-CoV-2 OMICs and approaches to therapeutics related to COVID-19 treatment.
Collapse
Affiliation(s)
- Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE; (F.M.); (A.H.H.A.-M.)
| | - Tahir A. Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE;
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| | - Hanan Al Suwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| | - Ahmed H. Hassan Al-Marzouqi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE; (F.M.); (A.H.H.A.-M.)
| | - Afaf Kamal Eldin
- Department of Food, Nutrition and Health, United Arab Emirates University, Al Ain, UAE;
| | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| | - Cesare Stefanini
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, UAE;
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| | - Abiola C. Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; (M.U.); (T.L.); (H.A.S.); (T.E.A.); (N.N.)
| |
Collapse
|
3094
|
Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci 2020; 5:518-536. [PMID: 32292848 PMCID: PMC7151394 DOI: 10.1016/j.jacbts.2020.04.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease-2019 (COVID-19), a contagious disease caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has reached pandemic status. As it spreads across the world, it has overwhelmed health care systems, strangled the global economy, and led to a devastating loss of life. Widespread efforts from regulators, clinicians, and scientists are driving a rapid expansion of knowledge of the SARS-CoV-2 virus and COVID-19. The authors review the most current data, with a focus on the basic understanding of the mechanism(s) of disease and translation to the clinical syndrome and potential therapeutics. The authors discuss the basic virology, epidemiology, clinical manifestation, multiorgan consequences, and outcomes. With a focus on cardiovascular complications, they propose several mechanisms of injury. The virology and potential mechanism of injury form the basis for a discussion of potential disease-modifying therapies.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- ARDS, acute respiratory distress syndrome
- CFR, case fatality rate
- COVID-19
- COVID-19, coronavirus disease-2019
- CoV, coronavirus
- DIC, disseminated intravascular coagulation
- ER, endoplasmic reticulum
- ICU, intensive care unit
- SARS-CoV, severe acute respiratory syndrome-coronavirus
- SARS-CoV-2
- SOFA, sequential organ failure assessment
- TMPRSS2, transmembrane serine protease 2
- cardiovascular
- hsCRP, high-sensitivity C-reactive protein
- treatments
- virology
Collapse
Affiliation(s)
| | | | - Joshua P. Lang
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Victor Nauffal
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David A. Morrow
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erin A. Bohula
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3095
|
Schaefer EAK, Arvind A, Bloom PP, Chung RT. Interrelationship Between Coronavirus Infection and Liver Disease. Clin Liver Dis (Hoboken) 2020; 15:175-180. [PMID: 32489653 PMCID: PMC7242011 DOI: 10.1002/cld.967] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Ashwini Arvind
- Liver Center and GI DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Patricia P. Bloom
- Liver Center and GI DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Raymond T. Chung
- Liver Center and GI DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| |
Collapse
|
3096
|
Morselli Gysi D, Do Valle Í, Zitnik M, Ameli A, Gan X, Varol O, Ghiassian SD, Patten JJ, Davey R, Loscalzo J, Barabási AL. Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19. ARXIV 2020:arXiv:2004.07229v2. [PMID: 32550253 PMCID: PMC7280907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.
Collapse
Affiliation(s)
- Deisy Morselli Gysi
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ítalo Do Valle
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard University, Boston, MA 02115, USA
- Harvard Data Science Initiative, Harvard University, Cambridge, MA 02138, USA
| | - Asher Ameli
- Scipher Medicine, 221 Crescent St, Suite 103A, Waltham, MA 02453
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Xiao Gan
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Onur Varol
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | | | - J J Patten
- Department of microbiology, NEIDL, Boston University, Boston, MA, USA
| | - Robert Davey
- Department of microbiology, NEIDL, Boston University, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA
- Department of Network and Data Science, Central European University, Budapest 1051, Hungary
| |
Collapse
|
3097
|
Biţă A, Scorei IR, Mogoantă L, Bejenaru C, Mogoşanu GD, Bejenaru LE. Natural and semisynthetic candidate molecules for COVID-19 prophylaxis and treatment. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:321-334. [PMID: 33544784 PMCID: PMC7864303 DOI: 10.47162/rjme.61.2.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Coronaviruses (CoVs) represent a family of viruses that have numerous animal hosts, and they cause severe respiratory, as well as systemic and enteric infections, in humans. Currently, there are limited antiviral strategies for treating patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The lack of specific antiviral medicines and SARS-CoV-2 vaccines continues to aggravate the situation. Natural product-based antiviral drugs have been used in the two previous CoV outbreaks: Middle East respiratory syndrome coronavirus (MERS-CoV) and the first SARS-CoV. This review emphasizes the role of natural and semisynthetic candidate molecules for coronavirus disease 2019 (COVID-19) prophylaxis and treatment. The experimental evidence suggests that nature could offer huge possibilities for treatment of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Andrei Biţă
- BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | | | | | | | | | | |
Collapse
|
3098
|
Ranganathan LN, Shivaraman MA, Ramamurthy G, Shrivarthan R. The Socially Distanced Social Animal - In The New Covid-19 Era. Ann Indian Acad Neurol 2020; 23:S1-S4. [PMID: 32419747 PMCID: PMC7213034 DOI: 10.4103/aian.aian_263_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Guhan Ramamurthy
- Institute of Neurology, Madras Medical College, Chennai, Tamil Nadu, India
| | - R. Shrivarthan
- Institute of Neurology, Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
3099
|
Mukund K, Mathee K, Subramaniam S. Plasmin Cascade Mediates Thrombotic Events in SARS-CoV-2 Infection via Complement and Platelet-Activating Systems. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:220-227. [PMID: 34786557 PMCID: PMC8527892 DOI: 10.1109/ojemb.2020.3014798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/11/2022] Open
Abstract
Objective: Recently emerged beta-coronavirus SARS-CoV-2, has resulted in the current pandemic designated COVID-19. COVID-19 manifests as severe illness exhibiting systemic inflammatory response syndrome, acute respiratory distress syndrome (ARDS), thrombotic events, and shock, exacerbated further by co-morbidities and age. Recent clinical evidence suggests that the development of ARDS and subsequent pulmonary failure result from a complex interplay between cell types (endothelial, epithelial and immune) within the lung promoting inflammatory infiltration and a pro-coagulative state. How the complex molecular events mediated by SARS-CoV-2 in infected lung epithelial cells lead to thrombosis and pulmonary failure, is yet to be fully understood. Methods: We address these questions here, using publicly available transcriptomic data in the context of lung epithelia affected by SARS-CoV-2 and other respiratory infections, in vitro. We then extend our results to the understanding of in vivo lung, using a publicly available COVID-19 lung transcriptomic study. Results and Conclusions: Our analysis indicates that there exists a complex interplay between the fibrinolytic system particularly plasmin, and the complement and platelet-activating systems upon SARS-CoV-2 infection, with a potential for therapeutic intervention.
Collapse
Affiliation(s)
- Kavitha Mukund
- 1 Department of BioengineeringUniversity of California San Diego La Jolla CA 92093 USA
| | - Kalai Mathee
- 2 Department of Human and Molecular GeneticsHerbert Wertheim College of Medicine Miami FL 33199 USA
- 3 Biomolecular Sciences InstituteFlorida International University Miami FL 33199 USA
| | - Shankar Subramaniam
- 1 Department of BioengineeringUniversity of California San Diego La Jolla CA 92093 USA
- 4 Department of Cellular and Molecular MedicineUniversity of California San Diego La Jolla CA 92093 USA
- 5 Department of Computer Science and EngineeringUniversity of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
3100
|
Lozano-Sepulveda SA, Galan-Huerta K, Martínez-Acuña N, Arellanos-Soto D, Rivas-Estilla AM. SARS-CoV-2 another kind of liver aggressor, how does it do that? Ann Hepatol 2020; 19:592-596. [PMID: 32858226 PMCID: PMC7445466 DOI: 10.1016/j.aohep.2020.08.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
Clinical manifestations of SARS-CoV-2 infection include more frequently fever and cough, but complications (such as pneumonia, respiratory distress syndrome, and multiorgan failure) can occur in persons with additional comorbidities. Liver dysfunction is one of the most striking affections among patients suggesting that SARS-CoV-2 may represent a new king of liver aggressor. However, the molecular process underlying this phenomenon is still unclear. In this work, we overview the most recent findings between the molecular biology of the virus, pathogenic mechanisms, and its relationship to liver disease observed in patients.
Collapse
Affiliation(s)
| | | | | | | | - Ana María Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, School of Medicine and Hospital Universitario "Dr. Jose E. Gonzalez", Autonomous University of Nuevo León, Monterrey, N.L, Mexico.
| |
Collapse
|